/***************************************************************************** Copyright (c) 1996, 2018, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2018, 2020, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file row/row0row.cc General row routines Created 4/20/1996 Heikki Tuuri *******************************************************/ #include "row0row.h" #include "data0type.h" #include "dict0dict.h" #include "dict0boot.h" #include "btr0btr.h" #include "mach0data.h" #include "trx0rseg.h" #include "trx0trx.h" #include "trx0roll.h" #include "trx0undo.h" #include "trx0purge.h" #include "trx0rec.h" #include "que0que.h" #include "row0ext.h" #include "row0upd.h" #include "rem0cmp.h" #include "ut0mem.h" #include "gis0geo.h" #include "row0mysql.h" /** Build a spatial index key. @param[in] index spatial index @param[in] ext externally stored column prefixes, or NULL @param[in,out] dfield field of the tuple to be copied @param[in] dfield2 field of the tuple to copy @param[in] flag ROW_BUILD_NORMAL, ROW_BUILD_FOR_PURGE or ROW_BUILD_FOR_UNDO @param[in,out] heap memory heap from which the memory of the field entry is allocated. @retval false if undo log is logged before spatial index creation. */ static bool row_build_spatial_index_key( const dict_index_t* index, const row_ext_t* ext, dfield_t* dfield, const dfield_t* dfield2, ulint flag, mem_heap_t* heap) { if (dfield2->type.mtype == DATA_MISSING) { return false; } double* mbr; dfield_copy(dfield, dfield2); dfield->type.prtype |= DATA_GIS_MBR; /* Allocate memory for mbr field */ mbr = static_cast(mem_heap_alloc(heap, DATA_MBR_LEN)); /* Set mbr field data. */ dfield_set_data(dfield, mbr, DATA_MBR_LEN); const fil_space_t* space = index->table->space; if (UNIV_UNLIKELY(!dfield2->data || !space)) { /* FIXME: dfield contains uninitialized data, but row_build_index_entry_low() will not return NULL. This bug is inherited from MySQL 5.7.5 commit b66ad511b61fffe75c58d0a607cdb837c6e6c821. */ return true; } const byte* dptr = NULL; ulint dlen = 0; ulint flen = 0; double tmp_mbr[SPDIMS * 2]; mem_heap_t* temp_heap = NULL; if (!dfield_is_ext(dfield2)) { dptr = static_cast(dfield_get_data(dfield2)); dlen = dfield_get_len(dfield2); ut_ad(dptr != &data_error); goto write_mbr; } if (flag == ROW_BUILD_FOR_PURGE) { const byte* ptr = static_cast( dfield_get_data(dfield2)); switch (dfield_get_spatial_status(dfield2)) { case SPATIAL_ONLY: ut_ad(dfield_get_len(dfield2) == DATA_MBR_LEN); break; case SPATIAL_MIXED: ptr += dfield_get_len(dfield2); break; case SPATIAL_UNKNOWN: ut_ad(0); /* fall through */ case SPATIAL_NONE: /* Undo record is logged before spatial index is created.*/ return false; } memcpy(mbr, ptr, DATA_MBR_LEN); return true; } if (flag == ROW_BUILD_FOR_UNDO && dict_table_has_atomic_blobs(index->table)) { /* For ROW_FORMAT=DYNAMIC or COMPRESSED, a prefix of off-page records is stored in the undo log record (for any column prefix indexes). For SPATIAL INDEX, we must ignore this prefix. The full column value is stored in the BLOB. For non-spatial index, we would have already fetched a necessary prefix of the BLOB, available in the "ext" parameter. Here, for SPATIAL INDEX, we are fetching the full column, which is potentially wasting a lot of I/O, memory, and possibly involving a concurrency problem, similar to ones that existed before the introduction of row_ext_t. MDEV-11657 FIXME: write the MBR directly to the undo log record, and avoid recomputing it here! */ flen = BTR_EXTERN_FIELD_REF_SIZE; ut_ad(dfield_get_len(dfield2) >= BTR_EXTERN_FIELD_REF_SIZE); dptr = static_cast(dfield_get_data(dfield2)) + dfield_get_len(dfield2) - BTR_EXTERN_FIELD_REF_SIZE; } else { flen = dfield_get_len(dfield2); dptr = static_cast(dfield_get_data(dfield2)); } temp_heap = mem_heap_create(1000); dptr = btr_copy_externally_stored_field( &dlen, dptr, ext ? ext->zip_size : space->zip_size(), flen, temp_heap); write_mbr: if (dlen <= GEO_DATA_HEADER_SIZE) { for (uint i = 0; i < SPDIMS; i += 2) { tmp_mbr[i] = DBL_MAX; tmp_mbr[i + 1] = -DBL_MAX; } } else { rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE, uint(dlen - GEO_DATA_HEADER_SIZE), SPDIMS, tmp_mbr); } dfield_write_mbr(dfield, tmp_mbr); if (temp_heap) { mem_heap_free(temp_heap); } return true; } /*****************************************************************//** When an insert or purge to a table is performed, this function builds the entry to be inserted into or purged from an index on the table. @return index entry which should be inserted or purged @retval NULL if the externally stored columns in the clustered index record are unavailable and ext != NULL, or row is missing some needed columns. */ dtuple_t* row_build_index_entry_low( /*======================*/ const dtuple_t* row, /*!< in: row which should be inserted or purged */ const row_ext_t* ext, /*!< in: externally stored column prefixes, or NULL */ const dict_index_t* index, /*!< in: index on the table */ mem_heap_t* heap, /*!< in,out: memory heap from which the memory for the index entry is allocated */ ulint flag) /*!