/***************************************************************************** Copyright (c) 1996, 2018, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2018, 2019, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file row/row0row.cc General row routines Created 4/20/1996 Heikki Tuuri *******************************************************/ #include "row0row.h" #include "data0type.h" #include "dict0dict.h" #include "dict0boot.h" #include "btr0btr.h" #include "mach0data.h" #include "trx0rseg.h" #include "trx0trx.h" #include "trx0roll.h" #include "trx0undo.h" #include "trx0purge.h" #include "trx0rec.h" #include "que0que.h" #include "row0ext.h" #include "row0upd.h" #include "rem0cmp.h" #include "read0read.h" #include "ut0mem.h" #include "gis0geo.h" #include "row0mysql.h" /*****************************************************************//** When an insert or purge to a table is performed, this function builds the entry to be inserted into or purged from an index on the table. @return index entry which should be inserted or purged @retval NULL if the externally stored columns in the clustered index record are unavailable and ext != NULL, or row is missing some needed columns. */ dtuple_t* row_build_index_entry_low( /*======================*/ const dtuple_t* row, /*!< in: row which should be inserted or purged */ const row_ext_t* ext, /*!< in: externally stored column prefixes, or NULL */ dict_index_t* index, /*!< in: index on the table */ mem_heap_t* heap, /*!< in: memory heap from which the memory for the index entry is allocated */ ulint flag) /*!< in: ROW_BUILD_NORMAL, ROW_BUILD_FOR_PURGE or ROW_BUILD_FOR_UNDO */ { dtuple_t* entry; ulint entry_len; ulint i; ulint num_v = 0; entry_len = dict_index_get_n_fields(index); if (flag == ROW_BUILD_FOR_INSERT && dict_index_is_clust(index)) { num_v = dict_table_get_n_v_cols(index->table); entry = dtuple_create_with_vcol(heap, entry_len, num_v); } else { entry = dtuple_create(heap, entry_len); } if (dict_index_is_ibuf(index)) { dtuple_set_n_fields_cmp(entry, entry_len); /* There may only be externally stored columns in a clustered index B-tree of a user table. */ ut_a(!ext); } else { dtuple_set_n_fields_cmp( entry, dict_index_get_n_unique_in_tree(index)); } for (i = 0; i < entry_len + num_v; i++) { const dict_field_t* ind_field = NULL; const dict_col_t* col; ulint col_no = 0; dfield_t* dfield; const dfield_t* dfield2; ulint len; if (i >= entry_len) { /* This is to insert new rows to cluster index */ ut_ad(dict_index_is_clust(index) && flag == ROW_BUILD_FOR_INSERT); dfield = dtuple_get_nth_v_field(entry, i - entry_len); col = &dict_table_get_nth_v_col( index->table, i - entry_len)->m_col; } else { ind_field = dict_index_get_nth_field(index, i); col = ind_field->col; col_no = dict_col_get_no(col); dfield = dtuple_get_nth_field(entry, i); } #if DATA_MISSING != 0 # error "DATA_MISSING != 0" #endif if (dict_col_is_virtual(col)) { const dict_v_col_t* v_col = reinterpret_cast(col); ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row)); dfield2 = dtuple_get_nth_v_field(row, v_col->v_pos); ut_ad(dfield_is_null(dfield2) || dfield_get_len(dfield2) == 0 || dfield2->data); } else { dfield2 = dtuple_get_nth_field(row, col_no); ut_ad(dfield_get_type(dfield2)->mtype == DATA_MISSING || (!(dfield_get_type(dfield2)->prtype & DATA_VIRTUAL))); } if (UNIV_UNLIKELY(dfield_get_type(dfield2)->mtype == DATA_MISSING)) { /* The field has not been initialized in the row. This should be from trx_undo_rec_get_partial_row(). */ return(NULL); } #ifdef UNIV_DEBUG if (dfield_get_type(dfield2)->prtype & DATA_VIRTUAL && dict_index_is_clust(index)) { ut_ad(flag == ROW_BUILD_FOR_INSERT); } #endif /* UNIV_DEBUG */ /* Special handle spatial index, set the first field which is for store MBR. */ if (dict_index_is_spatial(index) && i == 0) { double* mbr; dfield_copy(dfield, dfield2); dfield->type.prtype |= DATA_GIS_MBR; /* Allocate memory for mbr field */ ulint mbr_len = DATA_MBR_LEN; mbr = static_cast(mem_heap_alloc(heap, mbr_len)); /* Set mbr field data. */ dfield_set_data(dfield, mbr, mbr_len); if (dfield2->data) { const uchar* dptr = NULL; ulint dlen = 0; ulint flen = 0; double tmp_mbr[SPDIMS * 2]; mem_heap_t* temp_heap = NULL; if (dfield_is_ext(dfield2)) { if (flag == ROW_BUILD_FOR_PURGE) { const byte* ptr = NULL; spatial_status_t spatial_status; spatial_status = dfield_get_spatial_status( dfield2); switch (spatial_status) { case SPATIAL_ONLY: ptr = static_cast( dfield_get_data( dfield2)); ut_ad(dfield_get_len(dfield2) == DATA_MBR_LEN); break; case SPATIAL_MIXED: ptr = static_cast( dfield_get_data( dfield2)) + dfield_get_len( dfield2); break; case SPATIAL_UNKNOWN: ut_ad(0); /* fall through */ case SPATIAL_NONE: /* Undo record is logged before spatial index is created.