/***************************************************************************** Copyright (c) 1996, 2017, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2017, 2021, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file trx/trx0purge.cc Purge old versions Created 3/26/1996 Heikki Tuuri *******************************************************/ #include "trx0purge.h" #include "fsp0fsp.h" #include "fut0fut.h" #include "mach0data.h" #include "mtr0log.h" #include "os0thread.h" #include "que0que.h" #include "read0read.h" #include "row0purge.h" #include "row0upd.h" #include "srv0mon.h" #include "srv0srv.h" #include "srv0start.h" #include "sync0sync.h" #include "trx0rec.h" #include "trx0roll.h" #include "trx0rseg.h" #include "trx0trx.h" /** Maximum allowable purge history length. <=0 means 'infinite'. */ ulong srv_max_purge_lag = 0; /** Max DML user threads delay in micro-seconds. */ ulong srv_max_purge_lag_delay = 0; /** The global data structure coordinating a purge */ purge_sys_t* purge_sys; /** A dummy undo record used as a return value when we have a whole undo log which needs no purge */ trx_undo_rec_t trx_purge_dummy_rec; #ifdef UNIV_DEBUG my_bool srv_purge_view_update_only_debug; #endif /* UNIV_DEBUG */ /** Sentinel value */ const TrxUndoRsegs TrxUndoRsegsIterator::NullElement(UINT64_UNDEFINED); /** Constructor */ TrxUndoRsegsIterator::TrxUndoRsegsIterator() : m_trx_undo_rsegs(NullElement), m_iter(m_trx_undo_rsegs.end()) { } /** Sets the next rseg to purge in purge_sys. @return whether anything is to be purged */ inline bool TrxUndoRsegsIterator::set_next() { mutex_enter(&purge_sys->pq_mutex); /* Only purge consumes events from the priority queue, user threads only produce the events. */ /* Check if there are more rsegs to process in the current element. */ if (m_iter != m_trx_undo_rsegs.end()) { /* We are still processing rollback segment from the same transaction and so expected transaction number shouldn't increase. Undo increment of expected trx_no done by caller assuming rollback segments from given transaction are done. */ purge_sys->iter.trx_no = (*m_iter)->last_trx_no; } else if (!purge_sys->purge_queue.empty()) { /* Read the next element from the queue. Combine elements if they have same transaction number. This can happen if a transaction shares redo rollback segment with another transaction that has already added it to purge queue and former transaction also needs to schedule non-redo rollback segment for purge. */ m_trx_undo_rsegs = NullElement; purge_pq_t& purge_queue = purge_sys->purge_queue; while (!purge_queue.empty()) { if (m_trx_undo_rsegs.get_trx_no() == UINT64_UNDEFINED) { m_trx_undo_rsegs = purge_queue.top(); } else if (purge_queue.top().get_trx_no() == m_trx_undo_rsegs.get_trx_no()) { m_trx_undo_rsegs.append( purge_queue.top()); } else { break; } purge_queue.pop(); } m_iter = m_trx_undo_rsegs.begin(); } else { /* Queue is empty, reset iterator. */ m_trx_undo_rsegs = NullElement; m_iter = m_trx_undo_rsegs.end(); mutex_exit(&purge_sys->pq_mutex); purge_sys->rseg = NULL; return false; } purge_sys->rseg = *m_iter++; mutex_exit(&purge_sys->pq_mutex); ut_a(purge_sys->rseg != NULL); mutex_enter(&purge_sys->rseg->mutex); ut_a(purge_sys->rseg->last_page_no != FIL_NULL); ut_ad(purge_sys->rseg->last_trx_no == m_trx_undo_rsegs.get_trx_no()); /* We assume in purge of externally stored fields that space id is in the range of UNDO tablespace space ids */ ut_a(purge_sys->rseg->space == TRX_SYS_SPACE || srv_is_undo_tablespace(purge_sys->rseg->space)); ut_a(purge_sys->iter.trx_no <= purge_sys->rseg->last_trx_no); purge_sys->iter.trx_no = purge_sys->rseg->last_trx_no; purge_sys->hdr_offset = purge_sys->rseg->last_offset; purge_sys->hdr_page_no = purge_sys->rseg->last_page_no; mutex_exit(&purge_sys->rseg->mutex); return(true); } /** Build a purge 'query' graph. The actual purge is performed by executing this query graph. @return own: the query graph */ static que_t* purge_graph_build() { ut_a(srv_n_purge_threads > 0); trx_t* trx = trx_allocate_for_background(); ut_ad(!trx->id); trx->start_time = time(NULL); trx->start_time_micro = microsecond_interval_timer(); trx->state = TRX_STATE_ACTIVE; trx->op_info = "purge trx"; mem_heap_t* heap = mem_heap_create(512); que_fork_t* fork = que_fork_create( NULL, NULL, QUE_FORK_PURGE, heap); fork->trx = trx; for (ulint i = 0; i < srv_n_purge_threads; ++i) { que_thr_t* thr = que_thr_create(fork, heap, NULL); thr->child = new(mem_heap_alloc(heap, sizeof(purge_node_t))) purge_node_t(thr); } return(fork); } /** Construct the purge system. */ purge_sys_t::purge_sys_t() : latch(), event(os_event_create(0)), n_stop(0), running(false), state(PURGE_STATE_INIT), query(purge_graph_build()), view(), n_submitted(0), n_completed(0), iter(), limit(), #ifdef UNIV_DEBUG done(), #endif /* UNIV_DEBUG */ next_stored(false), rseg(NULL), page_no(0), offset(0), hdr_page_no(0), hdr_offset(0), rseg_iter(), purge_queue(), pq_mutex(), undo_trunc() { ut_ad(!purge_sys); rw_lock_create(trx_purge_latch_key, &latch, SYNC_PURGE_LATCH); mutex_create(LATCH_ID_PURGE_SYS_PQ, &pq_mutex); } /** Destruct the purge system. */ purge_sys_t::~purge_sys_t() { ut_ad(this == purge_sys); trx_t* trx = query->trx; que_graph_free(query); ut_ad(!trx->id); ut_ad(trx->state == TRX_STATE_ACTIVE); trx->state = TRX_STATE_NOT_STARTED; trx_free_for_background(trx); view.close(); rw_lock_free(&latch); mutex_free(&pq_mutex); os_event_destroy(event); } /*================ UNDO LOG HISTORY LIST =============================*/ /********************************************************************//** Adds the update undo log as the first log in the history list. Removes the update undo log segment from the rseg slot if it is too big for reuse. */ void trx_purge_add_update_undo_to_history( /*=================================*/ trx_t* trx, /*!