/***************************************************************************** Copyright (c) 2014, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2017, 2020, MariaDB Corporation. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file sync/sync0debug.cc Debug checks for latches. Created 2012-08-21 Sunny Bains *******************************************************/ #include "sync0sync.h" #include "sync0debug.h" #include "srv0start.h" #include "fil0fil.h" #include #include #include #include #ifdef UNIV_DEBUG my_bool srv_sync_debug; /** The global mutex which protects debug info lists of all rw-locks. To modify the debug info list of an rw-lock, this mutex has to be acquired in addition to the mutex protecting the lock. */ static SysMutex rw_lock_debug_mutex; /** The latch held by a thread */ struct Latched { /** Constructor */ Latched() : m_latch(), m_level(SYNC_UNKNOWN) { } /** Constructor @param[in] latch Latch instance @param[in] level Level of latch held */ Latched(const latch_t* latch, latch_level_t level) : m_latch(latch), m_level(level) { /* No op */ } /** @return the latch level */ latch_level_t get_level() const { return(m_level); } /** Check if the rhs latch and level match @param[in] rhs instance to compare with @return true on match */ bool operator==(const Latched& rhs) const { return(m_latch == rhs.m_latch && m_level == rhs.m_level); } /** The latch instance */ const latch_t* m_latch; /** The latch level. For buffer blocks we can pass a separate latch level to check against, see buf_block_dbg_add_level() */ latch_level_t m_level; }; /** Thread specific latches. This is ordered on level in descending order. */ typedef std::vector > Latches; /** The deadlock detector. */ struct LatchDebug { /** Debug mutex for control structures, should not be tracked by this module. */ typedef OSMutex Mutex; /** Comparator for the ThreadMap. */ struct os_thread_id_less : public std::binary_function< os_thread_id_t, os_thread_id_t, bool> { /** @return true if lhs < rhs */ bool operator()( const os_thread_id_t& lhs, const os_thread_id_t& rhs) const UNIV_NOTHROW { return(ulint(lhs) < ulint(rhs)); } }; /** For tracking a thread's latches. */ typedef std::map< os_thread_id_t, Latches*, os_thread_id_less, ut_allocator > > ThreadMap; /** Constructor */ LatchDebug() UNIV_NOTHROW; /** Destructor */ ~LatchDebug() UNIV_NOTHROW { m_mutex.destroy(); } /** Create a new instance if one doesn't exist else return the existing one. @param[in] add add an empty entry if one is not found (default no) @return pointer to a thread's acquired latches. */ Latches* thread_latches(bool add = false) UNIV_NOTHROW; /** Check that all the latches already owned by a thread have a lower level than limit. @param[in] latches the thread's existing (acquired) latches @param[in] limit to check against @return latched if there is one with a level <= limit . */ const Latched* less( const Latches* latches, latch_level_t limit) const UNIV_NOTHROW; /** Checks if the level value exists in the thread's acquired latches. @param[in] latches the thread's existing (acquired) latches @param[in] level to lookup @return latch if found or 0 */ const latch_t* find( const Latches* Latches, latch_level_t level) const UNIV_NOTHROW; /** Checks if the level value exists in the thread's acquired latches. @param[in] level to lookup @return latch if found or 0 */ const latch_t* find(latch_level_t level) UNIV_NOTHROW; /** Report error and abort. @param[in] latches thread's existing latches @param[in] latched The existing latch causing the invariant to fail @param[in] level The new level request that breaks the order */ void crash( const Latches* latches, const Latched* latched, latch_level_t level) const UNIV_NOTHROW; /** Do a basic ordering check. @param[in] latches thread's existing latches @param[in] requested_level Level requested by latch @param[in] level declared ulint so that we can do level - 1. The level of the latch that the thread