*/ return(NULL); } memcpy(mbr, ptr, DATA_MBR_LEN); continue; } if (flag == ROW_BUILD_FOR_UNDO && dict_table_get_format(index->table) >= UNIV_FORMAT_B) { /* For build entry for undo, and the table is Barrcuda, we need to skip the prefix data. */ flen = BTR_EXTERN_FIELD_REF_SIZE; ut_ad(dfield_get_len(dfield2) >= BTR_EXTERN_FIELD_REF_SIZE); dptr = static_cast( dfield_get_data(dfield2)) + dfield_get_len(dfield2) - BTR_EXTERN_FIELD_REF_SIZE; } else { flen = dfield_get_len(dfield2); dptr = static_cast( dfield_get_data(dfield2)); } temp_heap = mem_heap_create(1000); const page_size_t page_size = (ext != NULL) ? ext->page_size : dict_table_page_size( index->table); dptr = btr_copy_externally_stored_field( &dlen, dptr, page_size, flen, temp_heap); } else { dptr = static_cast( dfield_get_data(dfield2)); dlen = dfield_get_len(dfield2); } if (dlen <= GEO_DATA_HEADER_SIZE) { for (uint i = 0; i < SPDIMS; ++i) { tmp_mbr[i * 2] = DBL_MAX; tmp_mbr[i * 2 + 1] = -DBL_MAX; } } else { rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE, static_cast(dlen - GEO_DATA_HEADER_SIZE), SPDIMS, tmp_mbr); } dfield_write_mbr(dfield, tmp_mbr); if (temp_heap) { mem_heap_free(temp_heap); } } continue; } len = dfield_get_len(dfield2); dfield_copy(dfield, dfield2); if (dfield_is_null(dfield)) { continue; } if ((!ind_field || ind_field->prefix_len == 0) && (!dfield_is_ext(dfield) || dict_index_is_clust(index))) { /* The dfield_copy() above suffices for columns that are stored in-page, or for clustered index record columns that are not part of a column prefix in the PRIMARY KEY, or for virtaul columns in cluster index record. */ continue; } /* If the column is stored externally (off-page) in the clustered index, it must be an ordering field in the secondary index. In the Antelope format, only prefix-indexed columns may be stored off-page in the clustered index record. In the Barracuda format, also fully indexed long CHAR or VARCHAR columns may be stored off-page. */ ut_ad(col->ord_part); if (ext && !col->is_virtual()) { /* See if the column is stored externally. */ const byte* buf = row_ext_lookup(ext, col_no, &len); if (UNIV_LIKELY_NULL(buf)) { if (UNIV_UNLIKELY(buf == field_ref_zero)) { return(NULL); } dfield_set_data(dfield, buf, len); } if (ind_field->prefix_len == 0) { /* In the Barracuda format (ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED), we can have a secondary index on an entire column that is stored off-page in the clustered index. As this is not a prefix index (prefix_len == 0), include the entire off-page column in the secondary index record. */ continue; } } else if (dfield_is_ext(dfield)) { /* This table is either in Antelope format (ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT) or a purge record where the ordered part of the field is not external. In Antelope, the maximum column prefix index length is 767 bytes, and the clustered index record contains a 768-byte prefix of each off-page column. */ ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE); len -= BTR_EXTERN_FIELD_REF_SIZE; dfield_set_len(dfield, len); } /* If a column prefix index, take only the prefix. */ if (ind_field->prefix_len) { len = dtype_get_at_most_n_mbchars( col->prtype, col->mbminlen, col->mbmaxlen, ind_field->prefix_len, len, static_cast(dfield_get_data(dfield))); dfield_set_len(dfield, len); } } return(entry); } /** An inverse function to row_build_index_entry. Builds a row from a record in a clustered index, with possible indexing on ongoing addition of new virtual columns. @param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA; @param[in] index clustered index @param[in] rec record in the clustered index @param[in] offsets rec_get_offsets(rec,index) or NULL @param[in] col_table table, to check which externally stored columns occur in the ordering columns of an index, or NULL if index->table should be consulted instead @param[in] add_cols default values of added columns, or NULL @param[in] add_v new virtual columns added along with new indexes @param[in] col_map mapping of old column numbers to new ones, or NULL @param[in] ext cache of externally stored column prefixes, or NULL @param[in] heap memory heap from which the memory needed is allocated @return own: row built; */ static inline dtuple_t* row_build_low( ulint type, const dict_index_t* index, const rec_t* rec, const offset_t* offsets, const dict_table_t* col_table, const dtuple_t* add_cols, const dict_add_v_col_t* add_v, const ulint* col_map, row_ext_t** ext, mem_heap_t* heap) { const