< in: transaction */ page_t* undo_page, /*!< in: update undo log header page, x-latched */ mtr_t* mtr) /*!< in: mtr */ { trx_undo_t* undo = trx->rsegs.m_redo.update_undo; trx_rseg_t* rseg = undo->rseg; trx_rsegf_t* rseg_header = trx_rsegf_get( rseg->space, rseg->page_no, mtr); trx_ulogf_t* undo_header = undo_page + undo->hdr_offset; if (undo->state != TRX_UNDO_CACHED) { ulint hist_size; #ifdef UNIV_DEBUG trx_usegf_t* seg_header = undo_page + TRX_UNDO_SEG_HDR; #endif /* UNIV_DEBUG */ /* The undo log segment will not be reused */ if (UNIV_UNLIKELY(undo->id >= TRX_RSEG_N_SLOTS)) { ib::fatal() << "undo->id is " << undo->id; } trx_rsegf_set_nth_undo(rseg_header, undo->id, FIL_NULL, mtr); MONITOR_DEC(MONITOR_NUM_UNDO_SLOT_USED); hist_size = mtr_read_ulint( rseg_header + TRX_RSEG_HISTORY_SIZE, MLOG_4BYTES, mtr); ut_ad(undo->size == flst_get_len( seg_header + TRX_UNDO_PAGE_LIST)); mlog_write_ulint( rseg_header + TRX_RSEG_HISTORY_SIZE, hist_size + undo->size, MLOG_4BYTES, mtr); } /* After the purge thread has been given permission to exit, we may roll back transactions (trx->undo_no==0) in THD::cleanup() invoked from unlink_thd() in fast shutdown, or in trx_rollback_resurrected() in slow shutdown. Before any transaction-generating background threads or the purge have been started, recv_recovery_rollback_active() can start transactions in row_merge_drop_temp_indexes() and fts_drop_orphaned_tables(), and roll back recovered transactions. Arbitrary user transactions may be executed when all the undo log related background processes (including purge) are disabled due to innodb_force_recovery=2 or innodb_force_recovery=3. DROP TABLE may be executed at any innodb_force_recovery level. During fast shutdown, we may also continue to execute user transactions. */ ut_ad(srv_undo_sources || trx->undo_no == 0 || ((srv_is_being_started || trx_rollback_or_clean_is_active) && purge_sys->state == PURGE_STATE_INIT) || (srv_force_recovery >= SRV_FORCE_NO_BACKGROUND && purge_sys->state == PURGE_STATE_DISABLED) || ((trx->in_mysql_trx_list || trx->internal) && srv_fast_shutdown)); /* Add the log as the first in the history list */ flst_add_first(rseg_header + TRX_RSEG_HISTORY, undo_header + TRX_UNDO_HISTORY_NODE, mtr); my_atomic_addlint(&trx_sys->rseg_history_len, 1); /* Write the trx number to the undo log header */ mlog_write_ull(undo_header + TRX_UNDO_TRX_NO, trx->no, mtr); /* Write information about delete markings to the undo log header */ if (!undo->del_marks) { mlog_write_ulint(undo_header + TRX_UNDO_DEL_MARKS, FALSE, MLOG_2BYTES, mtr); } if (rseg->last_page_no == FIL_NULL) { rseg->last_page_no = undo->hdr_page_no; rseg->last_offset = undo->hdr_offset; rseg->last_trx_no = trx->no; rseg->last_del_marks = undo->del_marks; } } /** Remove undo log header from the history list. @param[in,out] rseg_hdr rollback segment header @param[in] log_hdr undo log segment header @param[in,out] mtr mini transaction. */ static void trx_purge_remove_log_hdr( trx_rsegf_t* rseg_hdr, trx_ulogf_t* log_hdr, mtr_t* mtr) { flst_remove(rseg_hdr + TRX_RSEG_HISTORY, log_hdr + TRX_UNDO_HISTORY_NODE, mtr); my_atomic_addlint(&trx_sys->rseg_history_len, -1); } /** Free an undo log segment, and remove the header from the history list. @param[in,out] rseg rollback segment @param[in] hdr_addr file address of log_hdr */ static void trx_purge_free_segment(trx_rseg_t* rseg, fil_addr_t hdr_addr) { mtr_t mtr; trx_rsegf_t* rseg_hdr; trx_ulogf_t* log_hdr; trx_usegf_t* seg_hdr; ulint seg_size; ulint hist_size; bool marked = false; for (;;) { page_t* undo_page; mtr_start(&mtr); mutex_enter(&rseg->mutex); rseg_hdr = trx_rsegf_get(rseg->space, rseg->page_no, &mtr); undo_page = trx_undo_page_get( page_id_t(rseg->space, hdr_addr.page), &mtr); seg_hdr = undo_page + TRX_UNDO_SEG_HDR; log_hdr = undo_page + hdr_addr.boffset; /* Mark the last undo log totally purged, so that if the system crashes, the tail of the undo log will not get accessed again. The list of pages in the undo log tail gets inconsistent during the freeing of the segment, and therefore purge should not try to access them again. */ if (!marked) { marked = true; mlog_write_ulint( log_hdr + TRX_UNDO_DEL_MARKS, FALSE, MLOG_2BYTES, &mtr); } if (fseg_free_step_not_header( seg_hdr + TRX_UNDO_FSEG_HEADER, &mtr)) { break; } mutex_exit(&rseg->mutex); mtr_commit(&mtr); } /* The page list may now be inconsistent, but the length field stored in the list base node tells us how big it was before we started the freeing. */ seg_size = flst_get_len(seg_hdr + TRX_UNDO_PAGE_LIST); /* We may free the undo log segment header page; it must be freed within the same mtr as the undo log header is removed from the history list: otherwise, in case of a database crash, the segment could become inaccessible garbage in the file space. */ trx_purge_remove_log_hdr(rseg_hdr, log_hdr, &mtr); do { /* Here we assume that a file segment with just the header page can be freed in a few steps, so that the buffer pool is not flooded with bufferfixed pages: see the note in fsp0fsp.cc. */ } while (!fseg_free_step(seg_hdr + TRX_UNDO_FSEG_HEADER, &mtr)); hist_size = mtr_read_ulint(rseg_hdr + TRX_RSEG_HISTORY_SIZE, MLOG_4BYTES, &mtr); ut_ad(hist_size >= seg_size); mlog_write_ulint(rseg_hdr + TRX_RSEG_HISTORY_SIZE, hist_size - seg_size, MLOG_4BYTES, &mtr); ut_ad(rseg->curr_size >= seg_size); rseg->curr_size -= seg_size; mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); } /** Remove unnecessary history data from a rollback segment. @param[in,out] rseg rollback segment @param[in] limit truncate offset */ static void trx_purge_truncate_rseg_history(trx_rseg_t* rseg, const purge_iter_t* limit) { fil_addr_t hdr_addr; fil_addr_t