/***************************************************************************** Copyright (c) 1997, 2013, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2008, Google Inc. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /***************************************************//** @file row/row0sel.cc Select Created 12/19/1997 Heikki Tuuri *******************************************************/ #include "row0sel.h" #ifdef UNIV_NONINL #include "row0sel.ic" #endif #include "dict0dict.h" #include "dict0boot.h" #include "trx0undo.h" #include "trx0trx.h" #include "btr0btr.h" #include "btr0cur.h" #include "btr0sea.h" #include "mach0data.h" #include "que0que.h" #include "row0upd.h" #include "row0row.h" #include "row0vers.h" #include "rem0cmp.h" #include "lock0lock.h" #include "eval0eval.h" #include "pars0sym.h" #include "pars0pars.h" #include "row0mysql.h" #include "read0read.h" #include "buf0lru.h" #include "ha_prototypes.h" #include "m_string.h" /* for my_sys.h */ #include "my_sys.h" /* DEBUG_SYNC_C */ #include "my_compare.h" /* enum icp_result */ /* Maximum number of rows to prefetch; MySQL interface has another parameter */ #define SEL_MAX_N_PREFETCH 16 /* Number of rows fetched, after which to start prefetching; MySQL interface has another parameter */ #define SEL_PREFETCH_LIMIT 1 /* When a select has accessed about this many pages, it returns control back to que_run_threads: this is to allow canceling runaway queries */ #define SEL_COST_LIMIT 100 /* Flags for search shortcut */ #define SEL_FOUND 0 #define SEL_EXHAUSTED 1 #define SEL_RETRY 2 /********************************************************************//** Returns TRUE if the user-defined column in a secondary index record is alphabetically the same as the corresponding BLOB column in the clustered index record. NOTE: the comparison is NOT done as a binary comparison, but character fields are compared with collation! @return TRUE if the columns are equal */ static ibool row_sel_sec_rec_is_for_blob( /*========================*/ ulint mtype, /*!< in: main type */ ulint prtype, /*!< in: precise type */ ulint mbminmaxlen, /*!< in: minimum and maximum length of a multi-byte character */ const byte* clust_field, /*!< in: the locally stored part of the clustered index column, including the BLOB pointer; the clustered index record must be covered by a lock or a page latch to protect it against deletion (rollback or purge) */ ulint clust_len, /*!< in: length of clust_field */ const byte* sec_field, /*!< in: column in secondary index */ ulint sec_len, /*!< in: length of sec_field */ ulint prefix_len, /*!< in: index column prefix length in bytes */ dict_table_t* table) /*!< in: table */ { ulint len; byte buf[REC_VERSION_56_MAX_INDEX_COL_LEN]; ulint zip_size = dict_tf_get_zip_size(table->flags); /* This function should never be invoked on an Antelope format table, because they should always contain enough prefix in the clustered index record. */ ut_ad(dict_table_get_format(table) >= UNIV_FORMAT_B); ut_a(clust_len >= BTR_EXTERN_FIELD_REF_SIZE); ut_ad(prefix_len >= sec_len); ut_ad(prefix_len > 0); ut_a(prefix_len <= sizeof buf); if (UNIV_UNLIKELY (!memcmp(clust_field + clust_len - BTR_EXTERN_FIELD_REF_SIZE, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE))) { /* The externally stored field was not written yet. This record should only be seen by recv_recovery_rollback_active() or any TRX_ISO_READ_UNCOMMITTED transactions. */ return(FALSE); } len = btr_copy_externally_stored_field_prefix(buf, prefix_len, zip_size, clust_field, clust_len); if (UNIV_UNLIKELY(len == 0)) { /* The BLOB was being deleted as the server crashed. There should not be any secondary index records referring to this clustered index record, because btr_free_externally_stored_field() is called after all secondary index entries of the row have been purged. */ return(FALSE); } len = dtype_get_at_most_n_mbchars(prtype, mbminmaxlen, prefix_len, len, (const char*) buf); return(!cmp_data_data(mtype, prtype, buf, len, sec_field, sec_len)); } /********************************************************************//** Returns TRUE if the user-defined column values in a secondary index record are alphabetically the same as the corresponding columns in the clustered index record. NOTE: the comparison is NOT done as a binary comparison, but character fields are compared with collation! @return TRUE if the secondary record is equal to the corresponding fields in the clustered record, when compared with collation; FALSE if not equal or if the clustered record has been marked for deletion */ static ibool row_sel_sec_rec_is_for_clust_rec( /*=============================*/ const rec_t* sec_rec, /*!< in: secondary index record */ dict_index_t* sec_index, /*!< in: secondary index */ const rec_t* clust_rec, /*!< in: clustered index record; must be protected by a lock or a page latch against deletion in rollback or purge */ dict_index_t* clust_index) /*!< in: clustered index */ { const byte* sec_field; ulint sec_len; const byte* clust_field; ulint n; ulint i; mem_heap_t* heap = NULL; ulint clust_offsets_[REC_OFFS_NORMAL_SIZE]; ulint sec_offsets_[REC_OFFS_SMALL_SIZE]; ulint* clust_offs = clust_offsets_; ulint* sec_offs = sec_offsets_; ibool is_equal = TRUE; rec_offs_init(clust_offsets_); rec_offs_init(sec_offsets_); if (rec_get_deleted_flag(clust_rec, dict_table_is_comp(clust_index->table))) { /* The clustered index record is delete-marked; it is not visible in the read view. Besides, if there are any externally stored columns, some of them may have already been purged. */ return(FALSE); } clust_offs = rec_get_offsets(clust_rec, clust_index, clust_offs, ULINT_UNDEFINED, &heap); sec_offs = rec_get_offsets(sec_rec, sec_index, sec_offs, ULINT_UNDEFINED, &heap); n = dict_index_get_n_ordering_defined_by_user(sec_index); for (i = 0; i < n; i++) { const dict_field_t* ifield; const dict_col_t* col; ulint clust_pos; ulint clust_len; ulint len; ifield = dict_index_get_nth_field(sec_index, i); col = dict_field_get_col(ifield); clust_pos = dict_col_get_clust_pos(col, clust_index); clust_field = rec_get_nth_field( clust_rec, clust_offs, clust_pos, &clust_len); sec_field = rec_get_nth_field(sec_rec, sec_offs, i, &sec_len); len = clust_len; if (ifield->prefix_len > 0 && len != UNIV_SQL_NULL && sec_len != UNIV_SQL_NULL) { if (rec_offs_nth_extern(clust_offs, clust_pos)) { len -= BTR_EXTERN_FIELD_REF_SIZE; } len = dtype_get_at_most_n_mbchars( col->prtype, col->mbminmaxlen, ifield->prefix_len, len, (char*) clust_field); if (rec_offs_nth_extern(clust_offs, clust_pos) && len < sec_len) { if (!row_sel_sec_rec_is_for_blob( col->mtype, col->prtype, col->mbminmaxlen, clust_field, clust_len, sec_field, sec_len, ifield->prefix_len, clust_index->table)) { goto inequal; } continue; } } if (0 != cmp_data_data(col->mtype, col->prtype, clust_field, len, sec_field, sec_len)) { inequal: is_equal = FALSE; goto func_exit; } } func_exit: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(is_equal); } /*********************************************************************//** Creates a select node struct. @return own: select node struct */ UNIV_INTERN sel_node_t* sel_node_create( /*============*/ mem_heap_t* heap) /*!< in: memory heap where created */ { sel_node_t* node; node = static_cast( mem_heap_alloc(heap, sizeof(sel_node_t))); node->common.type = QUE_NODE_SELECT; node->state = SEL_NODE_OPEN; node->plans = NULL; return(node); } /*********************************************************************//** Frees the memory private to a select node when a query graph is freed, does not free the heap where the node was originally created. */ UNIV_INTERN void sel_node_free_private( /*==================*/ sel_node_t* node) /*!< in: select node struct */ { ulint i; plan_t* plan; if (node->plans != NULL) { for (i = 0; i < node->n_tables; i++) { plan = sel_node_get_nth_plan(node, i); btr_pcur_close(&(plan->pcur)); btr_pcur_close(&(plan->clust_pcur)); if (plan->old_vers_heap) { mem_heap_free(plan->old_vers_heap); } } } } /*********************************************************************//** Evaluates the values in a select list. If there are aggregate functions, their argument value is added to the aggregate total. */ UNIV_INLINE void sel_eval_select_list( /*=================*/ sel_node_t* node) /*!< in: select node */ { que_node_t* exp; exp = node->select_list; while (exp) { eval_exp(exp); exp = que_node_get_next(exp); } } /*********************************************************************//** Assigns the values in the select list to the possible into-variables in SELECT ... INTO ... */ UNIV_INLINE void sel_assign_into_var_values( /*=======================*/ sym_node_t* var, /*!< in: first variable in a list of variables */ sel_node_t* node) /*!< in: select node */ { que_node_t* exp; if (var == NULL) { return; } for (exp = node->select_list; var != 0; var = static_cast(que_node_get_next(var))) { ut_ad(exp); eval_node_copy_val(var->alias, exp); exp = que_node_get_next(exp); } } /*********************************************************************//** Resets the aggregate value totals in the select list of an aggregate type query. */ UNIV_INLINE void sel_reset_aggregate_vals( /*=====================*/ sel_node_t* node) /*!< in: select node */ { func_node_t* func_node; ut_ad(node->is_aggregate); for (func_node = static_cast(node->select_list); func_node != 0; func_node = static_cast( que_node_get_next(func_node))) { eval_node_set_int_val(func_node, 0); } node->aggregate_already_fetched = FALSE; } /*********************************************************************//** Copies the input variable values when an explicit cursor is opened. */ UNIV_INLINE void row_sel_copy_input_variable_vals( /*=============================*/ sel_node_t* node) /*!< in: select node */ { sym_node_t* var; var = UT_LIST_GET_FIRST(node->copy_variables); while (var) { eval_node_copy_val(var, var->alias); var->indirection = NULL; var = UT_LIST_GET_NEXT(col_var_list, var); } } /*********************************************************************//** Fetches the column values from a record. */ static void row_sel_fetch_columns( /*==================*/ dict_index_t* index, /*!< in: record index */ const rec_t* rec, /*!< in: record in a clustered or non-clustered index; must be protected by a page latch */ const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ sym_node_t* column) /*!< in: first column in a column list, or NULL */ { dfield_t* val; ulint index_type; ulint field_no; const byte* data; ulint len; ut_ad(rec_offs_validate(rec, index, offsets)); if (dict_index_is_clust(index)) { index_type = SYM_CLUST_FIELD_NO; } else { index_type = SYM_SEC_FIELD_NO; } while (column) { mem_heap_t* heap = NULL; ibool needs_copy; field_no = column->field_nos[index_type]; if (field_no != ULINT_UNDEFINED) { if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets, field_no))) { /* Copy an externally stored field to the temporary heap, if possible. */ heap = mem_heap_create(1); data = btr_rec_copy_externally_stored_field( rec, offsets, dict_table_zip_size(index->table), field_no, &len, heap); /* data == NULL means that the externally stored field was not written yet. This record should only be seen by recv_recovery_rollback_active() or any TRX_ISO_READ_UNCOMMITTED transactions. The InnoDB SQL parser (the sole caller of this function) does not implement READ UNCOMMITTED, and it is not involved during rollback. */ ut_a(data); ut_a(len != UNIV_SQL_NULL); needs_copy = TRUE; } else { data = rec_get_nth_field(rec, offsets, field_no, &len); needs_copy = column->copy_val; } if (needs_copy) { eval_node_copy_and_alloc_val(column, data, len); } else { val = que_node_get_val(column); dfield_set_data(val, data, len); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } column = UT_LIST_GET_NEXT(col_var_list, column); } } /*********************************************************************//** Allocates a prefetch buffer for a column when prefetch is first time done. */ static void sel_col_prefetch_buf_alloc( /*=======================*/ sym_node_t* column) /*!< in: symbol table node for a column */ { sel_buf_t* sel_buf; ulint i; ut_ad(que_node_get_type(column) == QUE_NODE_SYMBOL); column->prefetch_buf = static_cast( mem_alloc(SEL_MAX_N_PREFETCH * sizeof(sel_buf_t))); for (i = 0; i < SEL_MAX_N_PREFETCH; i++) { sel_buf = column->prefetch_buf + i; sel_buf->data = NULL; sel_buf->len = 0; sel_buf->val_buf_size = 0; } } /*********************************************************************//** Frees a prefetch buffer for a column, including the dynamically allocated memory for data stored there. */ UNIV_INTERN void sel_col_prefetch_buf_free( /*======================*/ sel_buf_t* prefetch_buf) /*!< in, own: prefetch buffer */ { sel_buf_t* sel_buf; ulint i; for (i = 0; i < SEL_MAX_N_PREFETCH; i++) { sel_buf = prefetch_buf + i; if (sel_buf->val_buf_size > 0) { mem_free(sel_buf->data); } } mem_free(prefetch_buf); } /*********************************************************************//** Pops the column values for a prefetched, cached row from the column prefetch buffers and places them to the val fields in the column nodes. */ static void sel_dequeue_prefetched_row( /*=======================*/ plan_t* plan) /*!< in: plan node for a table */ { sym_node_t* column; sel_buf_t* sel_buf; dfield_t* val; byte* data; ulint len; ulint val_buf_size; ut_ad(plan->n_rows_prefetched > 0); column = UT_LIST_GET_FIRST(plan->columns); while (column) { val = que_node_get_val(column); if (!column->copy_val) { /* We did not really push any value for the column */ ut_ad(!column->prefetch_buf); ut_ad(que_node_get_val_buf_size(column) == 0); ut_d(dfield_set_null(val)); goto next_col; } ut_ad(column->prefetch_buf); ut_ad(!dfield_is_ext(val)); sel_buf = column->prefetch_buf + plan->first_prefetched; data = sel_buf->data; len = sel_buf->len; val_buf_size = sel_buf->val_buf_size; /* We must keep track of the allocated memory for column values to be able to free it later: therefore we swap the values for sel_buf and val */ sel_buf->data = static_cast(dfield_get_data(val)); sel_buf->len = dfield_get_len(val); sel_buf->val_buf_size = que_node_get_val_buf_size(column); dfield_set_data(val, data, len); que_node_set_val_buf_size(column, val_buf_size); next_col: column = UT_LIST_GET_NEXT(col_var_list, column); } plan->n_rows_prefetched--; plan->first_prefetched++; } /*********************************************************************//** Pushes the column values for a prefetched, cached row to the column prefetch buffers from the val fields in the column nodes. */ UNIV_INLINE void sel_enqueue_prefetched_row( /*=======================*/ plan_t* plan) /*!< in: plan node for a table */ { sym_node_t* column; sel_buf_t* sel_buf; dfield_t* val; byte* data; ulint len; ulint pos; ulint val_buf_size; if (plan->n_rows_prefetched == 0) { pos = 0; plan->first_prefetched = 0; } else { pos = plan->n_rows_prefetched; /* We have the convention that pushing new rows starts only after the prefetch stack has been emptied: */ ut_ad(plan->first_prefetched == 0); } plan->n_rows_prefetched++; ut_ad(pos < SEL_MAX_N_PREFETCH); for (column = UT_LIST_GET_FIRST(plan->columns); column != 0; column = UT_LIST_GET_NEXT(col_var_list, column)) { if (!column->copy_val) { /* There is no sense to push pointers to database page fields when we do not keep latch on the page! */ continue; } if (!column->prefetch_buf) { /* Allocate a new prefetch buffer */ sel_col_prefetch_buf_alloc(column); } sel_buf = column->prefetch_buf + pos; val = que_node_get_val(column); data = static_cast(dfield_get_data(val)); len = dfield_get_len(val); val_buf_size = que_node_get_val_buf_size(column); /* We must keep track of the allocated memory for column values to be able to free it later: therefore we swap the values for sel_buf and val */ dfield_set_data(val, sel_buf->data, sel_buf->len); que_node_set_val_buf_size(column, sel_buf->val_buf_size); sel_buf->data = data; sel_buf->len = len; sel_buf->val_buf_size = val_buf_size; } } /*********************************************************************//** Builds a previous version of a clustered index record for a consistent read @return DB_SUCCESS or error code */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_sel_build_prev_vers( /*====================*/ read_view_t* read_view, /*!< in: read view */ dict_index_t* index, /*!< in: plan node for table */ rec_t* rec, /*!< in: record in a clustered index */ ulint** offsets, /*!< in/out: offsets returned by rec_get_offsets(rec, plan->index) */ mem_heap_t** offset_heap, /*!< in/out: memory heap from which the offsets are allocated */ mem_heap_t** old_vers_heap, /*!< out: old version heap to use */ rec_t** old_vers, /*!< out: old version, or NULL if the record does not exist in the view: i.e., it was freshly inserted afterwards */ mtr_t* mtr) /*!< in: mtr */ { dberr_t err; if (*old_vers_heap) { mem_heap_empty(*old_vers_heap); } else { *old_vers_heap = mem_heap_create(512); } err = row_vers_build_for_consistent_read( rec, mtr, index, offsets, read_view, offset_heap, *old_vers_heap, old_vers); return(err); } /*********************************************************************//** Builds the last committed version of a clustered index record for a semi-consistent read. */ static __attribute__((nonnull)) void row_sel_build_committed_vers_for_mysql( /*===================================*/ dict_index_t* clust_index, /*!