byte* copy; dtuple_t* row; ulint n_ext_cols; ulint* ext_cols = NULL; /* remove warning */ ulint len; byte* buf; ulint j; mem_heap_t* tmp_heap = NULL; offset_t offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs_init(offsets_); ut_ad(index != NULL); ut_ad(rec != NULL); ut_ad(heap != NULL); ut_ad(dict_index_is_clust(index)); ut_ad(!trx_sys_mutex_own()); ut_ad(!col_map || col_table); if (!offsets) { offsets = rec_get_offsets(rec, index, offsets_, true, ULINT_UNDEFINED, &tmp_heap); } else { ut_ad(rec_offs_validate(rec, index, offsets)); } #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG /* Some blob refs can be NULL during crash recovery before trx_rollback_active() has completed execution, or when a concurrently executing insert or update has committed the B-tree mini-transaction but has not yet managed to restore the cursor position for writing the big_rec. Note that the mini-transaction can be committed multiple times, and the cursor restore can happen multiple times for single insert or update statement. */ ut_a(!rec_offs_any_null_extern(rec, offsets) || trx_rw_is_active(row_get_rec_trx_id(rec, index, offsets), NULL, false)); #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ if (type != ROW_COPY_POINTERS) { /* Take a copy of rec to heap */ buf = static_cast( mem_heap_alloc(heap, rec_offs_size(offsets))); copy = rec_copy(buf, rec, offsets); } else { copy = rec; } n_ext_cols = rec_offs_n_extern(offsets); if (n_ext_cols) { ext_cols = static_cast( mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols)); } /* Avoid a debug assertion in rec_offs_validate(). */ rec_offs_make_valid(copy, index, const_cast(offsets)); if (!col_table) { ut_ad(!col_map); ut_ad(!add_cols); col_table = index->table; } if (add_cols) { ut_ad(col_map); row = dtuple_copy(add_cols, heap); /* dict_table_copy_types() would set the fields to NULL */ for (ulint i = 0; i < dict_table_get_n_cols(col_table); i++) { dict_col_copy_type( dict_table_get_nth_col(col_table, i), dfield_get_type(dtuple_get_nth_field(row, i))); } } else if (add_v != NULL) { row = dtuple_create_with_vcol( heap, dict_table_get_n_cols(col_table), dict_table_get_n_v_cols(col_table) + add_v->n_v_col); dict_table_copy_types(row, col_table); for (ulint i = 0; i < add_v->n_v_col; i++) { dict_col_copy_type( &add_v->v_col[i].m_col, dfield_get_type(dtuple_get_nth_v_field( row, i + col_table->n_v_def))); } } else { row = dtuple_create_with_vcol( heap, dict_table_get_n_cols(col_table), dict_table_get_n_v_cols(col_table)); dict_table_copy_types(row, col_table); } dtuple_set_info_bits(row, rec_get_info_bits( copy, rec_offs_comp(offsets))); j = 0; for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) { const dict_field_t* ind_field = dict_index_get_nth_field(index, i); if (ind_field->prefix_len) { /* Column prefixes can only occur in key fields, which cannot be stored externally. For a column prefix, there should also be the full field in the clustered index tuple. The row tuple comprises full fields, not prefixes. */ ut_ad(!rec_offs_nth_extern(offsets, i)); continue; } const dict_col_t* col = dict_field_get_col(ind_field); ulint col_no = dict_col_get_no(col); if (col_map) { col_no = col_map[col_no]; if (col_no == ULINT_UNDEFINED) { /* dropped column */ continue; } } dfield_t* dfield = dtuple_get_nth_field(row, col_no); const byte* field = rec_get_nth_field( copy, offsets, i, &len); dfield_set_data(dfield, field, len); if (rec_offs_nth_extern(offsets, i)) { dfield_set_ext(dfield); col = dict_table_get_nth_col(col_table, col_no); if (col->ord_part) { /* We will have to fetch prefixes of externally stored columns that are referenced by column prefixes. */ ext_cols[j++] = col_no; } } } rec_offs_make_valid(rec, index, const_cast(offsets)); ut_ad(dtuple_check_typed(row)); if (!ext) { /* REDUNDANT and COMPACT formats store a local 768-byte prefix of each externally stored column. No cache is needed. During online table rebuild, row_log_table_apply_delete_low() may use a cache that was set up by row_log_table_delete(). */ } else if (j) { *ext = row_ext_create(j, ext_cols, index->table->flags, row, heap); } else { *ext = NULL; } if (tmp_heap) { mem_heap_free(tmp_heap); } return(row); } /*******************************************************************//** An inverse function to row_build_index_entry. Builds a row from a record in a clustered index. @return own: row built; see the NOTE below! */ dtuple_t* row_build( /*======*/ ulint type, /*!< in: ROW_COPY_POINTERS or ROW_COPY_DATA; the latter copies also the data fields to heap while the first only places pointers to data fields on the index page, and thus is more efficient */ const dict_index_t* index, /*!