< in: ROW_BUILD_NORMAL, ROW_BUILD_FOR_PURGE or ROW_BUILD_FOR_UNDO */ { dtuple_t* entry; ulint entry_len; ulint i = 0; ulint num_v = 0; entry_len = dict_index_get_n_fields(index); if (flag == ROW_BUILD_FOR_INSERT && dict_index_is_clust(index)) { num_v = dict_table_get_n_v_cols(index->table); entry = dtuple_create_with_vcol(heap, entry_len, num_v); } else { entry = dtuple_create(heap, entry_len); } if (dict_index_is_ibuf(index)) { dtuple_set_n_fields_cmp(entry, entry_len); /* There may only be externally stored columns in a clustered index B-tree of a user table. */ ut_a(!ext); } else { dtuple_set_n_fields_cmp( entry, dict_index_get_n_unique_in_tree(index)); if (dict_index_is_spatial(index)) { /* Set the MBR field */ if (!row_build_spatial_index_key( index, ext, dtuple_get_nth_field(entry, 0), dtuple_get_nth_field( row, dict_index_get_nth_field(index, i) ->col->ind), flag, heap)) { return NULL; } i = 1; } } for (; i < entry_len; i++) { const dict_field_t& f = index->fields[i]; dfield_t* dfield = dtuple_get_nth_field(entry, i); if (f.col->is_dropped()) { ut_ad(index->is_primary()); ut_ad(index->is_instant()); ut_ad(!f.col->is_virtual()); dict_col_copy_type(f.col, &dfield->type); if (f.col->is_nullable()) { dfield_set_null(dfield); } else { dfield_set_data(dfield, field_ref_zero, f.fixed_len); } continue; } const dfield_t* dfield2; if (f.col->is_virtual()) { const dict_v_col_t* v_col = reinterpret_cast(f.col); ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row)); dfield2 = dtuple_get_nth_v_field(row, v_col->v_pos); ut_ad(dfield_is_null(dfield2) || dfield_get_len(dfield2) == 0 || dfield2->data); ut_ad(!dfield_is_ext(dfield2)); if (UNIV_UNLIKELY(dfield2->type.mtype == DATA_MISSING)) { ut_ad(flag == ROW_BUILD_FOR_PURGE); return(NULL); } } else { dfield2 = dtuple_get_nth_field(row, f.col->ind); if (UNIV_UNLIKELY(dfield2->type.mtype == DATA_MISSING)) { /* The field has not been initialized in the row. This should be from trx_undo_rec_get_partial_row(). */ return(NULL); } ut_ad(!(dfield2->type.prtype & DATA_VIRTUAL)); } compile_time_assert(DATA_MISSING == 0); *dfield = *dfield2; if (dfield_is_null(dfield)) { continue; } ulint len = dfield_get_len(dfield); if (f.prefix_len == 0 && (!dfield_is_ext(dfield) || dict_index_is_clust(index))) { /* The dfield_copy() above suffices for columns that are stored in-page, or for clustered index record columns that are not part of a column prefix in the PRIMARY KEY. */ continue; } /* If the column is stored externally (off-page) in the clustered index, it must be an ordering field in the secondary index. If !atomic_blobs, the only way we may have a secondary index pointing to a clustered index record with an off-page column is when it is a column prefix index. If atomic_blobs, also fully indexed long columns may be stored off-page. */ ut_ad(f.col->ord_part); if (ext && !f.col->is_virtual()) { /* See if the column is stored externally. */ const byte* buf = row_ext_lookup(ext, f.col->ind, &len); if (UNIV_LIKELY_NULL(buf)) { if (UNIV_UNLIKELY(buf == field_ref_zero)) { return(NULL); } dfield_set_data(dfield, buf, len); } if (f.prefix_len == 0) { /* If ROW_FORMAT=DYNAMIC or ROW_FORMAT=COMPRESSED, we can have a secondary index on an entire column that is stored off-page in the clustered index. As this is not a prefix index (prefix_len == 0), include the entire off-page column in the secondary index record. */ continue; } } else if (dfield_is_ext(dfield)) { /* This table is either in (ROW_FORMAT=REDUNDANT or ROW_FORMAT=COMPACT) or a purge record where the ordered part of the field is not external. In ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT, the maximum column prefix index length is 767 bytes, and the clustered index record contains a 768-byte prefix of each off-page column. */ ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE); len -= BTR_EXTERN_FIELD_REF_SIZE; dfield_set_len(dfield, len); } /* If a column prefix index, take only the prefix. */ if (f.prefix_len) { len = dtype_get_at_most_n_mbchars( f.col->prtype, f.col->mbminlen, f.col->mbmaxlen, f.prefix_len, len, static_cast(dfield_get_data(dfield))); dfield_set_len(dfield, len); } } for (i = num_v; i--; ) { ut_ad(index->is_primary()); ut_ad(flag == ROW_BUILD_FOR_INSERT); dfield_t* dfield = dtuple_get_nth_v_field(entry, i); const dict_v_col_t* v_col = dict_table_get_nth_v_col( index->table, i); ut_ad(!v_col->m_col.is_dropped()); ut_ad(v_col->v_pos < dtuple_get_n_v_fields(row)); const dfield_t* dfield2 = dtuple_get_nth_v_field( row, v_col->v_pos); ut_ad(dfield_is_null(dfield2) || dfield_get_len(dfield2) == 0 || dfield2->data); ut_ad(dfield2->type.mtype != DATA_MISSING); *dfield = *dfield2; } return entry; } /** An inverse function to row_build_index_entry. Builds a row from a record in a clustered index, with possible indexing on ongoing addition of new virtual columns. @param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA; @param[in] index clustered index @param[in] rec record in the clustered index @param[in] offsets rec_get_offsets(rec,index) or NULL @param[in] col_table table, to check which externally stored columns occur in the ordering columns of an index, or NULL if index->table should be consulted instead @param[in] defaults default values of added/changed columns, or NULL @param[in] add_v new virtual columns added along with new indexes @param[in] col_map mapping of old column numbers to new ones, or NULL @param[in] ext cache of externally stored column prefixes, or NULL @param[in] heap memory heap from which the memory needed is allocated @return own: row built; */ static inline dtuple_t* row_build_low( ulint type, const dict_index_t* index, const rec_t* rec, const offset_t* offsets, const dict_table_t* col_table, const dtuple_t* defaults, const dict_add_v_col_t* add_v, const ulint* col_map, row_ext_t** ext, mem_heap_t* heap) { const byte* copy; dtuple_t* row; ulint n_ext_cols; ulint* ext_cols = NULL; /* remove warning */ ulint len; byte* buf; ulint j; mem_heap_t* tmp_heap = NULL; offset_t offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs_init(offsets_); ut_ad(index != NULL); ut_ad(rec != NULL); ut_ad(heap != NULL); ut_ad(dict_index_is_clust(index)); ut_ad(!mutex_own(&trx_sys.mutex)); ut_ad(!col_map || col_table); if (!offsets) { offsets = rec_get_offsets(rec, index, offsets_, true, ULINT_UNDEFINED, &tmp_heap); } else { ut_ad(rec_offs_validate(rec, index, offsets)); } #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG /* Some blob refs can be NULL during crash recovery before trx_rollback_active() has completed execution, or when a concurrently executing insert or update has committed the B-tree mini-transaction but has not yet managed to restore the cursor position for writing the big_rec. Note that the mini-transaction can be committed multiple times, and the cursor restore can happen multiple times for single insert or update statement. */ ut_a(!rec_offs_any_null_extern(rec, offsets) || trx_sys.is_registered(current_trx(), row_get_rec_trx_id(rec, index, offsets))); #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ if (type != ROW_COPY_POINTERS) { /* Take a copy of rec to heap */ buf = static_cast( mem_heap_alloc(heap, rec_offs_size(offsets))); copy = rec_copy(buf, rec, offsets); } else { copy = rec; } n_ext_cols = rec_offs_n_extern(offsets); if (n_ext_cols) { ext_cols = static_cast( mem_heap_alloc(heap, n_ext_cols * sizeof *ext_cols)); } /* Avoid a debug assertion in rec_offs_validate(). */ rec_offs_make_valid(copy, index, true, const_cast(offsets)); if (!col_table) { ut_ad(!col_map); ut_ad(!defaults); col_table = index->table; } if (defaults) { ut_ad(col_map); row = dtuple_copy(defaults, heap); /* dict_table_copy_types() would set the fields to NULL */ for (ulint i = 0; i < dict_table_get_n_cols(col_table); i++) { dict_col_copy_type( dict_table_get_nth_col(col_table, i), dfield_get_type(dtuple_get_nth_field(row, i))); } } else if (add_v != NULL) { row = dtuple_create_with_vcol( heap, dict_table_get_n_cols(col_table), dict_table_get_n_v_cols(col_table) + add_v->n_v_col); dict_table_copy_types(row, col_table); for (ulint i = 0; i < add_v->n_v_col; i++) { dict_col_copy_type( &add_v->v_col[i].m_col, dfield_get_type(dtuple_get_nth_v_field( row, i + col_table->n_v_def))); } } else { row = dtuple_create_with_vcol( heap, dict_table_get_n_cols(col_table), dict_table_get_n_v_cols(col_table)); dict_table_copy_types(row, col_table); } dtuple_set_info_bits(row, rec_get_info_bits( copy, rec_offs_comp(offsets))); j = 0; const dict_field_t* ind_field = index->fields; for (ulint i = 0; i < rec_offs_n_fields(offsets); i++) { if (i == index->first_user_field() && rec_is_alter_metadata(rec, *index)) { ut_ad(rec_offs_nth_extern(offsets, i)); ut_d(ulint len); ut_d(rec_get_nth_field_offs(offsets, i, &len)); ut_ad(len == FIELD_REF_SIZE); continue; } ut_ad(ind_field < &index->fields[index->n_fields]); const dict_col_t* col = dict_field_get_col(ind_field); if ((ind_field++)->prefix_len) { /* Column prefixes can only occur in key fields, which cannot be stored externally. For a column prefix, there should also be the full field in the clustered index tuple. The row tuple comprises full fields, not prefixes. */ ut_ad(!rec_offs_nth_extern(offsets, i)); continue; } if (col->is_dropped()) { continue; } ulint col_no = dict_col_get_no(col); if (col_map) { col_no = col_map[col_no]; if (col_no == ULINT_UNDEFINED) { /* dropped column */ continue; } } dfield_t* dfield = dtuple_get_nth_field(row, col_no); const void* field = rec_get_nth_field( copy, offsets, i, &len); if (len == UNIV_SQL_DEFAULT) { field = index->instant_field_value(i, &len); if (field && type != ROW_COPY_POINTERS) { field = mem_heap_dup(heap, field, len); } } dfield_set_data(dfield, field, len); if (rec_offs_nth_extern(offsets, i)) { dfield_set_ext(dfield); col = dict_table_get_nth_col(col_table, col_no); if (col->ord_part) { /* We will have to fetch prefixes of externally stored columns that are referenced by column prefixes. */ ext_cols[j++] = col_no; } } } rec_offs_make_valid(rec, index, true, const_cast(offsets)); ut_ad(dtuple_check_typed(row)); if (!ext) { /* REDUNDANT and COMPACT formats store a local 768-byte prefix of each externally stored column. No cache is needed. During online table rebuild, row_log_table_apply_delete_low() may use a cache that was set up by row_log_table_delete(). */ } else if (j) { *ext = row_ext_create(j, ext_cols, *index->table, row, heap); } else { *ext = NULL; } if (tmp_heap) { mem_heap_free(tmp_heap); } return(row); } /*******************************************************************//** An inverse function to row_build_index_entry. Builds a row from a record in a clustered index. @return own: row built; see the NOTE below! */ dtuple_t* row_build( /*======*/ ulint type, /*!< in: ROW_COPY_POINTERS or ROW_COPY_DATA; the latter copies also the data fields to heap while the first only places pointers to data fields on the index page, and thus is more efficient */ const dict_index_t* index, /*!< in: clustered index */ const rec_t* rec, /*!< in: record in the clustered index; NOTE: in the case ROW_COPY_POINTERS the data fields in the row will point directly into this record, therefore, the buffer page of this record must be at least s-latched and the latch held as long as the row dtuple is used! */ const offset_t* offsets,/*!< in: rec_get_offsets(rec,index) or NULL, in which case this function will invoke rec_get_offsets() */ const dict_table_t* col_table, /*!