/***************************************************************************** Copyright (c) 1996, 2019, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2017, 2022, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file trx/trx0rec.cc Transaction undo log record Created 3/26/1996 Heikki Tuuri *******************************************************/ #include "trx0rec.h" #include "fsp0fsp.h" #include "mach0data.h" #include "trx0undo.h" #include "mtr0log.h" #include "dict0dict.h" #include "ut0mem.h" #include "row0ext.h" #include "row0upd.h" #include "que0que.h" #include "trx0purge.h" #include "trx0rseg.h" #include "row0row.h" #include "row0mysql.h" #include "row0ins.h" /** The search tuple corresponding to TRX_UNDO_INSERT_METADATA. */ const dtuple_t trx_undo_metadata = { /* This also works for REC_INFO_METADATA_ALTER, because the delete-mark (REC_INFO_DELETED_FLAG) is ignored when searching. */ REC_INFO_METADATA_ADD, 0, 0, NULL, 0, NULL #ifdef UNIV_DEBUG , DATA_TUPLE_MAGIC_N #endif /* UNIV_DEBUG */ }; /*=========== UNDO LOG RECORD CREATION AND DECODING ====================*/ /** Calculate the free space left for extending an undo log record. @param undo_block undo log page @param ptr current end of the undo page @return bytes left */ static ulint trx_undo_left(const buf_block_t *undo_block, const byte *ptr) { ut_ad(ptr >= &undo_block->page.frame[TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_HDR_SIZE]); /* The 10 is supposed to be an extra safety margin (and needed for compatibility with older versions) */ lint left= srv_page_size - (ptr - undo_block->page.frame) - (10 + FIL_PAGE_DATA_END); ut_ad(left >= 0); return left < 0 ? 0 : static_cast(left); } /**********************************************************************//** Set the next and previous pointers in the undo page for the undo record that was written to ptr. Update the first free value by the number of bytes written for this undo record. @return offset of the inserted entry on the page if succeeded, 0 if fail */ static uint16_t trx_undo_page_set_next_prev_and_add( /*================================*/ buf_block_t* undo_block, /*!< in/out: undo log page */ byte* ptr, /*!< in: ptr up to where data has been written on this undo page. */ mtr_t* mtr) /*!< in: mtr */ { ut_ad(page_align(ptr) == undo_block->page.frame); if (UNIV_UNLIKELY(trx_undo_left(undo_block, ptr) < 2)) return 0; byte *ptr_to_first_free= my_assume_aligned<2>(TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_FREE + undo_block->page.frame); const uint16_t first_free= mach_read_from_2(ptr_to_first_free); /* Write offset of the previous undo log record */ memcpy(ptr, ptr_to_first_free, 2); ptr += 2; const uint16_t end_of_rec= static_cast (ptr - undo_block->page.frame); /* Update the offset to first free undo record */ mach_write_to_2(ptr_to_first_free, end_of_rec); /* Write offset of the next undo log record */ memcpy(undo_block->page.frame + first_free, ptr_to_first_free, 2); const byte *start= undo_block->page.frame + first_free + 2; mtr->undo_append(*undo_block, start, ptr - start - 2); return first_free; } /** Virtual column undo log version. To distinguish it from a length value in 5.7.8 undo log, it starts with 0xF1 */ static const ulint VIRTUAL_COL_UNDO_FORMAT_1 = 0xF1; /** Write virtual column index info (index id and column position in index) to the undo log @param[in,out] undo_block undo log page @param[in] table the table @param[in] pos the virtual column position @param[in] ptr undo log record being written @param[in] first_v_col whether this is the first virtual column which could start with a version marker @return new undo log pointer */ static byte* trx_undo_log_v_idx( buf_block_t* undo_block, const dict_table_t* table, ulint pos, byte* ptr, bool first_v_col) { ut_ad(pos < table->n_v_def); dict_v_col_t* vcol = dict_table_get_nth_v_col(table, pos); byte* old_ptr; ut_ad(!vcol->v_indexes.empty()); ulint size = first_v_col ? 1 + 2 : 2; const ulint avail = trx_undo_left(undo_block, ptr); /* The mach_write_compressed(ptr, flen) in trx_undo_page_report_modify() will consume additional 1 to 5 bytes. */ if (avail < size + 5) { return(NULL); } ulint n_idx = 0; for (const auto& v_index : vcol->v_indexes) { n_idx++; /* FIXME: index->id is 64 bits! */ size += mach_get_compressed_size(uint32_t(v_index.index->id)); size += mach_get_compressed_size(v_index.nth_field); } size += mach_get_compressed_size(n_idx); if (avail < size + 5) { return(NULL); } ut_d(const byte* orig_ptr = ptr); if (first_v_col) { /* write the version marker */ mach_write_to_1(ptr, VIRTUAL_COL_UNDO_FORMAT_1); ptr += 1; } old_ptr = ptr; ptr += 2; ptr += mach_write_compressed(ptr, n_idx); for (const auto& v_index : vcol->v_indexes) { ptr += mach_write_compressed( /* FIXME: index->id is 64 bits! */ ptr, uint32_t(v_index.index->id)); ptr += mach_write_compressed(ptr, v_index.nth_field); } ut_ad(orig_ptr + size == ptr); mach_write_to_2(old_ptr, ulint(ptr - old_ptr)); return(ptr); } /** Read virtual column index from undo log, and verify the column is still indexed, and return its position @param[in] table the table @param[in] ptr undo log pointer @param[out] col_pos the column number or FIL_NULL if the column is not indexed any more @return remaining part of undo log record after reading these values */ static const byte* trx_undo_read_v_idx_low( const dict_table_t* table, const byte* ptr, uint32_t* col_pos) { ulint len = mach_read_from_2(ptr); const byte* old_ptr = ptr; *col_pos = FIL_NULL; ptr += 2; ulint num_idx = mach_read_next_compressed(&ptr); ut_ad(num_idx > 0); dict_index_t* clust_index = dict_table_get_first_index(table); for (ulint i = 0; i < num_idx; i++) { index_id_t id = mach_read_next_compressed(&ptr); ulint pos = mach_read_next_compressed(&ptr); dict_index_t* index = dict_table_get_next_index(clust_index); while (index != NULL) { /* Return if we find a matching index. TODO: in the future, it might be worth to add checks on other indexes */ if (index->id == id) { const dict_col_t* col = dict_index_get_nth_col( index, pos); ut_ad(col->is_virtual()); const dict_v_col_t* vcol = reinterpret_cast< const dict_v_col_t*>(col); *col_pos = vcol->v_pos; return(old_ptr + len); } index = dict_table_get_next_index(index); } } return(old_ptr + len); } /** Read virtual column index from undo log or online log if the log contains such info, and in the undo log case, verify the column is still indexed, and output its position @param[in] table the table @param[in] ptr undo log pointer @param[in] first_v_col if this is the first virtual column, which has the version marker @param[in,out] is_undo_log this function is used to parse both undo log, and online log for virtual columns. So check to see if this is undo log. When first_v_col is true, is_undo_log is output, when first_v_col is false, is_undo_log is input @param[out] field_no the column number, or FIL_NULL if not indexed @return remaining part of undo log record after reading these values */ const byte* trx_undo_read_v_idx( const dict_table_t* table, const byte* ptr, bool first_v_col, bool* is_undo_log, uint32_t* field_no) { /* Version marker only put on the first virtual column */ if (first_v_col) { /* Undo log has the virtual undo log marker */ *is_undo_log = (mach_read_from_1(ptr) == VIRTUAL_COL_UNDO_FORMAT_1); if (*is_undo_log) { ptr += 1; } } if (*is_undo_log) { ptr = trx_undo_read_v_idx_low(table, ptr, field_no); } else { *field_no -= REC_MAX_N_FIELDS; } return(ptr); } /** Reports in the undo log of an insert of virtual columns. @param[in] undo_block undo log page @param[in] table the table @param[in] row dtuple contains the virtual columns @param[in,out] ptr log ptr @return true if write goes well, false if out of space */ static bool trx_undo_report_insert_virtual( buf_block_t* undo_block, dict_table_t* table, const dtuple_t* row, byte** ptr) { byte* start = *ptr; bool first_v_col = true; if (trx_undo_left(undo_block, *ptr) < 2) { return(false); } /* Reserve 2 bytes to write the number of bytes the stored fields take in this undo record */ *ptr += 2; for (ulint col_no = 0; col_no < dict_table_get_n_v_cols(table); col_no++) { const dict_v_col_t* col = dict_table_get_nth_v_col(table, col_no); if (col->m_col.ord_part) { /* make sure enought space to write the length */ if (trx_undo_left(undo_block, *ptr) < 5) { return(false); } ulint pos = col_no; pos += REC_MAX_N_FIELDS; *ptr += mach_write_compressed(*ptr, pos); *ptr = trx_undo_log_v_idx(undo_block, table, col_no, *ptr, first_v_col); first_v_col = false; if (*ptr == NULL) { return(false); } const dfield_t* vfield = dtuple_get_nth_v_field( row, col->v_pos); switch (ulint flen = vfield->len) { case 0: case UNIV_SQL_NULL: if (trx_undo_left(undo_block, *ptr) < 5) { return(false); } *ptr += mach_write_compressed(*ptr, flen); break; default: ulint max_len = dict_max_v_field_len_store_undo( table, col_no); if (flen > max_len) { flen = max_len; } if (trx_undo_left(undo_block, *ptr) < flen + 5) { return(false); } *ptr += mach_write_compressed(*ptr, flen); memcpy(*ptr, vfield->data, flen); *ptr += flen; } } } /* Always mark the end of the log with 2 bytes length field */ mach_write_to_2(start, ulint(*ptr - start)); return(true); } /** Reports in the undo log of an insert of a clustered index record. @param undo_block undo log page @param trx transaction @param index clustered index @param clust_entry index entry which will be inserted to the clustered index @param mtr mini-transaction @param write_empty write empty table undo log record @return offset of the inserted entry on the page if succeed, 0 if fail */ static uint16_t trx_undo_page_report_insert( buf_block_t* undo_block, trx_t* trx, dict_index_t* index, const dtuple_t* clust_entry, mtr_t* mtr, bool write_empty) { ut_ad(index->is_primary()); /* MariaDB 10.3.1+ in trx_undo_page_init() always initializes TRX_UNDO_PAGE_TYPE as 0, but previous versions wrote TRX_UNDO_INSERT == 1 into insert_undo pages, or TRX_UNDO_UPDATE == 2 into update_undo pages. */ ut_ad(mach_read_from_2(TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_TYPE + undo_block->page.frame) <= 2); uint16_t first_free = mach_read_from_2(my_assume_aligned<2> (TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_FREE + undo_block->page.frame)); byte* ptr = undo_block->page.frame + first_free; if (trx_undo_left(undo_block, ptr) < 2 + 1 + 11 + 11) { /* Not enough space for writing the general parameters */ return(0); } /* Reserve 2 bytes for the pointer to the next undo log record */ ptr += 2; /* Store first some general parameters to the undo log */ *ptr++ = TRX_UNDO_INSERT_REC; ptr += mach_u64_write_much_compressed(ptr, trx->undo_no); ptr += mach_u64_write_much_compressed(ptr, index->table->id); if (write_empty) { /* Table is in bulk operation */ undo_block->page.frame[first_free + 2] = TRX_UNDO_EMPTY; goto done; } /*----------------------------------------*/ /* Store then the fields required to uniquely determine the record to be inserted in the clustered index */ if (UNIV_UNLIKELY(clust_entry->info_bits != 0)) { ut_ad(clust_entry->is_metadata()); ut_ad(index->is_instant()); ut_ad(undo_block->page.frame[first_free + 2] == TRX_UNDO_INSERT_REC); undo_block->page.frame[first_free + 2] = TRX_UNDO_INSERT_METADATA; goto done; } for (unsigned i = 0; i < dict_index_get_n_unique(index); i++) { const dfield_t* field = dtuple_get_nth_field(clust_entry, i); ulint flen = dfield_get_len(field); if (trx_undo_left(undo_block, ptr) < 5) { return(0); } ptr += mach_write_compressed(ptr, flen); switch (flen) { case 0: case UNIV_SQL_NULL: break; default: if (trx_undo_left(undo_block, ptr) < flen) { return(0); } memcpy(ptr, dfield_get_data(field), flen); ptr += flen; } } if (index->table->n_v_cols) { if (!trx_undo_report_insert_virtual( undo_block, index->table, clust_entry, &ptr)) { return(0); } } done: return(trx_undo_page_set_next_prev_and_add(undo_block, ptr, mtr)); } /**********************************************************************//** Reads from an undo log record the general parameters. @return remaining part of undo log record after reading these values */ byte* trx_undo_rec_get_pars( /*==================*/ trx_undo_rec_t* undo_rec, /*!< in: undo log record */ ulint* type, /*!< out: undo record type: TRX_UNDO_INSERT_REC, ... */ ulint* cmpl_info, /*!< out: compiler info, relevant only for update type records */ bool* updated_extern, /*!< out: true if we updated an externally stored fild */ undo_no_t* undo_no, /*!< out: undo log record number */ table_id_t* table_id) /*!< out: table id */ { const byte* ptr; ulint type_cmpl; ptr = undo_rec + 2; type_cmpl = mach_read_from_1(ptr); ptr++; *updated_extern = !!(type_cmpl & TRX_UNDO_UPD_EXTERN); type_cmpl &= ~TRX_UNDO_UPD_EXTERN; *type = type_cmpl & (TRX_UNDO_CMPL_INFO_MULT - 1); ut_ad(*type >= TRX_UNDO_RENAME_TABLE); ut_ad(*type <= TRX_UNDO_EMPTY); *cmpl_info = type_cmpl / TRX_UNDO_CMPL_INFO_MULT; *undo_no = mach_read_next_much_compressed(&ptr); *table_id = mach_read_next_much_compressed(&ptr); ut_ad(*table_id); return(const_cast(ptr)); } /** Read from an undo log record a non-virtual column value. @param[in,out] ptr pointer to remaining part of the undo record @param[in,out] field stored field @param[in,out] len length of the field, or UNIV_SQL_NULL @param[in,out] orig_len original length of the locally stored part of an externally stored column, or 0 @return remaining part of undo log record after reading these values */ byte* trx_undo_rec_get_col_val( const byte* ptr, const byte** field, uint32_t* len, uint32_t* orig_len) { *len = mach_read_next_compressed(&ptr); *orig_len = 0; switch (*len) { case UNIV_SQL_NULL: *field = NULL; break; case UNIV_EXTERN_STORAGE_FIELD: *orig_len = mach_read_next_compressed(&ptr); *len = mach_read_next_compressed(&ptr); *field = ptr; ptr += *len & ~SPATIAL_STATUS_MASK; ut_ad(*orig_len >= BTR_EXTERN_FIELD_REF_SIZE); ut_ad(*len > *orig_len); /* @see dtuple_convert_big_rec() */ ut_ad(*len >= BTR_EXTERN_FIELD_REF_SIZE); /* we do not have access to index->table here ut_ad(dict_table_has_atomic_blobs(index->table) || *len >= col->max_prefix + BTR_EXTERN_FIELD_REF_SIZE); */ *len += UNIV_EXTERN_STORAGE_FIELD; break; default: *field = ptr; if (*len >= UNIV_EXTERN_STORAGE_FIELD) { ptr += (*len - UNIV_EXTERN_STORAGE_FIELD) & ~SPATIAL_STATUS_MASK; } else { ptr += *len; } } return(const_cast(ptr)); } /*******************************************************************//** Builds a row reference from an undo log record. @return pointer to remaining part of undo record */ byte* trx_undo_rec_get_row_ref( /*=====================*/ byte* ptr, /*!< in: remaining part of a copy of an undo log record, at the start of the row reference; NOTE that this copy of the undo log record must be preserved as long as the row reference is used, as we do NOT copy the data in the record! */ dict_index_t* index, /*!< in: clustered index */ const dtuple_t**ref, /*!< out, own: row reference */ mem_heap_t* heap) /*!< in: memory heap from which the memory needed is allocated */ { ulint ref_len; ulint i; ut_ad(index && ptr && ref && heap); ut_a(dict_index_is_clust(index)); ref_len = dict_index_get_n_unique(index); dtuple_t* tuple = dtuple_create(heap, ref_len); *ref = tuple; dict_index_copy_types(tuple, index, ref_len); for (i = 0; i < ref_len; i++) { const byte* field; uint32_t len, orig_len; dfield_t* dfield = dtuple_get_nth_field(tuple, i); ptr = trx_undo_rec_get_col_val(ptr, &field, &len, &orig_len); dfield_set_data(dfield, field, len); } return(ptr); } /*******************************************************************//** Skips a row reference from an undo log record. @return pointer to remaining part of undo record */ static byte* trx_undo_rec_skip_row_ref( /*======================*/ byte* ptr, /*!< in: remaining part in update undo log record, at the start of the row reference */ dict_index_t* index) /*!