< in: clustered index */ row_prebuilt_t* prebuilt, /*!< in: prebuilt struct */ const rec_t* rec, /*!< in: record in a clustered index */ ulint** offsets, /*!< in/out: offsets returned by rec_get_offsets(rec, clust_index) */ mem_heap_t** offset_heap, /*!< in/out: memory heap from which the offsets are allocated */ const rec_t** old_vers, /*!< out: old version, or NULL if the record does not exist in the view: i.e., it was freshly inserted afterwards */ mtr_t* mtr) /*!< in: mtr */ { if (prebuilt->old_vers_heap) { mem_heap_empty(prebuilt->old_vers_heap); } else { prebuilt->old_vers_heap = mem_heap_create( rec_offs_size(*offsets)); } row_vers_build_for_semi_consistent_read( rec, mtr, clust_index, offsets, offset_heap, prebuilt->old_vers_heap, old_vers); } /*********************************************************************//** Tests the conditions which determine when the index segment we are searching through has been exhausted. @return TRUE if row passed the tests */ UNIV_INLINE ibool row_sel_test_end_conds( /*===================*/ plan_t* plan) /*!< in: plan for the table; the column values must already have been retrieved and the right sides of comparisons evaluated */ { func_node_t* cond; /* All conditions in end_conds are comparisons of a column to an expression */ for (cond = UT_LIST_GET_FIRST(plan->end_conds); cond != 0; cond = UT_LIST_GET_NEXT(cond_list, cond)) { /* Evaluate the left side of the comparison, i.e., get the column value if there is an indirection */ eval_sym(static_cast(cond->args)); /* Do the comparison */ if (!eval_cmp(cond)) { return(FALSE); } } return(TRUE); } /*********************************************************************//** Tests the other conditions. @return TRUE if row passed the tests */ UNIV_INLINE ibool row_sel_test_other_conds( /*=====================*/ plan_t* plan) /*!< in: plan for the table; the column values must already have been retrieved */ { func_node_t* cond; cond = UT_LIST_GET_FIRST(plan->other_conds); while (cond) { eval_exp(cond); if (!eval_node_get_ibool_val(cond)) { return(FALSE); } cond = UT_LIST_GET_NEXT(cond_list, cond); } return(TRUE); } /*********************************************************************//** Retrieves the clustered index record corresponding to a record in a non-clustered index. Does the necessary locking. @return DB_SUCCESS or error code */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_sel_get_clust_rec( /*==================*/ sel_node_t* node, /*!< in: select_node */ plan_t* plan, /*!< in: plan node for table */ rec_t* rec, /*!< in: record in a non-clustered index */ que_thr_t* thr, /*!< in: query thread */ rec_t** out_rec,/*!< out: clustered record or an old version of it, NULL if the old version did not exist in the read view, i.e., it was a fresh inserted version */ mtr_t* mtr) /*!< in: mtr used to get access to the non-clustered record; the same mtr is used to access the clustered index */ { dict_index_t* index; rec_t* clust_rec; rec_t* old_vers; dberr_t err; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); *out_rec = NULL; offsets = rec_get_offsets(rec, btr_pcur_get_btr_cur(&plan->pcur)->index, offsets, ULINT_UNDEFINED, &heap); row_build_row_ref_fast(plan->clust_ref, plan->clust_map, rec, offsets); index = dict_table_get_first_index(plan->table); btr_pcur_open_with_no_init(index, plan->clust_ref, PAGE_CUR_LE, BTR_SEARCH_LEAF, &plan->clust_pcur, 0, mtr); clust_rec = btr_pcur_get_rec(&(plan->clust_pcur)); /* Note: only if the search ends up on a non-infimum record is the low_match value the real match to the search tuple */ if (!page_rec_is_user_rec(clust_rec) || btr_pcur_get_low_match(&(plan->clust_pcur)) < dict_index_get_n_unique(index)) { ut_a(rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))); ut_a(node->read_view); /* In a rare case it is possible that no clust rec is found for a delete-marked secondary index record: if in row0umod.cc in row_undo_mod_remove_clust_low() we have already removed the clust rec, while purge is still cleaning and removing secondary index records associated with earlier versions of the clustered index record. In that case we know that the clustered index record did not exist in the read view of trx. */ goto func_exit; } offsets = rec_get_offsets(clust_rec, index, offsets, ULINT_UNDEFINED, &heap); if (!node->read_view) { /* Try to place a lock on the index record */ /* If innodb_locks_unsafe_for_binlog option is used or this session is using READ COMMITTED isolation level we lock only the record, i.e., next-key locking is not used. */ ulint lock_type; trx_t* trx; trx = thr_get_trx(thr); if (srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) { lock_type = LOCK_REC_NOT_GAP; } else { lock_type = LOCK_ORDINARY; } err = lock_clust_rec_read_check_and_lock( 0, btr_pcur_get_block(&plan->clust_pcur), clust_rec, index, offsets, static_cast(node->row_lock_mode), lock_type, thr); switch (err) { case DB_SUCCESS: case DB_SUCCESS_LOCKED_REC: /* Declare the variable uninitialized in Valgrind. It should be set to DB_SUCCESS at func_exit. */ UNIV_MEM_INVALID(&err, sizeof err); break; default: goto err_exit; } } else { /* This is a non-locking consistent read: if necessary, fetch a previous version of the record */ old_vers = NULL; if (!lock_clust_rec_cons_read_sees(clust_rec, index, offsets, node->read_view)) { err = row_sel_build_prev_vers( node->read_view, index, clust_rec, &offsets, &heap, &plan->old_vers_heap, &old_vers, mtr); if (err != DB_SUCCESS) { goto err_exit; } clust_rec = old_vers; if (clust_rec == NULL) { goto func_exit; } } /* If we had to go to an earlier version of row or the secondary index record is delete marked, then it may be that the secondary index record corresponding to clust_rec (or old_vers) is not rec; in that case we must ignore such row because in our snapshot rec would not have existed. Remember that from rec we cannot see directly which transaction id corresponds to it: we have to go to the clustered index record. A query where we want to fetch all rows where the secondary index value is in some interval would return a wrong result if we would not drop rows which we come to visit through secondary index records that would not really exist in our snapshot. */ if ((old_vers || rec_get_deleted_flag(rec, dict_table_is_comp( plan->table))) && !row_sel_sec_rec_is_for_clust_rec(rec, plan->index, clust_rec, index)) { goto func_exit; } } /* Fetch the columns needed in test conditions. The clustered index record is protected by a page latch that was acquired when plan->clust_pcur was positioned. The latch will not be released until mtr_commit(mtr). */ ut_ad(!rec_get_deleted_flag(clust_rec, rec_offs_comp(offsets))); row_sel_fetch_columns(index, clust_rec, offsets, UT_LIST_GET_FIRST(plan->columns)); *out_rec = clust_rec; func_exit: err = DB_SUCCESS; err_exit: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(err); } /*********************************************************************//** Sets a lock on a record. @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */ UNIV_INLINE dberr_t sel_set_rec_lock( /*=============*/ const buf_block_t* block, /*!< in: buffer block of rec */ const rec_t* rec, /*!< in: record */ dict_index_t* index, /*!< in: index */ const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ ulint mode, /*!< in: lock mode */ ulint type, /*!< in: LOCK_ORDINARY, LOCK_GAP, or LOC_REC_NOT_GAP */ que_thr_t* thr) /*!< in: query thread */ { trx_t* trx; dberr_t err; trx = thr_get_trx(thr); if (UT_LIST_GET_LEN(trx->lock.trx_locks) > 10000) { if (buf_LRU_buf_pool_running_out()) { return(DB_LOCK_TABLE_FULL); } } if (dict_index_is_clust(index)) { err = lock_clust_rec_read_check_and_lock( 0, block, rec, index, offsets, static_cast(mode), type, thr); } else { err = lock_sec_rec_read_check_and_lock( 0, block, rec, index, offsets, static_cast(mode), type, thr); } return(err); } /*********************************************************************//** Opens a pcur to a table index. */ static void row_sel_open_pcur( /*==============*/ plan_t* plan, /*!< in: table plan */ ibool search_latch_locked, /*!< in: TRUE if the thread currently has the search latch locked in s-mode */ mtr_t* mtr) /*!< in: mtr */ { dict_index_t* index; func_node_t* cond; que_node_t* exp; ulint n_fields; ulint has_search_latch = 0; /* RW_S_LATCH or 0 */ ulint i; if (search_latch_locked) { has_search_latch = RW_S_LATCH; } index = plan->index; /* Calculate the value of the search tuple: the exact match columns get their expressions evaluated when we evaluate the right sides of end_conds */ cond = UT_LIST_GET_FIRST(plan->end_conds); while (cond) { eval_exp(que_node_get_next(cond->args)); cond = UT_LIST_GET_NEXT(cond_list, cond); } if (plan->tuple) { n_fields = dtuple_get_n_fields(plan->tuple); if (plan->n_exact_match < n_fields) { /* There is a non-exact match field which must be evaluated separately */ eval_exp(plan->tuple_exps[n_fields - 1]); } for (i = 0; i < n_fields; i++) { exp = plan->tuple_exps[i]; dfield_copy_data(dtuple_get_nth_field(plan->tuple, i), que_node_get_val(exp)); } /* Open pcur to the index */ btr_pcur_open_with_no_init(index, plan->tuple, plan->mode, BTR_SEARCH_LEAF, &plan->pcur, has_search_latch, mtr); } else { /* Open the cursor to the start or the end of the index (FALSE: no init) */ btr_pcur_open_at_index_side(plan->asc, index, BTR_SEARCH_LEAF, &(plan->pcur), false, 0, mtr); } ut_ad(plan->n_rows_prefetched == 0); ut_ad(plan->n_rows_fetched == 0); ut_ad(plan->cursor_at_end == FALSE); plan->pcur_is_open = TRUE; } /*********************************************************************//** Restores a stored pcur position to a table index. @return TRUE if the cursor should be moved to the next record after we return from this function (moved to the previous, in the case of a descending cursor) without processing again the current cursor record */ static ibool row_sel_restore_pcur_pos( /*=====================*/ plan_t* plan, /*!< in: table plan */ mtr_t* mtr) /*!< in: mtr */ { ibool equal_position; ulint relative_position; ut_ad(!plan->cursor_at_end); relative_position = btr_pcur_get_rel_pos(&(plan->pcur)); equal_position = btr_pcur_restore_position(BTR_SEARCH_LEAF, &(plan->pcur), mtr); /* If the cursor is traveling upwards, and relative_position is (1) BTR_PCUR_BEFORE: this is not allowed, as we did not have a lock yet on the successor of the page infimum; (2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the first record GREATER than the predecessor of a page supremum; we have not yet processed the cursor record: no need to move the cursor to the next record; (3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the last record LESS or EQUAL to the old stored user record; (a) if equal_position is FALSE, this means that the cursor is now on a record less than the old user record, and we must move to the next record; (b) if equal_position is TRUE, then if plan->stored_cursor_rec_processed is TRUE, we must move to the next record, else there is no need to move the cursor. */ if (plan->asc) { if (relative_position == BTR_PCUR_ON) { if (equal_position) { return(plan->stored_cursor_rec_processed); } return(TRUE); } ut_ad(relative_position == BTR_PCUR_AFTER || relative_position == BTR_PCUR_AFTER_LAST_IN_TREE); return(FALSE); } /* If the cursor is traveling downwards, and relative_position is (1) BTR_PCUR_BEFORE: btr_pcur_restore_position placed the cursor on the last record LESS than the successor of a page infimum; we have not processed the cursor record: no need to move the cursor; (2) BTR_PCUR_AFTER: btr_pcur_restore_position placed the cursor on the first record GREATER than the predecessor of a page supremum; we have processed the cursor record: we should move the cursor to the previous record; (3) BTR_PCUR_ON: btr_pcur_restore_position placed the cursor on the last record LESS or EQUAL to the old stored user record; (a) if equal_position is FALSE, this means that the cursor is now on a record less than the old user record, and we need not move to the previous record; (b) if equal_position is TRUE, then if plan->stored_cursor_rec_processed is TRUE, we must move to the previous record, else there is no need to move the cursor. */ if (relative_position == BTR_PCUR_BEFORE || relative_position == BTR_PCUR_BEFORE_FIRST_IN_TREE) { return(FALSE); } if (relative_position == BTR_PCUR_ON) { if (equal_position) { return(plan->stored_cursor_rec_processed); } return(FALSE); } ut_ad(relative_position == BTR_PCUR_AFTER || relative_position == BTR_PCUR_AFTER_LAST_IN_TREE); return(TRUE); } /*********************************************************************//** Resets a plan cursor to a closed state. */ UNIV_INLINE void plan_reset_cursor( /*==============*/ plan_t* plan) /*!< in: plan */ { plan->pcur_is_open = FALSE; plan->cursor_at_end = FALSE; plan->n_rows_fetched = 0; plan->n_rows_prefetched = 0; } /*********************************************************************//** Tries to do a shortcut to fetch a clustered index record with a unique key, using the hash index if possible (not always). @return SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */ static ulint row_sel_try_search_shortcut( /*========================*/ sel_node_t* node, /*!< in: select node for a consistent read */ plan_t* plan, /*!< in: plan for a unique search in clustered index */ ibool search_latch_locked, /*!< in: whether the search holds btr_search_latch */ mtr_t* mtr) /*!< in: mtr */ { dict_index_t* index; rec_t* rec; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; ulint ret; rec_offs_init(offsets_); index = plan->index; ut_ad(node->read_view); ut_ad(plan->unique_search); ut_ad(!plan->must_get_clust); #ifdef UNIV_SYNC_DEBUG if (search_latch_locked) { ut_ad(rw_lock_own(&btr_search_latch, RW_LOCK_SHARED)); } #endif /* UNIV_SYNC_DEBUG */ row_sel_open_pcur(plan, search_latch_locked, mtr); rec = btr_pcur_get_rec(&(plan->pcur)); if (!page_rec_is_user_rec(rec)) { return(SEL_RETRY); } ut_ad(plan->mode == PAGE_CUR_GE); /* As the cursor is now placed on a user record after a search with the mode PAGE_CUR_GE, the up_match field in the cursor tells how many fields in the user record matched to the search tuple */ if (btr_pcur_get_up_match(&(plan->pcur)) < plan->n_exact_match) { return(SEL_EXHAUSTED); } /* This is a non-locking consistent read: if necessary, fetch a previous version of the record */ offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); if (dict_index_is_clust(index)) { if (!lock_clust_rec_cons_read_sees(rec, index, offsets, node->read_view)) { ret = SEL_RETRY; goto func_exit; } } else if (!lock_sec_rec_cons_read_sees(rec, node->read_view)) { ret = SEL_RETRY; goto func_exit; } /* Test the deleted flag. */ if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table))) { ret = SEL_EXHAUSTED; goto func_exit; } /* Fetch the columns needed in test conditions. The index record is protected by a page latch that was acquired when plan->pcur was positioned. The latch will not be released until mtr_commit(mtr). */ row_sel_fetch_columns(index, rec, offsets, UT_LIST_GET_FIRST(plan->columns)); /* Test the rest of search conditions */ if (!row_sel_test_other_conds(plan)) { ret = SEL_EXHAUSTED; goto func_exit; } ut_ad(plan->pcur.latch_mode == BTR_SEARCH_LEAF); plan->n_rows_fetched++; ret = SEL_FOUND; func_exit: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(ret); } /*********************************************************************//** Performs a select step. @return DB_SUCCESS or error code */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_sel( /*====*/ sel_node_t* node, /*!< in: select node */ que_thr_t* thr) /*!