< in: table, to check which externally stored columns occur in the ordering columns of an index, or NULL if index->table should be consulted instead */ const dtuple_t* defaults, /*!< in: default values of added and changed columns, or NULL */ const ulint* col_map,/*!< in: mapping of old column numbers to new ones, or NULL */ row_ext_t** ext, /*!< out, own: cache of externally stored column prefixes, or NULL */ mem_heap_t* heap) /*!< in: memory heap from which the memory needed is allocated */ { return(row_build_low(type, index, rec, offsets, col_table, defaults, NULL, col_map, ext, heap)); } /** An inverse function to row_build_index_entry. Builds a row from a record in a clustered index, with possible indexing on ongoing addition of new virtual columns. @param[in] type ROW_COPY_POINTERS or ROW_COPY_DATA; @param[in] index clustered index @param[in] rec record in the clustered index @param[in] offsets rec_get_offsets(rec,index) or NULL @param[in] col_table table, to check which externally stored columns occur in the ordering columns of an index, or NULL if index->table should be consulted instead @param[in] defaults default values of added, changed columns, or NULL @param[in] add_v new virtual columns added along with new indexes @param[in] col_map mapping of old column numbers to new ones, or NULL @param[in] ext cache of externally stored column prefixes, or NULL @param[in] heap memory heap from which the memory needed is allocated @return own: row built; */ dtuple_t* row_build_w_add_vcol( ulint type, const dict_index_t* index, const rec_t* rec, const offset_t* offsets, const dict_table_t* col_table, const dtuple_t* defaults, const dict_add_v_col_t* add_v, const ulint* col_map, row_ext_t** ext, mem_heap_t* heap) { return(row_build_low(type, index, rec, offsets, col_table, defaults, add_v, col_map, ext, heap)); } /** Convert an index record to a data tuple. @tparam metadata whether the index->instant_field_value() needs to be accessed @tparam mblob 1 if rec_is_alter_metadata(); 2 if we want converted metadata corresponding to info_bits @param[in] rec index record @param[in] index index @param[in] offsets rec_get_offsets(rec, index) @param[out] n_ext number of externally stored columns @param[in,out] heap memory heap for allocations @param[in] info_bits (only used if mblob=2) @param[in] pad (only used if mblob=2) @return index entry built; does not set info_bits, and the data fields in the entry will point directly to rec */ template static inline dtuple_t* row_rec_to_index_entry_impl( const rec_t* rec, const dict_index_t* index, const offset_t* offsets, mem_heap_t* heap, ulint info_bits = 0, bool pad = false) { ut_ad(rec != NULL); ut_ad(heap != NULL); ut_ad(index != NULL); ut_ad(!mblob || index->is_primary()); ut_ad(!mblob || !index->table->is_temporary()); ut_ad(!mblob || !dict_index_is_spatial(index)); compile_time_assert(!mblob || metadata); compile_time_assert(mblob <= 2); /* Because this function may be invoked by row0merge.cc on a record whose header is in different format, the check rec_offs_validate(rec, index, offsets) must be avoided here. */ const bool got = mblob == 2 && rec_is_alter_metadata(rec, *index); ulint rec_len = rec_offs_n_fields(offsets); if (mblob == 2) { ut_ad(info_bits == REC_INFO_METADATA_ALTER || info_bits == REC_INFO_METADATA_ADD); ut_ad(rec_len <= ulint(index->n_fields + got)); if (pad) { rec_len = ulint(index->n_fields) + (info_bits == REC_INFO_METADATA_ALTER); } else if (!got && info_bits == REC_INFO_METADATA_ALTER) { rec_len++; } } else { ut_ad(info_bits == 0); ut_ad(!pad); } dtuple_t* entry = dtuple_create(heap, rec_len); dfield_t* dfield = entry->fields; dtuple_set_n_fields_cmp(entry, dict_index_get_n_unique_in_tree(index)); ut_ad(mblob == 2 || rec_len == dict_index_get_n_fields(index) + uint(mblob == 1) /* a record for older SYS_INDEXES table (missing merge_threshold column) is acceptable. */ || (!index->table->is_temporary() && index->table->id == DICT_INDEXES_ID && rec_len == dict_index_get_n_fields(index) - 1)); ulint i; for (i = 0; i < (mblob ? index->first_user_field() : rec_len); i++, dfield++) { dict_col_copy_type(dict_index_get_nth_col(index, i), &dfield->type); if (!mblob && dict_index_is_spatial(index) && DATA_GEOMETRY_MTYPE(dfield->type.mtype)) { dfield->type.prtype |= DATA_GIS_MBR; } ulint len; const byte* field = metadata ? rec_get_nth_cfield(rec, index, offsets, i, &len) : rec_get_nth_field(rec, offsets, i, &len); dfield_set_data(dfield, field, len); if (rec_offs_nth_extern(offsets, i)) { dfield_set_ext(dfield); } } if (mblob) { ulint len; const byte* field; ulint j = i; if (mblob == 2) { const bool want = info_bits == REC_INFO_METADATA_ALTER; if (got == want) { if (got) { goto copy_metadata; } } else { if (want) { /* Allocate a placeholder for adding metadata in an update. */ len = FIELD_REF_SIZE; field = static_cast( mem_heap_zalloc(heap, len)); /* In reality there is one fewer field present in the record. */ rec_len--; goto init_metadata; } /* Skip the undesired metadata blob (for example, when rolling back an instant ALTER TABLE). */ i++; } goto copy_user_fields; } copy_metadata: ut_ad(rec_offs_nth_extern(offsets, i)); field = rec_get_nth_field(rec, offsets, i++, &len); init_metadata: dfield->type.metadata_blob_init(); ut_ad(len == FIELD_REF_SIZE); dfield_set_data(dfield, field, len); dfield_set_ext(dfield++); copy_user_fields: for (; i < rec_len; i++, dfield++) { dict_col_copy_type(dict_index_get_nth_col(index, j++), &dfield->type); if (mblob == 2 && pad && i >= rec_offs_n_fields(offsets)) { field = index->instant_field_value(j - 