< in: clustered index */ { ulint ref_len; ulint i; ut_ad(index && ptr); ut_a(dict_index_is_clust(index)); ref_len = dict_index_get_n_unique(index); for (i = 0; i < ref_len; i++) { const byte* field; uint32_t len, orig_len; ptr = trx_undo_rec_get_col_val(ptr, &field, &len, &orig_len); } return(ptr); } /** Fetch a prefix of an externally stored column, for writing to the undo log of an update or delete marking of a clustered index record. @param[out] ext_buf buffer to hold the prefix data and BLOB pointer @param[in] prefix_len prefix size to store in the undo log @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] field an externally stored column @param[in,out] len input: length of field; output: used length of ext_buf @return ext_buf */ static byte* trx_undo_page_fetch_ext( byte* ext_buf, ulint prefix_len, ulint zip_size, const byte* field, ulint* len) { /* Fetch the BLOB. */ ulint ext_len = btr_copy_externally_stored_field_prefix( ext_buf, prefix_len, zip_size, field, *len); /* BLOBs should always be nonempty. */ ut_a(ext_len); /* Append the BLOB pointer to the prefix. */ memcpy(ext_buf + ext_len, field + *len - BTR_EXTERN_FIELD_REF_SIZE, BTR_EXTERN_FIELD_REF_SIZE); *len = ext_len + BTR_EXTERN_FIELD_REF_SIZE; return(ext_buf); } /** Writes to the undo log a prefix of an externally stored column. @param[out] ptr undo log position, at least 15 bytes must be available @param[out] ext_buf a buffer of DICT_MAX_FIELD_LEN_BY_FORMAT() size, or NULL when should not fetch a longer prefix @param[in] prefix_len prefix size to store in the undo log @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in,out] field the locally stored part of the externally stored column @param[in,out] len length of field, in bytes @param[in] spatial_status whether the column is used by spatial index or regular index @return undo log position */ static byte* trx_undo_page_report_modify_ext( byte* ptr, byte* ext_buf, ulint prefix_len, ulint zip_size, const byte** field, ulint* len, spatial_status_t spatial_status) { ulint spatial_len= 0; switch (spatial_status) { case SPATIAL_UNKNOWN: case SPATIAL_NONE: break; case SPATIAL_MIXED: case SPATIAL_ONLY: spatial_len = DATA_MBR_LEN; break; } /* Encode spatial status into length. */ spatial_len |= ulint(spatial_status) << SPATIAL_STATUS_SHIFT; if (spatial_status == SPATIAL_ONLY) { /* If the column is only used by gis index, log its MBR is enough.*/ ptr += mach_write_compressed(ptr, UNIV_EXTERN_STORAGE_FIELD + spatial_len); return(ptr); } if (ext_buf) { ut_a(prefix_len > 0); /* If an ordering column is externally stored, we will have to store a longer prefix of the field. In this case, write to the log a marker followed by the original length and the real length of the field. */ ptr += mach_write_compressed(ptr, UNIV_EXTERN_STORAGE_FIELD); ptr += mach_write_compressed(ptr, *len); *field = trx_undo_page_fetch_ext(ext_buf, prefix_len, zip_size, *field, len); ptr += mach_write_compressed(ptr, *len + spatial_len); } else { ptr += mach_write_compressed(ptr, UNIV_EXTERN_STORAGE_FIELD + *len + spatial_len); } return(ptr); } /** Get MBR from a Geometry column stored externally @param[out] mbr MBR to fill @param[in] zip_size ROW_FORMAT=COMPRESSED page size, or 0 @param[in] field field contain the geometry data @param[in,out] len length of field, in bytes */ static void trx_undo_get_mbr_from_ext( /*======================*/ double* mbr, ulint zip_size, const byte* field, ulint* len) { uchar* dptr = NULL; ulint dlen; mem_heap_t* heap = mem_heap_create(100); dptr = btr_copy_externally_stored_field( &dlen, field, zip_size, *len, heap); if (dlen <= GEO_DATA_HEADER_SIZE) { for (uint i = 0; i < SPDIMS; ++i) { mbr[i * 2] = DBL_MAX; mbr[i * 2 + 1] = -DBL_MAX; } } else { rtree_mbr_from_wkb(dptr + GEO_DATA_HEADER_SIZE, static_cast(dlen - GEO_DATA_HEADER_SIZE), SPDIMS, mbr); } mem_heap_free(heap); } /**********************************************************************//** Reports in the undo log of an update or delete marking of a clustered index record. @return byte offset of the inserted undo log entry on the page if succeed, 0 if fail */ static uint16_t trx_undo_page_report_modify( /*========================*/ buf_block_t* undo_block, /*!< in: undo log page */ trx_t* trx, /*!< in: transaction */ dict_index_t* index, /*!< in: clustered index where update or delete marking is done */ const rec_t* rec, /*!< in: clustered index record which has NOT yet been modified */ const rec_offs* offsets, /*!< in: rec_get_offsets(rec, index) */ const upd_t* update, /*!< in: update vector which tells the columns to be updated; in the case of a delete, this should be set to NULL */ ulint cmpl_info, /*!< in: compiler info on secondary index updates */ const dtuple_t* row, /*!< in: clustered index row contains virtual column info */ mtr_t* mtr) /*!< in: mtr */ { ut_ad(index->is_primary()); ut_ad(rec_offs_validate(rec, index, offsets)); /* MariaDB 10.3.1+ in trx_undo_page_init() always initializes TRX_UNDO_PAGE_TYPE as 0, but previous versions wrote TRX_UNDO_INSERT == 1 into insert_undo pages, or TRX_UNDO_UPDATE == 2 into update_undo pages. */ ut_ad(mach_read_from_2(TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_TYPE + undo_block->page.frame) <= 2); byte* ptr_to_first_free = my_assume_aligned<2>( TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_FREE + undo_block->page.frame); const uint16_t first_free = mach_read_from_2(ptr_to_first_free); byte *ptr = undo_block->page.frame + first_free; if (trx_undo_left(undo_block, ptr) < 50) { /* NOTE: the value 50 must be big enough so that the general fields written below fit on the undo log page */ return 0; } /* Reserve 2 bytes for the pointer to the next undo log record */ ptr += 2; dict_table_t* table = index->table; const byte* field; ulint flen; ulint col_no; ulint type_cmpl; byte* type_cmpl_ptr; ulint i; trx_id_t trx_id; ibool ignore_prefix = FALSE; byte ext_buf[REC_VERSION_56_MAX_INDEX_COL_LEN + BTR_EXTERN_FIELD_REF_SIZE]; bool first_v_col = true; /* Store first some general parameters to the undo log */ if (!update) { ut_ad(!rec_is_delete_marked(rec, dict_table_is_comp(table))); type_cmpl = TRX_UNDO_DEL_MARK_REC; } else if (rec_is_delete_marked(rec, dict_table_is_comp(table))) { /* In delete-marked records, DB_TRX_ID must always refer to an existing update_undo log record. */ ut_ad(row_get_rec_trx_id(rec, index, offsets)); type_cmpl = TRX_UNDO_UPD_DEL_REC; /* We are about to update a delete marked record. We don't typically need the prefix in this case unless the delete marking is done by the same transaction (which we check below). */ ignore_prefix = TRUE; } else { type_cmpl = TRX_UNDO_UPD_EXIST_REC; } type_cmpl |= cmpl_info * TRX_UNDO_CMPL_INFO_MULT; type_cmpl_ptr = ptr; *ptr++ = (byte) type_cmpl; ptr += mach_u64_write_much_compressed(ptr, trx->undo_no); ptr += mach_u64_write_much_compressed(ptr, table->id); /*----------------------------------------*/ /* Store the state of the info bits */ *ptr++ = (byte) rec_get_info_bits(rec, dict_table_is_comp(table)); /* Store the values of the system columns */ field = rec_get_nth_field(rec, offsets, index->db_trx_id(), &flen); ut_ad(flen == DATA_TRX_ID_LEN); trx_id = trx_read_trx_id(field); /* If it is an update of a delete marked record, then we are allowed to ignore blob prefixes if the delete marking was done by some other trx as it must have committed by now for us to allow an over-write. */ if (trx_id == trx->id) { ignore_prefix = false; } ptr += mach_u64_write_compressed(ptr, trx_id); field = rec_get_nth_field(rec, offsets, index->db_roll_ptr(), &flen); ut_ad(flen == DATA_ROLL_PTR_LEN); ut_ad(memcmp(field, field_ref_zero, DATA_ROLL_PTR_LEN)); ptr += mach_u64_write_compressed(ptr, trx_read_roll_ptr(field)); /*----------------------------------------*/ /* Store then the fields required to uniquely determine the record which will be modified in the clustered index */ for (i = 0; i < dict_index_get_n_unique(index); i++) { /* The ordering columns must not be instant added columns. */ ut_ad(!rec_offs_nth_default(offsets, i)); field = rec_get_nth_field(rec, offsets, i, &flen); /* The ordering columns must not be stored externally. */ ut_ad(!rec_offs_nth_extern(offsets, i)); ut_ad(dict_index_get_nth_col(index, i)->ord_part); if (trx_undo_left(undo_block, ptr) < 5) { return(0); } ptr += mach_write_compressed(ptr, flen); if (flen != UNIV_SQL_NULL) { if (trx_undo_left(undo_block, ptr) < flen) { return(0); } memcpy(ptr, field, flen); ptr += flen; } } /*----------------------------------------*/ /* Save to the undo log the old values of the columns to be updated. */ if (update) { if (trx_undo_left(undo_block, ptr) < 5) { return(0); } ulint n_updated = upd_get_n_fields(update); /* If this is an online update while an inplace alter table is in progress and the table has virtual column, we will need to double check if there are any non-indexed columns being registered in update vector in case they will be indexed in new table */ if (dict_index_is_online_ddl(index) && table->n_v_cols > 0) { for (i = 0; i < upd_get_n_fields(update); i++) { upd_field_t* fld = upd_get_nth_field( update, i); ulint pos = fld->field_no; /* These columns must not have an index on them */ if (upd_fld_is_virtual_col(fld) && dict_table_get_nth_v_col( table, pos)->v_indexes.empty()) { n_updated--; } } } i = 0; if (UNIV_UNLIKELY(update->is_alter_metadata())) { ut_ad(update->n_fields >= 1); ut_ad(!upd_fld_is_virtual_col(&update->fields[0])); ut_ad(update->fields[0].field_no == index->first_user_field()); ut_ad(!dfield_is_ext(&update->fields[0].new_val)); ut_ad(!dfield_is_null(&update->fields[0].new_val)); /* The instant ADD COLUMN metadata record does not contain the BLOB. Do not write anything for it. */ i = !rec_is_alter_metadata(rec, *index); n_updated -= i; } ptr += mach_write_compressed(ptr, n_updated); for (; i < upd_get_n_fields(update); i++) { if (trx_undo_left(undo_block, ptr) < 5) { return 0; } upd_field_t* fld = upd_get_nth_field(update, i); bool is_virtual = upd_fld_is_virtual_col(fld); ulint max_v_log_len = 0; ulint pos = fld->field_no; const dict_col_t* col = NULL; if (is_virtual) { /* Skip the non-indexed column, during an online alter table */ if (dict_index_is_online_ddl(index) && dict_table_get_nth_v_col( table, pos)->v_indexes.empty()) { continue; } /* add REC_MAX_N_FIELDS to mark this is a virtual col */ ptr += mach_write_compressed( ptr, pos + REC_MAX_N_FIELDS); if (trx_undo_left(undo_block, ptr) < 15) { return 0; } ut_ad(fld->field_no < table->n_v_def); ptr = trx_undo_log_v_idx(undo_block, table, fld->field_no, ptr, first_v_col); if (ptr == NULL) { return(0); } first_v_col = false; max_v_log_len = dict_max_v_field_len_store_undo( table, fld->field_no); field = static_cast( fld->old_v_val->data); flen = fld->old_v_val->len; /* Only log sufficient bytes for index record update */ if (flen != UNIV_SQL_NULL) { flen = ut_min( flen, max_v_log_len); } goto store_len; } if (UNIV_UNLIKELY(update->is_metadata())) { ut_ad(pos >= index->first_user_field()); ut_ad(rec_is_metadata(rec, *index)); if (rec_is_alter_metadata(rec, *index)) { ut_ad(update->is_alter_metadata()); field = rec_offs_n_fields(offsets) > pos && !rec_offs_nth_default( offsets, pos) ? rec_get_nth_field( rec, offsets, pos, &flen) : index->instant_field_value( pos - 1, &flen); if (pos == index->first_user_field()) { ut_ad(rec_offs_nth_extern( offsets, pos)); ut_ad(flen == FIELD_REF_SIZE); goto write_field; } col = dict_index_get_nth_col(index, pos - 1); } else if (!update->is_alter_metadata()) { goto get_field; } else { /* We are converting an ADD COLUMN metadata record to an ALTER TABLE metadata record, with BLOB. Subtract the missing metadata BLOB field. */ ut_ad(pos > index->first_user_field()); --pos; goto get_field; } } else { get_field: col = dict_index_get_nth_col(index, pos); field = rec_get_nth_cfield( rec, index, offsets, pos, &flen); } write_field: /* Write field number to undo log */ ptr += mach_write_compressed(ptr, pos); if (trx_undo_left(undo_block, ptr) < 15) { return 0; } if (rec_offs_n_fields(offsets) > pos && rec_offs_nth_extern(offsets, pos)) { ut_ad(col || pos == index->first_user_field()); ut_ad(col || update->is_alter_metadata()); ut_ad(col || rec_is_alter_metadata(rec, *index)); ulint prefix_len = col ? dict_max_field_len_store_undo( table, col) : 0; ut_ad(prefix_len + BTR_EXTERN_FIELD_REF_SIZE <= sizeof ext_buf); ptr = trx_undo_page_report_modify_ext( ptr, col && col->ord_part && !ignore_prefix && flen < REC_ANTELOPE_MAX_INDEX_COL_LEN ? ext_buf : NULL, prefix_len, table->space->zip_size(), &field, &flen, SPATIAL_UNKNOWN); *type_cmpl_ptr |= TRX_UNDO_UPD_EXTERN; } else { store_len: ptr += mach_write_compressed(ptr, flen); } if (flen != UNIV_SQL_NULL) { if (trx_undo_left(undo_block, ptr) < flen) { return(0); } memcpy(ptr, field, flen); ptr += flen; } /* Also record the new value for virtual column */ if (is_virtual) { field = static_cast(fld->new_val.data); flen = fld->new_val.len; if (flen != UNIV_SQL_NULL) { flen = ut_min( flen, max_v_log_len); } if (trx_undo_left(undo_block, ptr) < 15) { return(0); } ptr += mach_write_compressed(ptr, flen); if (flen != UNIV_SQL_NULL) { if (trx_undo_left(undo_block, ptr) < flen) { return(0); } memcpy(ptr, field, flen); ptr += flen; } } } } /* Reset the first_v_col, so to put the virtual column undo version marker again, when we log all the indexed columns */ first_v_col = true; /*----------------------------------------*/ /* In the case of a delete marking, and also in the case of an update where any ordering field of any index changes, store the values of all columns which occur as ordering fields in any index. This info is used in the purge of old versions where we use it to build and search the delete marked index records, to look if we can remove them from the index tree. Note that starting from 4.0.14 also externally stored fields can be ordering in some index. Starting from 5.2, we no longer store REC_MAX_INDEX_COL_LEN first bytes to the undo log record, but we can construct the column prefix fields in the index by fetching the first page of the BLOB that is pointed to by the clustered index. This works also in crash recovery, because all pages (including BLOBs) are recovered before anything is rolled back. */ if (!update || !(cmpl_info & UPD_NODE_NO_ORD_CHANGE)) { byte* old_ptr = ptr; double mbr[SPDIMS * 2]; mem_heap_t* row_heap = NULL; if (trx_undo_left(undo_block, ptr) < 5) { return(0); } /* Reserve 2 bytes to write the number of bytes the stored fields take in this undo record */ ptr += 2; for (col_no = 0; col_no < dict_table_get_n_cols(table); col_no++) { const dict_col_t* col = dict_table_get_nth_col(table, col_no); if (!col->ord_part) { continue; } const ulint pos = dict_index_get_nth_col_pos( index, col_no, NULL); /* All non-virtual columns must be present in the clustered index. */ ut_ad(pos != ULINT_UNDEFINED); const bool is_ext = rec_offs_nth_extern(offsets, pos); const spatial_status_t spatial_status = is_ext ? dict_col_get_spatial_status(col) : SPATIAL_NONE; switch (spatial_status) { case SPATIAL_UNKNOWN: ut_ad(0); /* fall through */ case SPATIAL_MIXED: case SPATIAL_ONLY: /* Externally stored spatially indexed columns will be (redundantly) logged again, because we did not write the MBR yet, that is, the previous call to trx_undo_page_report_modify_ext() was with SPATIAL_UNKNOWN. */ break; case SPATIAL_NONE: if (!update) { /* This is a DELETE operation. */ break; } /* Avoid redundantly logging indexed columns that were updated. */ for (i = 0; i < update->n_fields; i++) { const ulint field_no = upd_get_nth_field(update, i) ->field_no; if (field_no >= index->n_fields || dict_index_get_nth_field( index, field_no)->col == col) { goto already_logged; } } } if (true) { /* Write field number to undo log */ if (trx_undo_left(undo_block, ptr) < 5 + 15) { return(0); } ptr += mach_write_compressed(ptr, pos); /* Save the old value of field */ field = rec_get_nth_cfield( rec, index, offsets, pos, &flen); if (is_ext) { const dict_col_t* col = dict_index_get_nth_col( index, pos); ulint prefix_len = dict_max_field_len_store_undo( table, col); ut_a(prefix_len < sizeof ext_buf); const ulint zip_size = table->space->zip_size(); /* If there is a spatial index on it, log its MBR */ if (spatial_status != SPATIAL_NONE) { ut_ad(DATA_GEOMETRY_MTYPE( col->mtype)); trx_undo_get_mbr_from_ext( mbr, zip_size, field, &flen); } ptr = trx_undo_page_report_modify_ext( ptr, flen < REC_ANTELOPE_MAX_INDEX_COL_LEN && !ignore_prefix ? ext_buf : NULL, prefix_len, zip_size, &field, &flen, spatial_status); } else { ptr += mach_write_compressed( ptr, flen); } if (flen != UNIV_SQL_NULL && spatial_status != SPATIAL_ONLY) { if (trx_undo_left(undo_block, ptr) < flen) { return(0); } memcpy(ptr, field, flen); ptr += flen; } if (spatial_status != SPATIAL_NONE) { if (trx_undo_left(undo_block, ptr) < DATA_MBR_LEN) { return(0); } for (int i = 0; i < SPDIMS * 2; i++) { mach_double_write( ptr, mbr[i]); ptr += sizeof(double); } } } already_logged: continue; } for (col_no = 0; col_no < dict_table_get_n_v_cols(table); col_no++) { const dict_v_col_t* col = dict_table_get_nth_v_col(table, col_no); if (col->m_col.ord_part) { ulint pos = col_no; ulint max_v_log_len = dict_max_v_field_len_store_undo( table, pos); /* Write field number to undo log. Make sure there is enought space in log */ if (trx_undo_left(undo_block, ptr) < 5) { return(0); } pos += REC_MAX_N_FIELDS; ptr += mach_write_compressed(ptr, pos); ut_ad(col_no < table->n_v_def); ptr = trx_undo_log_v_idx(undo_block, table, col_no, ptr, first_v_col); first_v_col = false; if (!ptr) { return(0); } const dfield_t* vfield = NULL; if (update) { ut_ad(!row); if (update->old_vrow == NULL) { flen = UNIV_SQL_NULL; } else { vfield = dtuple_get_nth_v_field( update->old_vrow, col->v_pos); } } else if (row) { vfield = dtuple_get_nth_v_field( row, col->v_pos); } else { ut_ad(0); } if (vfield) { field = static_cast(vfield->data); flen = vfield->len; } else { ut_ad(flen == UNIV_SQL_NULL); } if (flen != UNIV_SQL_NULL) { flen = ut_min( flen, max_v_log_len); } ptr += mach_write_compressed(ptr, flen); switch (flen) { case 0: case UNIV_SQL_NULL: break; default: if (trx_undo_left(undo_block, ptr) < flen) { return(0); } memcpy(ptr, field, flen); ptr += flen; } } } mach_write_to_2(old_ptr, ulint(ptr - old_ptr)); if (row_heap) { mem_heap_free(row_heap); } } /*----------------------------------------*/ /* Write pointers to the previous and the next undo log records */ if (trx_undo_left(undo_block, ptr) < 2) { return(0); } mach_write_to_2(ptr, first_free); const uint16_t new_free = static_cast( ptr + 2 - undo_block->page.frame); mach_write_to_2(undo_block->page.frame + first_free, new_free); mach_write_to_2(ptr_to_first_free, new_free); const byte* start = &undo_block->page.frame[first_free + 2]; mtr->undo_append(*undo_block, start, ptr - start); return(first_free); } /**********************************************************************//** Reads from an undo log update record the system field values of the old version. @return remaining part of undo log record after reading these values */ byte* trx_undo_update_rec_get_sys_cols( /*=============================*/ const byte* ptr, /*!