/* Copyright (c) 2008, 2015, Oracle and/or its affiliates. All rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA */ /** @file storage/perfschema/pfs_timer.cc Performance schema timers (implementation). */ #include "my_global.h" #include "pfs_timer.h" #include "my_rdtsc.h" enum_timer_name idle_timer= TIMER_NAME_MICROSEC; enum_timer_name wait_timer= TIMER_NAME_CYCLE; enum_timer_name stage_timer= TIMER_NAME_NANOSEC; enum_timer_name statement_timer= TIMER_NAME_NANOSEC; MY_TIMER_INFO pfs_timer_info; static ulonglong cycle_v0; static ulonglong nanosec_v0; static ulonglong microsec_v0; static ulonglong millisec_v0; static ulonglong tick_v0; static ulong cycle_to_pico; /* 1000 at 1 GHz, 333 at 3GHz, 250 at 4GHz */ static ulong nanosec_to_pico; /* In theory, 1 000 */ static ulong microsec_to_pico; /* In theory, 1 000 000 */ static ulong millisec_to_pico; /* In theory, 1 000 000 000, fits in uint32 */ static ulonglong tick_to_pico; /* 1e10 at 100 Hz, 1.666e10 at 60 Hz */ /* Indexed by enum enum_timer_name */ static struct time_normalizer to_pico_data[FIRST_TIMER_NAME + COUNT_TIMER_NAME]= { { 0, 0}, /* unused */ { 0, 0}, /* cycle */ { 0, 0}, /* nanosec */ { 0, 0}, /* microsec */ { 0, 0}, /* millisec */ { 0, 0} /* tick */ }; static inline ulong round_to_ulong(double value) { return (ulong) (value + 0.5); } static inline ulonglong round_to_ulonglong(double value) { return (ulonglong) (value + 0.5); } void init_timers(void) { double pico_frequency= 1.0e12; my_timer_init(&pfs_timer_info); cycle_v0= my_timer_cycles(); nanosec_v0= my_timer_nanoseconds(); microsec_v0= my_timer_microseconds(); millisec_v0= my_timer_milliseconds(); tick_v0= my_timer_ticks(); if (pfs_timer_info.cycles.frequency > 0) cycle_to_pico= round_to_ulong(pico_frequency/ (double)pfs_timer_info.cycles.frequency); else cycle_to_pico= 0; if (pfs_timer_info.nanoseconds.frequency > 0) nanosec_to_pico= round_to_ulong(pico_frequency/ (double)pfs_timer_info.nanoseconds.frequency); else nanosec_to_pico= 0; if (pfs_timer_info.microseconds.frequency > 0) microsec_to_pico= round_to_ulong(pico_frequency/ (double)pfs_timer_info.microseconds.frequency); else microsec_to_pico= 0; if (pfs_timer_info.milliseconds.frequency > 0) millisec_to_pico= round_to_ulong(pico_frequency/ (double)pfs_timer_info.milliseconds.frequency); else millisec_to_pico= 0; if (pfs_timer_info.ticks.frequency > 0) tick_to_pico= round_to_ulonglong(pico_frequency/ (double)pfs_timer_info.ticks.frequency); else tick_to_pico= 0; to_pico_data[TIMER_NAME_CYCLE].m_v0= cycle_v0; to_pico_data[TIMER_NAME_CYCLE].m_factor= cycle_to_pico; to_pico_data[TIMER_NAME_NANOSEC].m_v0= nanosec_v0; to_pico_data[TIMER_NAME_NANOSEC].m_factor= nanosec_to_pico; to_pico_data[TIMER_NAME_MICROSEC].m_v0= microsec_v0; to_pico_data[TIMER_NAME_MICROSEC].m_factor= microsec_to_pico; to_pico_data[TIMER_NAME_MILLISEC].m_v0= millisec_v0; to_pico_data[TIMER_NAME_MILLISEC].m_factor= millisec_to_pico; to_pico_data[TIMER_NAME_TICK].m_v0= tick_v0; to_pico_data[TIMER_NAME_TICK].m_factor= tick_to_pico; /* Depending on the platform and build options, some timers may not be available. Pick best replacements. */ /* For WAIT, the cycle timer is used by default. However, it is not available on all architectures. Fall back to the nanosecond timer in this case. It is unlikely that neither cycle nor nanosecond are available, but we continue probing less resolution timers anyway for consistency with other events. */ if (cycle_to_pico != 0) { /* Normal case. */ wait_timer= TIMER_NAME_CYCLE; } else if (nanosec_to_pico != 0) { /* Robustness, no known cases. */ wait_timer= TIMER_NAME_NANOSEC; } else if (microsec_to_pico != 0) { /* Robustness, no known cases. */ wait_timer= TIMER_NAME_MICROSEC; } else