< in: query thread */ { dict_index_t* index; plan_t* plan; mtr_t mtr; ibool moved; rec_t* rec; rec_t* old_vers; rec_t* clust_rec; ibool search_latch_locked; ibool consistent_read; /* The following flag becomes TRUE when we are doing a consistent read from a non-clustered index and we must look at the clustered index to find out the previous delete mark state of the non-clustered record: */ ibool cons_read_requires_clust_rec = FALSE; ulint cost_counter = 0; ibool cursor_just_opened; ibool must_go_to_next; ibool mtr_has_extra_clust_latch = FALSE; /* TRUE if the search was made using a non-clustered index, and we had to access the clustered record: now &mtr contains a clustered index latch, and &mtr must be committed before we move to the next non-clustered record */ ulint found_flag; dberr_t err; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); ut_ad(thr->run_node == node); search_latch_locked = FALSE; if (node->read_view) { /* In consistent reads, we try to do with the hash index and not to use the buffer page get. This is to reduce memory bus load resulting from semaphore operations. The search latch will be s-locked when we access an index with a unique search condition, but not locked when we access an index with a less selective search condition. */ consistent_read = TRUE; } else { consistent_read = FALSE; } table_loop: /* TABLE LOOP ---------- This is the outer major loop in calculating a join. We come here when node->fetch_table changes, and after adding a row to aggregate totals and, of course, when this function is called. */ ut_ad(mtr_has_extra_clust_latch == FALSE); plan = sel_node_get_nth_plan(node, node->fetch_table); index = plan->index; if (plan->n_rows_prefetched > 0) { sel_dequeue_prefetched_row(plan); goto next_table_no_mtr; } if (plan->cursor_at_end) { /* The cursor has already reached the result set end: no more rows to process for this table cursor, as also the prefetch stack was empty */ ut_ad(plan->pcur_is_open); goto table_exhausted_no_mtr; } /* Open a cursor to index, or restore an open cursor position */ mtr_start(&mtr); if (consistent_read && plan->unique_search && !plan->pcur_is_open && !plan->must_get_clust && !plan->table->big_rows) { if (!search_latch_locked) { rw_lock_s_lock(&btr_search_latch); search_latch_locked = TRUE; } else if (rw_lock_get_writer(&btr_search_latch) == RW_LOCK_WAIT_EX) { /* There is an x-latch request waiting: release the s-latch for a moment; as an s-latch here is often kept for some 10 searches before being released, a waiting x-latch request would block other threads from acquiring an s-latch for a long time, lowering performance significantly in multiprocessors. */ rw_lock_s_unlock(&btr_search_latch); rw_lock_s_lock(&btr_search_latch); } found_flag = row_sel_try_search_shortcut(node, plan, search_latch_locked, &mtr); if (found_flag == SEL_FOUND) { goto next_table; } else if (found_flag == SEL_EXHAUSTED) { goto table_exhausted; } ut_ad(found_flag == SEL_RETRY); plan_reset_cursor(plan); mtr_commit(&mtr); mtr_start(&mtr); } if (search_latch_locked) { rw_lock_s_unlock(&btr_search_latch); search_latch_locked = FALSE; } if (!plan->pcur_is_open) { /* Evaluate the expressions to build the search tuple and open the cursor */ row_sel_open_pcur(plan, search_latch_locked, &mtr); cursor_just_opened = TRUE; /* A new search was made: increment the cost counter */ cost_counter++; } else { /* Restore pcur position to the index */ must_go_to_next = row_sel_restore_pcur_pos(plan, &mtr); cursor_just_opened = FALSE; if (must_go_to_next) { /* We have already processed the cursor record: move to the next */ goto next_rec; } } rec_loop: /* RECORD LOOP ----------- In this loop we use pcur and try to fetch a qualifying row, and also fill the prefetch buffer for this table if n_rows_fetched has exceeded a threshold. While we are inside this loop, the following holds: (1) &mtr is started, (2) pcur is positioned and open. NOTE that if cursor_just_opened is TRUE here, it means that we came to this point right after row_sel_open_pcur. */ ut_ad(mtr_has_extra_clust_latch == FALSE); rec = btr_pcur_get_rec(&(plan->pcur)); /* PHASE 1: Set a lock if specified */ if (!node->asc && cursor_just_opened && !page_rec_is_supremum(rec)) { /* When we open a cursor for a descending search, we must set a next-key lock on the successor record: otherwise it would be possible to insert new records next to the cursor position, and it might be that these new records should appear in the search result set, resulting in the phantom problem. */ if (!consistent_read) { /* If innodb_locks_unsafe_for_binlog option is used or this session is using READ COMMITTED isolation level, we lock only the record, i.e., next-key locking is not used. */ rec_t* next_rec = page_rec_get_next(rec); ulint lock_type; trx_t* trx; trx = thr_get_trx(thr); offsets = rec_get_offsets(next_rec, index, offsets, ULINT_UNDEFINED, &heap); if (srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) { if (page_rec_is_supremum(next_rec)) { goto skip_lock; } lock_type = LOCK_REC_NOT_GAP; } else { lock_type = LOCK_ORDINARY; } err = sel_set_rec_lock(btr_pcur_get_block(&plan->pcur), next_rec, index, offsets, node->row_lock_mode, lock_type, thr); switch (err) { case DB_SUCCESS_LOCKED_REC: err = DB_SUCCESS; case DB_SUCCESS: break; default: /* Note that in this case we will store in pcur the PREDECESSOR of the record we are waiting the lock for */ goto lock_wait_or_error; } } } skip_lock: if (page_rec_is_infimum(rec)) { /* The infimum record on a page cannot be in the result set, and neither can a record lock be placed on it: we skip such a record. We also increment the cost counter as we may have processed yet another page of index. */ cost_counter++; goto next_rec; } if (!consistent_read) { /* Try to place a lock on the index record */ /* If innodb_locks_unsafe_for_binlog option is used or this session is using READ COMMITTED isolation level, we lock only the record, i.e., next-key locking is not used. */ ulint lock_type; trx_t* trx; offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); trx = thr_get_trx(thr); if (srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) { if (page_rec_is_supremum(rec)) { goto next_rec; } lock_type = LOCK_REC_NOT_GAP; } else { lock_type = LOCK_ORDINARY; } err = sel_set_rec_lock(btr_pcur_get_block(&plan->pcur), rec, index, offsets, node->row_lock_mode, lock_type, thr); switch (err) { case DB_SUCCESS_LOCKED_REC: err = DB_SUCCESS; case DB_SUCCESS: break; default: goto lock_wait_or_error; } } if (page_rec_is_supremum(rec)) { /* A page supremum record cannot be in the result set: skip it now when we have placed a possible lock on it */ goto next_rec; } ut_ad(page_rec_is_user_rec(rec)); if (cost_counter > SEL_COST_LIMIT) { /* Now that we have placed the necessary locks, we can stop for a while and store the cursor position; NOTE that if we would store the cursor position BEFORE placing a record lock, it might happen that the cursor would jump over some records that another transaction could meanwhile insert adjacent to the cursor: this would result in the phantom problem. */ goto stop_for_a_while; } /* PHASE 2: Check a mixed index mix id if needed */ if (plan->unique_search && cursor_just_opened) { ut_ad(plan->mode == PAGE_CUR_GE); /* As the cursor is now placed on a user record after a search with the mode PAGE_CUR_GE, the up_match field in the cursor tells how many fields in the user record matched to the search tuple */ if (btr_pcur_get_up_match(&(plan->pcur)) < plan->n_exact_match) { goto table_exhausted; } /* Ok, no need to test end_conds or mix id */ } /* We are ready to look at a possible new index entry in the result set: the cursor is now placed on a user record */ /* PHASE 3: Get previous version in a consistent read */ cons_read_requires_clust_rec = FALSE; offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); if (consistent_read) { /* This is a non-locking consistent read: if necessary, fetch a previous version of the record */ if (dict_index_is_clust(index)) { if (!lock_clust_rec_cons_read_sees(rec, index, offsets, node->read_view)) { err = row_sel_build_prev_vers( node->read_view, index, rec, &offsets, &heap, &plan->old_vers_heap, &old_vers, &mtr); if (err != DB_SUCCESS) { goto lock_wait_or_error; } if (old_vers == NULL) { /* The record does not exist in our read view. Skip it, but first attempt to determine whether the index segment we are searching through has been exhausted. */ offsets = rec_get_offsets( rec, index, offsets, ULINT_UNDEFINED, &heap); /* Fetch the columns needed in test conditions. The clustered index record is protected by a page latch that was acquired by row_sel_open_pcur() or row_sel_restore_pcur_pos(). The latch will not be released until mtr_commit(mtr). */ row_sel_fetch_columns( index, rec, offsets, UT_LIST_GET_FIRST( plan->columns)); if (!row_sel_test_end_conds(plan)) { goto table_exhausted; } goto next_rec; } rec = old_vers; } } else if (!lock_sec_rec_cons_read_sees(rec, node->read_view)) { cons_read_requires_clust_rec = TRUE; } } /* PHASE 4: Test search end conditions and deleted flag */ /* Fetch the columns needed in test conditions. The record is protected by a page latch that was acquired by row_sel_open_pcur() or row_sel_restore_pcur_pos(). The latch will not be released until mtr_commit(mtr). */ row_sel_fetch_columns(index, rec, offsets, UT_LIST_GET_FIRST(plan->columns)); /* Test the selection end conditions: these can only contain columns which already are found in the index, even though the index might be non-clustered */ if (plan->unique_search && cursor_just_opened) { /* No test necessary: the test was already made above */ } else if (!row_sel_test_end_conds(plan)) { goto table_exhausted; } if (rec_get_deleted_flag(rec, dict_table_is_comp(plan->table)) && !cons_read_requires_clust_rec) { /* The record is delete marked: we can skip it if this is not a consistent read which might see an earlier version of a non-clustered index record */ if (plan->unique_search) { goto table_exhausted; } goto next_rec; } /* PHASE 5: Get the clustered index record, if needed and if we did not do the search using the clustered index */ if (plan->must_get_clust || cons_read_requires_clust_rec) { /* It was a non-clustered index and we must fetch also the clustered index record */ err = row_sel_get_clust_rec(node, plan, rec, thr, &clust_rec, &mtr); mtr_has_extra_clust_latch = TRUE; if (err != DB_SUCCESS) { goto lock_wait_or_error; } /* Retrieving the clustered record required a search: increment the cost counter */ cost_counter++; if (clust_rec == NULL) { /* The record did not exist in the read view */ ut_ad(consistent_read); goto next_rec; } if (rec_get_deleted_flag(clust_rec, dict_table_is_comp(plan->table))) { /* The record is delete marked: we can skip it */ goto next_rec; } if (node->can_get_updated) { btr_pcur_store_position(&(plan->clust_pcur), &mtr); } } /* PHASE 6: Test the rest of search conditions */ if (!row_sel_test_other_conds(plan)) { if (plan->unique_search) { goto table_exhausted; } goto next_rec; } /* PHASE 7: We found a new qualifying row for the current table; push the row if prefetch is on, or move to the next table in the join */ plan->n_rows_fetched++; ut_ad(plan->pcur.latch_mode == BTR_SEARCH_LEAF); if ((plan->n_rows_fetched <= SEL_PREFETCH_LIMIT) || plan->unique_search || plan->no_prefetch || plan->table->big_rows) { /* No prefetch in operation: go to the next table */ goto next_table; } sel_enqueue_prefetched_row(plan); if (plan->n_rows_prefetched == SEL_MAX_N_PREFETCH) { /* The prefetch buffer is now full */ sel_dequeue_prefetched_row(plan); goto next_table; } next_rec: ut_ad(!search_latch_locked); if (mtr_has_extra_clust_latch) { /* We must commit &mtr if we are moving to the next non-clustered index record, because we could break the latching order if we would access a different clustered index page right away without releasing the previous. */ goto commit_mtr_for_a_while; } if (node->asc) { moved = btr_pcur_move_to_next(&(plan->pcur), &mtr); } else { moved = btr_pcur_move_to_prev(&(plan->pcur), &mtr); } if (!moved) { goto table_exhausted; } cursor_just_opened = FALSE; /* END OF RECORD LOOP ------------------ */ goto rec_loop; next_table: /* We found a record which satisfies the conditions: we can move to the next table or return a row in the result set */ ut_ad(btr_pcur_is_on_user_rec(&plan->pcur)); if (plan->unique_search && !node->can_get_updated) { plan->cursor_at_end = TRUE; } else { ut_ad(!search_latch_locked); plan->stored_cursor_rec_processed = TRUE; btr_pcur_store_position(&(plan->pcur), &mtr); } mtr_commit(&mtr); mtr_has_extra_clust_latch = FALSE; next_table_no_mtr: /* If we use 'goto' to this label, it means that the row was popped from the prefetched rows stack, and &mtr is already committed */ if (node->fetch_table + 1 == node->n_tables) { sel_eval_select_list(node); if (node->is_aggregate) { goto table_loop; } sel_assign_into_var_values(node->into_list, node); thr->run_node = que_node_get_parent(node); err = DB_SUCCESS; goto func_exit; } node->fetch_table++; /* When we move to the next table, we first reset the plan cursor: we do not care about resetting it when we backtrack from a table */ plan_reset_cursor(sel_node_get_nth_plan(node, node->fetch_table)); goto table_loop; table_exhausted: /* The table cursor pcur reached the result set end: backtrack to the previous table in the join if we do not have cached prefetched rows */ plan->cursor_at_end = TRUE; mtr_commit(&mtr); mtr_has_extra_clust_latch = FALSE; if (plan->n_rows_prefetched > 0) { /* The table became exhausted during a prefetch */ sel_dequeue_prefetched_row(plan); goto next_table_no_mtr; } table_exhausted_no_mtr: if (node->fetch_table == 0) { err = DB_SUCCESS; if (node->is_aggregate && !node->aggregate_already_fetched) { node->aggregate_already_fetched = TRUE; sel_assign_into_var_values(node->into_list, node); thr->run_node = que_node_get_parent(node); } else { node->state = SEL_NODE_NO_MORE_ROWS; thr->run_node = que_node_get_parent(node); } goto func_exit; } node->fetch_table--; goto table_loop; stop_for_a_while: /* Return control for a while to que_run_threads, so that runaway queries can be canceled. NOTE that when we come here, we must, in a locking read, have placed the necessary (possibly waiting request) record lock on the cursor record or its successor: when we reposition the cursor, this record lock guarantees that nobody can meanwhile have inserted new records which should have appeared in the result set, which would result in the phantom problem. */ ut_ad(!search_latch_locked); plan->stored_cursor_rec_processed = FALSE; btr_pcur_store_position(&(plan->pcur), &mtr); mtr_commit(&mtr); #ifdef UNIV_SYNC_DEBUG ut_ad(sync_thread_levels_empty_except_dict()); #endif /* UNIV_SYNC_DEBUG */ err = DB_SUCCESS; goto func_exit; commit_mtr_for_a_while: /* Stores the cursor position and commits &mtr; this is used if &mtr may contain latches which would break the latching order if &mtr would not be committed and the latches released. */ plan->stored_cursor_rec_processed = TRUE; ut_ad(!search_latch_locked); btr_pcur_store_position(&(plan->pcur), &mtr); mtr_commit(&mtr); mtr_has_extra_clust_latch = FALSE; #ifdef UNIV_SYNC_DEBUG ut_ad(sync_thread_levels_empty_except_dict()); #endif /* UNIV_SYNC_DEBUG */ goto table_loop; lock_wait_or_error: /* See the note at stop_for_a_while: the same holds for this case */ ut_ad(!btr_pcur_is_before_first_on_page(&plan->pcur) || !node->asc); ut_ad(!search_latch_locked); plan->stored_cursor_rec_processed = FALSE; btr_pcur_store_position(&(plan->pcur), &mtr); mtr_commit(&mtr); #ifdef UNIV_SYNC_DEBUG ut_ad(sync_thread_levels_empty_except_dict()); #endif /* UNIV_SYNC_DEBUG */ func_exit: if (search_latch_locked) { rw_lock_s_unlock(&btr_search_latch); } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(err); } /**********************************************************************//** Performs a select step. This is a high-level function used in SQL execution graphs. @return query thread to run next or NULL */ UNIV_INTERN que_thr_t* row_sel_step( /*=========*/ que_thr_t* thr) /*!< in: query thread */ { sel_node_t* node; ut_ad(thr); node = static_cast(thr->run_node); ut_ad(que_node_get_type(node) == QUE_NODE_SELECT); /* If this is a new time this node is executed (or when execution resumes after wait for a table intention lock), set intention locks on the tables, or assign a read view */ if (node->into_list && (thr->prev_node == que_node_get_parent(node))) { node->state = SEL_NODE_OPEN; } if (node->state == SEL_NODE_OPEN) { /* It may be that the current session has not yet started its transaction, or it has been committed: */ trx_start_if_not_started_xa(thr_get_trx(thr)); plan_reset_cursor(sel_node_get_nth_plan(node, 0)); if (node->consistent_read) { /* Assign a read view for the query */ node->read_view = trx_assign_read_view( thr_get_trx(thr)); } else { sym_node_t* table_node; enum lock_mode i_lock_mode; if (node->set_x_locks) { i_lock_mode = LOCK_IX; } else { i_lock_mode = LOCK_IS; } for (table_node = node->table_list; table_node != 0; table_node = static_cast( que_node_get_next(table_node))) { dberr_t err = lock_table( 0, table_node->table, i_lock_mode, thr); if (err != DB_SUCCESS) { trx_t* trx; trx = thr_get_trx(thr); trx->error_state = err; return(NULL); } } } /* If this is an explicit cursor, copy stored procedure variable values, so that the values cannot change between fetches (currently, we copy them also for non-explicit cursors) */ if (node->explicit_cursor && UT_LIST_GET_FIRST(node->copy_variables)) { row_sel_copy_input_variable_vals(node); } node->state = SEL_NODE_FETCH; node->fetch_table = 0; if (node->is_aggregate) { /* Reset the aggregate total values */ sel_reset_aggregate_vals(node); } } dberr_t err = row_sel(node, thr); /* NOTE! if queries are parallelized, the following assignment may have problems; the assignment should be made only if thr is the only top-level thr in the graph: */ thr->graph->last_sel_node = node; if (err != DB_SUCCESS) { thr_get_trx(thr)->error_state = err; return(NULL); } return(thr); } /**********************************************************************//** Performs a fetch for a cursor. @return query thread to run next or NULL */ UNIV_INTERN que_thr_t* fetch_step( /*=======*/ que_thr_t* thr) /*!