< in: remaining part of undo log record after reading general parameters */ trx_id_t* trx_id, /*!< out: trx id */ roll_ptr_t* roll_ptr, /*!< out: roll ptr */ byte* info_bits) /*!< out: info bits state */ { /* Read the state of the info bits */ *info_bits = *ptr++; /* Read the values of the system columns */ *trx_id = mach_u64_read_next_compressed(&ptr); *roll_ptr = mach_u64_read_next_compressed(&ptr); return(const_cast(ptr)); } /*******************************************************************//** Builds an update vector based on a remaining part of an undo log record. @return remaining part of the record, NULL if an error detected, which means that the record is corrupted */ byte* trx_undo_update_rec_get_update( /*===========================*/ const byte* ptr, /*!< in: remaining part in update undo log record, after reading the row reference NOTE that this copy of the undo log record must be preserved as long as the update vector is used, as we do NOT copy the data in the record! */ dict_index_t* index, /*!< in: clustered index */ ulint type, /*!< in: TRX_UNDO_UPD_EXIST_REC, TRX_UNDO_UPD_DEL_REC, or TRX_UNDO_DEL_MARK_REC; in the last case, only trx id and roll ptr fields are added to the update vector */ trx_id_t trx_id, /*!< in: transaction id from this undo record */ roll_ptr_t roll_ptr,/*!< in: roll pointer from this undo record */ byte info_bits,/*!< in: info bits from this undo record */ mem_heap_t* heap, /*!< in: memory heap from which the memory needed is allocated */ upd_t** upd) /*!< out, own: update vector */ { upd_field_t* upd_field; upd_t* update; ulint n_fields; byte* buf; bool first_v_col = true; bool is_undo_log = true; ulint n_skip_field = 0; ut_a(dict_index_is_clust(index)); if (type != TRX_UNDO_DEL_MARK_REC) { n_fields = mach_read_next_compressed(&ptr); } else { n_fields = 0; } *upd = update = upd_create(n_fields + 2, heap); update->info_bits = info_bits; /* Store first trx id and roll ptr to update vector */ upd_field = upd_get_nth_field(update, n_fields); buf = static_cast(mem_heap_alloc(heap, DATA_TRX_ID_LEN)); mach_write_to_6(buf, trx_id); upd_field_set_field_no(upd_field, index->db_trx_id(), index); dfield_set_data(&(upd_field->new_val), buf, DATA_TRX_ID_LEN); upd_field = upd_get_nth_field(update, n_fields + 1); buf = static_cast(mem_heap_alloc(heap, DATA_ROLL_PTR_LEN)); trx_write_roll_ptr(buf, roll_ptr); upd_field_set_field_no(upd_field, index->db_roll_ptr(), index); dfield_set_data(&(upd_field->new_val), buf, DATA_ROLL_PTR_LEN); /* Store then the updated ordinary columns to the update vector */ for (ulint i = 0; i < n_fields; i++) { const byte* field; uint32_t len, orig_len; upd_field = upd_get_nth_field(update, i); uint32_t field_no = mach_read_next_compressed(&ptr); const bool is_virtual = (field_no >= REC_MAX_N_FIELDS); if (is_virtual) { /* If new version, we need to check index list to figure out the correct virtual column position */ ptr = trx_undo_read_v_idx( index->table, ptr, first_v_col, &is_undo_log, &field_no); first_v_col = false; /* This column could be dropped or no longer indexed */ if (field_no >= index->n_fields) { /* Mark this is no longer needed */ upd_field->field_no = REC_MAX_N_FIELDS; ptr = trx_undo_rec_get_col_val( ptr, &field, &len, &orig_len); ptr = trx_undo_rec_get_col_val( ptr, &field, &len, &orig_len); n_skip_field++; continue; } upd_field_set_v_field_no( upd_field, static_cast(field_no), index); } else if (UNIV_UNLIKELY((update->info_bits & ~REC_INFO_DELETED_FLAG) == REC_INFO_MIN_REC_FLAG)) { ut_ad(type == TRX_UNDO_UPD_EXIST_REC); const uint32_t uf = index->first_user_field(); ut_ad(field_no >= uf); if (update->info_bits != REC_INFO_MIN_REC_FLAG) { /* Generic instant ALTER TABLE */ if (field_no == uf) { upd_field->new_val.type .metadata_blob_init(); } else if (field_no >= index->n_fields) { /* This is reachable during purge if the table was emptied and converted to the canonical format on a later ALTER TABLE. In this case, row_purge_upd_exist_or_extern() would only be interested in freeing any BLOBs that were updated, that is, the metadata BLOB above. Other BLOBs in the metadata record are never updated; they are for the initial DEFAULT values of the instantly added columns, and they will never change. Note: if the table becomes empty during ROLLBACK or is empty during subsequent ALTER TABLE, and btr_page_empty() is called to re-create the root page without the metadata record, in that case we should only free the latest version of BLOBs in the record, which purge would never touch. */ field_no = REC_MAX_N_FIELDS; n_skip_field++; } else { dict_col_copy_type( dict_index_get_nth_col( index, field_no - 1), &upd_field->new_val.type); } } else { /* Instant ADD COLUMN...LAST */ dict_col_copy_type( dict_index_get_nth_col(index, field_no), &upd_field->new_val.type); } upd_field->field_no = field_no & dict_index_t::MAX_N_FIELDS; } else if (field_no < index->n_fields) { upd_field_set_field_no(upd_field, static_cast(field_no), index); } else { ib::error() << "Trying to access update undo rec" " field " << field_no << " in index " << index->name << " of table " << index->table->name << " but index has only " << dict_index_get_n_fields(index) << " fields " << BUG_REPORT_MSG << ". Run also CHECK TABLE " << index->table->name << "." " n_fields = " << n_fields << ", i = " << i; ut_ad(0); *upd = NULL; return(NULL); } ptr = trx_undo_rec_get_col_val(ptr, &field, &len, &orig_len); upd_field->orig_len = static_cast(orig_len); if (len == UNIV_SQL_NULL) { dfield_set_null(&upd_field->new_val); } else if (len < UNIV_EXTERN_STORAGE_FIELD) { dfield_set_data(&upd_field->new_val, field, len); } else { len -= UNIV_EXTERN_STORAGE_FIELD; dfield_set_data(&upd_field->new_val, field, len); dfield_set_ext(&upd_field->new_val); } ut_ad(update->info_bits != (REC_INFO_DELETED_FLAG | REC_INFO_MIN_REC_FLAG) || field_no != index->first_user_field() || (upd_field->new_val.ext && upd_field->new_val.len == FIELD_REF_SIZE)); if (is_virtual) { upd_field->old_v_val = static_cast( mem_heap_alloc( heap, sizeof *upd_field->old_v_val)); ptr = trx_undo_rec_get_col_val( ptr, &field, &len, &orig_len); if (len == UNIV_SQL_NULL) { dfield_set_null(upd_field->old_v_val); } else if (len < UNIV_EXTERN_STORAGE_FIELD) { dfield_set_data( upd_field->old_v_val, field, len); } else { ut_ad(0); } } } /* We may have to skip dropped indexed virtual columns. Also, we may have to trim the update vector of a metadata record if dict_index_t::clear_instant_alter() was invoked on the table later, and the number of fields no longer matches. */ if (n_skip_field) { upd_field_t* d = upd_get_nth_field(update, 0); const upd_field_t* const end = d + n_fields + 2; for (const upd_field_t* s = d; s != end; s++) { if (s->field_no != REC_MAX_N_FIELDS) { *d++ = *s; } } ut_ad(d + n_skip_field == end); update->n_fields = d - upd_get_nth_field(update, 0); } return(const_cast(ptr)); } /*******************************************************************//** Builds a partial row from an update undo log record, for purge. It contains the columns which occur as ordering in any index of the table. Any missing columns are indicated by col->mtype == DATA_MISSING. @return pointer to remaining part of undo record */ byte* trx_undo_rec_get_partial_row( /*=========================*/ const byte* ptr, /*!< in: remaining part in update undo log record of a suitable type, at the start of the stored index columns; NOTE that this copy of the undo log record must be preserved as long as the partial row is used, as we do NOT copy the data in the record! */ dict_index_t* index, /*!