prev_hdr_addr; trx_rsegf_t* rseg_hdr; page_t* undo_page; trx_ulogf_t* log_hdr; trx_usegf_t* seg_hdr; mtr_t mtr; trx_id_t undo_trx_no; mtr_start(&mtr); ut_ad(rseg->is_persistent()); mutex_enter(&(rseg->mutex)); rseg_hdr = trx_rsegf_get(rseg->space, rseg->page_no, &mtr); hdr_addr = trx_purge_get_log_from_hist( flst_get_last(rseg_hdr + TRX_RSEG_HISTORY, &mtr)); loop: if (hdr_addr.page == FIL_NULL) { mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); return; } undo_page = trx_undo_page_get(page_id_t(rseg->space, hdr_addr.page), &mtr); log_hdr = undo_page + hdr_addr.boffset; undo_trx_no = mach_read_from_8(log_hdr + TRX_UNDO_TRX_NO); if (undo_trx_no >= limit->trx_no) { /* limit space_id should match the rollback segment space id to avoid freeing of the page belongs to different rollback segment for the same trx_no. */ if (undo_trx_no == limit->trx_no && rseg->space == limit->undo_rseg_space) { trx_undo_truncate_start( rseg, hdr_addr.page, hdr_addr.boffset, limit->undo_no); } mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); return; } prev_hdr_addr = trx_purge_get_log_from_hist( flst_get_prev_addr(log_hdr + TRX_UNDO_HISTORY_NODE, &mtr)); seg_hdr = undo_page + TRX_UNDO_SEG_HDR; if ((mach_read_from_2(seg_hdr + TRX_UNDO_STATE) == TRX_UNDO_TO_PURGE) && (mach_read_from_2(log_hdr + TRX_UNDO_NEXT_LOG) == 0)) { /* We can free the whole log segment */ mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); /* calls the trx_purge_remove_log_hdr() inside trx_purge_free_segment(). */ trx_purge_free_segment(rseg, hdr_addr); } else { /* Remove the log hdr from the rseg history. */ trx_purge_remove_log_hdr(rseg_hdr, log_hdr, &mtr); mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); } mtr_start(&mtr); mutex_enter(&(rseg->mutex)); rseg_hdr = trx_rsegf_get(rseg->space, rseg->page_no, &mtr); hdr_addr = prev_hdr_addr; goto loop; } /** UNDO log truncate logger. Needed to track state of truncate during crash. An auxiliary redo log file undo__trunc.log will created while the truncate of the UNDO is in progress. This file is required during recovery to complete the truncate. */ namespace undo { /** Magic Number to indicate truncate action is complete. */ static const ib_uint32_t s_magic = 76845412; /** Populate log file name based on space_id @param[in] space_id id of the undo tablespace. @return DB_SUCCESS or error code */ static dberr_t populate_log_file_name( ulint space_id, char*& log_file_name) { static const char s_log_prefix[] = "undo_"; static const char s_log_ext[] = "trunc.log"; ulint log_file_name_sz = strlen(srv_log_group_home_dir) + (22 - 1 /* NUL */ + sizeof s_log_prefix + sizeof s_log_ext); log_file_name = new (std::nothrow) char[log_file_name_sz]; if (log_file_name == 0) { return(DB_OUT_OF_MEMORY); } memset(log_file_name, 0, log_file_name_sz); strcpy(log_file_name, srv_log_group_home_dir); ulint log_file_name_len = strlen(log_file_name); if (log_file_name[log_file_name_len - 1] != OS_PATH_SEPARATOR) { log_file_name[log_file_name_len] = OS_PATH_SEPARATOR; log_file_name_len = strlen(log_file_name); } snprintf(log_file_name + log_file_name_len, log_file_name_sz - log_file_name_len, "%s" ULINTPF "_%s", s_log_prefix, space_id, s_log_ext); return(DB_SUCCESS); } /** Mark completion of undo truncate action by writing magic number to the log file and then removing it from the disk. If we are going to remove it from disk then why write magic number ? This is to safeguard from unlink (file-system) anomalies that will keep the link to the file even after unlink action is successfull and ref-count = 0. @param[in] space_id id of the undo tablespace to truncate.*/ void done( ulint space_id) { dberr_t err; char* log_file_name; /* Step-1: Create the log file name using the pre-decided prefix/suffix and table id of undo tablepsace to truncate. */ err = populate_log_file_name(space_id, log_file_name); if (err != DB_SUCCESS) { return; } /* Step-2: Open log file and write magic number to indicate done phase. */ bool ret; os_file_t handle = os_file_create_simple_no_error_handling( innodb_log_file_key, log_file_name, OS_FILE_OPEN, OS_FILE_READ_WRITE, srv_read_only_mode, &ret); if (!ret) { os_file_delete(innodb_log_file_key, log_file_name); delete[] log_file_name; return; } ulint sz = UNIV_PAGE_SIZE; void* buf = ut_zalloc_nokey(sz + UNIV_PAGE_SIZE); if (buf == NULL) { os_file_close(handle); os_file_delete(innodb_log_file_key, log_file_name); delete[] log_file_name; return; } byte* log_buf = static_cast( ut_align(buf, UNIV_PAGE_SIZE)); mach_write_to_4(log_buf, undo::s_magic); IORequest request(IORequest::WRITE); err = os_file_write( request, log_file_name, handle, log_buf, 0, sz); ut_ad(err == DB_SUCCESS); os_file_flush(handle); os_file_close(handle); ut_free(buf); os_file_delete(innodb_log_file_key, log_file_name); delete[] log_file_name; } /** Check if TRUNCATE_DDL_LOG file exist. @param[in] space_id id of the undo tablespace. @return true if exist else false. */ bool is_log_present( ulint space_id) { dberr_t err; char* log_file_name; /* Step-1: Populate log file name. */ err = populate_log_file_name(space_id, log_file_name); if (err != DB_SUCCESS) { return(false); } /* Step-2: Check for existence of the file. */ bool exist; os_file_type_t type; os_file_status(log_file_name, &exist, &type); /* Step-3: If file exists, check it for presence of magic number. If found, then delete the file and report file doesn't exist as presence of magic number suggest that truncate action was complete. */ if (exist) { bool ret; os_file_t handle = os_file_create_simple_no_error_handling( innodb_log_file_key, log_file_name, OS_FILE_OPEN, OS_FILE_READ_WRITE, srv_read_only_mode, &ret); if (!ret) { os_file_delete(innodb_log_file_key, log_file_name); delete[] log_file_name; return(false); } ulint sz = UNIV_PAGE_SIZE; void* buf = ut_zalloc_nokey(sz + UNIV_PAGE_SIZE); if (buf == NULL) { os_file_close(handle); os_file_delete(innodb_log_file_key, log_file_name); delete[] log_file_name; return(false); } byte* log_buf = static_cast( ut_align(buf, UNIV_PAGE_SIZE)); IORequest request(IORequest::READ); dberr_t err; err = os_file_read(request, handle, log_buf, 0, sz); os_file_close(handle); if (UNIV_UNLIKELY(err != DB_SUCCESS)) { ib::info() << "Unable to read '" << log_file_name << "' : " << err; os_file_delete( innodb_log_file_key, log_file_name); ut_free(buf); delete[] log_file_name; return(false); } ulint magic_no = mach_read_from_4(log_buf); ut_free(buf); if (magic_no == undo::s_magic) { /* Found magic number. */ os_file_delete(innodb_log_file_key, log_file_name); delete[] log_file_name; return(false); } } delete[] log_file_name; return(exist); } }; /** Iterate over all the UNDO tablespaces and check if any of the UNDO tablespace qualifies for TRUNCATE (size > threshold). @param[in,out] undo_trunc undo truncate tracker */ static void trx_purge_mark_undo_for_truncate( undo::Truncate* undo_trunc) { /* Step-1: If UNDO Tablespace - already marked for truncate (OR) - truncate disabled return immediately else search for qualifying tablespace. */ if (undo_trunc->is_marked() || !srv_undo_log_truncate) { return; } /* Step-2: Validation/Qualification checks a. At-least 2 UNDO tablespaces so even if one UNDO tablespace is being truncated server can continue to operate. b. At-least 2 persistent UNDO logs (besides the default rseg-0) b. At-least 1 UNDO tablespace size > threshold. */ if (srv_undo_tablespaces_active < 2 || srv_undo_logs < 3) { return; } /* Avoid bias selection and so start the scan from immediate next of last selected UNDO tablespace for truncate. */ ulint space_id = undo_trunc->get_scan_start(); for (ulint i = 1; i <= srv_undo_tablespaces_active; i++) { if (fil_space_get_size(space_id) > (srv_max_undo_log_size / srv_page_size)) { /* Tablespace qualifies for truncate. */ undo_trunc->mark(space_id); undo::Truncate::add_space_to_trunc_list(space_id); break; } space_id = ((space_id + 1) % (srv_undo_tablespaces_active + 1)); if (space_id == 0) { /* Note: UNDO tablespace ids starts from 1. */ ++space_id; } } /* Couldn't make any selection. */ if (!undo_trunc->is_marked()) { return; } DBUG_LOG("undo", "marking for truncate UNDO tablespace " << undo_trunc->get_marked_space_id()); /* Step-3: Iterate over all the rsegs of selected UNDO tablespace and mark them temporarily unavailable for allocation.*/ for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) { if (trx_rseg_t* rseg = trx_sys->rseg_array[i]) { ut_ad(rseg->is_persistent()); if (rseg->space == undo_trunc->get_marked_space_id()) { /* Once set this rseg will not be allocated to new booting transaction but we will wait for existing active transaction to finish. */ rseg->skip_allocation = true; undo_trunc->add_rseg_to_trunc(rseg); } } } } undo::undo_spaces_t undo::Truncate::s_spaces_to_truncate; /** Cleanse purge queue to remove the rseg that reside in undo-tablespace marked for truncate. @param[in,out] undo_trunc undo truncate tracker */ static void trx_purge_cleanse_purge_queue( undo::Truncate* undo_trunc) { mutex_enter(&purge_sys->pq_mutex); typedef std::vector purge_elem_list_t; purge_elem_list_t purge_elem_list; /* Remove rseg instances that are in the purge queue before we start truncate of corresponding UNDO truncate. */ while (!purge_sys->purge_queue.empty()) { purge_elem_list.push_back(purge_sys->purge_queue.top()); purge_sys->purge_queue.pop(); } ut_ad(purge_sys->purge_queue.empty()); for (purge_elem_list_t::iterator it = purge_elem_list.begin(); it != purge_elem_list.end(); ++it) { for (TrxUndoRsegs::iterator it2 = it->begin(); it2 != it->end(); ++it2) { if ((*it2)->space == undo_trunc->get_marked_space_id()) { it->erase(it2); break; } } if (it->size()) { /* size != 0 suggest that there exist other rsegs that needs processing so add this element to purge queue. Note: Other rseg could be non-redo rsegs. */ purge_sys->purge_queue.push(*it); } } mutex_exit(&purge_sys->pq_mutex); } /** Iterate over selected UNDO tablespace and check if all the rsegs that resides in the tablespace are free. @param[in] limit truncate_limit @param[in,out] undo_trunc undo truncate tracker */ static void trx_purge_initiate_truncate( purge_iter_t* limit, undo::Truncate* undo_trunc) { /* Step-1: Early check to findout if any of the the UNDO tablespace is marked for truncate. */ if (!undo_trunc->is_marked()) { /* No tablespace marked for truncate yet. */ return; } /* Step-2: Scan over each rseg and ensure that it doesn't hold any active undo records. */ bool all_free = true; for (ulint i = 0; i < undo_trunc->rsegs_size() && all_free; ++i) { trx_rseg_t* rseg = undo_trunc->get_ith_rseg(i); mutex_enter(&rseg->mutex); if (rseg->trx_ref_count > 0) { /* This rseg is still being held by an active transaction. */ all_free = false; mutex_exit(&rseg->mutex); continue; } ut_ad(rseg->trx_ref_count == 0); ut_ad(rseg->skip_allocation); ulint size_of_rsegs = rseg->curr_size; if (size_of_rsegs == 1) { mutex_exit(&rseg->mutex); continue; } else { /* There could be cached undo segment. Check if records in these segments can be purged. Normal purge history will not touch these cached segment. */ ulint cached_undo_size = 0; for (trx_undo_t* undo = UT_LIST_GET_FIRST(rseg->update_undo_cached); undo != NULL && all_free; undo = UT_LIST_GET_NEXT(undo_list, undo)) { if (limit->trx_no < undo->trx_id) { all_free = false; } else { cached_undo_size += undo->size; } } for (trx_undo_t* undo = UT_LIST_GET_FIRST(rseg->insert_undo_cached); undo != NULL && all_free; undo = UT_LIST_GET_NEXT(undo_list, undo)) { if (limit->trx_no < undo->trx_id) { all_free = false; } else { cached_undo_size += undo->size; } } ut_ad(size_of_rsegs >= (cached_undo_size + 1)); if (size_of_rsegs > (cached_undo_size + 1)) { /* There are pages besides cached pages that still hold active data. */ all_free = false; } } mutex_exit(&rseg->mutex); } if (!all_free) { /* rseg still holds active data.