1, &len); dfield_set_data(dfield, field, len); continue; } field = rec_get_nth_field(rec, offsets, i, &len); dfield_set_data(dfield, field, len); if (rec_offs_nth_extern(offsets, i)) { dfield_set_ext(dfield); } } } if (mblob == 2) { ulint n_fields = ulint(dfield - entry->fields); ut_ad(entry->n_fields >= n_fields); entry->n_fields = n_fields; } ut_ad(dfield == entry->fields + entry->n_fields); ut_ad(dtuple_check_typed(entry)); return entry; } /** Convert an index record to a data tuple. @param[in] rec index record @param[in] index index @param[in] offsets rec_get_offsets(rec, index) @param[in,out] heap memory heap for allocations */ dtuple_t* row_rec_to_index_entry_low( const rec_t* rec, const dict_index_t* index, const offset_t* offsets, mem_heap_t* heap) { return row_rec_to_index_entry_impl(rec, index, offsets, heap); } /*******************************************************************//** Converts an index record to a typed data tuple. NOTE that externally stored (often big) fields are NOT copied to heap. @return own: index entry built */ dtuple_t* row_rec_to_index_entry( /*===================*/ const rec_t* rec, /*!< in: record in the index */ const dict_index_t* index, /*!< in: index */ const offset_t* offsets,/*!< in: rec_get_offsets(rec) */ mem_heap_t* heap) /*!< in: memory heap from which the memory needed is allocated */ { ut_ad(rec != NULL); ut_ad(heap != NULL); ut_ad(index != NULL); ut_ad(rec_offs_validate(rec, index, offsets)); /* Take a copy of rec to heap */ const rec_t* copy_rec = rec_copy( static_cast(mem_heap_alloc(heap, rec_offs_size(offsets))), rec, offsets); rec_offs_make_valid(copy_rec, index, true, const_cast(offsets)); dtuple_t* entry = rec_is_alter_metadata(copy_rec, *index) ? row_rec_to_index_entry_impl( copy_rec, index, offsets, heap) : row_rec_to_index_entry_impl( copy_rec, index, offsets, heap); rec_offs_make_valid(rec, index, true, const_cast(offsets)); dtuple_set_info_bits(entry, rec_get_info_bits(rec, rec_offs_comp(offsets))); return(entry); } /** Convert a metadata record to a data tuple. @param[in] rec metadata record @param[in] index clustered index after instant ALTER TABLE @param[in] offsets rec_get_offsets(rec) @param[in,out] heap memory heap for allocations @param[in] info_bits the info_bits after an update @param[in] pad whether to pad to index->n_fields */ dtuple_t* row_metadata_to_tuple( const rec_t* rec, const dict_index_t* index, const offset_t* offsets, mem_heap_t* heap, ulint info_bits, bool pad) { ut_ad(info_bits == REC_INFO_METADATA_ALTER || info_bits == REC_INFO_METADATA_ADD); ut_ad(rec_is_metadata(rec, *index)); ut_ad(rec_offs_validate(rec, index, offsets)); const rec_t* copy_rec = rec_copy( static_cast(mem_heap_alloc(heap, rec_offs_size(offsets))), rec, offsets); rec_offs_make_valid(copy_rec, index, true, const_cast(offsets)); dtuple_t* entry = info_bits == REC_INFO_METADATA_ALTER || rec_is_alter_metadata(copy_rec, *index) ? row_rec_to_index_entry_impl( copy_rec, index, offsets, heap, info_bits, pad) : row_rec_to_index_entry_impl( copy_rec, index, offsets, heap); rec_offs_make_valid(rec, index, true, const_cast(offsets)); dtuple_set_info_bits(entry, info_bits); return entry; } /*******************************************************************//** Builds from a secondary index record a row reference with which we can search the clustered index record. @return own: row reference built; see the NOTE below! */ dtuple_t* row_build_row_ref( /*==============*/ ulint type, /*!< in: ROW_COPY_DATA, or ROW_COPY_POINTERS: the former copies also the data fields to heap, whereas the latter only places pointers to data fields on the index page */ dict_index_t* index, /*!< in: secondary index */ const rec_t* rec, /*!< in: record in the index; NOTE: in the case ROW_COPY_POINTERS the data fields in the row will point directly into this record, therefore, the buffer page of this record must be at least s-latched and the latch held as long as the row reference is used! */ mem_heap_t* heap) /*!< in: memory heap from which the memory needed is allocated */ { dict_table_t* table; dict_index_t* clust_index; dfield_t* dfield; dtuple_t* ref; const byte* field; ulint len; ulint ref_len; ulint pos; byte* buf; ulint clust_col_prefix_len; ulint i; mem_heap_t* tmp_heap = NULL; offset_t offsets_[REC_OFFS_NORMAL_SIZE]; offset_t* offsets = offsets_; rec_offs_init(offsets_); ut_ad(index != NULL); ut_ad(rec != NULL); ut_ad(heap != NULL); ut_ad(!dict_index_is_clust(index)); offsets = rec_get_offsets(rec, index, offsets, true, ULINT_UNDEFINED, &tmp_heap); /* Secondary indexes must not contain externally stored columns. */ ut_ad(!rec_offs_any_extern(offsets)); if (type == ROW_COPY_DATA) { /* Take a copy of rec to heap */ buf = static_cast( mem_heap_alloc(heap, rec_offs_size(offsets))); rec = rec_copy(buf, rec, offsets); rec_offs_make_valid(rec, index, true, offsets); } table = index->table; clust_index = dict_table_get_first_index(table); ref_len = dict_index_get_n_unique(clust_index); ref = dtuple_create(heap, ref_len); dict_index_copy_types(ref, clust_index, ref_len); for (i = 0; i < ref_len; i++) { dfield = dtuple_get_nth_field(ref, i); pos = dict_index_get_nth_field_pos(index, clust_index, i); ut_a(pos != ULINT_UNDEFINED); ut_ad(!rec_offs_nth_default(offsets, pos)); field = rec_get_nth_field(rec, offsets, pos, &len); dfield_set_data(dfield, field, len); /* If the primary key contains a column prefix, then the secondary index may contain a longer prefix of the same column, or the full column, and we must adjust the length accordingly. */ clust_col_prefix_len = dict_index_get_nth_field( clust_index, i)->prefix_len; if (clust_col_prefix_len > 0) { if (len != UNIV_SQL_NULL) { const dtype_t* dtype = dfield_get_type(dfield); dfield_set_len(dfield, dtype_get_at_most_n_mbchars( dtype->prtype, dtype->mbminlen, dtype->mbmaxlen, clust_col_prefix_len, len, (char*) field)); } } } ut_ad(dtuple_check_typed(ref)); if (tmp_heap) { mem_heap_free(tmp_heap); } return(ref); } /*******************************************************************//** Builds from a secondary index record a row reference with which we can search the clustered index record. */ void row_build_row_ref_in_tuple( /*=======================*/ dtuple_t* ref, /*!