< in: query thread */ { sel_node_t* sel_node; fetch_node_t* node; ut_ad(thr); node = static_cast(thr->run_node); sel_node = node->cursor_def; ut_ad(que_node_get_type(node) == QUE_NODE_FETCH); if (thr->prev_node != que_node_get_parent(node)) { if (sel_node->state != SEL_NODE_NO_MORE_ROWS) { if (node->into_list) { sel_assign_into_var_values(node->into_list, sel_node); } else { ibool ret = (*node->func->func)( sel_node, node->func->arg); if (!ret) { sel_node->state = SEL_NODE_NO_MORE_ROWS; } } } thr->run_node = que_node_get_parent(node); return(thr); } /* Make the fetch node the parent of the cursor definition for the time of the fetch, so that execution knows to return to this fetch node after a row has been selected or we know that there is no row left */ sel_node->common.parent = node; if (sel_node->state == SEL_NODE_CLOSED) { fprintf(stderr, "InnoDB: Error: fetch called on a closed cursor\n"); thr_get_trx(thr)->error_state = DB_ERROR; return(NULL); } thr->run_node = sel_node; return(thr); } /****************************************************************//** Sample callback function for fetch that prints each row. @return always returns non-NULL */ UNIV_INTERN void* row_fetch_print( /*============*/ void* row, /*!< in: sel_node_t* */ void* user_arg) /*!< in: not used */ { que_node_t* exp; ulint i = 0; sel_node_t* node = static_cast(row); UT_NOT_USED(user_arg); fprintf(stderr, "row_fetch_print: row %p\n", row); for (exp = node->select_list; exp != 0; exp = que_node_get_next(exp), i++) { dfield_t* dfield = que_node_get_val(exp); const dtype_t* type = dfield_get_type(dfield); fprintf(stderr, " column %lu:\n", (ulong) i); dtype_print(type); putc('\n', stderr); if (dfield_get_len(dfield) != UNIV_SQL_NULL) { ut_print_buf(stderr, dfield_get_data(dfield), dfield_get_len(dfield)); putc('\n', stderr); } else { fputs(" ;\n", stderr); } } return((void*)42); } /***********************************************************//** Prints a row in a select result. @return query thread to run next or NULL */ UNIV_INTERN que_thr_t* row_printf_step( /*============*/ que_thr_t* thr) /*!< in: query thread */ { row_printf_node_t* node; sel_node_t* sel_node; que_node_t* arg; ut_ad(thr); node = static_cast(thr->run_node); sel_node = node->sel_node; ut_ad(que_node_get_type(node) == QUE_NODE_ROW_PRINTF); if (thr->prev_node == que_node_get_parent(node)) { /* Reset the cursor */ sel_node->state = SEL_NODE_OPEN; /* Fetch next row to print */ thr->run_node = sel_node; return(thr); } if (sel_node->state != SEL_NODE_FETCH) { ut_ad(sel_node->state == SEL_NODE_NO_MORE_ROWS); /* No more rows to print */ thr->run_node = que_node_get_parent(node); return(thr); } arg = sel_node->select_list; while (arg) { dfield_print_also_hex(que_node_get_val(arg)); fputs(" ::: ", stderr); arg = que_node_get_next(arg); } putc('\n', stderr); /* Fetch next row to print */ thr->run_node = sel_node; return(thr); } /****************************************************************//** Converts a key value stored in MySQL format to an Innobase dtuple. The last field of the key value may be just a prefix of a fixed length field: hence the parameter key_len. But currently we do not allow search keys where the last field is only a prefix of the full key field len and print a warning if such appears. A counterpart of this function is ha_innobase::store_key_val_for_row() in ha_innodb.cc. */ UNIV_INTERN void row_sel_convert_mysql_key_to_innobase( /*==================================*/ dtuple_t* tuple, /*!< in/out: tuple where to build; NOTE: we assume that the type info in the tuple is already according to index! */ byte* buf, /*!< in: buffer to use in field conversions; NOTE that dtuple->data may end up pointing inside buf so do not discard that buffer while the tuple is being used. See row_mysql_store_col_in_innobase_format() in the case of DATA_INT */ ulint buf_len, /*!< in: buffer length */ dict_index_t* index, /*!< in: index of the key value */ const byte* key_ptr, /*!< in: MySQL key value */ ulint key_len, /*!< in: MySQL key value length */ trx_t* trx) /*!< in: transaction */ { byte* original_buf = buf; const byte* original_key_ptr = key_ptr; dict_field_t* field; dfield_t* dfield; ulint data_offset; ulint data_len; ulint data_field_len; ibool is_null; const byte* key_end; ulint n_fields = 0; /* For documentation of the key value storage format in MySQL, see ha_innobase::store_key_val_for_row() in ha_innodb.cc. */ key_end = key_ptr + key_len; /* Permit us to access any field in the tuple (ULINT_MAX): */ dtuple_set_n_fields(tuple, ULINT_MAX); dfield = dtuple_get_nth_field(tuple, 0); field = dict_index_get_nth_field(index, 0); if (UNIV_UNLIKELY(dfield_get_type(dfield)->mtype == DATA_SYS)) { /* A special case: we are looking for a position in the generated clustered index which InnoDB automatically added to a table with no primary key: the first and the only ordering column is ROW_ID which InnoDB stored to the key_ptr buffer. */ ut_a(key_len == DATA_ROW_ID_LEN); dfield_set_data(dfield, key_ptr, DATA_ROW_ID_LEN); dtuple_set_n_fields(tuple, 1); return; } while (key_ptr < key_end) { ulint type = dfield_get_type(dfield)->mtype; ut_a(field->col->mtype == type); data_offset = 0; is_null = FALSE; if (!(dfield_get_type(dfield)->prtype & DATA_NOT_NULL)) { /* The first byte in the field tells if this is an SQL NULL value */ data_offset = 1; if (*key_ptr != 0) { dfield_set_null(dfield); is_null = TRUE; } } /* Calculate data length and data field total length */ if (type == DATA_BLOB) { /* The key field is a column prefix of a BLOB or TEXT */ ut_a(field->prefix_len > 0); /* MySQL stores the actual data length to the first 2 bytes after the optional SQL NULL marker byte. The storage format is little-endian, that is, the most significant byte at a higher address. In UTF-8, MySQL seems to reserve field->prefix_len bytes for storing this field in the key value buffer, even though the actual value only takes data_len bytes from the start. */ data_len = key_ptr[data_offset] + 256 * key_ptr[data_offset + 1]; data_field_len = data_offset + 2 + field->prefix_len; data_offset += 2; /* Now that we know the length, we store the column value like it would be a fixed char field */ } else if (field->prefix_len > 0) { /* Looks like MySQL pads unused end bytes in the prefix with space. Therefore, also in UTF-8, it is ok to compare with a prefix containing full prefix_len bytes, and no need to take at most prefix_len / 3 UTF-8 characters from the start. If the prefix is used as the upper end of a LIKE 'abc%' query, then MySQL pads the end with chars 0xff. TODO: in that case does it any harm to compare with the full prefix_len bytes. How do characters 0xff in UTF-8 behave? */ data_len = field->prefix_len; data_field_len = data_offset + data_len; } else { data_len = dfield_get_type(dfield)->len; data_field_len = data_offset + data_len; } if (UNIV_UNLIKELY (dtype_get_mysql_type(dfield_get_type(dfield)) == DATA_MYSQL_TRUE_VARCHAR) && UNIV_LIKELY(type != DATA_INT)) { /* In a MySQL key value format, a true VARCHAR is always preceded by 2 bytes of a length field. dfield_get_type(dfield)->len returns the maximum 'payload' len in bytes. That does not include the 2 bytes that tell the actual data length. We added the check != DATA_INT to make sure we do not treat MySQL ENUM or SET as a true VARCHAR! */ data_len += 2; data_field_len += 2; } /* Storing may use at most data_len bytes of buf */ if (UNIV_LIKELY(!is_null)) { ut_a(buf + data_len <= original_buf + buf_len); row_mysql_store_col_in_innobase_format( dfield, buf, FALSE, /* MySQL key value format col */ key_ptr + data_offset, data_len, dict_table_is_comp(index->table)); buf += data_len; } key_ptr += data_field_len; if (UNIV_UNLIKELY(key_ptr > key_end)) { /* The last field in key was not a complete key field but a prefix of it. Print a warning about this! HA_READ_PREFIX_LAST does not currently work in InnoDB with partial-field key value prefixes. Since MySQL currently uses a padding trick to calculate LIKE 'abc%' type queries there should never be partial-field prefixes in searches. */ ut_print_timestamp(stderr); fputs(" InnoDB: Warning: using a partial-field" " key prefix in search.\n" "InnoDB: ", stderr); dict_index_name_print(stderr, trx, index); fprintf(stderr, ". Last data field length %lu bytes,\n" "InnoDB: key ptr now exceeds" " key end by %lu bytes.\n" "InnoDB: Key value in the MySQL format:\n", (ulong) data_field_len, (ulong) (key_ptr - key_end)); fflush(stderr); ut_print_buf(stderr, original_key_ptr, key_len); putc('\n', stderr); if (!is_null) { ulint len = dfield_get_len(dfield); dfield_set_len(dfield, len - (ulint) (key_ptr - key_end)); } ut_ad(0); } n_fields++; field++; dfield++; } DBUG_EXECUTE_IF("innodb_srch_key_buffer_full", ut_a(buf == (original_buf + buf_len));); ut_a(buf <= original_buf + buf_len); /* We set the length of tuple to n_fields: we assume that the memory area allocated for it is big enough (usually bigger than n_fields). */ dtuple_set_n_fields(tuple, n_fields); } /**************************************************************//** Stores the row id to the prebuilt struct. */ static void row_sel_store_row_id_to_prebuilt( /*=============================*/ row_prebuilt_t* prebuilt, /*!< in/out: prebuilt */ const rec_t* index_rec, /*!< in: record */ const dict_index_t* index, /*!< in: index of the record */ const ulint* offsets) /*!< in: rec_get_offsets (index_rec, index) */ { const byte* data; ulint len; ut_ad(rec_offs_validate(index_rec, index, offsets)); data = rec_get_nth_field( index_rec, offsets, dict_index_get_sys_col_pos(index, DATA_ROW_ID), &len); if (UNIV_UNLIKELY(len != DATA_ROW_ID_LEN)) { fprintf(stderr, "InnoDB: Error: Row id field is" " wrong length %lu in ", (ulong) len); dict_index_name_print(stderr, prebuilt->trx, index); fprintf(stderr, "\n" "InnoDB: Field number %lu, record:\n", (ulong) dict_index_get_sys_col_pos(index, DATA_ROW_ID)); rec_print_new(stderr, index_rec, offsets); putc('\n', stderr); ut_error; } ut_memcpy(prebuilt->row_id, data, len); } #ifdef UNIV_DEBUG /** Convert a non-SQL-NULL field from Innobase format to MySQL format. */ # define row_sel_field_store_in_mysql_format(dest,templ,idx,field,src,len) \ row_sel_field_store_in_mysql_format_func(dest,templ,idx,field,src,len) #else /* UNIV_DEBUG */ /** Convert a non-SQL-NULL field from Innobase format to MySQL format. */ # define row_sel_field_store_in_mysql_format(dest,templ,idx,field,src,len) \ row_sel_field_store_in_mysql_format_func(dest,templ,src,len) #endif /* UNIV_DEBUG */ /**************************************************************//** Stores a non-SQL-NULL field in the MySQL format. The counterpart of this function is row_mysql_store_col_in_innobase_format() in row0mysql.cc. */ static __attribute__((nonnull)) void row_sel_field_store_in_mysql_format_func( /*=====================================*/ byte* dest, /*!< in/out: buffer where to store; NOTE that BLOBs are not in themselves stored here: the caller must allocate and copy the BLOB into buffer before, and pass the pointer to the BLOB in 'data' */ const mysql_row_templ_t* templ, /*!< in: MySQL column template. Its following fields are referenced: type, is_unsigned, mysql_col_len, mbminlen, mbmaxlen */ #ifdef UNIV_DEBUG const dict_index_t* index, /*!< in: InnoDB index */ ulint field_no, /*!< in: templ->rec_field_no or templ->clust_rec_field_no or templ->icp_rec_field_no */ #endif /* UNIV_DEBUG */ const byte* data, /*!< in: data to store */ ulint len) /*!< in: length of the data */ { byte* ptr; #ifdef UNIV_DEBUG const dict_field_t* field = dict_index_get_nth_field(index, field_no); #endif /* UNIV_DEBUG */ ut_ad(len != UNIV_SQL_NULL); UNIV_MEM_ASSERT_RW(data, len); UNIV_MEM_ASSERT_W(dest, templ->mysql_col_len); UNIV_MEM_INVALID(dest, templ->mysql_col_len); switch (templ->type) { const byte* field_end; byte* pad; case DATA_INT: /* Convert integer data from Innobase to a little-endian format, sign bit restored to normal */ ptr = dest + len; for (;;) { ptr--; *ptr = *data; if (ptr == dest) { break; } data++; } if (!templ->is_unsigned) { dest[len - 1] = (byte) (dest[len - 1] ^ 128); } ut_ad(templ->mysql_col_len == len); break; case DATA_VARCHAR: case DATA_VARMYSQL: case DATA_BINARY: field_end = dest + templ->mysql_col_len; if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR) { /* This is a >= 5.0.3 type true VARCHAR. Store the length of the data to the first byte or the first two bytes of dest. */ dest = row_mysql_store_true_var_len( dest, len, templ->mysql_length_bytes); /* Copy the actual data. Leave the rest of the buffer uninitialized. */ memcpy(dest, data, len); break; } /* Copy the actual data */ ut_memcpy(dest, data, len); /* Pad with trailing spaces. */ pad = dest + len; ut_ad(templ->mbminlen <= templ->mbmaxlen); /* We treat some Unicode charset strings specially. */ switch (templ->mbminlen) { case 4: /* InnoDB should never have stripped partial UTF-32 characters. */ ut_a(!(len & 3)); break; case 2: /* A space char is two bytes, 0x0020 in UCS2 and UTF-16 */ if (UNIV_UNLIKELY(len & 1)) { /* A 0x20 has been stripped from the column. Pad it back. */ if (pad < field_end) { *pad++ = 0x20; } } } row_mysql_pad_col(templ->mbminlen, pad, field_end - pad); break; case DATA_BLOB: /* Store a pointer to the BLOB buffer to dest: the BLOB was already copied to the buffer in row_sel_store_mysql_rec */ row_mysql_store_blob_ref(dest, templ->mysql_col_len, data, len); break; case DATA_MYSQL: memcpy(dest, data, len); ut_ad(templ->mysql_col_len >= len); ut_ad(templ->mbmaxlen >= templ->mbminlen); /* If field_no equals to templ->icp_rec_field_no, we are examining a row pointed by "icp_rec_field_no". There is possibility that icp_rec_field_no refers to a field in a secondary index while templ->rec_field_no points to field in a primary index. The length should still be equal, unless the field pointed by icp_rec_field_no has a prefix */ ut_ad(templ->mbmaxlen > templ->mbminlen || templ->mysql_col_len == len || (field_no == templ->icp_rec_field_no && field->prefix_len > 0)); /* The following assertion would fail for old tables containing UTF-8 ENUM columns due to Bug #9526. */ ut_ad(!templ->mbmaxlen || !(templ->mysql_col_len % templ->mbmaxlen)); ut_ad(len * templ->mbmaxlen >= templ->mysql_col_len || (field_no == templ->icp_rec_field_no && field->prefix_len > 0)); ut_ad(!(field->prefix_len % templ->mbmaxlen)); if (templ->mbminlen == 1 && templ->mbmaxlen != 1) { /* Pad with spaces. This undoes the stripping done in row0mysql.cc, function row_mysql_store_col_in_innobase_format(). */ memset(dest + len, 0x20, templ->mysql_col_len - len); } break; default: #ifdef UNIV_DEBUG case DATA_SYS_CHILD: case DATA_SYS: /* These column types should never be shipped to MySQL. */ ut_ad(0); case DATA_CHAR: case DATA_FIXBINARY: case DATA_FLOAT: case DATA_DOUBLE: case DATA_DECIMAL: /* Above are the valid column types for MySQL data. */ #endif /* UNIV_DEBUG */ ut_ad(field->prefix_len ? field->prefix_len == len : templ->mysql_col_len == len); memcpy(dest, data, len); } } #ifdef UNIV_DEBUG /** Convert a field from Innobase format to MySQL format. */ # define row_sel_store_mysql_field(m,p,r,i,o,f,t) \ row_sel_store_mysql_field_func(m,p,r,i,o,f,t) #else /* UNIV_DEBUG */ /** Convert a field from Innobase format to MySQL format. */ # define row_sel_store_mysql_field(m,p,r,i,o,f,t) \ row_sel_store_mysql_field_func(m,p,r,o,f,t) #endif /* UNIV_DEBUG */ /**************************************************************//** Convert a field in the Innobase format to a field in the MySQL format. */ static __attribute__((warn_unused_result)) ibool row_sel_store_mysql_field_func( /*===========================*/ byte* mysql_rec, /*!< out: record in the MySQL format */ row_prebuilt_t* prebuilt, /*!< in/out: prebuilt struct */ const rec_t* rec, /*!< in: InnoDB record; must be protected by a page latch */ #ifdef UNIV_DEBUG const dict_index_t* index, /*!< in: index of rec */ #endif const ulint* offsets, /*!< in: array returned by rec_get_offsets() */ ulint field_no, /*!< in: templ->rec_field_no or templ->clust_rec_field_no or templ->icp_rec_field_no */ const mysql_row_templ_t*templ) /*!