/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */ // vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4: #ident "$Id$" /*====== This file is part of PerconaFT. Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved. PerconaFT is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License, version 2, as published by the Free Software Foundation. PerconaFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with PerconaFT. If not, see . ---------------------------------------- PerconaFT is free software: you can redistribute it and/or modify it under the terms of the GNU Affero General Public License, version 3, as published by the Free Software Foundation. PerconaFT is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public License for more details. You should have received a copy of the GNU Affero General Public License along with PerconaFT. If not, see . ======= */ #ident "Copyright (c) 2006, 2015, Percona and/or its affiliates. All rights reserved." #include "test.h" #include "cachetable-test.h" // // This test ensures that get_and_pin with dependent nodes works // as intended with checkpoints, by having multiple threads changing // values on elements in data, and ensure that checkpoints always get snapshots // such that the sum of all the elements in data are 0. // // The arrays // must be power of 2 minus 1 #define NUM_ELEMENTS 127 // must be (NUM_ELEMENTS +1)/2 - 1 #define NUM_INTERNAL 63 #define NUM_MOVER_THREADS 4 int64_t data[NUM_ELEMENTS]; int64_t checkpointed_data[NUM_ELEMENTS]; PAIR data_pair[NUM_ELEMENTS]; uint32_t time_of_test; bool run_test; static void put_callback_pair( CACHEKEY key, void *UU(v), PAIR p) { int64_t data_index = key.b; data_pair[data_index] = p; } static void clone_callback( void* value_data, void** cloned_value_data, long* clone_size, PAIR_ATTR* new_attr, bool UU(for_checkpoint), void* UU(write_extraargs) ) { new_attr->is_valid = false; int64_t* XMALLOC(data_val); *data_val = *(int64_t *)value_data; *cloned_value_data = data_val; *new_attr = make_pair_attr(8); *clone_size = 8; } static void flush (CACHEFILE f __attribute__((__unused__)), int UU(fd), CACHEKEY k __attribute__((__unused__)), void *v __attribute__((__unused__)), void** UU(dd), void *e __attribute__((__unused__)), PAIR_ATTR s __attribute__((__unused__)), PAIR_ATTR* new_size, bool write_me, bool keep_me, bool checkpoint_me, bool UU(is_clone) ) { int64_t val_to_write = *(int64_t *)v; size_t data_index = (size_t)k.b; if (write_me) { usleep(10); *new_size = make_pair_attr(8); data[data_index] = val_to_write; if (checkpoint_me) checkpointed_data[data_index] = val_to_write; } if (!keep_me) { toku_free(v); } } static int fetch (CACHEFILE f __attribute__((__unused__)), PAIR p, int UU(fd), CACHEKEY k, uint32_t fullhash __attribute__((__unused__)), void **value, void** UU(dd), PAIR_ATTR *sizep, int *dirtyp, void *extraargs __attribute__((__unused__)) ) { *dirtyp = 0; size_t data_index = (size_t)k.b; // assert that data_index is valid // if it is INT64_MAX, then that means // the block is not supposed to be in the cachetable assert(data[data_index] != INT64_MAX); int64_t* XMALLOC(data_val); usleep(10); *data_val = data[data_index]; data_pair[data_index] = p; *value = data_val; *sizep = make_pair_attr(8); return 0; } static void *test_time(void *arg) { // // if num_Seconds is set to 0, run indefinitely // if (time_of_test != 0) { usleep(time_of_test*1000*1000); if (verbose) printf("should now end test\n"); run_test = false; } if (verbose) printf("should be ending test now\n"); return arg; } CACHETABLE ct; CACHEFILE f1; static void move_number_to_child( int parent, int64_t* parent_val, enum cachetable_dirty parent_dirty ) { int child = 0; int r; child = ((random() % 2) == 0) ? (2*parent + 1) : (2*parent + 2); void* v1; long s1; CACHEKEY parent_key; parent_key.b = parent; uint32_t parent_fullhash = toku_cachetable_hash(f1, parent_key); CACHEKEY child_key; child_key.b = child; uint32_t child_fullhash = toku_cachetable_hash(f1, child_key); CACHETABLE_WRITE_CALLBACK wc = def_write_callback(NULL); wc.flush_callback = flush; wc.clone_callback = clone_callback; PAIR dep_pair = data_pair[parent]; r = toku_cachetable_get_and_pin_with_dep_pairs( f1, child_key, child_fullhash, &v1, &s1, wc, fetch, def_pf_req_callback, def_pf_callback, PL_WRITE_CHEAP, NULL, 1, //num_dependent_pairs &dep_pair, &parent_dirty ); assert(r==0); int64_t* child_val = (int64_t *)v1; assert(child_val != parent_val); // sanity check that we are messing with different vals assert(*parent_val != INT64_MAX); assert(*child_val != INT64_MAX); usleep(10); (*parent_val)++; (*child_val)--; r = toku_test_cachetable_unpin(f1, parent_key, parent_fullhash, CACHETABLE_DIRTY, make_pair_attr(8)); assert_zero(r); if (child < NUM_INTERNAL) { move_number_to_child(child, child_val, CACHETABLE_DIRTY); } else { r = toku_test_cachetable_unpin(f1, child_key, child_fullhash, CACHETABLE_DIRTY, make_pair_attr(8)); assert_zero(r); } } static void *move_numbers(void *arg) { while (run_test) { int parent = 0; int r; void* v1; long s1; CACHEKEY parent_key; parent_key.b = parent; uint32_t parent_fullhash = toku_cachetable_hash(f1, parent_key); CACHETABLE_WRITE_CALLBACK wc = def_write_callback(NULL); wc.flush_callback = flush; wc.clone_callback = clone_callback; r = toku_cachetable_get_and_pin_with_dep_pairs( f1, parent_key, parent_fullhash, &v1, &s1, wc, fetch, def_pf_req_callback, def_pf_callback, PL_WRITE_CHEAP, NULL, 0, //num_dependent_pairs NULL, NULL ); assert(r==0); int64_t* parent_val = (int64_t *)v1; move_number_to_child(parent, parent_val, CACHETABLE_CLEAN); } return arg; } static void remove_data(CACHEKEY* cachekey, bool for_checkpoint, void* UU(extra)) { assert(cachekey->b < NUM_ELEMENTS); data[cachekey->b] = INT64_MAX; if (for_checkpoint) { checkpointed_data[cachekey->b] = INT64_MAX; } } static void get_data(CACHEKEY* cachekey, uint32_t* fullhash, void* extra) { int* CAST_FROM_VOIDP(key, extra); cachekey->b = *key; *fullhash = toku_cachetable_hash(f1, *cachekey); data[*key] = INT64_MAX - 1; } static void merge_and_split_child( int parent, int64_t* parent_val, enum cachetable_dirty parent_dirty ) { int child = 0; int other_child = 0; int r; bool even = (random() % 2) == 0; child = (even) ? (2*parent + 1) : (2*parent + 2); other_child = (!even) ? (2*parent + 1) : (2*parent + 2); assert(child != other_child); void* v1; long s1; CACHEKEY parent_key; parent_key.b = parent; uint32_t parent_fullhash = toku_cachetable_hash(f1, parent_key); CACHEKEY child_key; child_key.b = child; uint32_t child_fullhash = toku_cachetable_hash(f1, child_key); enum cachetable_dirty child_dirty = CACHETABLE_CLEAN; CACHETABLE_WRITE_CALLBACK wc = def_write_callback(NULL); wc.flush_callback = flush; wc.clone_callback = clone_callback; PAIR dep_pair = data_pair[parent]; r = toku_cachetable_get_and_pin_with_dep_pairs( f1, child_key, child_fullhash, &v1, &s1, wc, fetch, def_pf_req_callback, def_pf_callback, PL_WRITE_CHEAP, NULL, 1, //num_dependent_pairs &dep_pair, &parent_dirty ); assert(r==0); int64_t* child_val = (int64_t *)v1; CACHEKEY other_child_key; other_child_key.b = other_child; uint32_t other_child_fullhash = toku_cachetable_hash(f1, other_child_key); enum cachetable_dirty dirties[2]; dirties[0] = parent_dirty; dirties[1] = child_dirty; PAIR dep_pairs[2]; dep_pairs[0] = data_pair[parent]; dep_pairs[1] = data_pair[child]; r = toku_cachetable_get_and_pin_with_dep_pairs( f1, other_child_key, other_child_fullhash, &v1, &s1, wc, fetch, def_pf_req_callback, def_pf_callback, PL_WRITE_CHEAP, NULL, 2, //num_dependent_pairs dep_pairs, dirties ); assert(r==0); int64_t* other_child_val = (int64_t *)v1; assert(*parent_val != INT64_MAX); assert(*child_val != INT64_MAX); assert(*other_child_val != INT64_MAX); // lets get rid of other_child_val with a merge *child_val += *other_child_val; *other_child_val = INT64_MAX; toku_test_cachetable_unpin_and_remove(f1, other_child_key, remove_data, NULL); dirties[1] = CACHETABLE_DIRTY; child_dirty = CACHETABLE_DIRTY; // now do a split CACHEKEY new_key; uint32_t new_fullhash; int64_t* XMALLOC(data_val); toku_cachetable_put_with_dep_pairs( f1, get_data, data_val, make_pair_attr(8), wc, &other_child, 2, // number of dependent pairs that we may need to checkpoint dep_pairs, dirties, &new_key, &new_fullhash, put_callback_pair ); assert(new_key.b == other_child); assert(new_fullhash == other_child_fullhash); *data_val = 5000; *child_val -= 5000; r = toku_test_cachetable_unpin(f1, parent_key, parent_fullhash, CACHETABLE_DIRTY, make_pair_attr(8)); assert_zero(r); r = toku_test_cachetable_unpin(f1, other_child_key, other_child_fullhash, CACHETABLE_DIRTY, make_pair_attr(8)); assert_zero(r); if (child < NUM_INTERNAL) { merge_and_split_child(child, child_val, CACHETABLE_DIRTY); } else { r = toku_test_cachetable_unpin(f1, child_key, child_fullhash, CACHETABLE_DIRTY, make_pair_attr(8)); assert_zero(r); } } static void *merge_and_split(void *arg) { while (run_test) { int parent = 0; int r; void* v1; long s1; CACHEKEY parent_key; parent_key.b = parent; uint32_t parent_fullhash = toku_cachetable_hash(f1, parent_key); CACHETABLE_WRITE_CALLBACK wc = def_write_callback(NULL); wc.flush_callback = flush; wc.clone_callback = clone_callback; r = toku_cachetable_get_and_pin_with_dep_pairs( f1, parent_key, parent_fullhash, &v1, &s1, wc, fetch, def_pf_req_callback, def_pf_callback, PL_WRITE_CHEAP, NULL, 0, //num_dependent_pairs NULL, NULL ); assert(r==0); int64_t* parent_val = (int64_t *)v1; merge_and_split_child(parent, parent_val, CACHETABLE_CLEAN); } return arg; } static int num_checkpoints = 0; static void *checkpoints(void *arg) { // first verify that checkpointed_data is