*/ return; } /* Step-3: Start the actual truncate. a. Remove rseg instance if added to purge queue before we initiate truncate. b. Execute actual truncate */ const ulint space_id = undo_trunc->get_marked_space_id(); ib::info() << "Truncating UNDO tablespace " << space_id; trx_purge_cleanse_purge_queue(undo_trunc); ut_a(srv_is_undo_tablespace(space_id)); /* Flush all to-be-discarded pages of the tablespace. During truncation, we do not want any writes to the to-be-discarded area, because we must set the space->size early in order to have deterministic page allocation. If a log checkpoint was completed at LSN earlier than our mini-transaction commit and the server was killed, then discarding the to-be-trimmed pages without flushing would break crash recovery. So, we cannot avoid the write. */ { FlushObserver observer( space_id, UT_LIST_GET_FIRST(purge_sys->query->thrs)->graph->trx, NULL); buf_LRU_flush_or_remove_pages(space_id, &observer); } log_free_check(); /* Adjust the tablespace metadata. */ fil_space_t* space = fil_truncate_prepare(space_id); if (!space) { ib::error() << "Failed to find UNDO tablespace " << space_id; return; } /* Undo tablespace always are a single file. */ ut_a(UT_LIST_GET_LEN(space->chain) == 1); fil_node_t* file = UT_LIST_GET_FIRST(space->chain); /* The undo tablespace files are never closed. */ ut_ad(file->is_open()); /* Re-initialize tablespace, in a single mini-transaction. */ mtr_t mtr; const ulint size = SRV_UNDO_TABLESPACE_SIZE_IN_PAGES; mtr.start(); mtr.x_lock_space(space, __FILE__, __LINE__); fil_truncate_log(space, size, &mtr); fsp_header_init(space_id, size, &mtr); mutex_enter(&fil_system->mutex); space->size = file->size = size; mutex_exit(&fil_system->mutex); for (ulint i = 0; i < undo_trunc->rsegs_size(); ++i) { trx_rseg_t* rseg = undo_trunc->get_ith_rseg(i); buf_block_t* rblock = trx_rseg_header_create( space_id, ULINT_MAX, rseg->id, &mtr); ut_ad(rblock); rseg->page_no = rblock ? rblock->page.id.page_no() : FIL_NULL; /* Before re-initialization ensure that we free the existing structure. There can't be any active transactions. */ ut_a(UT_LIST_GET_LEN(rseg->update_undo_list) == 0); ut_a(UT_LIST_GET_LEN(rseg->insert_undo_list) == 0); trx_undo_t* next_undo; for (trx_undo_t* undo = UT_LIST_GET_FIRST(rseg->update_undo_cached); undo != NULL; undo = next_undo) { next_undo = UT_LIST_GET_NEXT(undo_list, undo); UT_LIST_REMOVE(rseg->update_undo_cached, undo); MONITOR_DEC(MONITOR_NUM_UNDO_SLOT_CACHED); trx_undo_mem_free(undo); } for (trx_undo_t* undo = UT_LIST_GET_FIRST(rseg->insert_undo_cached); undo != NULL; undo = next_undo) { next_undo = UT_LIST_GET_NEXT(undo_list, undo); UT_LIST_REMOVE(rseg->insert_undo_cached, undo); MONITOR_DEC(MONITOR_NUM_UNDO_SLOT_CACHED); trx_undo_mem_free(undo); } UT_LIST_INIT(rseg->update_undo_list, &trx_undo_t::undo_list); UT_LIST_INIT(rseg->update_undo_cached, &trx_undo_t::undo_list); UT_LIST_INIT(rseg->insert_undo_list, &trx_undo_t::undo_list); UT_LIST_INIT(rseg->insert_undo_cached, &trx_undo_t::undo_list); /* These were written by trx_rseg_header_create(). */ ut_ad(mach_read_from_4(TRX_RSEG + TRX_RSEG_MAX_SIZE + rblock->frame) == uint32_t(rseg->max_size)); ut_ad(!mach_read_from_4(TRX_RSEG + TRX_RSEG_HISTORY_SIZE + rblock->frame)); rseg->max_size = ULINT_MAX; /* Initialize the undo log lists according to the rseg header */ rseg->curr_size = 1; rseg->trx_ref_count = 0; rseg->last_page_no = FIL_NULL; rseg->last_offset = 0; rseg->last_trx_no = 0; rseg->last_del_marks = FALSE; } mtr.commit_shrink(*space); /* No mutex; this is only updated by the purge coordinator. */ export_vars.innodb_undo_truncations++; if (purge_sys->rseg != NULL && purge_sys->rseg->last_page_no == FIL_NULL) { /* If purge_sys->rseg is pointing to rseg that was recently truncated then move to next rseg element. Note: Ideally purge_sys->rseg should be NULL because purge should complete processing of all the records but there is purge_batch_size that can force the purge loop to exit before all the records are purged and in this case purge_sys->rseg could point to a valid rseg waiting for next purge cycle. */ purge_sys->next_stored = false; purge_sys->rseg = NULL; } DBUG_EXECUTE_IF("ib_undo_trunc", ib::info() << "ib_undo_trunc"; log_write_up_to(LSN_MAX, true); DBUG_SUICIDE();); /* Completed truncate. Now it is safe to re-use the tablespace. */ for (ulint i = 0; i < undo_trunc->rsegs_size(); ++i) { trx_rseg_t* rseg = undo_trunc->get_ith_rseg(i); rseg->skip_allocation = false; } ib::info() << "Truncated UNDO tablespace " << space_id; undo_trunc->reset(); undo::Truncate::clear_trunc_list(); } /********************************************************************//** Removes unnecessary history data from rollback segments. NOTE that when this function is called, the caller must not have any latches on undo log pages! */ static void trx_purge_truncate_history( /*========================*/ purge_iter_t* limit, /*!< in: truncate limit */ const ReadView* view) /*!