is trying to acquire @return true if passes, else crash with error message. */ inline bool basic_check( const Latches* latches, latch_level_t requested_level, lint level) const UNIV_NOTHROW; /** Adds a latch and its level in the thread level array. Allocates the memory for the array if called for the first time for this OS thread. Makes the checks against other latch levels stored in the array for this thread. @param[in] latch latch that the thread wants to acqire. @param[in] level latch level to check against */ void lock_validate( const latch_t* latch, latch_level_t level) UNIV_NOTHROW { /* Ignore diagnostic latches, starting with '.' */ if (*latch->get_name() != '.' && latch->get_level() != SYNC_LEVEL_VARYING) { ut_ad(level != SYNC_LEVEL_VARYING); Latches* latches = check_order(latch, level); ut_a(latches->empty() || level == SYNC_LEVEL_VARYING || level == SYNC_NO_ORDER_CHECK || latches->back().get_level() == SYNC_NO_ORDER_CHECK || latches->back().m_latch->get_level() == SYNC_LEVEL_VARYING || latches->back().get_level() >= level); } } /** Adds a latch and its level in the thread level array. Allocates the memory for the array if called for the first time for this OS thread. Makes the checks against other latch levels stored in the array for this thread. @param[in] latch latch that the thread wants to acqire. @param[in] level latch level to check against */ void lock_granted( const latch_t* latch, latch_level_t level) UNIV_NOTHROW { /* Ignore diagnostic latches, starting with '.' */ if (*latch->get_name() != '.' && latch->get_level() != SYNC_LEVEL_VARYING) { Latches* latches = thread_latches(true); latches->push_back(Latched(latch, level)); } } /** For recursive X rw-locks. @param[in] latch The RW-Lock to relock */ void relock(const latch_t* latch) UNIV_NOTHROW { ut_a(latch->m_rw_lock); latch_level_t level = latch->get_level(); /* Ignore diagnostic latches, starting with '.' */ if (*latch->get_name() != '.' && latch->get_level() != SYNC_LEVEL_VARYING) { Latches* latches = thread_latches(true); Latches::iterator it = std::find( latches->begin(), latches->end(), Latched(latch, level)); ut_a(latches->empty() || level == SYNC_LEVEL_VARYING || level == SYNC_NO_ORDER_CHECK || latches->back().m_latch->get_level() == SYNC_LEVEL_VARYING || latches->back().m_latch->get_level() == SYNC_NO_ORDER_CHECK || latches->back().get_level() >= level || it != latches->end()); if (it == latches->end()) { latches->push_back(Latched(latch, level)); } else { latches->insert(it, Latched(latch, level)); } } } /** Iterate over a thread's latches. @param[in] functor The callback @return true if the functor returns true. */ bool for_each(const sync_check_functor_t& functor) UNIV_NOTHROW { if (const Latches* latches = thread_latches()) { Latches::const_iterator end = latches->end(); for (Latches::const_iterator it = latches->begin(); it != end; ++it) { if (functor(it->m_level)) { return(true); } } } return(false); } /** Removes a latch from the thread level array if it is found there. @param[in] latch The latch that was released @return true if found in the array; it is not an error if the latch is not found, as we presently are not able to determine the level for every latch reservation the program does */ void unlock(const latch_t* latch) UNIV_NOTHROW; /** Get the level name @param[in] level The level ID to lookup @return level name */ const std::string& get_level_name(latch_level_t level) const UNIV_NOTHROW { Levels::const_iterator it = m_levels.find(level); ut_ad(it != m_levels.end()); return(it->second); } /** Initialise the debug data structures */ static void init() UNIV_NOTHROW; /** Shutdown the latch debug checking */ static void shutdown() UNIV_NOTHROW; /** @return the singleton instance */ static LatchDebug* instance() UNIV_NOTHROW { return(s_instance); } /** Create the singleton instance */ static void create_instance() UNIV_NOTHROW { ut_ad(s_instance == NULL); s_instance = UT_NEW_NOKEY(LatchDebug()); } private: /** Disable copying */ LatchDebug(const LatchDebug&); LatchDebug& operator=(const LatchDebug&); /** Adds a latch and its level in the thread level array. Allocates the memory for the array if called first time for this OS thread. Makes the checks against other latch levels stored in the array for this thread. @param[in] latch pointer to a mutex or an rw-lock @param[in] level level in the latching order @return the thread's latches */ Latches* check_order( const latch_t* latch, latch_level_t level) UNIV_NOTHROW; /** Print the latches acquired by a thread @param[in] latches Latches acquired by a thread */ void print_latches(const Latches* latches) const UNIV_NOTHROW; /** Special handling for the RTR mutexes. We need to add proper levels for them if possible. @param[in] latch Latch to check @return true if it is a an _RTR_ mutex */ bool is_rtr_mutex(const latch_t* latch) const UNIV_NOTHROW { return(latch->get_id() == LATCH_ID_RTR_ACTIVE_MUTEX || latch->get_id() == LATCH_ID_RTR_PATH_MUTEX || latch->get_id() == LATCH_ID_RTR_MATCH_MUTEX); } private: /** Comparator for the Levels . */ struct latch_level_less : public std::binary_function< latch_level_t, latch_level_t, bool> { /** @return true if lhs < rhs */ bool operator()( const latch_level_t& lhs, const latch_level_t& rhs) const UNIV_NOTHROW { return(lhs < rhs); } }; typedef std::map< latch_level_t, std::string, latch_level_less, ut_allocator > > Levels; /** Mutex protecting the deadlock detector data structures. */ Mutex m_mutex; /** Thread specific data. Protected by m_mutex. */ ThreadMap m_threads; /** Mapping from latche level to its string representation. */ Levels m_levels; /** The singleton instance. Must be created in single threaded mode. */ static LatchDebug* s_instance; public: /** For checking whether this module has been initialised or not. */ static bool s_initialized; }; /** The latch order checking infra-structure */ LatchDebug* LatchDebug::s_instance = NULL; bool LatchDebug::s_initialized = false; #define LEVEL_MAP_INSERT(T) \ do { \ std::pair result = \ m_levels.insert(Levels::value_type(T, #T)); \ ut_ad(result.second); \ } while(0) /** Setup the mapping from level ID to level name mapping */ LatchDebug::LatchDebug() { m_mutex.init(); LEVEL_MAP_INSERT(SYNC_UNKNOWN); LEVEL_MAP_INSERT(SYNC_MUTEX); LEVEL_MAP_INSERT(RW_LOCK_SX); LEVEL_MAP_INSERT(RW_LOCK_X_WAIT); LEVEL_MAP_INSERT(RW_LOCK_S); LEVEL_MAP_INSERT(RW_LOCK_X); LEVEL_MAP_INSERT(RW_LOCK_NOT_LOCKED); LEVEL_MAP_INSERT(SYNC_ANY_LATCH); LEVEL_MAP_INSERT(SYNC_POOL); LEVEL_MAP_INSERT(SYNC_POOL_MANAGER); LEVEL_MAP_INSERT(SYNC_WORK_QUEUE); LEVEL_MAP_INSERT(SYNC_FTS_TOKENIZE); LEVEL_MAP_INSERT(SYNC_FTS_OPTIMIZE); LEVEL_MAP_INSERT(SYNC_RECV); LEVEL_MAP_INSERT(SYNC_PURGE_QUEUE); LEVEL_MAP_INSERT(SYNC_TRX_SYS_HEADER); LEVEL_MAP_INSERT(SYNC_TRX); LEVEL_MAP_INSERT(SYNC_RW_TRX_HASH_ELEMENT); LEVEL_MAP_INSERT(SYNC_READ_VIEW); LEVEL_MAP_INSERT(SYNC_TRX_SYS); LEVEL_MAP_INSERT(SYNC_LOCK_SYS); LEVEL_MAP_INSERT(SYNC_LOCK_WAIT_SYS); LEVEL_MAP_INSERT(SYNC_INDEX_ONLINE_LOG); LEVEL_MAP_INSERT(SYNC_IBUF_BITMAP); LEVEL_MAP_INSERT(SYNC_IBUF_BITMAP_MUTEX); LEVEL_MAP_INSERT(SYNC_IBUF_TREE_NODE); LEVEL_MAP_INSERT(SYNC_IBUF_TREE_NODE_NEW); LEVEL_MAP_INSERT(SYNC_IBUF_INDEX_TREE); LEVEL_MAP_INSERT(SYNC_IBUF_MUTEX); LEVEL_MAP_INSERT(SYNC_FSP_PAGE); LEVEL_MAP_INSERT(SYNC_EXTERN_STORAGE); LEVEL_MAP_INSERT(SYNC_TRX_UNDO_PAGE); LEVEL_MAP_INSERT(SYNC_RSEG_HEADER); LEVEL_MAP_INSERT(SYNC_RSEG_HEADER_NEW); LEVEL_MAP_INSERT(SYNC_NOREDO_RSEG); LEVEL_MAP_INSERT(SYNC_REDO_RSEG); LEVEL_MAP_INSERT(SYNC_TREE_NODE); LEVEL_MAP_INSERT(SYNC_TREE_NODE_FROM_HASH); LEVEL_MAP_INSERT(SYNC_TREE_NODE_NEW); LEVEL_MAP_INSERT(SYNC_INDEX_TREE); LEVEL_MAP_INSERT(SYNC_IBUF_PESS_INSERT_MUTEX); LEVEL_MAP_INSERT(SYNC_IBUF_HEADER); LEVEL_MAP_INSERT(SYNC_DICT_HEADER); LEVEL_MAP_INSERT(SYNC_STATS_AUTO_RECALC); LEVEL_MAP_INSERT(SYNC_DICT); LEVEL_MAP_INSERT(SYNC_LEVEL_VARYING); LEVEL_MAP_INSERT(SYNC_NO_ORDER_CHECK); /* Enum