correct; while(run_test) { int64_t sum = 0; for (int i = 0; i < NUM_ELEMENTS; i++) { if (checkpointed_data[i] != INT64_MAX) { sum += checkpointed_data[i]; } } assert (sum==0); // // now run a checkpoint // CHECKPOINTER cp = toku_cachetable_get_checkpointer(ct); toku_cachetable_begin_checkpoint(cp, NULL); toku_cachetable_end_checkpoint( cp, NULL, NULL, NULL ); assert (sum==0); for (int i = 0; i < NUM_ELEMENTS; i++) { if (checkpointed_data[i] != INT64_MAX) { sum += checkpointed_data[i]; } } assert (sum==0); num_checkpoints++; } return arg; } static void test_begin_checkpoint ( LSN UU(checkpoint_lsn), void* UU(header_v)) { memcpy(checkpointed_data, data, sizeof(int64_t)*NUM_ELEMENTS); } static void sum_vals(void) { int64_t sum = 0; for (int i = 0; i < NUM_ELEMENTS; i++) { //printf("actual: i %d val %" PRId64 " \n", i, data[i]); if (data[i] != INT64_MAX) { sum += data[i]; } } if (verbose) printf("actual sum %" PRId64 " \n", sum); assert(sum == 0); sum = 0; for (int i = 0; i < NUM_ELEMENTS; i++) { //printf("checkpointed: i %d val %" PRId64 " \n", i, checkpointed_data[i]); if (checkpointed_data[i] != INT64_MAX) { sum += checkpointed_data[i]; } } if (verbose) printf("checkpointed sum %" PRId64 " \n", sum); assert(sum == 0); } static void cachetable_test (void) { const int test_limit = NUM_ELEMENTS; // // let's set up the data // for (int64_t i = 0; i < NUM_ELEMENTS; i++) { data[i] = 0; checkpointed_data[i] = 0; } time_of_test = 60; int r; toku_cachetable_create(&ct, test_limit, ZERO_LSN, nullptr); const char *fname1 = TOKU_TEST_FILENAME; unlink(fname1); r = toku_cachetable_openf(&f1, ct, fname1, O_RDWR|O_CREAT, S_IRWXU|S_IRWXG|S_IRWXO); assert(r == 0); toku_cachefile_set_userdata( f1, NULL, &dummy_log_fassociate, &dummy_close_usr, &dummy_free_usr, &dummy_chckpnt_usr, test_begin_checkpoint, // called in begin_checkpoint &dummy_end, &dummy_note_pin, &dummy_note_unpin ); toku_pthread_t time_tid; toku_pthread_t checkpoint_tid; toku_pthread_t move_tid[NUM_MOVER_THREADS]; toku_pthread_t merge_and_split_tid[NUM_MOVER_THREADS]; run_test = true; for (int i = 0; i < NUM_MOVER_THREADS; i++) { r = toku_pthread_create(toku_uninstrumented, &move_tid[i], nullptr, move_numbers, nullptr); assert_zero(r); } for (int i = 0; i < NUM_MOVER_THREADS; i++) { r = toku_pthread_create(toku_uninstrumented, &merge_and_split_tid[i], nullptr, merge_and_split, nullptr); assert_zero(r); } r = toku_pthread_create( toku_uninstrumented, &checkpoint_tid, nullptr, checkpoints, nullptr); assert_zero(r); r = toku_pthread_create( toku_uninstrumented, &time_tid, nullptr, test_time, nullptr); assert_zero(r); void *ret; r = toku_pthread_join(time_tid, &ret); assert_zero(r); r = toku_pthread_join(checkpoint_tid, &ret); assert_zero(r); for (int i = 0; i < NUM_MOVER_THREADS; i++) { r = toku_pthread_join(merge_and_split_tid[i], &ret); assert_zero(r); } for (int i = 0; i < NUM_MOVER_THREADS; i++) { r = toku_pthread_join(move_tid[i], &ret); assert_zero(r); } toku_cachetable_verify(ct); toku_cachefile_close(&f1, false, ZERO_LSN); toku_cachetable_close(&ct); sum_vals(); if (verbose) printf("num_checkpoints %d\n", num_checkpoints); } int test_main(int argc, const char *argv[]) { default_parse_args(argc, argv); cachetable_test(); return 0; }