< in: clustered index */ const rec_t* rec, /*!< in: record in the clustered index; NOTE: in the case ROW_COPY_POINTERS the data fields in the row will point directly into this record, therefore, the buffer page of this record must be at least s-latched and the latch held as long as the row dtuple is used! */ const offset_t* offsets,/*!< in: rec_get_offsets(rec,index) or NULL, in which case this function will invoke rec_get_offsets() */ const dict_table_t* col_table, /*!< in: table, to check which externally stored columns occur in the ordering columns of an index, or NULL if index->table should be consulted instead */ const dtuple_t* add_cols, /*!< in: default values of added columns, or NULL */ const ulint* col_map,/*!< in: mapping of old column numbers to new ones, or NULL */ row_ext_t** ext, /*!< out, own: cache of externally stored column prefixes, or NULL */ mem_heap_t* heap) /*!< in: memory heap from which the memory needed is allocated */ { return(row_build_low(type, index, rec, offsets, col_table, add_cols, NULL, col_map, ext, heap)); } /** An inverse function to row_build_index_entry. Builds a row from a record in a clustered index, with possible indexing on ongoing addition of new virtual columns. @param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA; @param[in] index clustered index @param[in] rec record in the clustered index @param[in] offsets rec_get_offsets(rec,index) or NULL @param[in] col_table table, to check which externally stored columns occur in the ordering columns of an index, or NULL if index->table should be consulted instead @param[in] add_cols default values of added columns, or NULL @param[in] add_v new virtual columns added along with new indexes @param[in] col_map mapping of old column numbers to new ones, or NULL @param[in] ext cache of externally stored column prefixes, or NULL @param[in] heap memory heap from which the memory needed is allocated @return own: row built; */ dtuple_t* row_build_w_add_vcol( ulint type, const dict_index_t* index, const rec_t* rec, const offset_t* offsets, const dict_table_t* col_table, const dtuple_t* add_cols, const dict_add_v_col_t* add_v, const ulint* col_map, row_ext_t** ext, mem_heap_t* heap) { return(row_build_low(type, index, rec, offsets, col_table, add_cols, add_v, col_map, ext, heap)); } /*******************************************************************//** Converts an index record to a typed data tuple. @return index entry built; does not set info_bits, and the data fields in the entry will point directly to rec */ dtuple_t* row_rec_to_index_entry_low( /*=======================*/ const rec_t* rec, /*!< in: record in the index */ const dict_index_t* index, /*!< in: index */ const offset_t* offsets,/*!< in: rec_get_offsets(rec, index) */ ulint* n_ext, /*!< out: number of externally stored columns */ mem_heap_t* heap) /*!< in: memory heap from which the memory needed is allocated */ { dtuple_t* entry; dfield_t* dfield; ulint i; const byte* field; ulint len; ulint rec_len; ut_ad(rec != NULL); ut_ad(heap != NULL); ut_ad(index != NULL); /* Because this function may be invoked by row0merge.cc on a record whose header is in different format, the check rec_offs_validate(rec, index, offsets) must be avoided here. */ ut_ad(n_ext); *n_ext = 0; rec_len = rec_offs_n_fields(offsets); entry = dtuple_create(heap, rec_len); dtuple_set_n_fields_cmp(entry, dict_index_get_n_unique_in_tree(index)); ut_ad(rec_len == dict_index_get_n_fields(index) /* a record for older SYS_INDEXES table (missing merge_threshold column) is acceptable. */ || (index->table->id == DICT_INDEXES_ID && rec_len == dict_index_get_n_fields(index) - 1)); dict_index_copy_types(entry, index, rec_len); for (i = 0; i < rec_len; i++) { dfield = dtuple_get_nth_field(entry, i); field = rec_get_nth_field(rec, offsets, i, &len); dfield_set_data(dfield, field, len); if (rec_offs_nth_extern(offsets, i)) { dfield_set_ext(dfield); (*n_ext)++; } } ut_ad(dtuple_check_typed(entry)); return(entry); } /*******************************************************************//** Converts an index record to a typed data tuple. NOTE that externally stored (often big) fields are NOT copied to heap. @return own: index entry built */ dtuple_t* row_rec_to_index_entry( /*===================*/ const rec_t* rec, /*!< in: record in the index */ const dict_index_t* index, /*!< in: index */ const offset_t* offsets,/*!< in: rec_get_offsets(rec) */ ulint* n_ext, /*!< out: number of externally stored columns */ mem_heap_t* heap) /*!