if (millisec_to_pico != 0) { /* Robustness, no known cases. */ wait_timer= TIMER_NAME_MILLISEC; } else { /* Will never be reached on any architecture, but must provide a default if no other timers are available. */ wait_timer= TIMER_NAME_TICK; } /* For STAGE and STATEMENT, a timer with a fixed frequency is better. The prefered timer is nanosecond, or lower resolutions. */ if (nanosec_to_pico != 0) { /* Normal case. */ stage_timer= TIMER_NAME_NANOSEC; statement_timer= TIMER_NAME_NANOSEC; } else if (microsec_to_pico != 0) { /* Windows. */ stage_timer= TIMER_NAME_MICROSEC; statement_timer= TIMER_NAME_MICROSEC; } else if (millisec_to_pico != 0) { /* Robustness, no known cases. */ stage_timer= TIMER_NAME_MILLISEC; statement_timer= TIMER_NAME_MILLISEC; } else if (tick_to_pico != 0) { /* Robustness, no known cases. */ stage_timer= TIMER_NAME_TICK; statement_timer= TIMER_NAME_TICK; } else { /* Robustness, no known cases. */ stage_timer= TIMER_NAME_CYCLE; statement_timer= TIMER_NAME_CYCLE; } /* For IDLE, a timer with a fixed frequency is critical, as the CPU clock may slow down a lot if the server is completely idle. The prefered timer is microsecond, or lower resolutions. */ if (microsec_to_pico != 0) { /* Normal case. */ idle_timer= TIMER_NAME_MICROSEC; } else if (millisec_to_pico != 0) { /* Robustness, no known cases. */ wait_timer= TIMER_NAME_MILLISEC; } else if (tick_to_pico != 0) { /* Robustness, no known cases. */ idle_timer= TIMER_NAME_TICK; } else { /* Robustness, no known cases. */ idle_timer= TIMER_NAME_CYCLE; } } ulonglong get_timer_raw_value(enum_timer_name timer_name) { switch (timer_name) { case TIMER_NAME_CYCLE: return my_timer_cycles(); case TIMER_NAME_NANOSEC: return my_timer_nanoseconds(); case TIMER_NAME_MICROSEC: return my_timer_microseconds(); case TIMER_NAME_MILLISEC: return my_timer_milliseconds(); case TIMER_NAME_TICK: return my_timer_ticks(); default: DBUG_ASSERT(false); } return 0; } ulonglong get_timer_raw_value_and_function(enum_timer_name timer_name, timer_fct_t *fct) { switch (timer_name) { case TIMER_NAME_CYCLE: *fct= my_timer_cycles; return my_timer_cycles(); case TIMER_NAME_NANOSEC: *fct= my_timer_nanoseconds; return my_timer_nanoseconds(); case TIMER_NAME_MICROSEC: *fct= my_timer_microseconds; return my_timer_microseconds(); case TIMER_NAME_MILLISEC: *fct= my_timer_milliseconds; return my_timer_milliseconds(); case TIMER_NAME_TICK: *fct= my_timer_ticks; return my_timer_ticks(); default: *fct= NULL; DBUG_ASSERT(false); } return 0; } ulonglong get_timer_pico_value(enum_timer_name timer_name) { ulonglong result; switch (timer_name) { case TIMER_NAME_CYCLE: result= (my_timer_cycles() - cycle_v0) * cycle_to_pico; break; case TIMER_NAME_NANOSEC: result= (my_timer_nanoseconds() - nanosec_v0) * nanosec_to_pico; break; case TIMER_NAME_MICROSEC: result= (my_timer_microseconds() - microsec_v0) * microsec_to_pico; break; case TIMER_NAME_MILLISEC: result= (my_timer_milliseconds() - millisec_v0) * millisec_to_pico; break; case TIMER_NAME_TICK: result= (my_timer_ticks() - tick_v0) * tick_to_pico; break; default: result= 0; DBUG_ASSERT(false); } return result; } time_normalizer* time_normalizer::get(enum_timer_name timer_name) { uint index= static_cast (timer_name); DBUG_ASSERT(index >= FIRST_TIMER_NAME); DBUG_ASSERT(index <= LAST_TIMER_NAME); return & to_pico_data[index]; } void time_normalizer::to_pico(ulonglong start, ulonglong end, ulonglong *pico_start, ulonglong *pico_end, ulonglong *pico_wait) { if (start == 0) { *pico_start= 0; *pico_end= 0; *pico_wait= 0; } else { *pico_start= (start - m_v0) * m_factor; if (end == 0) { *pico_end= 0; *pico_wait= 0; } else { *pico_end= (end - m_v0) * m_factor; *pico_wait= (end - start) * m_factor; } } }