< in: row template */ { const byte* data; ulint len; ut_ad(prebuilt->default_rec); ut_ad(templ); ut_ad(templ >= prebuilt->mysql_template); ut_ad(templ < &prebuilt->mysql_template[prebuilt->n_template]); ut_ad(field_no == templ->clust_rec_field_no || field_no == templ->rec_field_no || field_no == templ->icp_rec_field_no); ut_ad(rec_offs_validate(rec, index, offsets)); if (UNIV_UNLIKELY(rec_offs_nth_extern(offsets, field_no))) { mem_heap_t* heap; /* Copy an externally stored field to a temporary heap */ ut_a(!prebuilt->trx->has_search_latch); ut_ad(field_no == templ->clust_rec_field_no); if (UNIV_UNLIKELY(templ->type == DATA_BLOB)) { if (prebuilt->blob_heap == NULL) { prebuilt->blob_heap = mem_heap_create( UNIV_PAGE_SIZE); } heap = prebuilt->blob_heap; } else { heap = mem_heap_create(UNIV_PAGE_SIZE); } /* NOTE: if we are retrieving a big BLOB, we may already run out of memory in the next call, which causes an assert */ data = btr_rec_copy_externally_stored_field( rec, offsets, dict_table_zip_size(prebuilt->table), field_no, &len, heap); if (UNIV_UNLIKELY(!data)) { /* The externally stored field was not written yet. This record should only be seen by recv_recovery_rollback_active() or any TRX_ISO_READ_UNCOMMITTED transactions. */ if (heap != prebuilt->blob_heap) { mem_heap_free(heap); } ut_a(prebuilt->trx->isolation_level == TRX_ISO_READ_UNCOMMITTED); return(FALSE); } ut_a(len != UNIV_SQL_NULL); row_sel_field_store_in_mysql_format( mysql_rec + templ->mysql_col_offset, templ, index, field_no, data, len); if (heap != prebuilt->blob_heap) { mem_heap_free(heap); } } else { /* Field is stored in the row. */ data = rec_get_nth_field(rec, offsets, field_no, &len); if (len == UNIV_SQL_NULL) { /* MySQL assumes that the field for an SQL NULL value is set to the default value. */ ut_ad(templ->mysql_null_bit_mask); UNIV_MEM_ASSERT_RW(prebuilt->default_rec + templ->mysql_col_offset, templ->mysql_col_len); mysql_rec[templ->mysql_null_byte_offset] |= (byte) templ->mysql_null_bit_mask; memcpy(mysql_rec + templ->mysql_col_offset, (const byte*) prebuilt->default_rec + templ->mysql_col_offset, templ->mysql_col_len); return(TRUE); } if (UNIV_UNLIKELY(templ->type == DATA_BLOB)) { /* It is a BLOB field locally stored in the InnoDB record: we MUST copy its contents to prebuilt->blob_heap here because row_sel_field_store_in_mysql_format() stores a pointer to the data, and the data passed to us will be invalid as soon as the mini-transaction is committed and the page latch on the clustered index page is released. */ if (prebuilt->blob_heap == NULL) { prebuilt->blob_heap = mem_heap_create( UNIV_PAGE_SIZE); } data = static_cast( mem_heap_dup(prebuilt->blob_heap, data, len)); } row_sel_field_store_in_mysql_format( mysql_rec + templ->mysql_col_offset, templ, index, field_no, data, len); } ut_ad(len != UNIV_SQL_NULL); if (templ->mysql_null_bit_mask) { /* It is a nullable column with a non-NULL value */ mysql_rec[templ->mysql_null_byte_offset] &= ~(byte) templ->mysql_null_bit_mask; } return(TRUE); } /**************************************************************//** Convert a row in the Innobase format to a row in the MySQL format. Note that the template in prebuilt may advise us to copy only a few columns to mysql_rec, other columns are left blank. All columns may not be needed in the query. @return TRUE on success, FALSE if not all columns could be retrieved */ static __attribute__((warn_unused_result)) ibool row_sel_store_mysql_rec( /*====================*/ byte* mysql_rec, /*!< out: row in the MySQL format */ row_prebuilt_t* prebuilt, /*!< in: prebuilt struct */ const rec_t* rec, /*!< in: Innobase record in the index which was described in prebuilt's template, or in the clustered index; must be protected by a page latch */ ibool rec_clust, /*!< in: TRUE if rec is in the clustered index instead of prebuilt->index */ const dict_index_t* index, /*!< in: index of rec */ const ulint* offsets) /*!< in: array returned by rec_get_offsets(rec) */ { ulint i; ut_ad(rec_clust || index == prebuilt->index); ut_ad(!rec_clust || dict_index_is_clust(index)); if (UNIV_LIKELY_NULL(prebuilt->blob_heap)) { mem_heap_free(prebuilt->blob_heap); prebuilt->blob_heap = NULL; } for (i = 0; i < prebuilt->n_template; i++) { const mysql_row_templ_t*templ = &prebuilt->mysql_template[i]; const ulint field_no = rec_clust ? templ->clust_rec_field_no : templ->rec_field_no; /* We should never deliver column prefixes to MySQL, except for evaluating innobase_index_cond(). */ ut_ad(dict_index_get_nth_field(index, field_no)->prefix_len == 0); if (!row_sel_store_mysql_field(mysql_rec, prebuilt, rec, index, offsets, field_no, templ)) { return(FALSE); } } /* FIXME: We only need to read the doc_id if an FTS indexed column is being updated. NOTE, the record must be cluster index record. Secondary index might not have the Doc ID */ if (dict_table_has_fts_index(prebuilt->table) && dict_index_is_clust(index)) { prebuilt->fts_doc_id = fts_get_doc_id_from_rec( prebuilt->table, rec, NULL); } return(TRUE); } /*********************************************************************//** Builds a previous version of a clustered index record for a consistent read @return DB_SUCCESS or error code */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_sel_build_prev_vers_for_mysql( /*==============================*/ read_view_t* read_view, /*!< in: read view */ dict_index_t* clust_index, /*!< in: clustered index */ row_prebuilt_t* prebuilt, /*!< in: prebuilt struct */ const rec_t* rec, /*!< in: record in a clustered index */ ulint** offsets, /*!< in/out: offsets returned by rec_get_offsets(rec, clust_index) */ mem_heap_t** offset_heap, /*!< in/out: memory heap from which the offsets are allocated */ rec_t** old_vers, /*!< out: old version, or NULL if the record does not exist in the view: i.e., it was freshly inserted afterwards */ mtr_t* mtr) /*!< in: mtr */ { dberr_t err; if (prebuilt->old_vers_heap) { mem_heap_empty(prebuilt->old_vers_heap); } else { prebuilt->old_vers_heap = mem_heap_create(200); } err = row_vers_build_for_consistent_read( rec, mtr, clust_index, offsets, read_view, offset_heap, prebuilt->old_vers_heap, old_vers); return(err); } /*********************************************************************//** Retrieves the clustered index record corresponding to a record in a non-clustered index. Does the necessary locking. Used in the MySQL interface. @return DB_SUCCESS, DB_SUCCESS_LOCKED_REC, or error code */ static __attribute__((nonnull, warn_unused_result)) dberr_t row_sel_get_clust_rec_for_mysql( /*============================*/ row_prebuilt_t* prebuilt,/*!< in: prebuilt struct in the handle */ dict_index_t* sec_index,/*!< in: secondary index where rec resides */ const rec_t* rec, /*!< in: record in a non-clustered index; if this is a locking read, then rec is not allowed to be delete-marked, and that would not make sense either */ que_thr_t* thr, /*!< in: query thread */ const rec_t** out_rec,/*!< out: clustered record or an old version of it, NULL if the old version did not exist in the read view, i.e., it was a fresh inserted version */ ulint** offsets,/*!< in: offsets returned by rec_get_offsets(rec, sec_index); out: offsets returned by rec_get_offsets(out_rec, clust_index) */ mem_heap_t** offset_heap,/*!< in/out: memory heap from which the offsets are allocated */ mtr_t* mtr) /*!< in: mtr used to get access to the non-clustered record; the same mtr is used to access the clustered index */ { dict_index_t* clust_index; const rec_t* clust_rec; rec_t* old_vers; dberr_t err; trx_t* trx; *out_rec = NULL; trx = thr_get_trx(thr); row_build_row_ref_in_tuple(prebuilt->clust_ref, rec, sec_index, *offsets, trx); clust_index = dict_table_get_first_index(sec_index->table); btr_pcur_open_with_no_init(clust_index, prebuilt->clust_ref, PAGE_CUR_LE, BTR_SEARCH_LEAF, &prebuilt->clust_pcur, 0, mtr); clust_rec = btr_pcur_get_rec(&prebuilt->clust_pcur); prebuilt->clust_pcur.trx_if_known = trx; /* Note: only if the search ends up on a non-infimum record is the low_match value the real match to the search tuple */ if (!page_rec_is_user_rec(clust_rec) || btr_pcur_get_low_match(&prebuilt->clust_pcur) < dict_index_get_n_unique(clust_index)) { /* In a rare case it is possible that no clust rec is found for a delete-marked secondary index record: if in row0umod.cc in row_undo_mod_remove_clust_low() we have already removed the clust rec, while purge is still cleaning and removing secondary index records associated with earlier versions of the clustered index record. In that case we know that the clustered index record did not exist in the read view of trx. */ if (!rec_get_deleted_flag(rec, dict_table_is_comp(sec_index->table)) || prebuilt->select_lock_type != LOCK_NONE) { ut_print_timestamp(stderr); fputs(" InnoDB: error clustered record" " for sec rec not found\n" "InnoDB: ", stderr); dict_index_name_print(stderr, trx, sec_index); fputs("\n" "InnoDB: sec index record ", stderr); rec_print(stderr, rec, sec_index); fputs("\n" "InnoDB: clust index record ", stderr); rec_print(stderr, clust_rec, clust_index); putc('\n', stderr); trx_print(stderr, trx, 600); fputs("\n" "InnoDB: Submit a detailed bug report" " to http://bugs.mysql.com\n", stderr); ut_ad(0); } clust_rec = NULL; err = DB_SUCCESS; goto func_exit; } *offsets = rec_get_offsets(clust_rec, clust_index, *offsets, ULINT_UNDEFINED, offset_heap); if (prebuilt->select_lock_type != LOCK_NONE) { /* Try to place a lock on the index record; we are searching the clust rec with a unique condition, hence we set a LOCK_REC_NOT_GAP type lock */ err = lock_clust_rec_read_check_and_lock( 0, btr_pcur_get_block(&prebuilt->clust_pcur), clust_rec, clust_index, *offsets, static_cast(prebuilt->select_lock_type), LOCK_REC_NOT_GAP, thr); switch (err) { case DB_SUCCESS: case DB_SUCCESS_LOCKED_REC: break; default: goto err_exit; } } else { /* This is a non-locking consistent read: if necessary, fetch a previous version of the record */ old_vers = NULL; /* If the isolation level allows reading of uncommitted data, then we never look for an earlier version */ if (trx->isolation_level > TRX_ISO_READ_UNCOMMITTED && !lock_clust_rec_cons_read_sees( clust_rec, clust_index, *offsets, trx->read_view)) { /* The following call returns 'offsets' associated with 'old_vers' */ err = row_sel_build_prev_vers_for_mysql( trx->read_view, clust_index, prebuilt, clust_rec, offsets, offset_heap, &old_vers, mtr); if (err != DB_SUCCESS || old_vers == NULL) { goto err_exit; } clust_rec = old_vers; } /* If we had to go to an earlier version of row or the secondary index record is delete marked, then it may be that the secondary index record corresponding to clust_rec (or old_vers) is not rec; in that case we must ignore such row because in our snapshot rec would not have existed. Remember that from rec we cannot see directly which transaction id corresponds to it: we have to go to the clustered index record. A query where we want to fetch all rows where the secondary index value is in some interval would return a wrong result if we would not drop rows which we come to visit through secondary index records that would not really exist in our snapshot. */ if (clust_rec && (old_vers || trx->isolation_level <= TRX_ISO_READ_UNCOMMITTED || rec_get_deleted_flag(rec, dict_table_is_comp( sec_index->table))) && !row_sel_sec_rec_is_for_clust_rec( rec, sec_index, clust_rec, clust_index)) { clust_rec = NULL; #ifdef UNIV_SEARCH_DEBUG } else { ut_a(clust_rec == NULL || row_sel_sec_rec_is_for_clust_rec( rec, sec_index, clust_rec, clust_index)); #endif } err = DB_SUCCESS; } func_exit: *out_rec = clust_rec; /* Store the current position if select_lock_type is not LOCK_NONE or if we are scanning using InnoDB APIs */ if (prebuilt->select_lock_type != LOCK_NONE || prebuilt->innodb_api) { /* We may use the cursor in update or in unlock_row(): store its position */ btr_pcur_store_position(&prebuilt->clust_pcur, mtr); } err_exit: return(err); } /********************************************************************//** Restores cursor position after it has been stored. We have to take into account that the record cursor was positioned on may have been deleted. Then we may have to move the cursor one step up or down. @return TRUE if we may need to process the record the cursor is now positioned on (i.e. we should not go to the next record yet) */ static ibool sel_restore_position_for_mysql( /*===========================*/ ibool* same_user_rec, /*!< out: TRUE if we were able to restore the cursor on a user record with the same ordering prefix in in the B-tree index */ ulint latch_mode, /*!< in: latch mode wished in restoration */ btr_pcur_t* pcur, /*!< in: cursor whose position has been stored */ ibool moves_up, /*!< in: TRUE if the cursor moves up in the index */ mtr_t* mtr) /*!< in: mtr; CAUTION: may commit mtr temporarily! */ { ibool success; success = btr_pcur_restore_position(latch_mode, pcur, mtr); *same_user_rec = success; ut_ad(!success || pcur->rel_pos == BTR_PCUR_ON); #ifdef UNIV_DEBUG if (pcur->pos_state == BTR_PCUR_IS_POSITIONED_OPTIMISTIC) { ut_ad(pcur->rel_pos == BTR_PCUR_BEFORE || pcur->rel_pos == BTR_PCUR_AFTER); } else { ut_ad(pcur->pos_state == BTR_PCUR_IS_POSITIONED); ut_ad((pcur->rel_pos == BTR_PCUR_ON) == btr_pcur_is_on_user_rec(pcur)); } #endif /* The position may need be adjusted for rel_pos and moves_up. */ switch (pcur->rel_pos) { case BTR_PCUR_ON: if (!success && moves_up) { next: btr_pcur_move_to_next(pcur, mtr); return(TRUE); } return(!success); case BTR_PCUR_AFTER_LAST_IN_TREE: case BTR_PCUR_BEFORE_FIRST_IN_TREE: return(TRUE); case BTR_PCUR_AFTER: /* positioned to record after pcur->old_rec. */ pcur->pos_state = BTR_PCUR_IS_POSITIONED; prev: if (btr_pcur_is_on_user_rec(pcur) && !moves_up) { btr_pcur_move_to_prev(pcur, mtr); } return(TRUE); case BTR_PCUR_BEFORE: /* For non optimistic restoration: The position is now set to the record before pcur->old_rec. For optimistic restoration: The position also needs to take the previous search_mode into consideration. */ switch (pcur->pos_state) { case BTR_PCUR_IS_POSITIONED_OPTIMISTIC: pcur->pos_state = BTR_PCUR_IS_POSITIONED; if (pcur->search_mode == PAGE_CUR_GE) { /* Positioned during Greater or Equal search with BTR_PCUR_BEFORE. Optimistic restore to the same record. If scanning for lower then we must move to previous record. This can happen with: HANDLER READ idx a = (const); HANDLER READ idx PREV; */ goto prev; } return(TRUE); case BTR_PCUR_IS_POSITIONED: if (moves_up && btr_pcur_is_on_user_rec(pcur)) { goto next; } return(TRUE); case BTR_PCUR_WAS_POSITIONED: case BTR_PCUR_NOT_POSITIONED: break; } } ut_ad(0); return(TRUE); } /********************************************************************//** Copies a cached field for MySQL from the fetch cache. */ static void row_sel_copy_cached_field_for_mysql( /*================================*/ byte* buf, /*!< in/out: row buffer */ const byte* cache, /*!< in: cached row */ const mysql_row_templ_t*templ) /*!< in: column template */ { ulint len; buf += templ->mysql_col_offset; cache += templ->mysql_col_offset; UNIV_MEM_ASSERT_W(buf, templ->mysql_col_len); if (templ->mysql_type == DATA_MYSQL_TRUE_VARCHAR && templ->type != DATA_INT) { /* Check for != DATA_INT to make sure we do not treat MySQL ENUM or SET as a true VARCHAR! Find the actual length of the true VARCHAR field. */ row_mysql_read_true_varchar( &len, cache, templ->mysql_length_bytes); len += templ->mysql_length_bytes; UNIV_MEM_INVALID(buf, templ->mysql_col_len); } else { len = templ->mysql_col_len; } ut_memcpy(buf, cache, len); } /********************************************************************//** Pops a cached row for MySQL from the fetch cache. */ UNIV_INLINE void row_sel_dequeue_cached_row_for_mysql( /*=================================*/ byte* buf, /*!< in/out: buffer where to copy the row */ row_prebuilt_t* prebuilt) /*!< in: prebuilt struct */ { ulint i; const mysql_row_templ_t*templ; const byte* cached_rec; ut_ad(prebuilt->n_fetch_cached > 0); ut_ad(prebuilt->mysql_prefix_len <= prebuilt->mysql_row_len); UNIV_MEM_ASSERT_W(buf, prebuilt->mysql_row_len); cached_rec = prebuilt->fetch_cache[prebuilt->fetch_cache_first]; if (UNIV_UNLIKELY(prebuilt->keep_other_fields_on_keyread)) { /* Copy cache record field by field, don't touch fields that are not covered by current key */ for (i = 0; i < prebuilt->n_template; i++) { templ = prebuilt->mysql_template + i; row_sel_copy_cached_field_for_mysql( buf, cached_rec, templ); /* Copy NULL bit of the current field from cached_rec to buf */ if (templ->mysql_null_bit_mask) { buf[templ->mysql_null_byte_offset] ^= (buf[templ->mysql_null_byte_offset] ^ cached_rec[templ->mysql_null_byte_offset]) & (byte) templ->mysql_null_bit_mask; } } } else if (prebuilt->mysql_prefix_len > 63) { /* The record is long. Copy it field by field, in case there are some long VARCHAR column of which only a small length is being used. */ UNIV_MEM_INVALID(buf, prebuilt->mysql_prefix_len); /* First copy the NULL bits. */ ut_memcpy(buf, cached_rec, prebuilt->null_bitmap_len); /* Then copy the requested fields. */ for (i = 0; i < prebuilt->n_template; i++) { row_sel_copy_cached_field_for_mysql( buf, cached_rec, prebuilt->mysql_template + i); } } else { ut_memcpy(buf, cached_rec, prebuilt->mysql_prefix_len); } prebuilt->n_fetch_cached--; prebuilt->fetch_cache_first++; if (prebuilt->n_fetch_cached == 0) { prebuilt->fetch_cache_first = 0; } } /********************************************************************//** Initialise the prefetch cache. */ UNIV_INLINE void row_sel_prefetch_cache_init( /*========================*/ row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */ { ulint i; ulint sz; byte* ptr; /* Reserve space for the magic number. */ sz = UT_ARR_SIZE(prebuilt->fetch_cache) * (prebuilt->mysql_row_len + 8); ptr = static_cast(mem_alloc(sz)); for (i = 0; i < UT_ARR_SIZE(prebuilt->fetch_cache); i++) { /* A user has reported memory corruption in these buffers in Linux. Put magic numbers there to help to track a possible bug. */ mach_write_to_4(ptr, ROW_PREBUILT_FETCH_MAGIC_N); ptr += 4; prebuilt->fetch_cache[i] = ptr; ptr += prebuilt->mysql_row_len; mach_write_to_4(ptr, ROW_PREBUILT_FETCH_MAGIC_N); ptr += 4; } } /********************************************************************//** Get the last fetch cache buffer from the queue. @return pointer to buffer. */ UNIV_INLINE byte* row_sel_fetch_last_buf( /*===================*/ row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */ { ut_ad(!prebuilt->templ_contains_blob); ut_ad(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE); if (prebuilt->fetch_cache[0] == NULL) { /* Allocate memory for the fetch cache */ ut_ad(prebuilt->n_fetch_cached == 0); row_sel_prefetch_cache_init(prebuilt); } ut_ad(prebuilt->fetch_cache_first == 0); UNIV_MEM_INVALID(prebuilt->fetch_cache[prebuilt->n_fetch_cached], prebuilt->mysql_row_len); return(prebuilt->fetch_cache[prebuilt->n_fetch_cached]); } /********************************************************************//** Pushes a row for MySQL to the fetch cache. */ UNIV_INLINE void row_sel_enqueue_cache_row_for_mysql( /*================================*/ byte* mysql_rec, /*!