< in: memory heap from which the memory needed is allocated */ { dtuple_t* entry; byte* buf; const rec_t* copy_rec; ut_ad(rec != NULL); ut_ad(heap != NULL); ut_ad(index != NULL); ut_ad(rec_offs_validate(rec, index, offsets)); /* Take a copy of rec to heap */ buf = static_cast( mem_heap_alloc(heap, rec_offs_size(offsets))); copy_rec = rec_copy(buf, rec, offsets); rec_offs_make_valid(copy_rec, index, const_cast(offsets)); entry = row_rec_to_index_entry_low( copy_rec, index, offsets, n_ext, heap); rec_offs_make_valid(rec, index, const_cast(offsets)); dtuple_set_info_bits(entry, rec_get_info_bits(rec, rec_offs_comp(offsets))); return(entry); } /*******************************************************************//** Builds from a secondary index record a row reference with which we can search the clustered index record. @return own: row reference built; see the NOTE below! */ dtuple_t* row_build_row_ref( /*==============*/ ulint type, /*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS: the former copies also the data fields to heap, whereas the latter only places pointers to data fields on the index page */ dict_index_t* index, /*!< in: secondary index */ const rec_t* rec, /*!< in: record in the index; NOTE: in the case ROW_COPY_POINTERS the data fields in the row will point directly into this record, therefore, the buffer page of this record must be at least s-latched and the latch held as long as the row reference is used! */ mem_heap_t* heap) /*!< in: memory heap from which the memory needed is allocated */ { dict_table_t* table; dict_index_t* clust_index; dfield_t* dfield; dtuple_t* ref; const byte* field; ulint len; ulint ref_len; ulint pos; byte* buf; ulint clust_col_prefix_len; ulint i; mem_heap_t* tmp_heap = NULL; offset_t offsets_[REC_OFFS_NORMAL_SIZE]; offset_t* offsets = offsets_; rec_offs_init(offsets_); ut_ad(index != NULL); ut_ad(rec != NULL); ut_ad(heap != NULL); ut_ad(!dict_index_is_clust(index)); offsets = rec_get_offsets(rec, index, offsets, true, ULINT_UNDEFINED, &tmp_heap); /* Secondary indexes must not contain externally stored columns. */ ut_ad(!rec_offs_any_extern(offsets)); if (type == ROW_COPY_DATA) { /* Take a copy of rec to heap */ buf = static_cast( mem_heap_alloc(heap, rec_offs_size(offsets))); rec = rec_copy(buf, rec, offsets); /* Avoid a debug assertion in rec_offs_validate(). */ rec_offs_make_valid(rec, index, offsets); } table = index->table; clust_index = dict_table_get_first_index(table); ref_len = dict_index_get_n_unique(clust_index); ref = dtuple_create(heap, ref_len); dict_index_copy_types(ref, clust_index, ref_len); for (i = 0; i < ref_len; i++) { dfield = dtuple_get_nth_field(ref, i); pos = dict_index_get_nth_field_pos(index, clust_index, i); ut_a(pos != ULINT_UNDEFINED); field = rec_get_nth_field(rec, offsets, pos, &len); dfield_set_data(dfield, field, len); /* If the primary key contains a column prefix, then the secondary index may contain a longer prefix of the same column, or the full column, and we must adjust the length accordingly. */ clust_col_prefix_len = dict_index_get_nth_field( clust_index, i)->prefix_len; if (clust_col_prefix_len > 0) { if (len != UNIV_SQL_NULL) { const dtype_t* dtype = dfield_get_type(dfield); dfield_set_len(dfield, dtype_get_at_most_n_mbchars( dtype->prtype, dtype->mbminlen, dtype->mbmaxlen, clust_col_prefix_len, len, (char*) field)); } } } ut_ad(dtuple_check_typed(ref)); if (tmp_heap) { mem_heap_free(tmp_heap); } return(ref); } /*******************************************************************//** Builds from a secondary index record a row reference with which we can search the clustered index record. */ void row_build_row_ref_in_tuple( /*=======================*/ dtuple_t* ref, /*!< in/out: row reference built; see the NOTE below! */ const rec_t* rec, /*!< in: record in the index; NOTE: the data fields in ref will point directly into this record, therefore, the buffer page of this record must be at least s-latched and the latch held as long as the row reference is used! */ const dict_index_t* index, /*!< in: secondary index */ offset_t* offsets,/*!< in: rec_get_offsets(rec, index) or NULL */ trx_t* trx) /*!