< in: purge view */ { ut_ad(trx_purge_check_limit()); /* We play safe and set the truncate limit at most to the purge view low_limit number, though this is not necessary */ if (limit->trx_no >= view->low_limit_no()) { limit->trx_no = view->low_limit_no(); limit->undo_no = 0; limit->undo_rseg_space = ULINT_UNDEFINED; } ut_ad(limit->trx_no <= purge_sys->view.low_limit_no()); for (ulint i = 0; i < TRX_SYS_N_RSEGS; ++i) { trx_rseg_t* rseg = trx_sys->rseg_array[i]; if (rseg != NULL) { ut_a(rseg->id == i); trx_purge_truncate_rseg_history(rseg, limit); } } /* UNDO tablespace truncate. We will try to truncate as much as we can (greedy approach). This will ensure when the server is idle we try and truncate all the UNDO tablespaces. */ for (ulint i = srv_undo_tablespaces_active; i--; ) { trx_purge_mark_undo_for_truncate(&purge_sys->undo_trunc); trx_purge_initiate_truncate(limit, &purge_sys->undo_trunc); } } /***********************************************************************//** Updates the last not yet purged history log info in rseg when we have purged a whole undo log. Advances also purge_sys->purge_trx_no past the purged log. */ static void trx_purge_rseg_get_next_history_log( /*================================*/ trx_rseg_t* rseg, /*!< in: rollback segment */ ulint* n_pages_handled)/*!< in/out: number of UNDO pages handled */ { page_t* undo_page; trx_ulogf_t* log_hdr; fil_addr_t prev_log_addr; trx_id_t trx_no; ibool del_marks; mtr_t mtr; mutex_enter(&(rseg->mutex)); ut_a(rseg->last_page_no != FIL_NULL); purge_sys->iter.trx_no = rseg->last_trx_no + 1; purge_sys->iter.undo_no = 0; purge_sys->iter.undo_rseg_space = ULINT_UNDEFINED; purge_sys->next_stored = false; mtr_start(&mtr); undo_page = trx_undo_page_get_s_latched( page_id_t(rseg->space, rseg->last_page_no), &mtr); log_hdr = undo_page + rseg->last_offset; /* Increase the purge page count by one for every handled log */ (*n_pages_handled)++; prev_log_addr = trx_purge_get_log_from_hist( flst_get_prev_addr(log_hdr + TRX_UNDO_HISTORY_NODE, &mtr)); if (prev_log_addr.page == FIL_NULL) { /* No logs left in the history list */ rseg->last_page_no = FIL_NULL; mutex_exit(&(rseg->mutex)); mtr_commit(&mtr); return; } mutex_exit(&rseg->mutex); mtr_commit(&mtr); /* Read the trx number and del marks from the previous log header */ mtr_start(&mtr); log_hdr = trx_undo_page_get_s_latched(page_id_t(rseg->space, prev_log_addr.page), &mtr) + prev_log_addr.boffset; trx_no = mach_read_from_8(log_hdr + TRX_UNDO_TRX_NO); del_marks = mach_read_from_2(log_hdr + TRX_UNDO_DEL_MARKS); mtr_commit(&mtr); mutex_enter(&(rseg->mutex)); rseg->last_page_no = prev_log_addr.page; rseg->last_offset = prev_log_addr.boffset; rseg->last_trx_no = trx_no; rseg->last_del_marks = del_marks; TrxUndoRsegs elem(rseg->last_trx_no); elem.push_back(rseg); /* Purge can also produce events, however these are already ordered in the rollback segment and any user generated event will be greater than the events that Purge produces. ie. Purge can never produce events from an empty rollback segment. */ mutex_enter(&purge_sys->pq_mutex); purge_sys->purge_queue.push(elem); mutex_exit(&purge_sys->pq_mutex); mutex_exit(&rseg->mutex); } /** Position the purge sys "iterator" on the undo record to use for purging. */ static void trx_purge_read_undo_rec() { ulint offset; ulint page_no; ib_uint64_t undo_no; ulint undo_rseg_space; purge_sys->hdr_offset = purge_sys->rseg->last_offset; page_no = purge_sys->hdr_page_no = purge_sys->rseg->last_page_no; if (purge_sys->rseg->last_del_marks) { mtr_t mtr; trx_undo_rec_t* undo_rec = NULL; mtr_start(&mtr); undo_rec = trx_undo_get_first_rec( purge_sys->rseg->space, purge_sys->hdr_page_no, purge_sys->hdr_offset, RW_S_LATCH, &mtr); if (undo_rec != NULL) { offset = page_offset(undo_rec); undo_no = trx_undo_rec_get_undo_no(undo_rec); undo_rseg_space = purge_sys->rseg->space; page_no = page_get_page_no(page_align(undo_rec)); } else { offset = 0; undo_no = 0; undo_rseg_space = ULINT_UNDEFINED; } mtr_commit(&mtr); } else { offset = 0; undo_no = 0; undo_rseg_space = ULINT_UNDEFINED; } purge_sys->offset = offset; purge_sys->page_no = page_no; purge_sys->iter.undo_no = undo_no; purge_sys->iter.undo_rseg_space = undo_rseg_space; purge_sys->next_stored = true; } /***********************************************************************//** Chooses the next undo log to purge and updates the info in purge_sys. This function is used to initialize purge_sys when the next record to purge is not known, and also to update the purge system info on the next record when purge has handled the whole undo log for a transaction. */ static void trx_purge_choose_next_log(void) /*===========================*/ { ut_ad(!purge_sys->next_stored); if (purge_sys->rseg_iter.set_next()) { trx_purge_read_undo_rec(); } else { /* There is nothing to do yet. */ os_thread_yield(); } } /***********************************************************************//** Gets the next record to purge and updates the info in the purge system. @return copy of an undo log record or pointer to the dummy undo log record */ static trx_undo_rec_t* trx_purge_get_next_rec( /*===================*/ ulint* n_pages_handled,/*!< in/out: number of UNDO pages handled */ mem_heap_t* heap) /*!< in: memory heap where copied */ { trx_undo_rec_t* rec; trx_undo_rec_t* rec_copy; trx_undo_rec_t* rec2; page_t* undo_page; page_t* page; ulint offset; ulint page_no; ulint space; mtr_t mtr; ut_ad(purge_sys->next_stored); ut_ad(purge_sys->iter.trx_no < purge_sys->view.low_limit_no()); space = purge_sys->rseg->space; page_no = purge_sys->page_no; offset = purge_sys->offset; if (offset == 0) { /* It is the dummy undo log record, which means that there is no need to purge this undo log */ trx_purge_rseg_get_next_history_log( purge_sys->rseg, n_pages_handled); /* Look for the next undo log and record to purge */ trx_purge_choose_next_log(); return(&trx_purge_dummy_rec); } mtr_start(&mtr); undo_page = trx_undo_page_get_s_latched(page_id_t(space, page_no), &mtr); rec = undo_page + offset; rec2 = rec; for (;;) { ulint type; trx_undo_rec_t* next_rec; ulint cmpl_info; /* Try first to find the next record which requires a purge operation from the same page of the same undo log */ next_rec = trx_undo_page_get_next_rec( rec2, purge_sys->hdr_page_no, purge_sys->hdr_offset); if (next_rec == NULL) { rec2 = trx_undo_get_next_rec( rec2, purge_sys->hdr_page_no, purge_sys->hdr_offset, &mtr); break; } rec2 = next_rec; type = trx_undo_rec_get_type(rec2); if (type == TRX_UNDO_DEL_MARK_REC) { break; } cmpl_info = trx_undo_rec_get_cmpl_info(rec2); if (trx_undo_rec_get_extern_storage(rec2)) { break; } if ((type == TRX_UNDO_UPD_EXIST_REC) && !