count starts from 0 */ ut_ad(m_levels.size() == SYNC_LEVEL_MAX + 1); } /** Print the latches acquired by a thread @param[in] latches Latches acquired by a thread */ void LatchDebug::print_latches(const Latches* latches) const UNIV_NOTHROW { ib::error() << "Latches already owned by this thread: "; Latches::const_iterator end = latches->end(); for (Latches::const_iterator it = latches->begin(); it != end; ++it) { ib::error() << sync_latch_get_name(it->m_latch->get_id()) << " -> " << it->m_level << " " << "(" << get_level_name(it->m_level) << ")"; } } /** Report error and abort @param[in] latches thread's existing latches @param[in] latched The existing latch causing the invariant to fail @param[in] level The new level request that breaks the order */ void LatchDebug::crash( const Latches* latches, const Latched* latched, latch_level_t level) const UNIV_NOTHROW { const latch_t* latch = latched->m_latch; const std::string& in_level_name = get_level_name(level); const std::string& latch_level_name = get_level_name(latched->m_level); ib::error() << "Thread " << os_thread_get_curr_id() << " already owns a latch " << sync_latch_get_name(latch->m_id) << " at level" << " " << latched->m_level << " (" << latch_level_name << " ), which is at a lower/same level than the" << " requested latch: " << level << " (" << in_level_name << "). " << latch->to_string(); print_latches(latches); ut_error; } /** Check that all the latches already owned by a thread have a lower level than limit. @param[in] latches the thread's existing (acquired) latches @param[in] limit to check against @return latched info if there is one with a level <= limit . */ const Latched* LatchDebug::less( const Latches* latches, latch_level_t limit) const UNIV_NOTHROW { Latches::const_iterator end = latches->end(); for (Latches::const_iterator it = latches->begin(); it != end; ++it) { if (it->m_level <= limit) { return(&(*it)); } } return(NULL); } /** Do a basic ordering check. @param[in] latches thread's existing latches @param[in] requested_level Level requested by latch @param[in] in_level declared ulint so that we can do level - 1. The level of the latch that the thread is trying to acquire @return true if passes, else crash with error message. */ inline bool LatchDebug::basic_check( const Latches* latches, latch_level_t requested_level, lint in_level) const UNIV_NOTHROW { latch_level_t level = latch_level_t(in_level); ut_ad(level < SYNC_LEVEL_MAX); const Latched* latched = less(latches, level); if (latched != NULL) { crash(latches, latched, requested_level); return(false); } return(true); } /** Create a new instance if one doesn't exist else return the existing one. @param[in] add add an empty entry if one is not found (default no) @return pointer to a thread's acquired latches. */ Latches* LatchDebug::thread_latches(bool add) UNIV_NOTHROW { m_mutex.enter(); os_thread_id_t thread_id = os_thread_get_curr_id(); ThreadMap::iterator lb = m_threads.lower_bound(thread_id); if (lb != m_threads.end() && !(m_threads.key_comp()(thread_id, lb->first))) { Latches* latches = lb->second; m_mutex.exit(); return(latches); } else if (!add) { m_mutex.exit(); return(NULL); } else { typedef ThreadMap::value_type value_type; Latches* latches = UT_NEW_NOKEY(Latches()); ut_a(latches != NULL); latches->reserve(32); m_threads.insert(lb, value_type(thread_id, latches)); m_mutex.exit(); return(latches); } } /** Checks if the level value exists in the thread's acquired latches. @param[in] levels the thread's existing (acquired) latches @param[in] level to lookup @return latch if found or 0 */ const latch_t* LatchDebug::find( const Latches* latches, latch_level_t level) const UNIV_NOTHROW { Latches::const_iterator end = latches->end(); for (Latches::const_iterator it = latches->begin(); it != end; ++it) { if (it->m_level == level) { return(it->m_latch); } } return(0); } /** Checks if the level value exists in the thread's acquired latches. @param[in] level