< in: clustered index */ const upd_t* update, /*!< in: updated columns */ dtuple_t** row, /*!< out, own: partial row */ ibool ignore_prefix, /*!< in: flag to indicate if we expect blob prefixes in undo. Used only in the assertion. */ mem_heap_t* heap) /*!< in: memory heap from which the memory needed is allocated */ { const byte* end_ptr; bool first_v_col = true; bool is_undo_log = true; ut_ad(index->is_primary()); *row = dtuple_create_with_vcol( heap, dict_table_get_n_cols(index->table), dict_table_get_n_v_cols(index->table)); /* Mark all columns in the row uninitialized, so that we can distinguish missing fields from fields that are SQL NULL. */ for (ulint i = 0; i < dict_table_get_n_cols(index->table); i++) { dfield_get_type(dtuple_get_nth_field(*row, i)) ->mtype = DATA_MISSING; } dtuple_init_v_fld(*row); for (const upd_field_t* uf = update->fields, * const ue = update->fields + update->n_fields; uf != ue; uf++) { if (uf->old_v_val) { continue; } const dict_col_t& c = *dict_index_get_nth_col(index, uf->field_no); if (!c.is_dropped()) { *dtuple_get_nth_field(*row, c.ind) = uf->new_val; } } end_ptr = ptr + mach_read_from_2(ptr); ptr += 2; while (ptr != end_ptr) { dfield_t* dfield; const byte* field; uint32_t field_no; const dict_col_t* col; uint32_t len, orig_len; field_no = mach_read_next_compressed(&ptr); const bool is_virtual = (field_no >= REC_MAX_N_FIELDS); if (is_virtual) { ptr = trx_undo_read_v_idx( index->table, ptr, first_v_col, &is_undo_log, &field_no); first_v_col = false; } ptr = trx_undo_rec_get_col_val(ptr, &field, &len, &orig_len); /* This column could be dropped or no longer indexed */ if (field_no == FIL_NULL) { ut_ad(is_virtual); continue; } if (is_virtual) { dict_v_col_t* vcol = dict_table_get_nth_v_col( index->table, field_no); col = &vcol->m_col; dfield = dtuple_get_nth_v_field(*row, vcol->v_pos); dict_col_copy_type( &vcol->m_col, dfield_get_type(dfield)); } else { col = dict_index_get_nth_col(index, field_no); if (col->is_dropped()) { continue; } dfield = dtuple_get_nth_field(*row, col->ind); ut_ad(dfield->type.mtype == DATA_MISSING || dict_col_type_assert_equal(col, &dfield->type)); ut_ad(dfield->type.mtype == DATA_MISSING || dfield->len == len || (len != UNIV_SQL_NULL && len >= UNIV_EXTERN_STORAGE_FIELD)); dict_col_copy_type(col, dfield_get_type(dfield)); } dfield_set_data(dfield, field, len); if (len != UNIV_SQL_NULL && len >= UNIV_EXTERN_STORAGE_FIELD) { spatial_status_t spatial_status; /* Decode spatial status. */ spatial_status = static_cast( (len & SPATIAL_STATUS_MASK) >> SPATIAL_STATUS_SHIFT); len &= ~SPATIAL_STATUS_MASK; /* Keep compatible with 5.7.9 format. */ if (spatial_status == SPATIAL_UNKNOWN) { spatial_status = dict_col_get_spatial_status(col); } switch (spatial_status) { case SPATIAL_ONLY: ut_ad(len - UNIV_EXTERN_STORAGE_FIELD == DATA_MBR_LEN); dfield_set_len( dfield, len - UNIV_EXTERN_STORAGE_FIELD); break; case SPATIAL_MIXED: dfield_set_len( dfield, len - UNIV_EXTERN_STORAGE_FIELD - DATA_MBR_LEN); break; case SPATIAL_NONE: dfield_set_len( dfield, len - UNIV_EXTERN_STORAGE_FIELD); break; case SPATIAL_UNKNOWN: ut_ad(0); break; } dfield_set_ext(dfield); dfield_set_spatial_status(dfield, spatial_status); /* If the prefix of this column is indexed, ensure that enough prefix is stored in the undo log record. */ if (!ignore_prefix && col->ord_part && spatial_status != SPATIAL_ONLY) { ut_a(dfield_get_len(dfield) >= BTR_EXTERN_FIELD_REF_SIZE); ut_a(dict_table_has_atomic_blobs(index->table) || dfield_get_len(dfield) >= REC_ANTELOPE_MAX_INDEX_COL_LEN + BTR_EXTERN_FIELD_REF_SIZE); } } } return(const_cast(ptr)); } /** Report a RENAME TABLE operation. @param[in,out] trx transaction @param[in] table table that is being renamed @param[in,out] block undo page @param[in,out] mtr mini-transaction @return byte offset of the undo log record @retval 0 in case of failure */ static uint16_t trx_undo_page_report_rename(trx_t* trx, const dict_table_t* table, buf_block_t* block, mtr_t* mtr) { byte* ptr_first_free = my_assume_aligned<2>(TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_FREE + block->page.frame); const uint16_t first_free = mach_read_from_2(ptr_first_free); ut_ad(first_free >= TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_HDR_SIZE); ut_ad(first_free <= srv_page_size - FIL_PAGE_DATA_END); byte* const start = block->page.frame + first_free; size_t len = strlen(table->name.m_name); const size_t fixed = 2 + 1 + 11 + 11 + 2; ut_ad(len <= NAME_LEN * 2 + 1); /* The -10 is used in trx_undo_left() */ compile_time_assert((NAME_LEN * 1) * 2 + fixed + TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_HDR_SIZE < UNIV_PAGE_SIZE_MIN - 10 - FIL_PAGE_DATA_END); if (trx_undo_left(block, start) < fixed + len) { ut_ad(first_free > TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_HDR_SIZE); return 0; } byte* ptr = start + 2; *ptr++ = TRX_UNDO_RENAME_TABLE; ptr += mach_u64_write_much_compressed(ptr, trx->undo_no); ptr += mach_u64_write_much_compressed(ptr, table->id); memcpy(ptr, table->name.m_name, len); ptr += len; mach_write_to_2(ptr, first_free); mach_write_to_2(ptr_first_free, ptr + 2 - block->page.frame); memcpy(start, ptr_first_free, 2); mtr->undo_append(*block, start + 2, ptr - start - 2); return first_free; } /** Report a RENAME TABLE operation. @param[in,out] trx transaction @param[in] table table that is being renamed @return DB_SUCCESS or error code */ dberr_t trx_undo_report_rename(trx_t* trx, const dict_table_t* table) { ut_ad(!trx->read_only); ut_ad(trx->id); ut_ad(!table->is_temporary()); mtr_t mtr; dberr_t err; mtr.start(); if (buf_block_t* block = trx_undo_assign(trx, &err, &mtr)) { trx_undo_t* undo = trx->rsegs.m_redo.undo; ut_ad(err == DB_SUCCESS); ut_ad(undo); for (ut_d(int loop_count = 0);;) { ut_ad(loop_count++ < 2); ut_ad(undo->last_page_no == block->page.id().page_no()); if (uint16_t offset = trx_undo_page_report_rename( trx, table, block, &mtr)) { undo->top_page_no = undo->last_page_no; undo->top_offset = offset; undo->top_undo_no = trx->undo_no++; undo->guess_block = block; ut_ad(!undo->empty()); err = DB_SUCCESS; break; } else { mtr.commit(); mtr.start(); block = trx_undo_add_page(undo, &mtr); if (!block) { err = DB_OUT_OF_FILE_SPACE; break; } } } } mtr.commit(); return err; } TRANSACTIONAL_TARGET ATTRIBUTE_NOINLINE /** @return whether the transaction holds an exclusive lock on a table */ static bool trx_has_lock_x(const trx_t &trx, dict_table_t& table) { ut_ad(!table.is_temporary()); uint32_t n; #if !defined NO_ELISION && !defined SUX_LOCK_GENERIC if (xbegin()) { if (table.lock_mutex_is_locked()) xabort(); n= table.n_lock_x_or_s; xend(); } else #endif { table.lock_mutex_lock(); n= table.n_lock_x_or_s; table.lock_mutex_unlock(); } /* This thread is executing trx. No other thread can modify our table locks (only record locks might be created, in an implicit-to-explicit conversion). Hence, no mutex is needed here. */ if (n) for (const lock_t *lock : trx.lock.table_locks) if (lock && lock->type_mode == (LOCK_X | LOCK_TABLE)) return true; return false; } /***********************************************************************//** Writes information to an undo log about an insert, update, or a delete marking of a clustered index record. This information is used in a rollback of the transaction and in consistent reads that must look to the history of this transaction. @return DB_SUCCESS or error code */ dberr_t trx_undo_report_row_operation( /*==========================*/ que_thr_t* thr, /*!< in: query thread */ dict_index_t* index, /*!< in: clustered index */ const dtuple_t* clust_entry, /*!< in: in the case of an insert, index entry to insert into the clustered index; in updates, may contain a clustered index record tuple that also contains virtual columns of the table; otherwise, NULL */ const upd_t* update, /*!< in: in the case of an update, the update vector, otherwise NULL */ ulint cmpl_info, /*!< in: compiler info on secondary index updates */ const rec_t* rec, /*!< in: case of an update or delete marking, the record in the clustered index; NULL if insert */ const rec_offs* offsets, /*!< in: rec_get_offsets(rec) */ roll_ptr_t* roll_ptr) /*!