(cmpl_info & UPD_NODE_NO_ORD_CHANGE)) { break; } } if (rec2 == NULL) { mtr_commit(&mtr); trx_purge_rseg_get_next_history_log( purge_sys->rseg, n_pages_handled); /* Look for the next undo log and record to purge */ trx_purge_choose_next_log(); mtr_start(&mtr); undo_page = trx_undo_page_get_s_latched( page_id_t(space, page_no), &mtr); rec = undo_page + offset; } else { page = page_align(rec2); purge_sys->offset = rec2 - page; purge_sys->page_no = page_get_page_no(page); purge_sys->iter.undo_no = trx_undo_rec_get_undo_no(rec2); purge_sys->iter.undo_rseg_space = space; if (undo_page != page) { /* We advance to a new page of the undo log: */ (*n_pages_handled)++; } } rec_copy = trx_undo_rec_copy(rec, heap); mtr_commit(&mtr); return(rec_copy); } /********************************************************************//** Fetches the next undo log record from the history list to purge. It must be released with the corresponding release function. @return copy of an undo log record or pointer to trx_purge_dummy_rec, if the whole undo log can skipped in purge; NULL if none left */ static MY_ATTRIBUTE((warn_unused_result)) trx_undo_rec_t* trx_purge_fetch_next_rec( /*=====================*/ roll_ptr_t* roll_ptr, /*!< out: roll pointer to undo record */ ulint* n_pages_handled,/*!< in/out: number of UNDO log pages handled */ mem_heap_t* heap) /*!< in: memory heap where copied */ { if (!purge_sys->next_stored) { trx_purge_choose_next_log(); if (!purge_sys->next_stored) { DBUG_PRINT("ib_purge", ("no logs left in the history list")); return(NULL); } } if (purge_sys->iter.trx_no >= purge_sys->view.low_limit_no()) { return(NULL); } /* fprintf(stderr, "Thread %lu purging trx %llu undo record %llu\n", os_thread_get_curr_id(), iter->trx_no, iter->undo_no); */ *roll_ptr = trx_undo_build_roll_ptr( FALSE, purge_sys->rseg->id, purge_sys->page_no, purge_sys->offset); /* The following call will advance the stored values of the purge iterator. */ return(trx_purge_get_next_rec(n_pages_handled, heap)); } /*******************************************************************//** This function runs a purge batch. @return number of undo log pages handled in the batch */ static ulint trx_purge_attach_undo_recs( /*=======================*/ ulint n_purge_threads,/*!< in: number of purge threads */ purge_sys_t* purge_sys, /*!< in/out: purge instance */ ulint batch_size) /*!< in: no. of pages to purge */ { que_thr_t* thr; ulint i; ulint n_pages_handled = 0; ulint n_thrs = UT_LIST_GET_LEN(purge_sys->query->thrs); ut_a(n_purge_threads > 0); purge_sys->limit = purge_sys->iter; #ifdef UNIV_DEBUG i = 0; /* Debug code to validate some pre-requisites and reset done flag. */ for (thr = UT_LIST_GET_FIRST(purge_sys->query->thrs); thr != NULL && i < n_purge_threads; thr = UT_LIST_GET_NEXT(thrs, thr), ++i) { purge_node_t* node; /* Get the purge node. */ node = (purge_node_t*) thr->child; ut_ad(que_node_get_type(node) == QUE_NODE_PURGE); ut_ad(node->undo_recs == NULL); ut_ad(!node->in_progress); ut_d(node->in_progress = true); } /* There should never be fewer nodes than threads, the inverse however is allowed because we only use purge threads as needed. */ ut_ad(i == n_purge_threads); #endif /* Fetch and parse the UNDO records. The UNDO records are added to a per purge node vector. */ thr = UT_LIST_GET_FIRST(purge_sys->query->thrs); ut_a(n_thrs > 0 && thr != NULL); ut_ad(trx_purge_check_limit()); i = 0; while (UNIV_LIKELY(srv_undo_sources) || !srv_fast_shutdown) { purge_node_t* node; trx_purge_rec_t* purge_rec; ut_a(!thr->is_active); /* Get the purge node. */ node = (purge_node_t*) thr->child; ut_a(que_node_get_type(node) == QUE_NODE_PURGE); purge_rec = static_cast( mem_heap_zalloc(node->heap, sizeof(*purge_rec))); /* Track the max {trx_id, undo_no} for truncating the UNDO logs once we have purged the records. */ if (trx_purge_check_limit()) { purge_sys->limit = purge_sys->iter; } /* Fetch the next record, and advance the purge_sys->iter. */ purge_rec->undo_rec = trx_purge_fetch_next_rec( &purge_rec->roll_ptr, &n_pages_handled, node->heap); if (purge_rec->undo_rec != NULL) { if (node->undo_recs == NULL) { node->undo_recs = ib_vector_create( ib_heap_allocator_create(node->heap), sizeof(trx_purge_rec_t), batch_size); } else { ut_a(!ib_vector_is_empty(node->undo_recs)); } ib_vector_push(node->undo_recs, purge_rec); if (n_pages_handled >= batch_size) { break; } } else { break; } thr = UT_LIST_GET_NEXT(thrs, thr); if (!(++i % n_purge_threads)) { thr = UT_LIST_GET_FIRST(purge_sys->query->thrs); } ut_a(thr != NULL); } ut_ad(trx_purge_check_limit()); return(n_pages_handled); } /*******************************************************************//** Calculate the DML delay required. @return delay in microseconds or ULINT_MAX */ static ulint trx_purge_dml_delay(void) /*=====================*/ { /* Determine how much data manipulation language (DML) statements need to be delayed in order to reduce the lagging of the purge thread. */ ulint delay = 0; /* in microseconds; default: no delay */ /* If purge lag is set (ie. > 0) then calculate the new DML delay. Note: we do a dirty read of the trx_sys_t data structure here, without holding trx_sys->mutex. */ if (srv_max_purge_lag > 0) { float ratio; ratio = float(trx_sys->rseg_history_len) / srv_max_purge_lag; if (ratio > 1.0) { /* If the history list length exceeds the srv_max_purge_lag, the data manipulation statements are delayed by at least 5000 microseconds. */ delay = (ulint) ((ratio - .5) * 10000); } if (delay > srv_max_purge_lag_delay) { delay = srv_max_purge_lag_delay; } MONITOR_SET(MONITOR_DML_PURGE_DELAY, delay); } return(delay); } /*******************************************************************//** Wait for pending purge jobs to complete. */ static void trx_purge_wait_for_workers_to_complete( /*===================================*/ purge_sys_t* purge_sys) /*!