The level to lookup @return latch if found or NULL */ const latch_t* LatchDebug::find(latch_level_t level) UNIV_NOTHROW { return(find(thread_latches(), level)); } /** Adds a latch and its level in the thread level array. Allocates the memory for the array if called first time for this OS thread. Makes the checks against other latch levels stored in the array for this thread. @param[in] latch pointer to a mutex or an rw-lock @param[in] level level in the latching order @return the thread's latches */ Latches* LatchDebug::check_order( const latch_t* latch, latch_level_t level) UNIV_NOTHROW { ut_ad(latch->get_level() != SYNC_LEVEL_VARYING); Latches* latches = thread_latches(true); /* NOTE that there is a problem with _NODE and _LEAF levels: if the B-tree height changes, then a leaf can change to an internal node or the other way around. We do not know at present if this can cause unnecessary assertion failures below. */ switch (level) { case SYNC_NO_ORDER_CHECK: case SYNC_EXTERN_STORAGE: case SYNC_TREE_NODE_FROM_HASH: /* Do no order checking */ break; case SYNC_TRX_SYS_HEADER: if (srv_is_being_started) { /* This is violated during trx_sys_create_rsegs() when creating additional rollback segments when upgrading in srv_start(). */ break; } /* Fall through */ case SYNC_RECV: case SYNC_WORK_QUEUE: case SYNC_FTS_TOKENIZE: case SYNC_FTS_OPTIMIZE: case SYNC_LOCK_SYS: case SYNC_LOCK_WAIT_SYS: case SYNC_RW_TRX_HASH_ELEMENT: case SYNC_READ_VIEW: case SYNC_TRX_SYS: case SYNC_IBUF_BITMAP_MUTEX: case SYNC_REDO_RSEG: case SYNC_NOREDO_RSEG: case SYNC_PURGE_QUEUE: case SYNC_DICT_HEADER: case SYNC_IBUF_MUTEX: case SYNC_INDEX_ONLINE_LOG: case SYNC_STATS_AUTO_RECALC: case SYNC_POOL: case SYNC_POOL_MANAGER: basic_check(latches, level, level); break; case SYNC_ANY_LATCH: /* Temporary workaround for LATCH_ID_RTR_*_MUTEX */ if (is_rtr_mutex(latch)) { const Latched* latched = less(latches, level); if (latched == NULL || (latched != NULL && is_rtr_mutex(latched->m_latch))) { /* No violation */ break; } crash(latches, latched, level); } else { basic_check(latches, level, level); } break; case SYNC_TRX: /* Either the thread must own the lock_sys.mutex, or it is allowed to own only ONE trx_t::mutex. */ if (less(latches, level) != NULL) { basic_check(latches, level, level - 1); ut_a(find(latches, SYNC_LOCK_SYS) != 0); } break; case SYNC_IBUF_BITMAP: /* Either the thread must own the master mutex to all the bitmap pages, or it is allowed to latch only ONE bitmap page. */ if (find(latches, SYNC_IBUF_BITMAP_MUTEX) != 0) { basic_check(latches, level, SYNC_IBUF_BITMAP - 1); } else if (!srv_is_being_started) { /* This is violated during trx_sys_create_rsegs() when creating additional rollback segments during upgrade. */ basic_check(latches, level, SYNC_IBUF_BITMAP); } break; case SYNC_FSP_PAGE: break; case SYNC_TRX_UNDO_PAGE: /* Purge is allowed to read in as many UNDO pages as it likes. The purge thread can read the UNDO pages without any covering mutex. */ ut_a(find(latches, SYNC_REDO_RSEG) != 0 || find(latches, SYNC_NOREDO_RSEG) != 0 || basic_check(latches, level, level - 1)); break; case SYNC_RSEG_HEADER: ut_a(find(latches, SYNC_REDO_RSEG) != 0 || find(latches, SYNC_NOREDO_RSEG) != 0); break; case SYNC_RSEG_HEADER_NEW: ut_a(find(latches, SYNC_FSP_PAGE) != 0); break; case SYNC_TREE_NODE: ut_a(find(latches, SYNC_INDEX_TREE) || basic_check(latches, level, SYNC_TREE_NODE - 1)); break; case SYNC_TREE_NODE_NEW: ut_a(find(latches, SYNC_FSP_PAGE) != 0); break; case SYNC_INDEX_TREE: basic_check(latches, level, SYNC_TREE_NODE - 1); break; case SYNC_IBUF_TREE_NODE: ut_a(find(latches, SYNC_IBUF_INDEX_TREE) != 0 || basic_check(latches, level, SYNC_IBUF_TREE_NODE - 1)); break; case SYNC_IBUF_TREE_NODE_NEW: /* ibuf_add_free_page() allocates new pages for the change buffer while only holding the tablespace x-latch. These pre-allocated new pages may only be used while holding ibuf_mutex, in btr_page_alloc_for_ibuf(). */ ut_ad(find(latches, SYNC_IBUF_MUTEX) != 0 || fil_system.sys_space->is_owner()); break; case SYNC_IBUF_INDEX_TREE: if (fil_system.sys_space->is_owner()) { basic_check(latches, level, level - 1); } else { basic_check(latches, level, SYNC_IBUF_TREE_NODE - 1); } break; case SYNC_IBUF_PESS_INSERT_MUTEX: basic_check(latches, level, SYNC_FSP_PAGE); ut_a(find(latches, SYNC_IBUF_MUTEX) == 0); break; case SYNC_IBUF_HEADER: basic_check(latches, level, SYNC_FSP_PAGE); ut_a(find(latches, SYNC_IBUF_MUTEX) == NULL); ut_a(find(latches, SYNC_IBUF_PESS_INSERT_MUTEX) == NULL); break; case SYNC_DICT: basic_check(latches, level, SYNC_DICT); break; case SYNC_MUTEX: case SYNC_UNKNOWN: case SYNC_LEVEL_VARYING: case RW_LOCK_X: case RW_LOCK_X_WAIT: case RW_LOCK_S: case RW_LOCK_SX: case RW_LOCK_NOT_LOCKED: /* These levels should never be set for a latch. */ ut_error; break; } return(latches); } /** Removes a latch from the thread level array if it is found there. @param[in] latch that was released/unlocked @param[in] level level of the latch @return true if found in the array; it is not an error if the latch is not found, as we presently are not able to determine the level for every latch reservation the program does */ void LatchDebug::unlock(const latch_t* latch) UNIV_NOTHROW { if (latch->get_level() == SYNC_LEVEL_VARYING) { // We don't have varying level mutexes ut_ad(latch->m_rw_lock); } Latches* latches; if (*latch->get_name() == '.') { /* Ignore diagnostic latches, starting with '.' */ } else if ((latches = thread_latches()) != NULL) { Latches::reverse_iterator rend = latches->rend(); for (Latches::reverse_iterator it = latches->rbegin(); it != rend; ++it) { if (it->m_latch != latch) { continue; } Latches::iterator i = it.base(); latches->erase(--i); /* If this thread doesn't own any more latches remove from the map. FIXME: Perhaps use the master thread to do purge. Or, do it from close connection. This could be expensive. */ if (latches->empty()) { m_mutex.enter(); os_thread_id_t thread_id; thread_id = os_thread_get_curr_id(); m_threads.erase(thread_id); m_mutex.exit(); UT_DELETE(latches); } return; } if (latch->get_level() != SYNC_LEVEL_VARYING) { ib::error() << "Couldn't find latch " << sync_latch_get_name(latch->get_id()); print_latches(latches); /** Must find the latch. */ ut_error; } } } /** Get the latch id from a latch name. @param[in] name Latch name @return latch id if found else LATCH_ID_NONE. */ latch_id_t sync_latch_get_id(const char* name) { LatchMetaData::const_iterator end = latch_meta.end(); /* Linear scan should be OK, this should be extremely rare. */ for (LatchMetaData::const_iterator it = latch_meta.begin(); it != end; ++it) { if (*it == NULL || (*it)->get_id() == LATCH_ID_NONE) { continue; } else if (strcmp((*it)->get_name(), name) == 0) { return((*it)->get_id()); } } return(LATCH_ID_NONE); } /** Get the latch name from a sync level @param[in] level Latch level to lookup @return NULL if not found. */ const char* sync_latch_get_name(latch_level_t level) { LatchMetaData::const_iterator end = latch_meta.end(); /* Linear scan should be OK, this should be extremely rare. */ for (LatchMetaData::const_iterator it = latch_meta.begin(); it != end; ++it) { if (*it == NULL || (*it)->get_id() == LATCH_ID_NONE) { continue; } else if ((*it)->get_level() == level) { return((*it)->get_name()); } } return(0); } /** Check if it is OK to acquire the latch. @param[in] latch latch type */ void sync_check_lock_validate(const latch_t* latch) { if (LatchDebug::instance() != NULL) { LatchDebug::instance()->lock_validate( latch, latch->get_level()); } } /** Note that the lock has been granted @param[in] latch latch type */ void sync_check_lock_granted(const latch_t* latch) { if (LatchDebug::instance() != NULL) { LatchDebug::instance()->lock_granted(latch, latch->get_level()); } } /** Check if it is OK to acquire the latch. @param[in] latch latch type @param[in] level Latch level */ void sync_check_lock( const