< in/out: MySQL record */ row_prebuilt_t* prebuilt) /*!< in/out: prebuilt struct */ { /* For non ICP code path the row should already exist in the next fetch cache slot. */ if (prebuilt->idx_cond != NULL) { byte* dest = row_sel_fetch_last_buf(prebuilt); ut_memcpy(dest, mysql_rec, prebuilt->mysql_row_len); } ++prebuilt->n_fetch_cached; } /*********************************************************************//** Tries to do a shortcut to fetch a clustered index record with a unique key, using the hash index if possible (not always). We assume that the search mode is PAGE_CUR_GE, it is a consistent read, there is a read view in trx, btr search latch has been locked in S-mode if AHI is enabled. @return SEL_FOUND, SEL_EXHAUSTED, SEL_RETRY */ static ulint row_sel_try_search_shortcut_for_mysql( /*==================================*/ const rec_t** out_rec,/*!< out: record if found */ row_prebuilt_t* prebuilt,/*!< in: prebuilt struct */ ulint** offsets,/*!< in/out: for rec_get_offsets(*out_rec) */ mem_heap_t** heap, /*!< in/out: heap for rec_get_offsets() */ mtr_t* mtr) /*!< in: started mtr */ { dict_index_t* index = prebuilt->index; const dtuple_t* search_tuple = prebuilt->search_tuple; btr_pcur_t* pcur = &prebuilt->pcur; trx_t* trx = prebuilt->trx; const rec_t* rec; ut_ad(dict_index_is_clust(index)); ut_ad(!prebuilt->templ_contains_blob); #ifndef UNIV_SEARCH_DEBUG btr_pcur_open_with_no_init(index, search_tuple, PAGE_CUR_GE, BTR_SEARCH_LEAF, pcur, (trx->has_search_latch) ? RW_S_LATCH : 0, mtr); #else /* UNIV_SEARCH_DEBUG */ btr_pcur_open_with_no_init(index, search_tuple, PAGE_CUR_GE, BTR_SEARCH_LEAF, pcur, 0, mtr); #endif /* UNIV_SEARCH_DEBUG */ rec = btr_pcur_get_rec(pcur); if (!page_rec_is_user_rec(rec)) { return(SEL_RETRY); } /* As the cursor is now placed on a user record after a search with the mode PAGE_CUR_GE, the up_match field in the cursor tells how many fields in the user record matched to the search tuple */ if (btr_pcur_get_up_match(pcur) < dtuple_get_n_fields(search_tuple)) { return(SEL_EXHAUSTED); } /* This is a non-locking consistent read: if necessary, fetch a previous version of the record */ *offsets = rec_get_offsets(rec, index, *offsets, ULINT_UNDEFINED, heap); if (!lock_clust_rec_cons_read_sees(rec, index, *offsets, trx->read_view)) { return(SEL_RETRY); } if (rec_get_deleted_flag(rec, dict_table_is_comp(index->table))) { return(SEL_EXHAUSTED); } *out_rec = rec; return(SEL_FOUND); } /*********************************************************************//** Check a pushed-down index condition. @return ICP_NO_MATCH, ICP_MATCH, or ICP_OUT_OF_RANGE */ static enum icp_result row_search_idx_cond_check( /*======================*/ byte* mysql_rec, /*!< out: record in MySQL format (invalid unless prebuilt->idx_cond!=NULL and we return ICP_MATCH) */ row_prebuilt_t* prebuilt, /*!< in/out: prebuilt struct for the table handle */ const rec_t* rec, /*!< in: InnoDB record */ const ulint* offsets) /*!< in: rec_get_offsets() */ { enum icp_result result; ulint i; ut_ad(rec_offs_validate(rec, prebuilt->index, offsets)); if (!prebuilt->idx_cond) { return(ICP_MATCH); } MONITOR_INC(MONITOR_ICP_ATTEMPTS); /* Convert to MySQL format those fields that are needed for evaluating the index condition. */ if (UNIV_LIKELY_NULL(prebuilt->blob_heap)) { mem_heap_empty(prebuilt->blob_heap); } for (i = 0; i < prebuilt->idx_cond_n_cols; i++) { const mysql_row_templ_t*templ = &prebuilt->mysql_template[i]; if (!row_sel_store_mysql_field(mysql_rec, prebuilt, rec, prebuilt->index, offsets, templ->icp_rec_field_no, templ)) { return(ICP_NO_MATCH); } } /* We assume that the index conditions on case-insensitive columns are case-insensitive. The case of such columns may be wrong in a secondary index, if the case of the column has been updated in the past, or a record has been deleted and a record inserted in a different case. */ result = innobase_index_cond(prebuilt->idx_cond); switch (result) { case ICP_MATCH: /* Convert the remaining fields to MySQL format. If this is a secondary index record, we must defer this until we have fetched the clustered index record. */ if (!prebuilt->need_to_access_clustered || dict_index_is_clust(prebuilt->index)) { if (!row_sel_store_mysql_rec( mysql_rec, prebuilt, rec, FALSE, prebuilt->index, offsets)) { ut_ad(dict_index_is_clust(prebuilt->index)); return(ICP_NO_MATCH); } } MONITOR_INC(MONITOR_ICP_MATCH); return(result); case ICP_NO_MATCH: MONITOR_INC(MONITOR_ICP_NO_MATCH); return(result); case ICP_OUT_OF_RANGE: MONITOR_INC(MONITOR_ICP_OUT_OF_RANGE); return(result); case ICP_ERROR: case ICP_ABORTED_BY_USER: return(result); } ut_error; return(result); } /********************************************************************//** Searches for rows in the database. This is used in the interface to MySQL. This function opens a cursor, and also implements fetch next and fetch prev. NOTE that if we do a search with a full key value from a unique index (ROW_SEL_EXACT), then we will not store the cursor position and fetch next or fetch prev must not be tried to the cursor! @return DB_SUCCESS, DB_RECORD_NOT_FOUND, DB_END_OF_INDEX, DB_DEADLOCK, DB_LOCK_TABLE_FULL, DB_CORRUPTION, or DB_TOO_BIG_RECORD */ UNIV_INTERN dberr_t row_search_for_mysql( /*=================*/ byte* buf, /*!< in/out: buffer for the fetched row in the MySQL format */ ulint mode, /*!< in: search mode PAGE_CUR_L, ... */ row_prebuilt_t* prebuilt, /*!< in: prebuilt struct for the table handle; this contains the info of search_tuple, index; if search tuple contains 0 fields then we position the cursor at the start or the end of the index, depending on 'mode' */ ulint match_mode, /*!< in: 0 or ROW_SEL_EXACT or ROW_SEL_EXACT_PREFIX */ ulint direction) /*!< in: 0 or ROW_SEL_NEXT or ROW_SEL_PREV; NOTE: if this is != 0, then prebuilt must have a pcur with stored position! In opening of a cursor 'direction' should be 0. */ { dict_index_t* index = prebuilt->index; ibool comp = dict_table_is_comp(index->table); const dtuple_t* search_tuple = prebuilt->search_tuple; btr_pcur_t* pcur = &prebuilt->pcur; trx_t* trx = prebuilt->trx; dict_index_t* clust_index; que_thr_t* thr; const rec_t* rec; const rec_t* result_rec = NULL; const rec_t* clust_rec; dberr_t err = DB_SUCCESS; ibool unique_search = FALSE; ibool mtr_has_extra_clust_latch = FALSE; ibool moves_up = FALSE; ibool set_also_gap_locks = TRUE; /* if the query is a plain locking SELECT, and the isolation level is <= TRX_ISO_READ_COMMITTED, then this is set to FALSE */ ibool did_semi_consistent_read = FALSE; /* if the returned record was locked and we did a semi-consistent read (fetch the newest committed version), then this is set to TRUE */ #ifdef UNIV_SEARCH_DEBUG ulint cnt = 0; #endif /* UNIV_SEARCH_DEBUG */ ulint next_offs; ibool same_user_rec; mtr_t mtr; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; ibool table_lock_waited = FALSE; byte* next_buf = 0; rec_offs_init(offsets_); ut_ad(index && pcur && search_tuple); /* We don't support FTS queries from the HANDLER interfaces, because we implemented FTS as reversed inverted index with auxiliary tables. So anything related to traditional index query would not apply to it. */ if (index->type & DICT_FTS) { return(DB_END_OF_INDEX); } #ifdef UNIV_SYNC_DEBUG ut_ad(!sync_thread_levels_nonempty_trx(trx->has_search_latch)); #endif /* UNIV_SYNC_DEBUG */ if (dict_table_is_discarded(prebuilt->table)) { return(DB_TABLESPACE_DELETED); } else if (prebuilt->table->ibd_file_missing) { return(DB_TABLESPACE_NOT_FOUND); } else if (!prebuilt->index_usable) { return(DB_MISSING_HISTORY); } else if (dict_index_is_corrupted(index)) { return(DB_CORRUPTION); } else if (prebuilt->magic_n != ROW_PREBUILT_ALLOCATED) { fprintf(stderr, "InnoDB: Error: trying to free a corrupt\n" "InnoDB: table handle. Magic n %lu, table name ", (ulong) prebuilt->magic_n); ut_print_name(stderr, trx, TRUE, prebuilt->table->name); putc('\n', stderr); mem_analyze_corruption(prebuilt); ut_error; } #if 0 /* August 19, 2005 by Heikki: temporarily disable this error print until the cursor lock count is done correctly. See bugs #12263 and #12456!*/ if (trx->n_mysql_tables_in_use == 0 && UNIV_UNLIKELY(prebuilt->select_lock_type == LOCK_NONE)) { /* Note that if MySQL uses an InnoDB temp table that it created inside LOCK TABLES, then n_mysql_tables_in_use can be zero; in that case select_lock_type is set to LOCK_X in ::start_stmt. */ fputs("InnoDB: Error: MySQL is trying to perform a SELECT\n" "InnoDB: but it has not locked" " any tables in ::external_lock()!\n", stderr); trx_print(stderr, trx, 600); fputc('\n', stderr); } #endif #if 0 fprintf(stderr, "Match mode %lu\n search tuple ", (ulong) match_mode); dtuple_print(search_tuple); fprintf(stderr, "N tables locked %lu\n", (ulong) trx->mysql_n_tables_locked); #endif /*-------------------------------------------------------------*/ /* PHASE 0: Release a possible s-latch we are holding on the adaptive hash index latch if there is someone waiting behind */ if (UNIV_UNLIKELY(rw_lock_get_writer(&btr_search_latch) != RW_LOCK_NOT_LOCKED) && trx->has_search_latch) { /* There is an x-latch request on the adaptive hash index: release the s-latch to reduce starvation and wait for BTR_SEA_TIMEOUT rounds before trying to keep it again over calls from MySQL */ rw_lock_s_unlock(&btr_search_latch); trx->has_search_latch = FALSE; trx->search_latch_timeout = BTR_SEA_TIMEOUT; } /* Reset the new record lock info if srv_locks_unsafe_for_binlog is set or session is using a READ COMMITED isolation level. Then we are able to remove the record locks set here on an individual row. */ prebuilt->new_rec_locks = 0; /*-------------------------------------------------------------*/ /* PHASE 1: Try to pop the row from the prefetch cache */ if (UNIV_UNLIKELY(direction == 0)) { trx->op_info = "starting index read"; prebuilt->n_rows_fetched = 0; prebuilt->n_fetch_cached = 0; prebuilt->fetch_cache_first = 0; if (prebuilt->sel_graph == NULL) { /* Build a dummy select query graph */ row_prebuild_sel_graph(prebuilt); } } else { trx->op_info = "fetching rows"; if (prebuilt->n_rows_fetched == 0) { prebuilt->fetch_direction = direction; } if (UNIV_UNLIKELY(direction != prebuilt->fetch_direction)) { if (UNIV_UNLIKELY(prebuilt->n_fetch_cached > 0)) { ut_error; /* TODO: scrollable cursor: restore cursor to the place of the latest returned row, or better: prevent caching for a scroll cursor! */ } prebuilt->n_rows_fetched = 0; prebuilt->n_fetch_cached = 0; prebuilt->fetch_cache_first = 0; } else if (UNIV_LIKELY(prebuilt->n_fetch_cached > 0)) { row_sel_dequeue_cached_row_for_mysql(buf, prebuilt); prebuilt->n_rows_fetched++; err = DB_SUCCESS; goto func_exit; } if (prebuilt->fetch_cache_first > 0 && prebuilt->fetch_cache_first < MYSQL_FETCH_CACHE_SIZE) { /* The previous returned row was popped from the fetch cache, but the cache was not full at the time of the popping: no more rows can exist in the result set */ err = DB_RECORD_NOT_FOUND; goto func_exit; } prebuilt->n_rows_fetched++; if (prebuilt->n_rows_fetched > 1000000000) { /* Prevent wrap-over */ prebuilt->n_rows_fetched = 500000000; } mode = pcur->search_mode; } /* In a search where at most one record in the index may match, we can use a LOCK_REC_NOT_GAP type record lock when locking a non-delete-marked matching record. Note that in a unique secondary index there may be different delete-marked versions of a record where only the primary key values differ: thus in a secondary index we must use next-key locks when locking delete-marked records. */ if (match_mode == ROW_SEL_EXACT && dict_index_is_unique(index) && dtuple_get_n_fields(search_tuple) == dict_index_get_n_unique(index) && (dict_index_is_clust(index) || !dtuple_contains_null(search_tuple))) { /* Note above that a UNIQUE secondary index can contain many rows with the same key value if one of the columns is the SQL null. A clustered index under MySQL can never contain null columns because we demand that all the columns in primary key are non-null. */ unique_search = TRUE; /* Even if the condition is unique, MySQL seems to try to retrieve also a second row if a primary key contains more than 1 column. Return immediately if this is not a HANDLER command. */ if (UNIV_UNLIKELY(direction != 0 && !prebuilt->used_in_HANDLER)) { err = DB_RECORD_NOT_FOUND; goto func_exit; } } mtr_start(&mtr); /*-------------------------------------------------------------*/ /* PHASE 2: Try fast adaptive hash index search if possible */ /* Next test if this is the special case where we can use the fast adaptive hash index to try the search. Since we must release the search system latch when we retrieve an externally stored field, we cannot use the adaptive hash index in a search in the case the row may be long and there may be externally stored fields */ if (UNIV_UNLIKELY(direction == 0) && unique_search && dict_index_is_clust(index) && !prebuilt->templ_contains_blob && !prebuilt->used_in_HANDLER && (prebuilt->mysql_row_len < UNIV_PAGE_SIZE / 8) && !prebuilt->innodb_api) { mode = PAGE_CUR_GE; if (trx->mysql_n_tables_locked == 0 && prebuilt->select_lock_type == LOCK_NONE && trx->isolation_level > TRX_ISO_READ_UNCOMMITTED && trx->read_view) { /* This is a SELECT query done as a consistent read, and the read view has already been allocated: let us try a search shortcut through the hash index. NOTE that we must also test that mysql_n_tables_locked == 0, because this might also be INSERT INTO ... SELECT ... or CREATE TABLE ... SELECT ... . Our algorithm is NOT prepared to inserts interleaved with the SELECT, and if we try that, we can deadlock on the adaptive hash index semaphore! */ #ifndef UNIV_SEARCH_DEBUG if (!trx->has_search_latch) { rw_lock_s_lock(&btr_search_latch); trx->has_search_latch = TRUE; } #endif switch (row_sel_try_search_shortcut_for_mysql( &rec, prebuilt, &offsets, &heap, &mtr)) { case SEL_FOUND: #ifdef UNIV_SEARCH_DEBUG ut_a(0 == cmp_dtuple_rec(search_tuple, rec, offsets)); #endif /* At this point, rec is protected by a page latch that was acquired by row_sel_try_search_shortcut_for_mysql(). The latch will not be released until mtr_commit(&mtr). */ ut_ad(!rec_get_deleted_flag(rec, comp)); if (prebuilt->idx_cond) { switch (row_search_idx_cond_check( buf, prebuilt, rec, offsets)) { case ICP_NO_MATCH: case ICP_OUT_OF_RANGE: case ICP_ABORTED_BY_USER: case ICP_ERROR: goto shortcut_mismatch; case ICP_MATCH: goto shortcut_match; } } if (!row_sel_store_mysql_rec( buf, prebuilt, rec, FALSE, index, offsets)) { /* Only fresh inserts may contain incomplete externally stored columns. Pretend that such records do not exist. Such records may only be accessed at the READ UNCOMMITTED isolation level or when rolling back a recovered transaction. Rollback happens at a lower level, not here. */ /* Proceed as in case SEL_RETRY. */ break; } shortcut_match: mtr_commit(&mtr); /* ut_print_name(stderr, index->name); fputs(" shortcut\n", stderr); */ err = DB_SUCCESS; goto release_search_latch_if_needed; case SEL_EXHAUSTED: shortcut_mismatch: mtr_commit(&mtr); /* ut_print_name(stderr, index->name); fputs(" record not found 2\n", stderr); */ err = DB_RECORD_NOT_FOUND; release_search_latch_if_needed: if (trx->search_latch_timeout > 0 && trx->has_search_latch) { trx->search_latch_timeout--; rw_lock_s_unlock(&btr_search_latch); trx->has_search_latch = FALSE; } /* NOTE that we do NOT store the cursor position */ goto func_exit; case SEL_RETRY: break; default: ut_ad(0); } mtr_commit(&mtr); mtr_start(&mtr); } } /*-------------------------------------------------------------*/ /* PHASE 3: Open or restore index cursor position */ if (trx->has_search_latch) { rw_lock_s_unlock(&btr_search_latch); trx->has_search_latch = FALSE; } /* The state of a running trx can only be changed by the thread that is currently serving the transaction. Because we are that thread, we can read trx->state without holding any mutex. */ ut_ad(prebuilt->sql_stat_start || trx->state == TRX_STATE_ACTIVE); ut_ad(trx->state == TRX_STATE_NOT_STARTED || trx->state == TRX_STATE_ACTIVE); ut_ad(prebuilt->sql_stat_start || prebuilt->select_lock_type != LOCK_NONE || trx->read_view); trx_start_if_not_started(trx); if (trx->isolation_level <= TRX_ISO_READ_COMMITTED && prebuilt->select_lock_type != LOCK_NONE && trx->mysql_thd != NULL && thd_is_select(trx->mysql_thd)) { /* It is a plain locking SELECT and the isolation level is low: do not lock gaps */ set_also_gap_locks = FALSE; } /* Note that if the search mode was GE or G, then the cursor naturally moves upward (in fetch next) in alphabetical order, otherwise downward */ if (UNIV_UNLIKELY(direction == 0)) { if (mode == PAGE_CUR_GE || mode == PAGE_CUR_G) { moves_up = TRUE; } } else if (direction == ROW_SEL_NEXT) { moves_up = TRUE; } thr = que_fork_get_first_thr(prebuilt->sel_graph); que_thr_move_to_run_state_for_mysql(thr, trx); clust_index = dict_table_get_first_index(index->table); /* Do some start-of-statement preparations */ if (!prebuilt->sql_stat_start) { /* No need to set an intention lock or assign a read view */ if (UNIV_UNLIKELY (trx->read_view == NULL && prebuilt->select_lock_type == LOCK_NONE)) { fputs("InnoDB: Error: MySQL is trying to" " perform a consistent read\n" "InnoDB: but the read view is not assigned!