< in: purge instance */ { ulint n_submitted = purge_sys->n_submitted; /* Ensure that the work queue empties out. */ while ((ulint) my_atomic_loadlint(&purge_sys->n_completed) != n_submitted) { if (srv_get_task_queue_length() > 0) { srv_release_threads(SRV_WORKER, 1); } os_thread_yield(); } /* None of the worker threads should be doing any work. */ ut_a(purge_sys->n_submitted == purge_sys->n_completed); /* There should be no outstanding tasks as long as the worker threads are active. */ ut_a(srv_get_task_queue_length() == 0); } /*******************************************************************//** This function runs a purge batch. @return number of undo log pages handled in the batch */ ulint trx_purge( /*======*/ ulint n_purge_threads, /*!< in: number of purge tasks to submit to the work queue */ ulint batch_size, /*!< in: the maximum number of records to purge in one batch */ bool truncate /*!< in: truncate history if true */ #ifdef UNIV_DEBUG , srv_slot_t *slot /*!< in/out: purge coordinator thread slot */ #endif ) { que_thr_t* thr = NULL; ulint n_pages_handled; ut_a(n_purge_threads > 0); srv_dml_needed_delay = trx_purge_dml_delay(); /* The number of tasks submitted should be completed. */ ut_a(purge_sys->n_submitted == purge_sys->n_completed); rw_lock_x_lock(&purge_sys->latch); trx_sys->mvcc->clone_oldest_view(&purge_sys->view); rw_lock_x_unlock(&purge_sys->latch); #ifdef UNIV_DEBUG if (srv_purge_view_update_only_debug) { return(0); } #endif /* UNIV_DEBUG */ /* Fetch the UNDO recs that need to be purged. */ n_pages_handled = trx_purge_attach_undo_recs( n_purge_threads, purge_sys, batch_size); /* Do we do an asynchronous purge or not ? */ if (n_purge_threads > 1) { ulint i = 0; /* Submit the tasks to the work queue. */ for (i = 0; i < n_purge_threads - 1; ++i) { thr = que_fork_scheduler_round_robin( purge_sys->query, thr); ut_a(thr != NULL); srv_que_task_enqueue_low(thr); } thr = que_fork_scheduler_round_robin(purge_sys->query, thr); ut_a(thr != NULL); purge_sys->n_submitted += n_purge_threads - 1; goto run_synchronously; /* Do it synchronously. */ } else { thr = que_fork_scheduler_round_robin(purge_sys->query, NULL); ut_ad(thr); run_synchronously: ++purge_sys->n_submitted; ut_d(thr->thread_slot = slot); que_run_threads(thr); my_atomic_addlint( &purge_sys->n_completed, 1); if (n_purge_threads > 1) { trx_purge_wait_for_workers_to_complete(purge_sys); } } ut_a(purge_sys->n_submitted == purge_sys->n_completed); #ifdef UNIV_DEBUG rw_lock_x_lock(&purge_sys->latch); if (purge_sys->limit.trx_no == 0) { purge_sys->done = purge_sys->iter; } else { purge_sys->done = purge_sys->limit; } rw_lock_x_unlock(&purge_sys->latch); #endif /* UNIV_DEBUG */ if (truncate) { trx_purge_truncate_history( purge_sys->limit.trx_no ? &purge_sys->limit : &purge_sys->iter, &purge_sys->view); } MONITOR_INC_VALUE(MONITOR_PURGE_INVOKED, 1); MONITOR_INC_VALUE(MONITOR_PURGE_N_PAGE_HANDLED, n_pages_handled); return(n_pages_handled); } /*******************************************************************//** Get the purge state. @return purge state. */ purge_state_t trx_purge_state(void) /*=================*/ { purge_state_t state; rw_lock_x_lock(&purge_sys->latch); state = purge_sys->state; rw_lock_x_unlock(&purge_sys->latch); return(state); } /*******************************************************************//** Stop purge and wait for it to stop, move to PURGE_STATE_STOP. */ void trx_purge_stop(void) /*================*/ { rw_lock_x_lock(&purge_sys->latch); switch (purge_sys->state) { case PURGE_STATE_INIT: case PURGE_STATE_DISABLED: ut_error; case PURGE_STATE_EXIT: /* Shutdown must have been initiated during FLUSH TABLES FOR EXPORT. */ ut_ad(!srv_undo_sources); unlock: rw_lock_x_unlock(&purge_sys->latch); break; case PURGE_STATE_STOP: ut_ad(srv_n_purge_threads > 0); ++purge_sys->n_stop; purge_sys->state = PURGE_STATE_STOP; if (!purge_sys->running) { goto unlock; } ib::info() << "Waiting for purge to stop"; do { rw_lock_x_unlock(&purge_sys->latch); os_thread_sleep(10000); rw_lock_x_lock(&purge_sys->latch); } while (purge_sys->running); goto unlock; case PURGE_STATE_RUN: ut_ad(srv_n_purge_threads > 0); ++purge_sys->n_stop; ib::info() << "Stopping purge"; /* We need to wakeup the purge thread in case it is suspended, so that it can acknowledge the state change. */ const int64_t sig_count = os_event_reset(purge_sys->event); purge_sys->state = PURGE_STATE_STOP; rw_lock_x_unlock(&purge_sys->latch); srv_purge_wakeup(); /* Wait for purge coordinator to signal that it is suspended. */ os_event_wait_low(purge_sys->event, sig_count); } MONITOR_INC_VALUE(MONITOR_PURGE_STOP_COUNT, 1); } /*******************************************************************//** Resume purge, move to PURGE_STATE_RUN. */ void trx_purge_run(void) /*===============*/ { rw_lock_x_lock(&purge_sys->latch); switch (purge_sys->state) { case PURGE_STATE_EXIT: /* Shutdown must have been initiated during FLUSH TABLES FOR EXPORT. */ ut_ad(!srv_undo_sources); break; case PURGE_STATE_INIT: case PURGE_STATE_DISABLED: ut_error; case PURGE_STATE_RUN: ut_a(!purge_sys->n_stop); break; case PURGE_STATE_STOP: ut_a(purge_sys->n_stop); if (--purge_sys->n_stop == 0) { ib::info() << "Resuming purge"; purge_sys->state = PURGE_STATE_RUN; } MONITOR_INC_VALUE(MONITOR_PURGE_RESUME_COUNT, 1); } rw_lock_x_unlock(&purge_sys->latch); srv_purge_wakeup(); }