latch_t* latch, latch_level_t level) { if (LatchDebug::instance() != NULL) { ut_ad(latch->get_level() == SYNC_LEVEL_VARYING); ut_ad(latch->get_id() == LATCH_ID_BUF_BLOCK_LOCK); LatchDebug::instance()->lock_validate(latch, level); LatchDebug::instance()->lock_granted(latch, level); } } /** Check if it is OK to re-acquire the lock. @param[in] latch RW-LOCK to relock (recursive X locks) */ void sync_check_relock(const latch_t* latch) { if (LatchDebug::instance() != NULL) { LatchDebug::instance()->relock(latch); } } /** Removes a latch from the thread level array if it is found there. @param[in] latch The latch to unlock */ void sync_check_unlock(const latch_t* latch) { if (LatchDebug::instance() != NULL) { LatchDebug::instance()->unlock(latch); } } /** Checks if the level array for the current thread contains a mutex or rw-latch at the specified level. @param[in] level to find @return a matching latch, or NULL if not found */ const latch_t* sync_check_find(latch_level_t level) { if (LatchDebug::instance() != NULL) { return(LatchDebug::instance()->find(level)); } return(NULL); } /** Iterate over the thread's latches. @param[in,out] functor called for each element. @return true if the functor returns true for any element */ bool sync_check_iterate(const sync_check_functor_t& functor) { if (LatchDebug* debug = LatchDebug::instance()) { return(debug->for_each(functor)); } return(false); } /** Enable sync order checking. Note: We don't enforce any synchronisation checks. The caller must ensure that no races can occur */ static void sync_check_enable() { if (!srv_sync_debug) { return; } /* We should always call this before we create threads. */ LatchDebug::create_instance(); } /** Initialise the debug data structures */ void LatchDebug::init() UNIV_NOTHROW { mutex_create(LATCH_ID_RW_LOCK_DEBUG, &rw_lock_debug_mutex); } /** Shutdown the latch debug checking Note: We don't enforce any synchronisation checks. The caller must ensure that no races can occur */ void LatchDebug::shutdown() UNIV_NOTHROW { mutex_free(&rw_lock_debug_mutex); ut_a(s_initialized); s_initialized = false; UT_DELETE(s_instance); LatchDebug::s_instance = NULL; } /** Acquires the debug mutex. We cannot use the mutex defined in sync0sync, because the debug mutex is also acquired in sync0arr while holding the OS mutex protecting the sync array, and the ordinary mutex_enter might recursively call routines in sync0arr, leading to a deadlock on the OS mutex. */ void rw_lock_debug_mutex_enter() { mutex_enter(&rw_lock_debug_mutex); } /** Releases the debug mutex. */ void rw_lock_debug_mutex_exit() { mutex_exit(&rw_lock_debug_mutex); } #endif /* UNIV_DEBUG */ /* Meta data for all the InnoDB latches. If the latch is not in recorded here then it will be be considered for deadlock checks. */ LatchMetaData latch_meta; /** Load the latch meta data. */ static void sync_latch_meta_init() UNIV_NOTHROW { latch_meta.resize(LATCH_ID_MAX + 1); /* The latches should be ordered on latch_id_t. So that we can index directly into the vector to update and fetch meta-data. */ LATCH_ADD_MUTEX(DICT_FOREIGN_ERR, SYNC_NO_ORDER_CHECK, dict_foreign_err_mutex_key); LATCH_ADD_MUTEX(DICT_SYS, SYNC_DICT, dict_sys_mutex_key); LATCH_ADD_MUTEX(FIL_SYSTEM, SYNC_ANY_LATCH, fil_system_mutex_key); LATCH_ADD_MUTEX(FTS_DELETE, SYNC_FTS_OPTIMIZE, fts_delete_mutex_key); LATCH_ADD_MUTEX(FTS_DOC_ID, SYNC_FTS_OPTIMIZE, fts_doc_id_mutex_key); LATCH_ADD_MUTEX(FTS_PLL_TOKENIZE, SYNC_FTS_TOKENIZE, fts_pll_tokenize_mutex_key); LATCH_ADD_MUTEX(IBUF_BITMAP, SYNC_IBUF_BITMAP_MUTEX, ibuf_bitmap_mutex_key); LATCH_ADD_MUTEX(IBUF, SYNC_IBUF_MUTEX, ibuf_mutex_key); LATCH_ADD_MUTEX(IBUF_PESSIMISTIC_INSERT, SYNC_IBUF_PESS_INSERT_MUTEX, ibuf_pessimistic_insert_mutex_key); LATCH_ADD_MUTEX(PURGE_SYS_PQ, SYNC_PURGE_QUEUE, purge_sys_pq_mutex_key); LATCH_ADD_MUTEX(RECALC_POOL, SYNC_STATS_AUTO_RECALC, recalc_pool_mutex_key); LATCH_ADD_MUTEX(RECV_SYS, SYNC_RECV, recv_sys_mutex_key); LATCH_ADD_MUTEX(REDO_RSEG, SYNC_REDO_RSEG, redo_rseg_mutex_key); LATCH_ADD_MUTEX(NOREDO_RSEG, SYNC_NOREDO_RSEG, noredo_rseg_mutex_key); #ifdef