< in/out: row reference built; see the NOTE below! */ const rec_t* rec, /*!< in: record in the index; NOTE: the data fields in ref will point directly into this record, therefore, the buffer page of this record must be at least s-latched and the latch held as long as the row reference is used! */ const dict_index_t* index, /*!< in: secondary index */ offset_t* offsets)/*!< in: rec_get_offsets(rec, index) or NULL */ { const dict_index_t* clust_index; dfield_t* dfield; const byte* field; ulint len; ulint ref_len; ulint pos; ulint clust_col_prefix_len; ulint i; mem_heap_t* heap = NULL; offset_t offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs_init(offsets_); ut_ad(!dict_index_is_clust(index)); ut_a(index->table); clust_index = dict_table_get_first_index(index->table); ut_ad(clust_index); if (!offsets) { offsets = rec_get_offsets(rec, index, offsets_, true, ULINT_UNDEFINED, &heap); } else { ut_ad(rec_offs_validate(rec, index, offsets)); } /* Secondary indexes must not contain externally stored columns. */ ut_ad(!rec_offs_any_extern(offsets)); ref_len = dict_index_get_n_unique(clust_index); ut_ad(ref_len == dtuple_get_n_fields(ref)); dict_index_copy_types(ref, clust_index, ref_len); for (i = 0; i < ref_len; i++) { dfield = dtuple_get_nth_field(ref, i); pos = dict_index_get_nth_field_pos(index, clust_index, i); ut_a(pos != ULINT_UNDEFINED); ut_ad(!rec_offs_nth_default(offsets, pos)); field = rec_get_nth_field(rec, offsets, pos, &len); dfield_set_data(dfield, field, len); /* If the primary key contains a column prefix, then the secondary index may contain a longer prefix of the same column, or the full column, and we must adjust the length accordingly. */ clust_col_prefix_len = dict_index_get_nth_field( clust_index, i)->prefix_len; if (clust_col_prefix_len > 0) { if (len != UNIV_SQL_NULL) { const dtype_t* dtype = dfield_get_type(dfield); dfield_set_len(dfield, dtype_get_at_most_n_mbchars( dtype->prtype, dtype->mbminlen, dtype->mbmaxlen, clust_col_prefix_len, len, (char*) field)); } } } ut_ad(dtuple_check_typed(ref)); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /***************************************************************//** Searches the clustered index record for a row, if we have the row reference. @return TRUE if found */ ibool row_search_on_row_ref( /*==================*/ btr_pcur_t* pcur, /*!< out: persistent cursor, which must be closed by the caller */ ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */ const dict_table_t* table, /*!< in: table */ const dtuple_t* ref, /*!< in: row reference */ mtr_t* mtr) /*!< in/out: mtr */ { ulint low_match; rec_t* rec; dict_index_t* index; ut_ad(dtuple_check_typed(ref)); index = dict_table_get_first_index(table); if (UNIV_UNLIKELY(ref->info_bits != 0)) { ut_ad(ref->is_metadata()); ut_ad(ref->n_fields <= index->n_uniq); if (btr_pcur_open_at_index_side( true, index, mode, pcur, true, 0, mtr) != DB_SUCCESS || !btr_pcur_move_to_next_user_rec(pcur, mtr)) { return FALSE; } /* We do not necessarily have index->is_instant() here, because we could be executing a rollback of an instant ADD COLUMN operation. The function rec_is_metadata() asserts index->is_instant(); we do not want to call it here. */ return rec_get_info_bits(btr_pcur_get_rec(pcur), dict_table_is_comp(index->table)) & REC_INFO_MIN_REC_FLAG; } else { ut_a(ref->n_fields == index->n_uniq); if (btr_pcur_open(index, ref, PAGE_CUR_LE, mode, pcur, mtr) != DB_SUCCESS) { return FALSE; } } low_match = btr_pcur_get_low_match(pcur); rec = btr_pcur_get_rec(pcur); if (page_rec_is_infimum(rec)) { return(FALSE); } if (low_match != dtuple_get_n_fields(ref)) { return(FALSE); } return(TRUE); } /*********************************************************************//** Fetches the clustered index record for a secondary index record. The latches on the secondary index record are preserved. @return record or NULL, if no record found */ rec_t* row_get_clust_rec( /*==============*/ ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */ const rec_t* rec, /*!< in: record in a secondary index */ dict_index_t* index, /*!< in: secondary index */ dict_index_t** clust_index,/*!< out: clustered index */ mtr_t* mtr) /*!< in: mtr */ { mem_heap_t* heap; dtuple_t* ref; dict_table_t* table; btr_pcur_t pcur; ibool found; rec_t* clust_rec; ut_ad(!dict_index_is_clust(index)); table = index->table; heap = mem_heap_create(256); ref = row_build_row_ref(ROW_COPY_POINTERS, index, rec, heap); found = row_search_on_row_ref(&pcur, mode, table, ref, mtr); clust_rec = found ? btr_pcur_get_rec(&pcur) : NULL; mem_heap_free(heap); btr_pcur_close(&pcur); *clust_index = dict_table_get_first_index(table); return(clust_rec); } /***************************************************************//** Searches an index record. @return whether the record was found or buffered */ enum row_search_result row_search_index_entry( /*===================*/ dict_index_t* index, /*!