< in: transaction */ { const dict_index_t* clust_index; dfield_t* dfield; const byte* field; ulint len; ulint ref_len; ulint pos; ulint clust_col_prefix_len; ulint i; mem_heap_t* heap = NULL; offset_t offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs_init(offsets_); ut_ad(!dict_index_is_clust(index)); ut_a(index->table); clust_index = dict_table_get_first_index(index->table); ut_ad(clust_index); if (!offsets) { offsets = rec_get_offsets(rec, index, offsets_, true, ULINT_UNDEFINED, &heap); } else { ut_ad(rec_offs_validate(rec, index, offsets)); } /* Secondary indexes must not contain externally stored columns. */ ut_ad(!rec_offs_any_extern(offsets)); ref_len = dict_index_get_n_unique(clust_index); ut_ad(ref_len == dtuple_get_n_fields(ref)); dict_index_copy_types(ref, clust_index, ref_len); for (i = 0; i < ref_len; i++) { dfield = dtuple_get_nth_field(ref, i); pos = dict_index_get_nth_field_pos(index, clust_index, i); ut_a(pos != ULINT_UNDEFINED); field = rec_get_nth_field(rec, offsets, pos, &len); dfield_set_data(dfield, field, len); /* If the primary key contains a column prefix, then the secondary index may contain a longer prefix of the same column, or the full column, and we must adjust the length accordingly. */ clust_col_prefix_len = dict_index_get_nth_field( clust_index, i)->prefix_len; if (clust_col_prefix_len > 0) { if (len != UNIV_SQL_NULL) { const dtype_t* dtype = dfield_get_type(dfield); dfield_set_len(dfield, dtype_get_at_most_n_mbchars( dtype->prtype, dtype->mbminlen, dtype->mbmaxlen, clust_col_prefix_len, len, (char*) field)); } } } ut_ad(dtuple_check_typed(ref)); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /***************************************************************//** Searches the clustered index record for a row, if we have the row reference. @return TRUE if found */ ibool row_search_on_row_ref( /*==================*/ btr_pcur_t* pcur, /*!< out: persistent cursor, which must be closed by the caller */ ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */ const dict_table_t* table, /*!< in: table */ const dtuple_t* ref, /*!< in: row reference */ mtr_t* mtr) /*!< in/out: mtr */ { ulint low_match; rec_t* rec; dict_index_t* index; ut_ad(dtuple_check_typed(ref)); index = dict_table_get_first_index(table); ut_a(dtuple_get_n_fields(ref) == dict_index_get_n_unique(index)); if (btr_pcur_open(index, ref, PAGE_CUR_LE, mode, pcur, mtr) != DB_SUCCESS) { return FALSE; } low_match = btr_pcur_get_low_match(pcur); rec = btr_pcur_get_rec(pcur); if (page_rec_is_infimum(rec)) { return(FALSE); } if (low_match != dtuple_get_n_fields(ref)) { return(FALSE); } return(TRUE); } /*********************************************************************//** Fetches the clustered index record for a secondary index record. The latches on the secondary index record are preserved. @return record or NULL, if no record found */ rec_t* row_get_clust_rec( /*==============*/ ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */ const rec_t* rec, /*!< in: record in a secondary index */ dict_index_t* index, /*!< in: secondary index */ dict_index_t** clust_index,/*!< out: clustered index */ mtr_t* mtr) /*!< in: mtr */ { mem_heap_t* heap; dtuple_t* ref; dict_table_t* table; btr_pcur_t pcur; ibool found; rec_t* clust_rec; ut_ad(!dict_index_is_clust(index)); table = index->table; heap = mem_heap_create(256); ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap); found = row_search_on_row_ref(&pcur, mode, table, ref, mtr); clust_rec = found ? btr_pcur_get_rec(&pcur) : NULL; mem_heap_free(heap); btr_pcur_close(&pcur); *clust_index = dict_table_get_first_index(table); return(clust_rec); } /***************************************************************//** Searches an index record. @return whether the record was found or buffered */ enum row_search_result row_search_index_entry( /*===================*/ dict_index_t* index, /*!< in: index */ const dtuple_t* entry, /*!< in: index entry */ ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */ btr_pcur_t* pcur, /*!< in/out: persistent cursor, which must be closed by the caller */ mtr_t* mtr) /*!< in: mtr */ { ulint n_fields; ulint low_match; rec_t* rec; ut_ad(dtuple_check_typed(entry)); if (dict_index_is_spatial(index)) { ut_ad(mode & BTR_MODIFY_LEAF || mode & BTR_MODIFY_TREE); rtr_pcur_open(index, entry, PAGE_CUR_RTREE_LOCATE, mode, pcur, mtr); } else { btr_pcur_open(index, entry, PAGE_CUR_LE, mode, pcur, mtr); } switch (btr_pcur_get_btr_cur(pcur)->flag) { case BTR_CUR_DELETE_REF: ut_a(mode & BTR_DELETE && !dict_index_is_spatial(index)); return(ROW_NOT_DELETED_REF); case BTR_CUR_DEL_MARK_IBUF: case BTR_CUR_DELETE_IBUF: case BTR_CUR_INSERT_TO_IBUF: return(ROW_BUFFERED); case BTR_CUR_HASH: case BTR_CUR_HASH_FAIL: case BTR_CUR_BINARY: break; } low_match = btr_pcur_get_low_match(pcur); rec = btr_pcur_get_rec(pcur); n_fields = dtuple_get_n_fields(entry); if (page_rec_is_infimum(rec)) { return(ROW_NOT_FOUND); } else if (low_match != n_fields) { return(ROW_NOT_FOUND); } return(ROW_FOUND); } /*******************************************************************//** Formats the raw data in "data" (in InnoDB on-disk format) that is of type DATA_INT using "prtype" and writes the result to "buf". If the data is in unknown format, then nothing is written to "buf", 0 is returned and "format_in_hex" is set to TRUE, otherwise "format_in_hex" is left untouched. Not more than "buf_size" bytes are written to "buf". The result is always '\0'-terminated (provided buf_size > 0) and the number of bytes that were written to "buf" is returned (including the terminating '\0'). @return number of bytes that were written */ static ulint row_raw_format_int( /*===============*/ const char* data, /*!