\n", stderr); trx_print(stderr, trx, 600); fputc('\n', stderr); ut_error; } } else if (prebuilt->select_lock_type == LOCK_NONE) { /* This is a consistent read */ /* Assign a read view for the query */ trx_assign_read_view(trx); prebuilt->sql_stat_start = FALSE; } else { wait_table_again: err = lock_table(0, index->table, prebuilt->select_lock_type == LOCK_S ? LOCK_IS : LOCK_IX, thr); if (err != DB_SUCCESS) { table_lock_waited = TRUE; goto lock_table_wait; } prebuilt->sql_stat_start = FALSE; } /* Open or restore index cursor position */ if (UNIV_LIKELY(direction != 0)) { ibool need_to_process = sel_restore_position_for_mysql( &same_user_rec, BTR_SEARCH_LEAF, pcur, moves_up, &mtr); if (UNIV_UNLIKELY(need_to_process)) { if (UNIV_UNLIKELY(prebuilt->row_read_type == ROW_READ_DID_SEMI_CONSISTENT)) { /* We did a semi-consistent read, but the record was removed in the meantime. */ prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; } } else if (UNIV_LIKELY(prebuilt->row_read_type != ROW_READ_DID_SEMI_CONSISTENT)) { /* The cursor was positioned on the record that we returned previously. If we need to repeat a semi-consistent read as a pessimistic locking read, the record cannot be skipped. */ goto next_rec; } } else if (dtuple_get_n_fields(search_tuple) > 0) { btr_pcur_open_with_no_init(index, search_tuple, mode, BTR_SEARCH_LEAF, pcur, 0, &mtr); pcur->trx_if_known = trx; rec = btr_pcur_get_rec(pcur); if (!moves_up && !page_rec_is_supremum(rec) && set_also_gap_locks && !(srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) && prebuilt->select_lock_type != LOCK_NONE) { /* Try to place a gap lock on the next index record to prevent phantoms in ORDER BY ... DESC queries */ const rec_t* next_rec = page_rec_get_next_const(rec); offsets = rec_get_offsets(next_rec, index, offsets, ULINT_UNDEFINED, &heap); err = sel_set_rec_lock(btr_pcur_get_block(pcur), next_rec, index, offsets, prebuilt->select_lock_type, LOCK_GAP, thr); switch (err) { case DB_SUCCESS_LOCKED_REC: err = DB_SUCCESS; case DB_SUCCESS: break; default: goto lock_wait_or_error; } } } else if (mode == PAGE_CUR_G || mode == PAGE_CUR_L) { btr_pcur_open_at_index_side( mode == PAGE_CUR_G, index, BTR_SEARCH_LEAF, pcur, false, 0, &mtr); } rec_loop: DEBUG_SYNC_C("row_search_rec_loop"); if (trx_is_interrupted(trx)) { btr_pcur_store_position(pcur, &mtr); err = DB_INTERRUPTED; goto normal_return; } /*-------------------------------------------------------------*/ /* PHASE 4: Look for matching records in a loop */ rec = btr_pcur_get_rec(pcur); ut_ad(!!page_rec_is_comp(rec) == comp); #ifdef UNIV_SEARCH_DEBUG /* fputs("Using ", stderr); dict_index_name_print(stderr, trx, index); fprintf(stderr, " cnt %lu ; Page no %lu\n", cnt, page_get_page_no(page_align(rec))); rec_print(stderr, rec, index); printf("delete-mark: %lu\n", rec_get_deleted_flag(rec, page_rec_is_comp(rec))); */ #endif /* UNIV_SEARCH_DEBUG */ if (page_rec_is_infimum(rec)) { /* The infimum record on a page cannot be in the result set, and neither can a record lock be placed on it: we skip such a record. */ goto next_rec; } if (page_rec_is_supremum(rec)) { if (set_also_gap_locks && !(srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) && prebuilt->select_lock_type != LOCK_NONE) { /* Try to place a lock on the index record */ /* If innodb_locks_unsafe_for_binlog option is used or this session is using a READ COMMITTED isolation level we do not lock gaps. Supremum record is really a gap and therefore we do not set locks there. */ offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); err = sel_set_rec_lock(btr_pcur_get_block(pcur), rec, index, offsets, prebuilt->select_lock_type, LOCK_ORDINARY, thr); switch (err) { case DB_SUCCESS_LOCKED_REC: err = DB_SUCCESS; case DB_SUCCESS: break; default: goto lock_wait_or_error; } } /* A page supremum record cannot be in the result set: skip it now that we have placed a possible lock on it */ goto next_rec; } /*-------------------------------------------------------------*/ /* Do sanity checks in case our cursor has bumped into page corruption */ if (comp) { next_offs = rec_get_next_offs(rec, TRUE); if (UNIV_UNLIKELY(next_offs < PAGE_NEW_SUPREMUM)) { goto wrong_offs; } } else { next_offs = rec_get_next_offs(rec, FALSE); if (UNIV_UNLIKELY(next_offs < PAGE_OLD_SUPREMUM)) { goto wrong_offs; } } if (UNIV_UNLIKELY(next_offs >= UNIV_PAGE_SIZE - PAGE_DIR)) { wrong_offs: if (srv_force_recovery == 0 || moves_up == FALSE) { ut_print_timestamp(stderr); buf_page_print(page_align(rec), 0, BUF_PAGE_PRINT_NO_CRASH); fprintf(stderr, "\nInnoDB: rec address %p," " buf block fix count %lu\n", (void*) rec, (ulong) btr_cur_get_block(btr_pcur_get_btr_cur(pcur)) ->page.buf_fix_count); fprintf(stderr, "InnoDB: Index corruption: rec offs %lu" " next offs %lu, page no %lu,\n" "InnoDB: ", (ulong) page_offset(rec), (ulong) next_offs, (ulong) page_get_page_no(page_align(rec))); dict_index_name_print(stderr, trx, index); fputs(". Run CHECK TABLE. You may need to\n" "InnoDB: restore from a backup, or" " dump + drop + reimport the table.\n", stderr); ut_ad(0); err = DB_CORRUPTION; goto lock_wait_or_error; } else { /* The user may be dumping a corrupt table. Jump over the corruption to recover as much as possible. */ fprintf(stderr, "InnoDB: Index corruption: rec offs %lu" " next offs %lu, page no %lu,\n" "InnoDB: ", (ulong) page_offset(rec), (ulong) next_offs, (ulong) page_get_page_no(page_align(rec))); dict_index_name_print(stderr, trx, index); fputs(". We try to skip the rest of the page.\n", stderr); btr_pcur_move_to_last_on_page(pcur, &mtr); goto next_rec; } } /*-------------------------------------------------------------*/ /* Calculate the 'offsets' associated with 'rec' */ ut_ad(fil_page_get_type(btr_pcur_get_page(pcur)) == FIL_PAGE_INDEX); ut_ad(btr_page_get_index_id(btr_pcur_get_page(pcur)) == index->id); offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); if (UNIV_UNLIKELY(srv_force_recovery > 0)) { if (!rec_validate(rec, offsets) || !btr_index_rec_validate(rec, index, FALSE)) { fprintf(stderr, "InnoDB: Index corruption: rec offs %lu" " next offs %lu, page no %lu,\n" "InnoDB: ", (ulong) page_offset(rec), (ulong) next_offs, (ulong) page_get_page_no(page_align(rec))); dict_index_name_print(stderr, trx, index); fputs(". We try to skip the record.\n", stderr); goto next_rec; } } /* Note that we cannot trust the up_match value in the cursor at this place because we can arrive here after moving the cursor! Thus we have to recompare rec and search_tuple to determine if they match enough. */ if (match_mode == ROW_SEL_EXACT) { /* Test if the index record matches completely to search_tuple in prebuilt: if not, then we return with DB_RECORD_NOT_FOUND */ /* fputs("Comparing rec and search tuple\n", stderr); */ if (0 != cmp_dtuple_rec(search_tuple, rec, offsets)) { if (set_also_gap_locks && !(srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) && prebuilt->select_lock_type != LOCK_NONE) { /* Try to place a gap lock on the index record only if innodb_locks_unsafe_for_binlog option is not set or this session is not using a READ COMMITTED isolation level. */ err = sel_set_rec_lock( btr_pcur_get_block(pcur), rec, index, offsets, prebuilt->select_lock_type, LOCK_GAP, thr); switch (err) { case DB_SUCCESS_LOCKED_REC: case DB_SUCCESS: break; default: goto lock_wait_or_error; } } btr_pcur_store_position(pcur, &mtr); /* The found record was not a match, but may be used as NEXT record (index_next). Set the relative position to BTR_PCUR_BEFORE, to reflect that the position of the persistent cursor is before the found/stored row (pcur->old_rec). */ ut_ad(pcur->rel_pos == BTR_PCUR_ON); pcur->rel_pos = BTR_PCUR_BEFORE; err = DB_RECORD_NOT_FOUND; #if 0 ut_print_name(stderr, trx, FALSE, index->name); fputs(" record not found 3\n", stderr); #endif goto normal_return; } } else if (match_mode == ROW_SEL_EXACT_PREFIX) { if (!cmp_dtuple_is_prefix_of_rec(search_tuple, rec, offsets)) { if (set_also_gap_locks && !(srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) && prebuilt->select_lock_type != LOCK_NONE) { /* Try to place a gap lock on the index record only if innodb_locks_unsafe_for_binlog option is not set or this session is not using a READ COMMITTED isolation level. */ err = sel_set_rec_lock( btr_pcur_get_block(pcur), rec, index, offsets, prebuilt->select_lock_type, LOCK_GAP, thr); switch (err) { case DB_SUCCESS_LOCKED_REC: case DB_SUCCESS: break; default: goto lock_wait_or_error; } } btr_pcur_store_position(pcur, &mtr); /* The found record was not a match, but may be used as NEXT record (index_next). Set the relative position to BTR_PCUR_BEFORE, to reflect that the position of the persistent cursor is before the found/stored row (pcur->old_rec). */ ut_ad(pcur->rel_pos == BTR_PCUR_ON); pcur->rel_pos = BTR_PCUR_BEFORE; err = DB_RECORD_NOT_FOUND; #if 0 ut_print_name(stderr, trx, FALSE, index->name); fputs(" record not found 4\n", stderr); #endif goto normal_return; } } /* We are ready to look at a possible new index entry in the result set: the cursor is now placed on a user record */ if (prebuilt->select_lock_type != LOCK_NONE) { /* Try to place a lock on the index record; note that delete marked records are a special case in a unique search. If there is a non-delete marked record, then it is enough to lock its existence with LOCK_REC_NOT_GAP. */ /* If innodb_locks_unsafe_for_binlog option is used or this session is using a READ COMMITED isolation level we lock only the record, i.e., next-key locking is not used. */ ulint lock_type; if (!set_also_gap_locks || srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED || (unique_search && !rec_get_deleted_flag(rec, comp))) { goto no_gap_lock; } else { lock_type = LOCK_ORDINARY; } /* If we are doing a 'greater or equal than a primary key value' search from a clustered index, and we find a record that has that exact primary key value, then there is no need to lock the gap before the record, because no insert in the gap can be in our search range. That is, no phantom row can appear that way. An example: if col1 is the primary key, the search is WHERE col1 >= 100, and we find a record where col1 = 100, then no need to lock the gap before that record. */ if (index == clust_index && mode == PAGE_CUR_GE && direction == 0 && dtuple_get_n_fields_cmp(search_tuple) == dict_index_get_n_unique(index) && 0 == cmp_dtuple_rec(search_tuple, rec, offsets)) { no_gap_lock: lock_type = LOCK_REC_NOT_GAP; } err = sel_set_rec_lock(btr_pcur_get_block(pcur), rec, index, offsets, prebuilt->select_lock_type, lock_type, thr); switch (err) { const rec_t* old_vers; case DB_SUCCESS_LOCKED_REC: if (srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) { /* Note that a record of prebuilt->index was locked. */ prebuilt->new_rec_locks = 1; } err = DB_SUCCESS; case DB_SUCCESS: break; case DB_LOCK_WAIT: /* Never unlock rows that were part of a conflict. */ prebuilt->new_rec_locks = 0; if (UNIV_LIKELY(prebuilt->row_read_type != ROW_READ_TRY_SEMI_CONSISTENT) || unique_search || index != clust_index) { goto lock_wait_or_error; } /* The following call returns 'offsets' associated with 'old_vers' */ row_sel_build_committed_vers_for_mysql( clust_index, prebuilt, rec, &offsets, &heap, &old_vers, &mtr); /* Check whether it was a deadlock or not, if not a deadlock and the transaction had to wait then release the lock it is waiting on. */ err = lock_trx_handle_wait(trx); switch (err) { case DB_SUCCESS: /* The lock was granted while we were searching for the last committed version. Do a normal locking read. */ offsets = rec_get_offsets( rec, index, offsets, ULINT_UNDEFINED, &heap); goto locks_ok; case DB_DEADLOCK: goto lock_wait_or_error; case DB_LOCK_WAIT: err = DB_SUCCESS; break; default: ut_error; } if (old_vers == NULL) { /* The row was not yet committed */ goto next_rec; } did_semi_consistent_read = TRUE; rec = old_vers; break; default: goto lock_wait_or_error; } } else { /* This is a non-locking consistent read: if necessary, fetch a previous version of the record */ if (trx->isolation_level == TRX_ISO_READ_UNCOMMITTED) { /* Do nothing: we let a non-locking SELECT read the latest version of the record */ } else if (index == clust_index) { /* Fetch a previous version of the row if the current one is not visible in the snapshot; if we have a very high force recovery level set, we try to avoid crashes by skipping this lookup */ if (UNIV_LIKELY(srv_force_recovery < 5) && !lock_clust_rec_cons_read_sees( rec, index, offsets, trx->read_view)) { rec_t* old_vers; /* The following call returns 'offsets' associated with 'old_vers' */ err = row_sel_build_prev_vers_for_mysql( trx->read_view, clust_index, prebuilt, rec, &offsets, &heap, &old_vers, &mtr); if (err != DB_SUCCESS) { goto lock_wait_or_error; } if (old_vers == NULL) { /* The row did not exist yet in the read view */ goto next_rec; } rec = old_vers; } } else { /* We are looking into a non-clustered index, and to get the right version of the record we have to look also into the clustered index: this is necessary, because we can only get the undo information via the clustered index record. */ ut_ad(!dict_index_is_clust(index)); if (!lock_sec_rec_cons_read_sees( rec, trx->read_view)) { /* We should look at the clustered index. However, as this is a non-locking read, we can skip the clustered index lookup if the condition does not match the secondary index entry. */ switch (row_search_idx_cond_check( buf, prebuilt, rec, offsets)) { case ICP_NO_MATCH: goto next_rec; case ICP_OUT_OF_RANGE: case ICP_ABORTED_BY_USER: case ICP_ERROR: err = DB_RECORD_NOT_FOUND; goto idx_cond_failed; case ICP_MATCH: goto requires_clust_rec; } ut_error; } } } locks_ok: /* NOTE that at this point rec can be an old version of a clustered index record built for a consistent read. We cannot assume after this point that rec is on a buffer pool page. Functions like page_rec_is_comp() cannot be used! */ if (rec_get_deleted_flag(rec, comp)) { /* The record is delete-marked: we can skip it */ if ((srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) && prebuilt->select_lock_type != LOCK_NONE && !did_semi_consistent_read) { /* No need to keep a lock on a delete-marked record if we do not want to use next-key locking. */ row_unlock_for_mysql(prebuilt, TRUE); } /* This is an optimization to skip setting the next key lock on the record that follows this delete-marked record. This optimization works because of the unique search criteria which precludes the presence of a range lock between this delete marked record and the record following it. For now this is applicable only to clustered indexes while doing a unique search except for HANDLER queries because HANDLER allows NEXT and PREV even in unique search on clustered index. There is scope for further optimization applicable to unique secondary indexes. Current behaviour is to widen the scope of a lock on an already delete marked record if the same record is deleted twice by the same transaction */ if (index == clust_index && unique_search && !prebuilt->used_in_HANDLER) { err = DB_RECORD_NOT_FOUND; goto normal_return; } goto next_rec; } /* Check if the record matches the index condition. */ switch (row_search_idx_cond_check(buf, prebuilt, rec, offsets)) { case ICP_NO_MATCH: if (did_semi_consistent_read) { row_unlock_for_mysql(prebuilt, TRUE); } goto next_rec; case ICP_OUT_OF_RANGE: case ICP_ABORTED_BY_USER: case ICP_ERROR: err = DB_RECORD_NOT_FOUND; goto idx_cond_failed; case ICP_MATCH: break; } /* Get the clustered index record if needed, if we did not do the search using the clustered index. */ if (index != clust_index && prebuilt->need_to_access_clustered) { requires_clust_rec: ut_ad(index != clust_index); /* We use a 'goto' to the preceding label if a consistent read of a secondary index record requires us to look up old versions of the associated clustered index record. */ ut_ad(rec_offs_validate(rec, index, offsets)); /* It was a non-clustered index and we must fetch also the clustered index record */ mtr_has_extra_clust_latch = TRUE; /* The following call returns 'offsets' associated with 'clust_rec'. Note that 'clust_rec' can be an old version built