< out: DB_ROLL_PTR to the undo log record */ { trx_t* trx; #ifdef UNIV_DEBUG int loop_count = 0; #endif /* UNIV_DEBUG */ ut_a(dict_index_is_clust(index)); ut_ad(!update || rec); ut_ad(!rec || rec_offs_validate(rec, index, offsets)); ut_ad(!srv_read_only_mode); trx = thr_get_trx(thr); /* This function must not be invoked during rollback (of a TRX_STATE_PREPARE transaction or otherwise). */ ut_ad(trx_state_eq(trx, TRX_STATE_ACTIVE)); ut_ad(!trx->in_rollback); /* We must determine if this is the first time when this transaction modifies this table. */ auto m = trx->mod_tables.emplace(index->table, trx->undo_no); ut_ad(m.first->second.valid(trx->undo_no)); if (m.second && index->table->is_active_ddl()) { trx->apply_online_log= true; } bool bulk = !rec; if (!bulk) { /* An UPDATE or DELETE must not be covered by an earlier start_bulk_insert(). */ ut_ad(!m.first->second.is_bulk_insert()); } else if (m.first->second.is_bulk_insert()) { /* Above, the emplace() tried to insert an object with !is_bulk_insert(). Only an explicit start_bulk_insert() (below) can set the flag. */ ut_ad(!m.second); /* We already wrote a TRX_UNDO_EMPTY record. */ ut_ad(thr->run_node); ut_ad(que_node_get_type(thr->run_node) == QUE_NODE_INSERT); ut_ad(trx->bulk_insert); return DB_SUCCESS; } else if (!m.second || !trx->bulk_insert) { bulk = false; } else if (index->table->is_temporary()) { } else if (trx_has_lock_x(*trx, *index->table) && index->table->bulk_trx_id == trx->id) { m.first->second.start_bulk_insert(index->table); if (dberr_t err = m.first->second.bulk_insert_buffered( *clust_entry, *index, trx)) { return err; } } else { bulk = false; } mtr_t mtr; mtr.start(); trx_undo_t** pundo; trx_rseg_t* rseg; const bool is_temp = index->table->is_temporary(); if (is_temp) { mtr.set_log_mode(MTR_LOG_NO_REDO); rseg = trx->get_temp_rseg(); pundo = &trx->rsegs.m_noredo.undo; } else { ut_ad(!trx->read_only); ut_ad(trx->id); pundo = &trx->rsegs.m_redo.undo; rseg = trx->rsegs.m_redo.rseg; } dberr_t err; buf_block_t* undo_block = trx_undo_assign_low(trx, rseg, pundo, &err, &mtr); trx_undo_t* undo = *pundo; ut_ad((err == DB_SUCCESS) == (undo_block != NULL)); if (UNIV_UNLIKELY(undo_block == NULL)) { err_exit: mtr.commit(); return err; } ut_ad(undo != NULL); do { uint16_t offset = !rec ? trx_undo_page_report_insert( undo_block, trx, index, clust_entry, &mtr, bulk) : trx_undo_page_report_modify( undo_block, trx, index, rec, offsets, update, cmpl_info, clust_entry, &mtr); if (UNIV_UNLIKELY(offset == 0)) { const uint16_t first_free = mach_read_from_2( TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_FREE + undo_block->page.frame); memset(undo_block->page.frame + first_free, 0, (srv_page_size - FIL_PAGE_DATA_END) - first_free); if (first_free == TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_HDR_SIZE) { /* The record did not fit on an empty undo page. Discard the freshly allocated page and return an error. */ /* When we remove a page from an undo log, this is analogous to a pessimistic insert in a B-tree, and we must reserve the counterpart of the tree latch, which is the rseg mutex. We must commit the mini-transaction first, because it may be holding lower-level latches, such as SYNC_FSP_PAGE. */ mtr.commit(); mtr.start(); if (is_temp) { mtr.set_log_mode(MTR_LOG_NO_REDO); } rseg->latch.wr_lock(SRW_LOCK_CALL); trx_undo_free_last_page(undo, &mtr); rseg->latch.wr_unlock(); if (m.second) { /* We are not going to modify this table after all. */ trx->mod_tables.erase(m.first); } err = DB_UNDO_RECORD_TOO_BIG; goto err_exit; } else { /* Write log for clearing the unused tail of the undo page. It might contain some garbage from a previously written record, and mtr_t::write() will optimize away writes of unchanged bytes. Failure to write this caused a recovery failure when we avoided reading the undo log page from the data file and initialized it based on redo log records (which included the write of the previous garbage). */ mtr.memset(*undo_block, first_free, srv_page_size - first_free - FIL_PAGE_DATA_END, 0); } mtr.commit(); } else { /* Success */ undo->top_page_no = undo_block->page.id().page_no(); mtr.commit(); undo->top_offset = offset; undo->top_undo_no = trx->undo_no++; undo->guess_block = undo_block; ut_ad(!undo->empty()); if (!is_temp) { trx_mod_table_time_t& time = m.first->second; ut_ad(time.valid(undo->top_undo_no)); if (!time.is_versioned() && index->table->versioned_by_id() && (!rec /* INSERT */ || (update && update->affects_versioned()))) { time.set_versioned(undo->top_undo_no); } } if (!bulk) { *roll_ptr = trx_undo_build_roll_ptr( !rec, trx_sys.rseg_id(rseg, !is_temp), undo->top_page_no, offset); } return(DB_SUCCESS); } ut_ad(undo_block->page.id().page_no() == undo->last_page_no); /* We have to extend the undo log by one page */ ut_ad(++loop_count < 2); mtr.start(); if (is_temp) { mtr.set_log_mode(MTR_LOG_NO_REDO); } undo_block = trx_undo_add_page(undo, &mtr); DBUG_EXECUTE_IF("ib_err_ins_undo_page_add_failure", undo_block = NULL;); } while (UNIV_LIKELY(undo_block != NULL)); ib_errf(trx->mysql_thd, IB_LOG_LEVEL_ERROR, DB_OUT_OF_FILE_SPACE, //ER_INNODB_UNDO_LOG_FULL, "No more space left over in %s tablespace for allocating UNDO" " log pages. Please add new data file to the tablespace or" " check if filesystem is full or enable auto-extension for" " the tablespace", undo->rseg->space == fil_system.sys_space ? "system" : is_temp ? "temporary" : "undo"); /* Did not succeed: out of space */ err = DB_OUT_OF_FILE_SPACE; goto err_exit; } /*============== BUILDING PREVIOUS VERSION OF A RECORD ===============*/ /** Copy an undo record to heap. @param[in] roll_ptr roll pointer to a record that exists @param[in,out] heap memory heap where copied */ static trx_undo_rec_t* trx_undo_get_undo_rec_low( roll_ptr_t roll_ptr, mem_heap_t* heap) { trx_undo_rec_t* undo_rec; ulint rseg_id; uint32_t page_no; uint16_t offset; bool is_insert; mtr_t mtr; trx_undo_decode_roll_ptr(roll_ptr, &is_insert, &rseg_id, &page_no, &offset); ut_ad(page_no > FSP_FIRST_INODE_PAGE_NO); ut_ad(offset >= TRX_UNDO_PAGE_HDR + TRX_UNDO_PAGE_HDR_SIZE); trx_rseg_t* rseg = &trx_sys.rseg_array[rseg_id]; ut_ad(rseg->is_persistent()); mtr.start(); buf_block_t *undo_page = trx_undo_page_get_s_latched( page_id_t(rseg->space->id, page_no), &mtr); undo_rec = trx_undo_rec_copy( undo_page->page.frame + offset, heap); mtr.commit(); return(undo_rec); } /** Copy an undo record to heap. @param[in] roll_ptr roll pointer to record @param[in,out] heap memory heap where copied @param[in] trx_id id of the trx that generated the roll pointer: it points to an undo log of this transaction @param[in] name table name @param[out] undo_rec own: copy of the record @retval true if the undo log has been truncated and we cannot fetch the old version @retval false if the undo log record is available NOTE: the caller must have latches on the clustered index page. */ static MY_ATTRIBUTE((warn_unused_result)) bool trx_undo_get_undo_rec( roll_ptr_t roll_ptr, mem_heap_t* heap, trx_id_t trx_id, const table_name_t& name, trx_undo_rec_t** undo_rec) { purge_sys.latch.rd_lock(SRW_LOCK_CALL); bool missing_history = purge_sys.changes_visible(trx_id, name); if (!missing_history) { *undo_rec = trx_undo_get_undo_rec_low(roll_ptr, heap); } purge_sys.latch.rd_unlock(); return(missing_history); } #ifdef UNIV_DEBUG #define ATTRIB_USED_ONLY_IN_DEBUG #else /* UNIV_DEBUG */ #define ATTRIB_USED_ONLY_IN_DEBUG MY_ATTRIBUTE((unused)) #endif /* UNIV_DEBUG */ /** Build a previous version of a clustered index record. The caller must hold a latch on the index page of the clustered index record. @param index_rec clustered index record in the index tree @param index_mtr mtr which contains the latch to index_rec page and purge_view @param rec version of a clustered index record @param index clustered index @param offsets rec_get_offsets(rec, index) @param heap memory heap from which the memory needed is allocated @param old_vers previous version or NULL if rec is the first inserted version, or if history data has been deleted (an error), or if the purge could have removed the version though it has not yet done so @param v_heap memory heap used to create vrow dtuple if it is not yet created. This heap diffs from "heap" above in that it could be prebuilt->old_vers_heap for selection @param v_row virtual column info, if any @param v_status status determine if it is going into this function by purge thread or not. And if we read "after image" of undo log @param undo_block undo log block which was cached during online dml apply or nullptr @retval true if previous version was built, or if it was an insert or the table has been rebuilt @retval false if the previous version is earlier than purge_view, or being purged, which means that it may have been removed */ bool trx_undo_prev_version_build( const rec_t *index_rec ATTRIB_USED_ONLY_IN_DEBUG, mtr_t *index_mtr ATTRIB_USED_ONLY_IN_DEBUG, const rec_t *rec, dict_index_t *index, rec_offs *offsets, mem_heap_t *heap, rec_t **old_vers, mem_heap_t *v_heap, dtuple_t **vrow, ulint v_status) { trx_undo_rec_t* undo_rec = NULL; dtuple_t* entry; trx_id_t rec_trx_id; ulint type; undo_no_t undo_no; table_id_t table_id; trx_id_t trx_id; roll_ptr_t roll_ptr; upd_t* update; byte* ptr; byte info_bits; ulint cmpl_info; bool dummy_extern; byte* buf; ut_ad(!index->table->is_temporary()); ut_ad(index_mtr->memo_contains_page_flagged(index_rec, MTR_MEMO_PAGE_S_FIX | MTR_MEMO_PAGE_X_FIX)); ut_ad(rec_offs_validate(rec, index, offsets)); ut_a(index->is_primary()); roll_ptr = row_get_rec_roll_ptr(rec, index, offsets); *old_vers = NULL; if (trx_undo_roll_ptr_is_insert(roll_ptr)) { /* The record rec is the first inserted version */ return(true); } rec_trx_id = row_get_rec_trx_id(rec, index, offsets); ut_ad(!index->table->skip_alter_undo); if (trx_undo_get_undo_rec( roll_ptr, heap, rec_trx_id, index->table->name, &undo_rec)) { if (v_status & TRX_UNDO_PREV_IN_PURGE) { /* We are fetching the record being purged */ undo_rec = trx_undo_get_undo_rec_low(roll_ptr, heap); } else { /* The undo record may already have been purged, during purge or semi-consistent read. */ return(false); } } ptr = trx_undo_rec_get_pars(undo_rec, &type, &cmpl_info, &dummy_extern, &undo_no, &table_id); if (table_id != index->table->id) { /* The table should have been rebuilt, but purge has not yet removed the undo log records for the now-dropped old table (table_id). */ return(true); } ptr = trx_undo_update_rec_get_sys_cols(ptr, &trx_id, &roll_ptr, &info_bits); /* (a) If a clustered index record version is such that the trx id stamp in it is bigger than purge_sys.view, then the BLOBs in that version are known to exist (the purge has not progressed that far); (b) if the version is the first version such that trx id in it is less than purge_sys.view, and it is not delete-marked, then the BLOBs in that version are known to exist (the purge cannot have purged the BLOBs referenced by that version yet). This function does not fetch any BLOBs. The callers might, by possibly invoking row_ext_create() via row_build(). However, they should have all needed information in the *old_vers returned by this function. This is because *old_vers is based on the transaction undo log records. The function trx_undo_page_fetch_ext() will write BLOB prefixes to the transaction undo log that are at least as long as the longest possible column prefix in a secondary index. Thus, secondary index entries for *old_vers can be constructed without dereferencing any BLOB pointers. */ ptr = trx_undo_rec_skip_row_ref(ptr, index); ptr = trx_undo_update_rec_get_update(ptr, index, type, trx_id, roll_ptr, info_bits, heap, &update); ut_a(ptr); if (row_upd_changes_field_size_or_external(index, offsets, update)) { /* We should confirm the existence of disowned external data, if the previous version record is delete marked. If the trx_id of the previous record is seen by purge view, we should treat it as missing history, because the disowned external data might be purged already. The inherited external data (BLOBs) can be freed (purged) after trx_id was committed, provided that no view was started before trx_id. If the purge view can see the committed delete-marked record by trx_id, no transactions need to access the BLOB. */ /* the row_upd_changes_disowned_external(update) call could be omitted, but the synchronization on purge_sys.latch is likely more expensive. */ if ((update->info_bits & REC_INFO_DELETED_FLAG) && row_upd_changes_disowned_external(update)) { purge_sys.latch.rd_lock(SRW_LOCK_CALL); bool missing_extern = purge_sys.changes_visible( trx_id, index->table->name); purge_sys.latch.rd_unlock(); if (missing_extern) { /* treat as a fresh insert, not to cause assertion error at the caller. */ return(true); } } /* We have to set the appropriate extern storage bits in the old version of the record: the extern bits in rec for those fields that update does NOT update, as well as the bits for those fields that update updates to become externally stored fields. Store the info: */ entry = row_rec_to_index_entry(rec, index, offsets, heap); /* The page containing the clustered index record corresponding to entry is latched in mtr. Thus the following call is safe. */ if (!row_upd_index_replace_new_col_vals(entry, *index, update, heap)) { ut_a(v_status & TRX_UNDO_PREV_IN_PURGE); return false; } /* Get number of externally stored columns in updated record */ const ulint n_ext = index->is_primary() ? dtuple_get_n_ext(entry) : 0; buf = static_cast(mem_heap_alloc( heap, rec_get_converted_size(index, entry, n_ext))); *old_vers = rec_convert_dtuple_to_rec(buf, index, entry, n_ext); } else { buf = static_cast(mem_heap_alloc( heap, rec_offs_size(offsets))); *old_vers = rec_copy(buf, rec, offsets); rec_offs_make_valid(*old_vers, index, true, offsets); rec_set_bit_field_1(*old_vers, update->info_bits, rec_offs_comp(offsets) ? REC_NEW_INFO_BITS : REC_OLD_INFO_BITS, REC_INFO_BITS_MASK, REC_INFO_BITS_SHIFT); for (ulint i = 0; i < update->n_fields; i++) { const upd_field_t* uf = upd_get_nth_field(update, i); if (upd_fld_is_virtual_col(uf)) { /* There are no virtual columns in a clustered index record. */ continue; } const ulint n = uf->field_no; ut_ad(!dfield_is_ext(&uf->new_val) == !rec_offs_nth_extern(offsets, n)); ut_ad(!rec_offs_nth_default(offsets, n)); if (UNIV_UNLIKELY(dfield_is_null(&uf->new_val))) { if (rec_offs_nth_sql_null(offsets, n)) { ut_ad(index->table->is_instant()); ut_ad(n >= index->n_core_fields); continue; } ut_ad(!index->table->not_redundant()); ulint l = rec_get_1byte_offs_flag(*old_vers) ? (n + 1) : (n + 1) * 2; byte* b = *old_vers - REC_N_OLD_EXTRA_BYTES - l; *b= byte(*b | REC_1BYTE_SQL_NULL_MASK); compile_time_assert(REC_1BYTE_SQL_NULL_MASK << 8 == REC_2BYTE_SQL_NULL_MASK); continue; } ulint len; memcpy(rec_get_nth_field(*old_vers, offsets, n, &len), uf->new_val.data, uf->new_val.len); if (UNIV_UNLIKELY(len != uf->new_val.len)) { ut_ad(len == UNIV_SQL_NULL); ut_ad(!rec_offs_comp(offsets)); ut_ad(uf->new_val.len == rec_get_nth_field_size(rec, n)); ulint l = rec_get_1byte_offs_flag(*old_vers) ? (n + 1) : (n + 1) * 2; *(*old_vers - REC_N_OLD_EXTRA_BYTES - l) &= byte(~REC_1BYTE_SQL_NULL_MASK); } } } /* Set the old value (which is the after image of an update) in the update vector to dtuple vrow */ if (v_status & TRX_UNDO_GET_OLD_V_VALUE) { row_upd_replace_vcol((dtuple_t*)*vrow, index->table, update, false, NULL, NULL); } #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG rec_offs offsets_dbg[REC_OFFS_NORMAL_SIZE]; rec_offs_init(offsets_dbg); ut_a(!rec_offs_any_null_extern( *old_vers, rec_get_offsets(*old_vers, index, offsets_dbg, index->n_core_fields, ULINT_UNDEFINED, &heap))); #endif // defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG if (vrow && !(cmpl_info & UPD_NODE_NO_ORD_CHANGE)) { if (!(*vrow)) { *vrow = dtuple_create_with_vcol( v_heap ? v_heap : heap, dict_table_get_n_cols(index->table), dict_table_get_n_v_cols(index->table)); dtuple_init_v_fld(*vrow); } ut_ad(index->table->n_v_cols); trx_undo_read_v_cols(index->table, ptr, *vrow, v_status & TRX_UNDO_PREV_IN_PURGE); } return(true); } /** Read virtual column value from undo log @param[in] table the table @param[in] ptr undo log pointer @param[in,out] row the dtuple to fill @param[in] in_purge whether this is called by purge */ void trx_undo_read_v_cols( const dict_table_t* table, const byte* ptr, dtuple_t* row, bool in_purge) { const byte* end_ptr; bool first_v_col = true; bool is_undo_log = true; end_ptr = ptr + mach_read_from_2(ptr); ptr += 2; while (ptr < end_ptr) { dfield_t* dfield; const byte* field; uint32_t field_no, len, orig_len; field_no = mach_read_next_compressed( const_cast(&ptr)); const bool is_virtual = (field_no >= REC_MAX_N_FIELDS); if (is_virtual) { ptr = trx_undo_read_v_idx( table, ptr, first_v_col, &is_undo_log, &field_no); first_v_col = false; } ptr = trx_undo_rec_get_col_val( ptr, &field, &len, &orig_len); /* The virtual column is no longer indexed or does not exist. This needs to put after trx_undo_rec_get_col_val() so the undo ptr advances */ if (field_no == FIL_NULL) { ut_ad(is_virtual); continue; } if (is_virtual) { dict_v_col_t* vcol = dict_table_get_nth_v_col( table, field_no); dfield = dtuple_get_nth_v_field(row, vcol->v_pos); if (!in_purge || dfield_get_type(dfield)->mtype == DATA_MISSING) { dict_col_copy_type( &vcol->m_col, dfield_get_type(dfield)); dfield_set_data(dfield, field, len); } } } ut_ad(ptr == end_ptr); }