UNIV_DEBUG /* Mutex names starting with '.' are not tracked. They are assumed to be diagnostic mutexes used in debugging. */ latch_meta[LATCH_ID_RW_LOCK_DEBUG] = LATCH_ADD_MUTEX(RW_LOCK_DEBUG, SYNC_NO_ORDER_CHECK, rw_lock_debug_mutex_key); #endif /* UNIV_DEBUG */ LATCH_ADD_MUTEX(RTR_ACTIVE_MUTEX, SYNC_ANY_LATCH, rtr_active_mutex_key); LATCH_ADD_MUTEX(RTR_MATCH_MUTEX, SYNC_ANY_LATCH, rtr_match_mutex_key); LATCH_ADD_MUTEX(RTR_PATH_MUTEX, SYNC_ANY_LATCH, rtr_path_mutex_key); LATCH_ADD_MUTEX(RW_LOCK_LIST, SYNC_NO_ORDER_CHECK, rw_lock_list_mutex_key); LATCH_ADD_MUTEX(SRV_INNODB_MONITOR, SYNC_NO_ORDER_CHECK, srv_innodb_monitor_mutex_key); LATCH_ADD_MUTEX(SRV_MISC_TMPFILE, SYNC_ANY_LATCH, srv_misc_tmpfile_mutex_key); LATCH_ADD_MUTEX(SRV_MONITOR_FILE, SYNC_NO_ORDER_CHECK, srv_monitor_file_mutex_key); LATCH_ADD_MUTEX(TRX_POOL, SYNC_POOL, trx_pool_mutex_key); LATCH_ADD_MUTEX(TRX_POOL_MANAGER, SYNC_POOL_MANAGER, trx_pool_manager_mutex_key); LATCH_ADD_MUTEX(TRX, SYNC_TRX, trx_mutex_key); LATCH_ADD_MUTEX(LOCK_SYS, SYNC_LOCK_SYS, lock_mutex_key); LATCH_ADD_MUTEX(LOCK_SYS_WAIT, SYNC_LOCK_WAIT_SYS, lock_wait_mutex_key); LATCH_ADD_MUTEX(TRX_SYS, SYNC_TRX_SYS, trx_sys_mutex_key); LATCH_ADD_MUTEX(SRV_SYS_TASKS, SYNC_ANY_LATCH, srv_threads_mutex_key); LATCH_ADD_MUTEX(PAGE_ZIP_STAT_PER_INDEX, SYNC_ANY_LATCH, page_zip_stat_per_index_mutex_key); LATCH_ADD_MUTEX(SYNC_ARRAY_MUTEX, SYNC_NO_ORDER_CHECK, sync_array_mutex_key); LATCH_ADD_MUTEX(ROW_DROP_LIST, SYNC_NO_ORDER_CHECK, row_drop_list_mutex_key); LATCH_ADD_MUTEX(INDEX_ONLINE_LOG, SYNC_INDEX_ONLINE_LOG, index_online_log_key); LATCH_ADD_MUTEX(WORK_QUEUE, SYNC_WORK_QUEUE, PFS_NOT_INSTRUMENTED); // Add the RW locks LATCH_ADD_RWLOCK(BUF_BLOCK_LOCK, SYNC_LEVEL_VARYING, PFS_NOT_INSTRUMENTED); #ifdef UNIV_DEBUG LATCH_ADD_RWLOCK(BUF_BLOCK_DEBUG, SYNC_LEVEL_VARYING, PFS_NOT_INSTRUMENTED); #endif /* UNIV_DEBUG */ LATCH_ADD_RWLOCK(IBUF_INDEX_TREE, SYNC_IBUF_INDEX_TREE, index_tree_rw_lock_key); LATCH_ADD_RWLOCK(INDEX_TREE, SYNC_INDEX_TREE, index_tree_rw_lock_key); /* JAN: TODO: Add PFS instrumentation */ LATCH_ADD_MUTEX(DEFRAGMENT_MUTEX, SYNC_NO_ORDER_CHECK, PFS_NOT_INSTRUMENTED); LATCH_ADD_MUTEX(BTR_DEFRAGMENT_MUTEX, SYNC_NO_ORDER_CHECK, PFS_NOT_INSTRUMENTED); LATCH_ADD_MUTEX(FIL_CRYPT_STAT_MUTEX, SYNC_NO_ORDER_CHECK, PFS_NOT_INSTRUMENTED); LATCH_ADD_MUTEX(FIL_CRYPT_DATA_MUTEX, SYNC_NO_ORDER_CHECK, PFS_NOT_INSTRUMENTED); LATCH_ADD_MUTEX(FIL_CRYPT_THREADS_MUTEX, SYNC_NO_ORDER_CHECK, PFS_NOT_INSTRUMENTED); LATCH_ADD_MUTEX(RW_TRX_HASH_ELEMENT, SYNC_RW_TRX_HASH_ELEMENT, rw_trx_hash_element_mutex_key); LATCH_ADD_MUTEX(READ_VIEW, SYNC_READ_VIEW, read_view_mutex_key); latch_id_t id = LATCH_ID_NONE; /* The array should be ordered on latch ID.We need to index directly into it from the mutex policy to update the counters and access the meta-data. */ for (LatchMetaData::iterator it = latch_meta.begin(); it != latch_meta.end(); ++it) { const latch_meta_t* meta = *it; /* Skip blank entries */ if (meta == NULL || meta->get_id() == LATCH_ID_NONE) { continue; } ut_a(id < meta->get_id()); id = meta->get_id(); } } /** Destroy the latch meta data */ static void sync_latch_meta_destroy() { for (LatchMetaData::iterator it = latch_meta.begin(); it != latch_meta.end(); ++it) { UT_DELETE(*it); } latch_meta.clear(); } /** Initializes the synchronization data structures. */ void sync_check_init() { ut_ad(!LatchDebug::s_initialized); ut_d(LatchDebug::s_initialized = true); sync_latch_meta_init(); /* create the mutex to protect rw_lock list. */ mutex_create(LATCH_ID_RW_LOCK_LIST, &rw_lock_list_mutex); ut_d(LatchDebug::init()); sync_array_init(); ut_d(sync_check_enable()); } /** Free the InnoDB synchronization data structures. */ void sync_check_close() { ut_d(LatchDebug::shutdown()); mutex_free(&rw_lock_list_mutex); sync_array_close(); sync_latch_meta_destroy(); }