for a consistent read. */ err = row_sel_get_clust_rec_for_mysql(prebuilt, index, rec, thr, &clust_rec, &offsets, &heap, &mtr); switch (err) { case DB_SUCCESS: if (clust_rec == NULL) { /* The record did not exist in the read view */ ut_ad(prebuilt->select_lock_type == LOCK_NONE); goto next_rec; } break; case DB_SUCCESS_LOCKED_REC: ut_a(clust_rec != NULL); if (srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) { /* Note that the clustered index record was locked. */ prebuilt->new_rec_locks = 2; } err = DB_SUCCESS; break; default: goto lock_wait_or_error; } if (rec_get_deleted_flag(clust_rec, comp)) { /* The record is delete marked: we can skip it */ if ((srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) && prebuilt->select_lock_type != LOCK_NONE) { /* No need to keep a lock on a delete-marked record if we do not want to use next-key locking. */ row_unlock_for_mysql(prebuilt, TRUE); } goto next_rec; } result_rec = clust_rec; ut_ad(rec_offs_validate(result_rec, clust_index, offsets)); if (prebuilt->idx_cond) { /* Convert the record to MySQL format. We were unable to do this in row_search_idx_cond_check(), because the condition is on the secondary index and the requested column is in the clustered index. We convert all fields, including those that may have been used in ICP, because the secondary index may contain a column prefix rather than the full column. Also, as noted in Bug #56680, the column in the secondary index may be in the wrong case, and the authoritative case is in result_rec, the appropriate version of the clustered index record. */ if (!row_sel_store_mysql_rec( buf, prebuilt, result_rec, TRUE, clust_index, offsets)) { goto next_rec; } } } else { result_rec = rec; } /* We found a qualifying record 'result_rec'. At this point, 'offsets' are associated with 'result_rec'. */ ut_ad(rec_offs_validate(result_rec, result_rec != rec ? clust_index : index, offsets)); ut_ad(!rec_get_deleted_flag(result_rec, comp)); /* At this point, the clustered index record is protected by a page latch that was acquired when pcur was positioned. The latch will not be released until mtr_commit(&mtr). */ if ((match_mode == ROW_SEL_EXACT || prebuilt->n_rows_fetched >= MYSQL_FETCH_CACHE_THRESHOLD) && prebuilt->select_lock_type == LOCK_NONE && !prebuilt->templ_contains_blob && !prebuilt->clust_index_was_generated && !prebuilt->used_in_HANDLER && !prebuilt->innodb_api && prebuilt->template_type != ROW_MYSQL_DUMMY_TEMPLATE && !prebuilt->in_fts_query) { /* Inside an update, for example, we do not cache rows, since we may use the cursor position to do the actual update, that is why we require ...lock_type == LOCK_NONE. Since we keep space in prebuilt only for the BLOBs of a single row, we cannot cache rows in the case there are BLOBs in the fields to be fetched. In HANDLER we do not cache rows because there the cursor is a scrollable cursor. */ ut_a(prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE); /* We only convert from InnoDB row format to MySQL row format when ICP is disabled. */ if (!prebuilt->idx_cond) { /* We use next_buf to track the allocation of buffers where we store and enqueue the buffers for our pre-fetch optimisation. If next_buf == 0 then we store the converted record directly into the MySQL record buffer (buf). If it is != 0 then we allocate a pre-fetch buffer and store the converted record there. If the conversion fails and the MySQL record buffer was not written to then we reset next_buf so that we can re-use the MySQL record buffer in the next iteration. */ next_buf = next_buf ? row_sel_fetch_last_buf(prebuilt) : buf; if (!row_sel_store_mysql_rec( next_buf, prebuilt, result_rec, result_rec != rec, result_rec != rec ? clust_index : index, offsets)) { if (next_buf == buf) { ut_a(prebuilt->n_fetch_cached == 0); next_buf = 0; } /* Only fresh inserts may contain incomplete externally stored columns. Pretend that such records do not exist. Such records may only be accessed at the READ UNCOMMITTED isolation level or when rolling back a recovered transaction. Rollback happens at a lower level, not here. */ goto next_rec; } if (next_buf != buf) { row_sel_enqueue_cache_row_for_mysql( next_buf, prebuilt); } } else { row_sel_enqueue_cache_row_for_mysql(buf, prebuilt); } if (prebuilt->n_fetch_cached < MYSQL_FETCH_CACHE_SIZE) { goto next_rec; } } else { if (UNIV_UNLIKELY (prebuilt->template_type == ROW_MYSQL_DUMMY_TEMPLATE)) { /* CHECK TABLE: fetch the row */ if (result_rec != rec && !prebuilt->need_to_access_clustered) { /* We used 'offsets' for the clust rec, recalculate them for 'rec' */ offsets = rec_get_offsets(rec, index, offsets, ULINT_UNDEFINED, &heap); result_rec = rec; } memcpy(buf + 4, result_rec - rec_offs_extra_size(offsets), rec_offs_size(offsets)); mach_write_to_4(buf, rec_offs_extra_size(offsets) + 4); } else if (!prebuilt->idx_cond && !prebuilt->innodb_api) { /* The record was not yet converted to MySQL format. */ if (!row_sel_store_mysql_rec( buf, prebuilt, result_rec, result_rec != rec, result_rec != rec ? clust_index : index, offsets)) { /* Only fresh inserts may contain incomplete externally stored columns. Pretend that such records do not exist. Such records may only be accessed at the READ UNCOMMITTED isolation level or when rolling back a recovered transaction. Rollback happens at a lower level, not here. */ goto next_rec; } } if (prebuilt->clust_index_was_generated) { row_sel_store_row_id_to_prebuilt( prebuilt, result_rec, result_rec == rec ? index : clust_index, offsets); } } /* From this point on, 'offsets' are invalid. */ /* We have an optimization to save CPU time: if this is a consistent read on a unique condition on the clustered index, then we do not store the pcur position, because any fetch next or prev will anyway return 'end of file'. Exceptions are locking reads and the MySQL HANDLER command where the user can move the cursor with PREV or NEXT even after a unique search. */ err = DB_SUCCESS; idx_cond_failed: if (!unique_search || !dict_index_is_clust(index) || direction != 0 || prebuilt->select_lock_type != LOCK_NONE || prebuilt->used_in_HANDLER || prebuilt->innodb_api) { /* Inside an update always store the cursor position */ btr_pcur_store_position(pcur, &mtr); if (prebuilt->innodb_api) { prebuilt->innodb_api_rec = result_rec; } } goto normal_return; next_rec: /* Reset the old and new "did semi-consistent read" flags. */ if (UNIV_UNLIKELY(prebuilt->row_read_type == ROW_READ_DID_SEMI_CONSISTENT)) { prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; } did_semi_consistent_read = FALSE; prebuilt->new_rec_locks = 0; /*-------------------------------------------------------------*/ /* PHASE 5: Move the cursor to the next index record */ /* NOTE: For moves_up==FALSE, the mini-transaction will be committed and restarted every time when switching b-tree pages. For moves_up==TRUE in index condition pushdown, we can scan an entire secondary index tree within a single mini-transaction. As long as the prebuilt->idx_cond does not match, we do not need to consult the clustered index or return records to MySQL, and thus we can avoid repositioning the cursor. What prevents us from buffer-fixing all leaf pages within the mini-transaction is the btr_leaf_page_release() call in btr_pcur_move_to_next_page(). Only the leaf page where the cursor is positioned will remain buffer-fixed. */ if (UNIV_UNLIKELY(mtr_has_extra_clust_latch)) { /* We must commit mtr if we are moving to the next non-clustered index record, because we could break the latching order if we would access a different clustered index page right away without releasing the previous. */ btr_pcur_store_position(pcur, &mtr); mtr_commit(&mtr); mtr_has_extra_clust_latch = FALSE; mtr_start(&mtr); if (sel_restore_position_for_mysql(&same_user_rec, BTR_SEARCH_LEAF, pcur, moves_up, &mtr)) { #ifdef UNIV_SEARCH_DEBUG cnt++; #endif /* UNIV_SEARCH_DEBUG */ goto rec_loop; } } if (moves_up) { if (UNIV_UNLIKELY(!btr_pcur_move_to_next(pcur, &mtr))) { not_moved: btr_pcur_store_position(pcur, &mtr); if (match_mode != 0) { err = DB_RECORD_NOT_FOUND; } else { err = DB_END_OF_INDEX; } goto normal_return; } } else { if (UNIV_UNLIKELY(!btr_pcur_move_to_prev(pcur, &mtr))) { goto not_moved; } } #ifdef UNIV_SEARCH_DEBUG cnt++; #endif /* UNIV_SEARCH_DEBUG */ goto rec_loop; lock_wait_or_error: /* Reset the old and new "did semi-consistent read" flags. */ if (UNIV_UNLIKELY(prebuilt->row_read_type == ROW_READ_DID_SEMI_CONSISTENT)) { prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; } did_semi_consistent_read = FALSE; /*-------------------------------------------------------------*/ btr_pcur_store_position(pcur, &mtr); lock_table_wait: mtr_commit(&mtr); mtr_has_extra_clust_latch = FALSE; trx->error_state = err; /* The following is a patch for MySQL */ que_thr_stop_for_mysql(thr); thr->lock_state = QUE_THR_LOCK_ROW; if (row_mysql_handle_errors(&err, trx, thr, NULL)) { /* It was a lock wait, and it ended */ thr->lock_state = QUE_THR_LOCK_NOLOCK; mtr_start(&mtr); /* Table lock waited, go try to obtain table lock again */ if (table_lock_waited) { table_lock_waited = FALSE; goto wait_table_again; } sel_restore_position_for_mysql(&same_user_rec, BTR_SEARCH_LEAF, pcur, moves_up, &mtr); if ((srv_locks_unsafe_for_binlog || trx->isolation_level <= TRX_ISO_READ_COMMITTED) && !same_user_rec) { /* Since we were not able to restore the cursor on the same user record, we cannot use row_unlock_for_mysql() to unlock any records, and we must thus reset the new rec lock info. Since in lock0lock.cc we have blocked the inheriting of gap X-locks, we actually do not have any new record locks set in this case. Note that if we were able to restore on the 'same' user record, it is still possible that we were actually waiting on a delete-marked record, and meanwhile it was removed by purge and inserted again by some other user. But that is no problem, because in rec_loop we will again try to set a lock, and new_rec_lock_info in trx will be right at the end. */ prebuilt->new_rec_locks = 0; } mode = pcur->search_mode; goto rec_loop; } thr->lock_state = QUE_THR_LOCK_NOLOCK; #ifdef UNIV_SEARCH_DEBUG /* fputs("Using ", stderr); dict_index_name_print(stderr, index); fprintf(stderr, " cnt %lu ret value %lu err\n", cnt, err); */ #endif /* UNIV_SEARCH_DEBUG */ goto func_exit; normal_return: /*-------------------------------------------------------------*/ que_thr_stop_for_mysql_no_error(thr, trx); mtr_commit(&mtr); if (prebuilt->idx_cond != 0) { /* When ICP is active we don't write to the MySQL buffer directly, only to buffers that are enqueued in the pre-fetch queue. We need to dequeue the first buffer and copy the contents to the record buffer that was passed in by MySQL. */ if (prebuilt->n_fetch_cached > 0) { row_sel_dequeue_cached_row_for_mysql(buf, prebuilt); err = DB_SUCCESS; } } else if (next_buf != 0) { /* We may or may not have enqueued some buffers to the pre-fetch queue, but we definitely wrote to the record buffer passed to use by MySQL. */ DEBUG_SYNC_C("row_search_cached_row"); err = DB_SUCCESS; } #ifdef UNIV_SEARCH_DEBUG /* fputs("Using ", stderr); dict_index_name_print(stderr, index); fprintf(stderr, " cnt %lu ret value %lu err\n", cnt, err); */ #endif /* UNIV_SEARCH_DEBUG */ func_exit: trx->op_info = ""; if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } /* Set or reset the "did semi-consistent read" flag on return. The flag did_semi_consistent_read is set if and only if the record being returned was fetched with a semi-consistent read. */ ut_ad(prebuilt->row_read_type != ROW_READ_WITH_LOCKS || !did_semi_consistent_read); if (UNIV_UNLIKELY(prebuilt->row_read_type != ROW_READ_WITH_LOCKS)) { if (UNIV_UNLIKELY(did_semi_consistent_read)) { prebuilt->row_read_type = ROW_READ_DID_SEMI_CONSISTENT; } else { prebuilt->row_read_type = ROW_READ_TRY_SEMI_CONSISTENT; } } #ifdef UNIV_SYNC_DEBUG ut_ad(!sync_thread_levels_nonempty_trx(trx->has_search_latch)); #endif /* UNIV_SYNC_DEBUG */ DEBUG_SYNC_C("innodb_row_search_for_mysql_exit"); return(err); } /*******************************************************************//** Checks if MySQL at the moment is allowed for this table to retrieve a consistent read result, or store it to the query cache. @return TRUE if storing or retrieving from the query cache is permitted */ UNIV_INTERN ibool row_search_check_if_query_cache_permitted( /*======================================*/ trx_t* trx, /*!< in: transaction object */ const char* norm_name) /*!< in: concatenation of database name, '/' char, table name */ { dict_table_t* table; ibool ret = FALSE; /* Disable query cache altogether for all tables if recovered XA transactions in prepared state exist. This is because we do not restore the table locks for those transactions and we may wrongly set ret=TRUE above if "lock_table_get_n_locks(table) == 0". See "Bug#14658648 XA ROLLBACK (DISTRIBUTED DATABASE) NOT WORKING WITH QUERY CACHE ENABLED". Read trx_sys->n_prepared_recovered_trx without mutex protection, not possible to end up with a torn read since n_prepared_recovered_trx is word size. */ if (trx_sys->n_prepared_recovered_trx > 0) { return(FALSE); } table = dict_table_open_on_name(norm_name, FALSE, FALSE, DICT_ERR_IGNORE_NONE); if (table == NULL) { return(FALSE); } /* Start the transaction if it is not started yet */ trx_start_if_not_started(trx); /* If there are locks on the table or some trx has invalidated the cache up to our trx id, then ret = FALSE. We do not check what type locks there are on the table, though only IX type locks actually would require ret = FALSE. */ if (lock_table_get_n_locks(table) == 0 && trx->id >= table->query_cache_inv_trx_id) { ret = TRUE; /* If the isolation level is high, assign a read view for the transaction if it does not yet have one */ if (trx->isolation_level >= TRX_ISO_REPEATABLE_READ && !trx->read_view) { trx->read_view = read_view_open_now( trx->id, trx->global_read_view_heap); trx->global_read_view = trx->read_view; } } dict_table_close(table, FALSE, FALSE); return(ret); } /*******************************************************************//** Read the AUTOINC column from the current row. If the value is less than 0 and the type is not unsigned then we reset the value to 0. @return value read from the column */ static ib_uint64_t row_search_autoinc_read_column( /*===========================*/ dict_index_t* index, /*!< in: index to read from */ const rec_t* rec, /*!< in: current rec */ ulint col_no, /*!< in: column number */ ulint mtype, /*!< in: column main type */ ibool unsigned_type) /*!< in: signed or unsigned flag */ { ulint len; const byte* data; ib_uint64_t value; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); offsets = rec_get_offsets(rec, index, offsets, col_no + 1, &heap); if (rec_offs_nth_sql_null(offsets, col_no)) { /* There is no non-NULL value in the auto-increment column. */ value = 0; goto func_exit; } data = rec_get_nth_field(rec, offsets, col_no, &len); switch (mtype) { case DATA_INT: ut_a(len <= sizeof value); value = mach_read_int_type(data, len, unsigned_type); break; case DATA_FLOAT: ut_a(len == sizeof(float)); value = (ib_uint64_t) mach_float_read(data); break; case DATA_DOUBLE: ut_a(len == sizeof(double)); value = (ib_uint64_t) mach_double_read(data); break; default: ut_error; } if (!unsigned_type && (ib_int64_t) value < 0) { value = 0; } func_exit: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(value); } /** Get the maximum and non-delete-marked record in an index. @param[in] index index tree @param[in,out] mtr mini-transaction (may be committed and restarted) @return maximum record, page s-latched in mtr @retval NULL if there are no records, or if all of them are delete-marked */ static const rec_t* row_search_get_max_rec( dict_index_t* index, mtr_t* mtr) { btr_pcur_t pcur; const rec_t* rec; /* Open at the high/right end (false), and init cursor */ btr_pcur_open_at_index_side( false, index, BTR_SEARCH_LEAF, &pcur, true, 0, mtr); do { const page_t* page; page = btr_pcur_get_page(&pcur); rec = page_find_rec_max_not_deleted(page); if (page_rec_is_user_rec(rec)) { break; } else { rec = NULL; } btr_pcur_move_before_first_on_page(&pcur); } while (btr_pcur_move_to_prev(&pcur, mtr)); btr_pcur_close(&pcur); return(rec); } /*******************************************************************//** Read the max AUTOINC value from an index. @return DB_SUCCESS if all OK else error code, DB_RECORD_NOT_FOUND if column name can't be found in index */ UNIV_INTERN dberr_t row_search_max_autoinc( /*===================*/ dict_index_t* index, /*!< in: index to search */ const char* col_name, /*!< in: name of autoinc column */ ib_uint64_t* value) /*!< out: AUTOINC value read */ { dict_field_t* dfield = dict_index_get_nth_field(index, 0); dberr_t error = DB_SUCCESS; *value = 0; if (strcmp(col_name, dfield->name) != 0) { error = DB_RECORD_NOT_FOUND; } else { mtr_t mtr; const rec_t* rec; mtr_start(&mtr); rec = row_search_get_max_rec(index, &mtr); if (rec != NULL) { ibool unsigned_type = ( dfield->col->prtype & DATA_UNSIGNED); *value = row_search_autoinc_read_column( index, rec, 0, dfield->col->mtype, unsigned_type); } mtr_commit(&mtr); } return(error); }