< in: index */ const dtuple_t* entry, /*!< in: index entry */ ulint mode, /*!< in: BTR_MODIFY_LEAF, ... */ btr_pcur_t* pcur, /*!< in/out: persistent cursor, which must be closed by the caller */ mtr_t* mtr) /*!< in: mtr */ { ulint n_fields; ulint low_match; rec_t* rec; ut_ad(dtuple_check_typed(entry)); if (dict_index_is_spatial(index)) { ut_ad(mode & BTR_MODIFY_LEAF || mode & BTR_MODIFY_TREE); rtr_pcur_open(index, entry, PAGE_CUR_RTREE_LOCATE, mode, pcur, mtr); } else { btr_pcur_open(index, entry, PAGE_CUR_LE, mode, pcur, mtr); } switch (btr_pcur_get_btr_cur(pcur)->flag) { case BTR_CUR_DELETE_REF: ut_a(mode & BTR_DELETE && !dict_index_is_spatial(index)); return(ROW_NOT_DELETED_REF); case BTR_CUR_DEL_MARK_IBUF: case BTR_CUR_DELETE_IBUF: case BTR_CUR_INSERT_TO_IBUF: return(ROW_BUFFERED); case BTR_CUR_HASH: case BTR_CUR_HASH_FAIL: case BTR_CUR_BINARY: break; } low_match = btr_pcur_get_low_match(pcur); rec = btr_pcur_get_rec(pcur); n_fields = dtuple_get_n_fields(entry); if (page_rec_is_infimum(rec)) { return(ROW_NOT_FOUND); } else if (low_match != n_fields) { return(ROW_NOT_FOUND); } return(ROW_FOUND); } /*******************************************************************//** Formats the raw data in "data" (in InnoDB on-disk format) that is of type DATA_INT using "prtype" and writes the result to "buf". If the data is in unknown format, then nothing is written to "buf", 0 is returned and "format_in_hex" is set to TRUE, otherwise "format_in_hex" is left untouched. Not more than "buf_size" bytes are written to "buf". The result is always '\0'-terminated (provided buf_size > 0) and the number of bytes that were written to "buf" is returned (including the terminating '\0'). @return number of bytes that were written */ static ulint row_raw_format_int( /*===============*/ const char* data, /*!< in: raw data */ ulint data_len, /*!< in: raw data length in bytes */ ulint prtype, /*!< in: precise type */ char* buf, /*!< out: output buffer */ ulint buf_size, /*!< in: output buffer size in bytes */ ibool* format_in_hex) /*!< out: should the data be formated in hex */ { ulint ret; if (data_len <= sizeof(ib_uint64_t)) { ib_uint64_t value; ibool unsigned_type = prtype & DATA_UNSIGNED; value = mach_read_int_type( (const byte*) data, data_len, unsigned_type); ret = (ulint) snprintf( buf, buf_size, unsigned_type ? "%llu" : "%lld", (longlong) value)+1; } else { *format_in_hex = TRUE; ret = 0; } return(ut_min(ret, buf_size)); } /*******************************************************************//** Formats the raw data in "data" (in InnoDB on-disk format) that is of type DATA_(CHAR|VARCHAR|MYSQL|VARMYSQL) using "prtype" and writes the result to "buf". If the data is in binary format, then nothing is written to "buf", 0 is returned and "format_in_hex" is set to TRUE, otherwise "format_in_hex" is left untouched. Not more than "buf_size" bytes are written to "buf". The result is always '\0'-terminated (provided buf_size > 0) and the number of bytes that were written to "buf" is returned (including the terminating '\0'). @return number of bytes that were written */ static ulint row_raw_format_str( /*===============*/ const char* data, /*!< in: raw data */ ulint data_len, /*!< in: raw data length in bytes */ ulint prtype, /*!< in: precise type */ char* buf, /*!< out: output buffer */ ulint buf_size, /*!< in: output buffer size in bytes */ ibool* format_in_hex) /*!< out: should the data be formated in hex */ { ulint charset_coll; if (buf_size == 0) { return(0); } /* we assume system_charset_info is UTF-8 */ charset_coll = dtype_get_charset_coll(prtype); if (UNIV_LIKELY(dtype_is_utf8(prtype))) { return(ut_str_sql_format(data, data_len, buf, buf_size)); } /* else */ if (charset_coll == DATA_MYSQL_BINARY_CHARSET_COLL) { *format_in_hex = TRUE; return(0); } /* else */ return(innobase_raw_format(data, data_len, charset_coll, buf, buf_size)); } /*******************************************************************//** Formats the raw data in "data" (in InnoDB on-disk format) using "dict_field" and writes the result to "buf". Not more than "buf_size" bytes are written to "buf". The result is always NUL-terminated (provided buf_size is positive) and the number of bytes that were written to "buf" is returned (including the terminating NUL). @return number of bytes that were written */ ulint row_raw_format( /*===========*/ const char* data, /*!< in: raw data */ ulint data_len, /*!< in: raw data length in bytes */ const dict_field_t* dict_field, /*!< in: index field */ char* buf, /*!< out: output buffer */ ulint buf_size) /*!< in: output buffer size in bytes */ { ulint mtype; ulint prtype; ulint ret; ibool format_in_hex; ut_ad(data_len != UNIV_SQL_DEFAULT); if (buf_size == 0) { return(0); } if (data_len == UNIV_SQL_NULL) { ret = snprintf((char*) buf, buf_size, "NULL") + 1; return(ut_min(ret, buf_size)); } mtype = dict_field->col->mtype; prtype = dict_field->col->prtype; format_in_hex = FALSE; switch (mtype) { case DATA_INT: ret = row_raw_format_int(data, data_len, prtype, buf, buf_size, &format_in_hex); if (format_in_hex) { goto format_in_hex; } break; case DATA_CHAR: case DATA_VARCHAR: case DATA_MYSQL: case DATA_VARMYSQL: ret = row_raw_format_str(data, data_len, prtype, buf, buf_size, &format_in_hex); if (format_in_hex) { goto format_in_hex; } break; /* XXX support more data types */ default: format_in_hex: if (UNIV_LIKELY(buf_size > 2)) { memcpy(buf, "0x", 2); buf += 2; buf_size -= 2; ret = 2 + ut_raw_to_hex(data, data_len, buf, buf_size); } else { buf[0] = '\0'; ret = 1; } } return(ret); } #ifdef UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT #ifdef HAVE_UT_CHRONO_T void test_row_raw_format_int() { ulint ret; char buf[128]; ibool format_in_hex; ulint i; #define CALL_AND_TEST(data, data_len, prtype, buf, buf_size,\ ret_expected, buf_expected, format_in_hex_expected)\ do {\ ibool ok = TRUE;\ ulint i;\ memset(buf, 'x', 10);\ buf[10] = '\0';\ format_in_hex = FALSE;\ fprintf(stderr, "TESTING \"\\x");\ for (i = 0; i < data_len; i++) {\ fprintf(stderr, "%02hhX", data[i]);\ }\ fprintf(stderr, "\", %lu, %lu, %lu\n",\ (ulint) data_len, (ulint) prtype,\ (ulint) buf_size);\ ret = row_raw_format_int(data, data_len, prtype,\ buf, buf_size, &format_in_hex);\ if (ret != ret_expected) {\ fprintf(stderr, "expected ret %lu, got %lu\n",\ (ulint) ret_expected, ret);\ ok = FALSE;\ }\ if (strcmp((char*) buf, buf_expected) != 0) {\ fprintf(stderr, "expected buf \"%s\", got \"%s\"\n",\ buf_expected, buf);\ ok = FALSE;\ }\ if (format_in_hex != format_in_hex_expected) {\ fprintf(stderr, "expected format_in_hex %d, got %d\n",\ (int) format_in_hex_expected,\ (int) format_in_hex);\ ok = FALSE;\ }\ if (ok) {\ fprintf(stderr, "OK: %lu, \"%s\" %d\n\n",\ (ulint) ret, buf, (int) format_in_hex);\ } else {\ return;\ }\ } while (0) #if 1 /* min values for signed 1-8 byte integers */ CALL_AND_TEST("\x00", 1, 0, buf, sizeof(buf), 5, "-128", 0); CALL_AND_TEST("\x00\x00", 2, 0, buf, sizeof(buf), 7, "-32768", 0); CALL_AND_TEST("\x00\x00\x00", 3, 0, buf, sizeof(buf), 9, "-8388608", 0); CALL_AND_TEST("\x00\x00\x00\x00", 4, 0, buf, sizeof(buf), 12, "-2147483648", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, 0, buf, sizeof(buf), 14, "-549755813888", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, 0, buf, sizeof(buf), 17, "-140737488355328", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, 0, buf, sizeof(buf), 19, "-36028797018963968", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, 0, buf, sizeof(buf), 21, "-9223372036854775808", 0); /* min values for unsigned 1-8 byte integers */ CALL_AND_TEST("\x00", 1, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00", 2, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00", 3, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00\x00", 4, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00", 5, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00", 6, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00", 7, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x00\x00\x00", 8, DATA_UNSIGNED, buf, sizeof(buf), 2, "0", 0); /* max values for signed 1-8 byte integers */ CALL_AND_TEST("\xFF", 1, 0, buf, sizeof(buf), 4, "127", 0); CALL_AND_TEST("\xFF\xFF", 2, 0, buf, sizeof(buf), 6, "32767", 0); CALL_AND_TEST("\xFF\xFF\xFF", 3, 0, buf, sizeof(buf), 8, "8388607", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, 0, buf, sizeof(buf), 11, "2147483647", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, 0, buf, sizeof(buf), 13, "549755813887", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, 0, buf, sizeof(buf), 16, "140737488355327", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, 0, buf, sizeof(buf), 18, "36028797018963967", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, 0, buf, sizeof(buf), 20, "9223372036854775807", 0); /* max values for unsigned 1-8 byte integers */ CALL_AND_TEST("\xFF", 1, DATA_UNSIGNED, buf, sizeof(buf), 4, "255", 0); CALL_AND_TEST("\xFF\xFF", 2, DATA_UNSIGNED, buf, sizeof(buf), 6, "65535", 0); CALL_AND_TEST("\xFF\xFF\xFF", 3, DATA_UNSIGNED, buf, sizeof(buf), 9, "16777215", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF", 4, DATA_UNSIGNED, buf, sizeof(buf), 11, "4294967295", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF", 5, DATA_UNSIGNED, buf, sizeof(buf), 14, "1099511627775", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF", 6, DATA_UNSIGNED, buf, sizeof(buf), 16, "281474976710655", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 7, DATA_UNSIGNED, buf, sizeof(buf), 18, "72057594037927935", 0); CALL_AND_TEST("\xFF\xFF\xFF\xFF\xFF\xFF\xFF\xFF", 8, DATA_UNSIGNED, buf, sizeof(buf), 21, "18446744073709551615", 0); /* some random values */ CALL_AND_TEST("\x52", 1, 0, buf, sizeof(buf), 4, "-46", 0); CALL_AND_TEST("\x0E", 1, DATA_UNSIGNED, buf, sizeof(buf), 3, "14", 0); CALL_AND_TEST("\x62\xCE", 2, 0, buf, sizeof(buf), 6, "-7474", 0); CALL_AND_TEST("\x29\xD6", 2, DATA_UNSIGNED, buf, sizeof(buf), 6, "10710", 0); CALL_AND_TEST("\x7F\xFF\x90", 3, 0, buf, sizeof(buf), 5, "-112", 0); CALL_AND_TEST("\x00\xA1\x16", 3, DATA_UNSIGNED, buf, sizeof(buf), 6, "41238", 0); CALL_AND_TEST("\x7F\xFF\xFF\xF7", 4, 0, buf, sizeof(buf), 3, "-9", 0); CALL_AND_TEST("\x00\x00\x00\x5C", 4, DATA_UNSIGNED, buf, sizeof(buf), 3, "92", 0); CALL_AND_TEST("\x7F\xFF\xFF\xFF\xFF\xFF\xDC\x63", 8, 0, buf, sizeof(buf), 6, "-9117", 0); CALL_AND_TEST("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED, buf, sizeof(buf), 6, "91234", 0); #endif /* speed test */ ut_chrono_t ch(__func__); for (i = 0; i < 1000000; i++) { row_raw_format_int("\x23", 1, 0, buf, sizeof(buf), &format_in_hex); row_raw_format_int("\x23", 1, DATA_UNSIGNED, buf, sizeof(buf), &format_in_hex); row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8, 0, buf, sizeof(buf), &format_in_hex); row_raw_format_int("\x00\x00\x00\x00\x00\x01\x64\x62", 8, DATA_UNSIGNED, buf, sizeof(buf), &format_in_hex); } } #endif /* HAVE_UT_CHRONO_T */ #endif /* UNIV_ENABLE_UNIT_TEST_ROW_RAW_FORMAT_INT */