< in: raw data */ ulint data_len, /*!< in: raw data length in bytes */ ulint prtype, /*!< in: precise type */ char* buf, /*!< out: output buffer */ ulint buf_size, /*!< in: output buffer size in bytes */ ibool* format_in_hex) /*!< out: should the data be formated in hex */ { ulint ret; if (data_len <= sizeof(ib_uint64_t)) { ib_uint64_t value; ibool unsigned_type = prtype & DATA_UNSIGNED; value = mach_read_int_type( (const byte*) data, data_len, unsigned_type); ret = snprintf( buf, buf_size, unsigned_type ? "%llu" : "%lld", (longlong) value)+1; } else { *format_in_hex = TRUE; ret = 0; } return(ut_min(ret, buf_size)); } /*******************************************************************//** Formats the raw data in "data" (in InnoDB on-disk format) that is of type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the result to "buf". If the data is in binary format, then nothing is written to "buf", 0 is returned and "format_in_hex" is set to TRUE, otherwise "format_in_hex" is left untouched. Not more than "buf_size" bytes are written to "buf". The result is always '\0'-terminated (provided buf_size > 0) and the number of bytes that were written to "buf" is returned (including the terminating '\0'). @return number of bytes that were written */ static ulint row_raw_format_str( /*===============*/ const char* data, /*!< in: raw data */ ulint data_len, /*!< in: raw data length in bytes */ ulint prtype, /*!< in: precise type */ char* buf, /*!< out: output buffer */ ulint buf_size, /*!< in: output buffer size in bytes */ ibool* format_in_hex) /*!< out: should the data be formated in hex */ { ulint charset_coll; if (buf_size == 0) { return(0); } /* we assume system_charset_info is UTF-8 */ charset_coll = dtype_get_charset_coll(prtype); if (UNIV_LIKELY(dtype_is_utf8(prtype))) { return(ut_str_sql_format(data, data_len, buf, buf_size)); } /* else */ if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) { *format_in_hex = TRUE; return(0); } /* else */ return(innobase_raw_format(data, data_len, charset_coll, buf, buf_size)); } /*******************************************************************//** Formats the raw data in "data" (in InnoDB on-disk format) using "dict_field" and writes the result to "buf". Not more than "buf_size" bytes are written to "buf". The result is always NUL-terminated (provided buf_size is positive) and the number of bytes that were written to "buf" is returned (including the terminating NUL). @return number of bytes that were written */ ulint row_raw_format( /*===========*/ const char* data, /*!< in: raw data */ ulint data_len, /*!< in: raw data length in bytes */ const dict_field_t* dict_field, /*!< in: index field */ char* buf, /*!< out: output buffer */ ulint buf_size) /*!< in: output buffer size in bytes */ { ulint mtype; ulint prtype; ulint ret; ibool format_in_hex; if (buf_size == 0) { return(0); } if (data_len == UNIV_SQL_NULL) { ret = snprintf((char*) buf, buf_size, "NULL") + 1; return(ut_min(ret, buf_size)); } mtype = dict_field->col->mtype; prtype = dict_field->col->prtype; format_in_hex = FALSE; switch (mtype) { case DATA_INT: ret = row_raw_format_int(data, data_len, prtype, buf, buf_size, &format_in_hex); if (format_in_hex) { goto format_in_hex; } break; case DATA_CHAR: case DATA_VARCHAR: case DATA_MYSQL: case DATA_VARMYSQL: ret = row_raw_format_str(data, data_len, prtype, buf, buf_size, &format_in_hex); if (format_in_hex) { goto format_in_hex; } break; /* XXX support more data types */ default: format_in_hex: if (UNIV_LIKELY(buf_size > 2)) { memcpy(buf, "0x", 2); buf += 2; buf_size -= 2; ret = 2 + ut_raw_to_hex(data, data_len, buf, buf_size); } else { buf[0] = '\0'; ret = 1; } } return(ret); } #ifdef UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT #ifdef HAVE_UT_CHRONO_T void test_row_raw_format_int() { ulint ret; char buf[128]; ibool format_in_hex; ulint i; #define CALL_AND_TEST(data, data_len, prtype, buf, buf_size,\ ret_expected, buf_expected, format_in_hex_expected)\ do {\ ibool ok = TRUE;\ ulint i;\ memset(buf, 'x', 10);\ buf[10] = '\0';\ format_in_hex = FALSE;\ fprintf(stderr, "TESTING \"\\x");\ for (i = 0; i < data_len; i++) {\ fprintf(stderr, "%02hhX", data[i]);\ }\ fprintf(stderr, "\", %lu, %lu, %lu\n",\ (ulint) data_len, (ulint) prtype,\ (ulint) buf_size);\ ret = row_raw_format_int(data, data_len, prtype,\ buf, buf_size, &format_in_hex);\ if (ret != ret_expected) {\ fprintf(stderr, "expected ret %lu, got %lu\n",\ (ulint) ret_expected, ret);\ ok = FALSE;\ }\ if (strcmp((char*) buf, buf_expected) != 0) {\ fprintf(stderr, "expected buf \"%s\", got \"%s\"\n",\ buf_expected, buf);\ ok = FALSE;\ }\ if (format_in_hex != format_in_hex_expected) {\ fprintf(stderr, "expected format_in_hex %d, got %d\n",\ (int) format_in_hex_expected,\ (int) format_in_hex);\ ok = FALSE;\ }\ if (ok) {\ fprintf(stderr, "OK: %lu, \"%s\" %d\n\n",\ (ulint) ret, buf, (int) format_in_hex);\ } else {\ return;\ }\ } while (0) #if 1 /* min values for signed 1-8 byte integers */ CALL_AND_TEST("\x00", 1, 0, buf, sizeof(buf), 5, "-128", 0); CALL_AND_TEST("\x00\x00", 2, 0, buf, sizeof(buf), 7, "-32768", 0); CALL_AND_TEST("\x00\x00\x00", 3, 0, buf, sizeof(buf), 9, "-8388608", 0); CALL_AND_TEST("\x00\x00\x00\x00", 4, 0, buf, sizeof(buf), 12, "-2147483648", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0, buf, sizeof(buf), 14, "-549755813888", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0, buf, sizeof(buf), 17, "-140737488355328", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0, buf, sizeof(buf), 19, "-36028797018963968", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0, buf, sizeof(buf), 21, "-9223372036854775808", 0); /* min values for unsigned 1-8 byte integers */ CALL_AND_TEST("\x00", 1, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); /* max values for signed 1-8 byte integers */ CALL_AND_TEST("\xFF", 1, 0, buf, sizeof(buf), 4, "127", 0); CALL_AND_TEST("\xFF\xFF", 2, 0, buf, sizeof(buf), 6, "32767", 0); CALL_AND_TEST("\xFF\xFF\xFF", 3, 0, buf, sizeof(buf), 8, "8388607", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0, buf, sizeof(buf), 11, "2147483647", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0, buf, sizeof(buf), 13, "549755813887", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0, buf, sizeof(buf), 16, "140737488355327", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0, buf, sizeof(buf), 18, "36028797018963967", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0, buf, sizeof(buf), 20, "9223372036854775807", 0); /* max values for unsigned 1-8 byte integers */ CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED, buf, sizeof(buf), 4, "255", 0); CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED, buf, sizeof(buf), 6, "65535", 0); CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED, buf, sizeof(buf), 9, "16777215", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED, buf, sizeof(buf), 11, "4294967295", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED, buf, sizeof(buf), 14, "1099511627775", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED, buf, sizeof(buf), 16, "281474976710655", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED, buf, sizeof(buf), 18, "72057594037927935", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED, buf, sizeof(buf), 21, "18446744073709551615", 0); /* some random values */ CALL_AND_TEST("\x52", 1, 0, buf, sizeof(buf), 4, "-46", 0); CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED, buf, sizeof(buf), 3, "14", 0); CALL_AND_TEST("\x62\xCE", 2, 0, buf, sizeof(buf), 6, "-7474", 0); CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED, buf, sizeof(buf), 6, "10710", 0); CALL_AND_TEST("\x7F\xFF\x90", 3, 0, buf, sizeof(buf), 5, "-112", 0); CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED, buf, sizeof(buf), 6, "41238", 0); CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0, buf, sizeof(buf), 3, "-9", 0); CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED, buf, sizeof(buf), 3, "92", 0); CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0, buf, sizeof(buf), 6, "-9117", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED, buf, sizeof(buf), 6, "91234", 0); #endif /* speed test */ ut_chrono_t ch(__func__); for (i = 0; i < 1000000; i++) { row_raw_format_int("\x23", 1, 0, buf, sizeof(buf), &format_in_hex); row_raw_format_int("\x23", 1, DATA_UNSIGNED, buf, sizeof(buf), &format_in_hex); row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8, 0, buf, sizeof(buf), &format_in_hex); row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED, buf, sizeof(buf), &format_in_hex); } } #endif /* HAVE_UT_CHRONO_T */ #endif /* UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT */