/***************************************************************************** Copyright (c) 1994, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2008, Google Inc. Copyright (c) 2012, Facebook Inc. Copyright (c) 2015, 2017, MariaDB Corporation. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file btr/btr0cur.cc The index tree cursor All changes that row operations make to a B-tree or the records there must go through this module! Undo log records are written here of every modify or insert of a clustered index record. NOTE!!! To make sure we do not run out of disk space during a pessimistic insert or update, we have to reserve 2 x the height of the index tree many pages in the tablespace before we start the operation, because if leaf splitting has been started, it is difficult to undo, except by crashing the database and doing a roll-forward. Created 10/16/1994 Heikki Tuuri *******************************************************/ #include "btr0cur.h" #ifdef UNIV_NONINL #include "btr0cur.ic" #endif #include "row0upd.h" #ifndef UNIV_HOTBACKUP #include "mtr0log.h" #include "page0page.h" #include "page0zip.h" #include "rem0rec.h" #include "rem0cmp.h" #include "buf0lru.h" #include "btr0btr.h" #include "btr0sea.h" #include "row0log.h" #include "row0purge.h" #include "row0upd.h" #include "trx0rec.h" #include "trx0roll.h" /* trx_is_recv() */ #include "que0que.h" #include "row0row.h" #include "srv0srv.h" #include "ibuf0ibuf.h" #include "lock0lock.h" #include "zlib.h" /** Buffered B-tree operation types, introduced as part of delete buffering. */ enum btr_op_t { BTR_NO_OP = 0, /*!< Not buffered */ BTR_INSERT_OP, /*!< Insert, do not ignore UNIQUE */ BTR_INSERT_IGNORE_UNIQUE_OP, /*!< Insert, ignoring UNIQUE */ BTR_DELETE_OP, /*!< Purge a delete-marked record */ BTR_DELMARK_OP /*!< Mark a record for deletion */ }; #ifdef UNIV_DEBUG /** If the following is set to TRUE, this module prints a lot of trace information of individual record operations */ UNIV_INTERN ibool btr_cur_print_record_ops = FALSE; #endif /* UNIV_DEBUG */ /** Number of searches down the B-tree in btr_cur_search_to_nth_level(). */ UNIV_INTERN ulint btr_cur_n_non_sea = 0; /** Number of successful adaptive hash index lookups in btr_cur_search_to_nth_level(). */ UNIV_INTERN ulint btr_cur_n_sea = 0; /** Old value of btr_cur_n_non_sea. Copied by srv_refresh_innodb_monitor_stats(). Referenced by srv_printf_innodb_monitor(). */ UNIV_INTERN ulint btr_cur_n_non_sea_old = 0; /** Old value of btr_cur_n_sea. Copied by srv_refresh_innodb_monitor_stats(). Referenced by srv_printf_innodb_monitor(). */ UNIV_INTERN ulint btr_cur_n_sea_old = 0; #ifdef UNIV_DEBUG /* Flag to limit optimistic insert records */ UNIV_INTERN uint btr_cur_limit_optimistic_insert_debug = 0; #endif /* UNIV_DEBUG */ /** In the optimistic insert, if the insert does not fit, but this much space can be released by page reorganize, then it is reorganized */ #define BTR_CUR_PAGE_REORGANIZE_LIMIT (UNIV_PAGE_SIZE / 32) /** The structure of a BLOB part header */ /* @{ */ /*--------------------------------------*/ #define BTR_BLOB_HDR_PART_LEN 0 /*!< BLOB part len on this page */ #define BTR_BLOB_HDR_NEXT_PAGE_NO 4 /*!< next BLOB part page no, FIL_NULL if none */ /*--------------------------------------*/ #define BTR_BLOB_HDR_SIZE 8 /*!< Size of a BLOB part header, in bytes */ /** Estimated table level stats from sampled value. @param value sampled stats @param index index being sampled @param sample number of sampled rows @param ext_size external stored data size @param not_empty table not empty @return estimated table wide stats from sampled value */ #define BTR_TABLE_STATS_FROM_SAMPLE(value, index, sample, ext_size, not_empty)\ (((value) * (ib_int64_t) index->stat_n_leaf_pages \ + (sample) - 1 + (ext_size) + (not_empty)) / ((sample) + (ext_size))) /* @} */ #endif /* !UNIV_HOTBACKUP */ /** A BLOB field reference full of zero, for use in assertions and tests. Initially, BLOB field references are set to zero, in dtuple_convert_big_rec(). */ const byte field_ref_zero[BTR_EXTERN_FIELD_REF_SIZE] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, }; #ifndef UNIV_HOTBACKUP /*******************************************************************//** Marks all extern fields in a record as owned by the record. This function should be called if the delete mark of a record is removed: a not delete marked record always owns all its extern fields. */ static void btr_cur_unmark_extern_fields( /*=========================*/ page_zip_des_t* page_zip,/*!< in/out: compressed page whose uncompressed part will be updated, or NULL */ rec_t* rec, /*!< in/out: record in a clustered index */ dict_index_t* index, /*!< in: index of the page */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ mtr_t* mtr); /*!< in: mtr, or NULL if not logged */ /*******************************************************************//** Adds path information to the cursor for the current page, for which the binary search has been performed. */ static void btr_cur_add_path_info( /*==================*/ btr_cur_t* cursor, /*!< in: cursor positioned on a page */ ulint height, /*!< in: height of the page in tree; 0 means leaf node */ ulint root_height); /*!< in: root node height in tree */ /***********************************************************//** Frees the externally stored fields for a record, if the field is mentioned in the update vector. */ static void btr_rec_free_updated_extern_fields( /*===============================*/ dict_index_t* index, /*!< in: index of rec; the index tree MUST be X-latched */ rec_t* rec, /*!< in: record */ page_zip_des_t* page_zip,/*!< in: compressed page whose uncompressed part will be updated, or NULL */ const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ const upd_t* update, /*!< in: update vector */ enum trx_rb_ctx rb_ctx, /*!< in: rollback context */ mtr_t* mtr); /*!< in: mini-transaction handle which contains an X-latch to record page and to the tree */ /***********************************************************//** Frees the externally stored fields for a record. */ static void btr_rec_free_externally_stored_fields( /*==================================*/ dict_index_t* index, /*!< in: index of the data, the index tree MUST be X-latched */ rec_t* rec, /*!< in: record */ const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ page_zip_des_t* page_zip,/*!< in: compressed page whose uncompressed part will be updated, or NULL */ enum trx_rb_ctx rb_ctx, /*!< in: rollback context */ mtr_t* mtr); /*!< in: mini-transaction handle which contains an X-latch to record page and to the index tree */ #endif /* !UNIV_HOTBACKUP */ /******************************************************//** The following function is used to set the deleted bit of a record. */ UNIV_INLINE void btr_rec_set_deleted_flag( /*=====================*/ rec_t* rec, /*!< in/out: physical record */ page_zip_des_t* page_zip,/*!< in/out: compressed page (or NULL) */ ulint flag) /*!< in: nonzero if delete marked */ { if (page_rec_is_comp(rec)) { rec_set_deleted_flag_new(rec, page_zip, flag); } else { ut_ad(!page_zip); rec_set_deleted_flag_old(rec, flag); } } #ifndef UNIV_HOTBACKUP /*==================== B-TREE SEARCH =========================*/ /********************************************************************//** Latches the leaf page or pages requested. */ static void btr_cur_latch_leaves( /*=================*/ page_t* page, /*!< in: leaf page where the search converged */ ulint space, /*!< in: space id */ ulint zip_size, /*!< in: compressed page size in bytes or 0 for uncompressed pages */ ulint page_no, /*!< in: page number of the leaf */ ulint latch_mode, /*!< in: BTR_SEARCH_LEAF, ... */ btr_cur_t* cursor, /*!< in: cursor */ mtr_t* mtr) /*!< in: mtr */ { ulint mode; ulint sibling_mode; ulint left_page_no; ulint right_page_no; buf_block_t* get_block; ut_ad(page && mtr); switch (latch_mode) { case BTR_SEARCH_LEAF: case BTR_MODIFY_LEAF: mode = latch_mode == BTR_SEARCH_LEAF ? RW_S_LATCH : RW_X_LATCH; get_block = btr_block_get( space, zip_size, page_no, mode, cursor->index, mtr); SRV_CORRUPT_TABLE_CHECK(get_block, return;); #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(get_block->frame) == page_is_comp(page)); #endif /* UNIV_BTR_DEBUG */ get_block->check_index_page_at_flush = TRUE; return; case BTR_SEARCH_TREE: case BTR_MODIFY_TREE: if (UNIV_UNLIKELY(latch_mode == BTR_SEARCH_TREE)) { mode = RW_S_LATCH; sibling_mode = RW_NO_LATCH; } else { mode = sibling_mode = RW_X_LATCH; } /* Fetch and possibly latch also brothers from left to right */ left_page_no = btr_page_get_prev(page, mtr); if (left_page_no != FIL_NULL) { get_block = btr_block_get( space, zip_size, left_page_no, sibling_mode, cursor->index, mtr); SRV_CORRUPT_TABLE_CHECK(get_block, return;); #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(get_block->frame) == page_is_comp(page)); /* For fake_change mode we avoid a detailed validation as it operate in tweaked format where-in validation may fail. */ ut_a(sibling_mode == RW_NO_LATCH || btr_page_get_next(get_block->frame, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ if (sibling_mode == RW_NO_LATCH) { /* btr_block_get() called with RW_NO_LATCH will fix the read block in the buffer. This serves no purpose for the fake changes prefetching, thus we unfix the sibling blocks immediately.*/ mtr_memo_release(mtr, get_block, MTR_MEMO_BUF_FIX); } else { get_block->check_index_page_at_flush = TRUE; } } get_block = btr_block_get( space, zip_size, page_no, mode, cursor->index, mtr); SRV_CORRUPT_TABLE_CHECK(get_block, return;); #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(get_block->frame) == page_is_comp(page)); #endif /* UNIV_BTR_DEBUG */ get_block->check_index_page_at_flush = TRUE; right_page_no = btr_page_get_next(page, mtr); if (right_page_no != FIL_NULL) { get_block = btr_block_get( space, zip_size, right_page_no, sibling_mode, cursor->index, mtr); SRV_CORRUPT_TABLE_CHECK(get_block, return;); #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(get_block->frame) == page_is_comp(page)); ut_a(btr_page_get_prev(get_block->frame, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ if (sibling_mode == RW_NO_LATCH) { mtr_memo_release(mtr, get_block, MTR_MEMO_BUF_FIX); } else { get_block->check_index_page_at_flush = TRUE; } } return; case BTR_SEARCH_PREV: case BTR_MODIFY_PREV: mode = latch_mode == BTR_SEARCH_PREV ? RW_S_LATCH : RW_X_LATCH; /* latch also left brother */ left_page_no = btr_page_get_prev(page, mtr); if (left_page_no != FIL_NULL) { get_block = btr_block_get( space, zip_size, left_page_no, mode, cursor->index, mtr); cursor->left_block = get_block; SRV_CORRUPT_TABLE_CHECK(get_block, return;); #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(get_block->frame) == page_is_comp(page)); ut_a(btr_page_get_next(get_block->frame, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ get_block->check_index_page_at_flush = TRUE; } get_block = btr_block_get( space, zip_size, page_no, mode, cursor->index, mtr); SRV_CORRUPT_TABLE_CHECK(get_block, return;); #ifdef UNIV_BTR_DEBUG ut_a(page_is_comp(get_block->frame) == page_is_comp(page)); #endif /* UNIV_BTR_DEBUG */ get_block->check_index_page_at_flush = TRUE; return; } ut_error; } /********************************************************************//** Searches an index tree and positions a tree cursor on a given level. NOTE: n_fields_cmp in tuple must be set so that it cannot be compared to node pointer page number fields on the upper levels of the tree! Note that if mode is PAGE_CUR_LE, which is used in inserts, then cursor->up_match and cursor->low_match both will have sensible values. If mode is PAGE_CUR_GE, then up_match will a have a sensible value. If mode is PAGE_CUR_LE , cursor is left at the place where an insert of the search tuple should be performed in the B-tree. InnoDB does an insert immediately after the cursor. Thus, the cursor may end up on a user record, or on a page infimum record. */ UNIV_INTERN dberr_t btr_cur_search_to_nth_level( /*========================*/ dict_index_t* index, /*!< in: index */ ulint level, /*!< in: the tree level of search */ const dtuple_t* tuple, /*!< in: data tuple; NOTE: n_fields_cmp in tuple must be set so that it cannot get compared to the node ptr page number field! */ ulint mode, /*!< in: PAGE_CUR_L, ...; Inserts should always be made using PAGE_CUR_LE to search the position! */ ulint latch_mode, /*!< in: BTR_SEARCH_LEAF, ..., ORed with at most one of BTR_INSERT, BTR_DELETE_MARK, BTR_DELETE, or BTR_ESTIMATE; cursor->left_block is used to store a pointer to the left neighbor page, in the cases BTR_SEARCH_PREV and BTR_MODIFY_PREV; NOTE that if has_search_latch is != 0, we maybe do not have a latch set on the cursor page, we assume the caller uses his search latch to protect the record! */ btr_cur_t* cursor, /*!< in/out: tree cursor; the cursor page is s- or x-latched, but see also above! */ ulint has_search_latch,/*!< in: info on the latch mode the caller currently has on btr_search_latch: RW_S_LATCH, or 0 */ const char* file, /*!< in: file name */ ulint line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mtr */ { page_t* page; buf_block_t* block; ulint space; buf_block_t* guess; ulint height; ulint page_no; ulint up_match; ulint up_bytes; ulint low_match; ulint low_bytes; ulint savepoint; ulint rw_latch; ulint page_mode; ulint buf_mode; ulint estimate; ulint zip_size; page_cur_t* page_cursor; btr_op_t btr_op; ulint root_height = 0; /* remove warning */ dberr_t err = DB_SUCCESS; #ifdef BTR_CUR_ADAPT btr_search_t* info; #endif mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); /* Currently, PAGE_CUR_LE is the only search mode used for searches ending to upper levels */ ut_ad(level == 0 || mode == PAGE_CUR_LE); ut_ad(dict_index_check_search_tuple(index, tuple)); ut_ad(!dict_index_is_ibuf(index) || ibuf_inside(mtr)); ut_ad(dtuple_check_typed(tuple)); ut_ad(!(index->type & DICT_FTS)); ut_ad(index->page != FIL_NULL); UNIV_MEM_INVALID(&cursor->up_match, sizeof cursor->up_match); UNIV_MEM_INVALID(&cursor->up_bytes, sizeof cursor->up_bytes); UNIV_MEM_INVALID(&cursor->low_match, sizeof cursor->low_match); UNIV_MEM_INVALID(&cursor->low_bytes, sizeof cursor->low_bytes); #ifdef UNIV_DEBUG cursor->up_match = ULINT_UNDEFINED; cursor->low_match = ULINT_UNDEFINED; #endif ibool s_latch_by_caller; s_latch_by_caller = latch_mode & BTR_ALREADY_S_LATCHED; ut_ad(!s_latch_by_caller || mtr_memo_contains(mtr, dict_index_get_lock(index), MTR_MEMO_S_LOCK)); /* These flags are mutually exclusive, they are lumped together with the latch mode for historical reasons. It's possible for none of the flags to be set. */ switch (UNIV_EXPECT(latch_mode & (BTR_INSERT | BTR_DELETE | BTR_DELETE_MARK), 0)) { case 0: btr_op = BTR_NO_OP; break; case BTR_INSERT: btr_op = (latch_mode & BTR_IGNORE_SEC_UNIQUE) ? BTR_INSERT_IGNORE_UNIQUE_OP : BTR_INSERT_OP; break; case BTR_DELETE: btr_op = BTR_DELETE_OP; ut_a(cursor->purge_node); break; case BTR_DELETE_MARK: btr_op = BTR_DELMARK_OP; break; default: /* only one of BTR_INSERT, BTR_DELETE, BTR_DELETE_MARK should be specified at a time */ ut_error; } /* Operations on the insert buffer tree cannot be buffered. */ ut_ad(btr_op == BTR_NO_OP || !dict_index_is_ibuf(index)); /* Operations on the clustered index cannot be buffered. */ ut_ad(btr_op == BTR_NO_OP || !dict_index_is_clust(index)); estimate = latch_mode & BTR_ESTIMATE; /* Turn the flags unrelated to the latch mode off. */ latch_mode = BTR_LATCH_MODE_WITHOUT_FLAGS(latch_mode); ut_ad(!s_latch_by_caller || latch_mode == BTR_SEARCH_LEAF || latch_mode == BTR_MODIFY_LEAF); cursor->flag = BTR_CUR_BINARY; cursor->index = index; #ifndef BTR_CUR_ADAPT guess = NULL; #else info = btr_search_get_info(index); guess = info->root_guess; #ifdef BTR_CUR_HASH_ADAPT # ifdef UNIV_SEARCH_PERF_STAT info->n_searches++; # endif if (rw_lock_get_writer(btr_search_get_latch(cursor->index)) == RW_LOCK_NOT_LOCKED && latch_mode <= BTR_MODIFY_LEAF && info->last_hash_succ && !estimate # ifdef PAGE_CUR_LE_OR_EXTENDS && mode != PAGE_CUR_LE_OR_EXTENDS # endif /* PAGE_CUR_LE_OR_EXTENDS */ /* If !has_search_latch, we do a dirty read of btr_search_enabled below, and btr_search_guess_on_hash() will have to check it again. */ && UNIV_LIKELY(btr_search_enabled) && btr_search_guess_on_hash(index, info, tuple, mode, latch_mode, cursor, has_search_latch, mtr)) { /* Search using the hash index succeeded */ ut_ad(cursor->up_match != ULINT_UNDEFINED || mode != PAGE_CUR_GE); ut_ad(cursor->up_match != ULINT_UNDEFINED || mode != PAGE_CUR_LE); ut_ad(cursor->low_match != ULINT_UNDEFINED || mode != PAGE_CUR_LE); btr_cur_n_sea++; return err; } # endif /* BTR_CUR_HASH_ADAPT */ #endif /* BTR_CUR_ADAPT */ btr_cur_n_non_sea++; /* If the hash search did not succeed, do binary search down the tree */ if (has_search_latch) { /* Release possible search latch to obey latching order */ rw_lock_s_unlock(btr_search_get_latch(cursor->index)); } /* Store the position of the tree latch we push to mtr so that we know how to release it when we have latched leaf node(s) */ savepoint = mtr_set_savepoint(mtr); switch (latch_mode) { case BTR_MODIFY_TREE: mtr_x_lock(dict_index_get_lock(index), mtr); break; case BTR_CONT_MODIFY_TREE: /* Do nothing */ ut_ad(mtr_memo_contains(mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK)); break; default: if (!s_latch_by_caller) { mtr_s_lock(dict_index_get_lock(index), mtr); } } page_cursor = btr_cur_get_page_cur(cursor); space = dict_index_get_space(index); page_no = dict_index_get_page(index); up_match = 0; up_bytes = 0; low_match = 0; low_bytes = 0; height = ULINT_UNDEFINED; /* We use these modified search modes on non-leaf levels of the B-tree. These let us end up in the right B-tree leaf. In that leaf we use the original search mode. */ switch (mode) { case PAGE_CUR_GE: page_mode = PAGE_CUR_L; break; case PAGE_CUR_G: page_mode = PAGE_CUR_LE; break; default: #ifdef PAGE_CUR_LE_OR_EXTENDS ut_ad(mode == PAGE_CUR_L || mode == PAGE_CUR_LE || mode == PAGE_CUR_LE_OR_EXTENDS); #else /* PAGE_CUR_LE_OR_EXTENDS */ ut_ad(mode == PAGE_CUR_L || mode == PAGE_CUR_LE); #endif /* PAGE_CUR_LE_OR_EXTENDS */ page_mode = mode; break; } /* Loop and search until we arrive at the desired level */ search_loop: buf_mode = BUF_GET; rw_latch = RW_NO_LATCH; if (height != 0) { /* We are about to fetch the root or a non-leaf page. */ } else if (latch_mode <= BTR_MODIFY_LEAF) { rw_latch = latch_mode; if (btr_op != BTR_NO_OP && ibuf_should_try(index, btr_op != BTR_INSERT_OP)) { /* Try to buffer the operation if the leaf page is not in the buffer pool. */ buf_mode = btr_op == BTR_DELETE_OP ? BUF_GET_IF_IN_POOL_OR_WATCH : BUF_GET_IF_IN_POOL; } } zip_size = dict_table_zip_size(index->table); retry_page_get: block = buf_page_get_gen( space, zip_size, page_no, rw_latch, guess, buf_mode, file, line, mtr, &err); /* Note that block==NULL signifies either an error or change buffering. */ if (err != DB_SUCCESS) { ut_ad(block == NULL); if (err == DB_DECRYPTION_FAILED) { ib_push_warning((void *)NULL, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", index->table->name); index->table->file_unreadable = true; } goto func_exit; } if (block == NULL) { SRV_CORRUPT_TABLE_CHECK(buf_mode == BUF_GET_IF_IN_POOL || buf_mode == BUF_GET_IF_IN_POOL_OR_WATCH, { page_cursor->block = 0; page_cursor->rec = 0; if (estimate) { cursor->path_arr->nth_rec = ULINT_UNDEFINED; } goto func_exit; }); /* This must be a search to perform an insert/delete mark/ delete; try using the insert/delete buffer */ ut_ad(height == 0); ut_ad(cursor->thr); switch (btr_op) { case BTR_INSERT_OP: case BTR_INSERT_IGNORE_UNIQUE_OP: ut_ad(buf_mode == BUF_GET_IF_IN_POOL); if (ibuf_insert(IBUF_OP_INSERT, tuple, index, space, zip_size, page_no, cursor->thr)) { cursor->flag = BTR_CUR_INSERT_TO_IBUF; goto func_exit; } break; case BTR_DELMARK_OP: ut_ad(buf_mode == BUF_GET_IF_IN_POOL); if (ibuf_insert(IBUF_OP_DELETE_MARK, tuple, index, space, zip_size, page_no, cursor->thr)) { cursor->flag = BTR_CUR_DEL_MARK_IBUF; goto func_exit; } break; case BTR_DELETE_OP: ut_ad(buf_mode == BUF_GET_IF_IN_POOL_OR_WATCH); if (!row_purge_poss_sec(cursor->purge_node, index, tuple)) { /* The record cannot be purged yet. */ cursor->flag = BTR_CUR_DELETE_REF; } else if (ibuf_insert(IBUF_OP_DELETE, tuple, index, space, zip_size, page_no, cursor->thr)) { /* The purge was buffered. */ cursor->flag = BTR_CUR_DELETE_IBUF; } else { /* The purge could not be buffered. */ buf_pool_watch_unset(space, page_no); break; } buf_pool_watch_unset(space, page_no); goto func_exit; default: ut_error; } /* Insert to the insert/delete buffer did not succeed, we must read the page from disk. */ buf_mode = BUF_GET; goto retry_page_get; } block->check_index_page_at_flush = TRUE; page = buf_block_get_frame(block); SRV_CORRUPT_TABLE_CHECK(page, { page_cursor->block = 0; page_cursor->rec = 0; if (estimate) { cursor->path_arr->nth_rec = ULINT_UNDEFINED; } goto func_exit; }); if (rw_latch != RW_NO_LATCH) { #ifdef UNIV_ZIP_DEBUG const page_zip_des_t* page_zip = buf_block_get_page_zip(block); ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ buf_block_dbg_add_level( block, dict_index_is_ibuf(index) ? SYNC_IBUF_TREE_NODE : SYNC_TREE_NODE); } ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX); ut_ad(index->id == btr_page_get_index_id(page)); if (UNIV_UNLIKELY(height == ULINT_UNDEFINED)) { /* We are in the root node */ height = btr_page_get_level(page, mtr); root_height = height; cursor->tree_height = root_height + 1; #ifdef BTR_CUR_ADAPT if (block != guess) { info->root_guess = block; } #endif } if (height == 0) { if (rw_latch == RW_NO_LATCH) { btr_cur_latch_leaves( page, space, zip_size, page_no, latch_mode, cursor, mtr); } switch (latch_mode) { case BTR_MODIFY_TREE: case BTR_CONT_MODIFY_TREE: break; default: if (!s_latch_by_caller) { /* Release the tree s-latch */ mtr_release_s_latch_at_savepoint( mtr, savepoint, dict_index_get_lock(index)); } } page_mode = mode; } page_cur_search_with_match( block, index, tuple, page_mode, &up_match, &up_bytes, &low_match, &low_bytes, page_cursor); if (estimate) { btr_cur_add_path_info(cursor, height, root_height); } /* If this is the desired level, leave the loop */ ut_ad(height == btr_page_get_level(page_cur_get_page(page_cursor), mtr)); if (level != height) { const rec_t* node_ptr; ut_ad(height > 0); height--; guess = NULL; node_ptr = page_cur_get_rec(page_cursor); offsets = rec_get_offsets( node_ptr, index, offsets, ULINT_UNDEFINED, &heap); /* Go to the child node */ page_no = btr_node_ptr_get_child_page_no(node_ptr, offsets); if (UNIV_UNLIKELY(height == 0 && dict_index_is_ibuf(index))) { /* We're doing a search on an ibuf tree and we're one level above the leaf page. */ ut_ad(level == 0); buf_mode = BUF_GET; rw_latch = RW_NO_LATCH; goto retry_page_get; } goto search_loop; } if (level != 0) { /* x-latch the page */ buf_block_t* child_block = btr_block_get( space, zip_size, page_no, RW_X_LATCH, index, mtr); page = buf_block_get_frame(child_block); btr_assert_not_corrupted(child_block, index); } else { cursor->low_match = low_match; cursor->low_bytes = low_bytes; cursor->up_match = up_match; cursor->up_bytes = up_bytes; #ifdef BTR_CUR_ADAPT /* We do a dirty read of btr_search_enabled here. We will properly check btr_search_enabled again in btr_search_build_page_hash_index() before building a page hash index, while holding btr_search_latch. */ if (btr_search_enabled) { btr_search_info_update(index, cursor); } #endif ut_ad(cursor->up_match != ULINT_UNDEFINED || mode != PAGE_CUR_GE); ut_ad(cursor->up_match != ULINT_UNDEFINED || mode != PAGE_CUR_LE); ut_ad(cursor->low_match != ULINT_UNDEFINED || mode != PAGE_CUR_LE); } func_exit: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } if (has_search_latch) { rw_lock_s_lock(btr_search_get_latch(cursor->index)); } return err; } /*****************************************************************//** Opens a cursor at either end of an index. */ UNIV_INTERN dberr_t btr_cur_open_at_index_side_func( /*============================*/ bool from_left, /*!< in: true if open to the low end, false if to the high end */ dict_index_t* index, /*!< in: index */ ulint latch_mode, /*!< in: latch mode */ btr_cur_t* cursor, /*!< in/out: cursor */ ulint level, /*!< in: level to search for (0=leaf). */ const char* file, /*!< in: file name */ ulint line, /*!< in: line where called */ mtr_t* mtr) /*!< in/out: mini-transaction */ { page_cur_t* page_cursor; ulint page_no; ulint space; ulint zip_size; ulint height; ulint root_height = 0; /* remove warning */ rec_t* node_ptr; ulint estimate; ulint savepoint; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; dberr_t err = DB_SUCCESS; rec_offs_init(offsets_); estimate = latch_mode & BTR_ESTIMATE; latch_mode &= ~BTR_ESTIMATE; ut_ad(level != ULINT_UNDEFINED); /* Store the position of the tree latch we push to mtr so that we know how to release it when we have latched the leaf node */ savepoint = mtr_set_savepoint(mtr); switch (latch_mode) { case BTR_CONT_MODIFY_TREE: break; case BTR_MODIFY_TREE: mtr_x_lock(dict_index_get_lock(index), mtr); break; case BTR_SEARCH_LEAF | BTR_ALREADY_S_LATCHED: case BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED: ut_ad(mtr_memo_contains(mtr, dict_index_get_lock(index), MTR_MEMO_S_LOCK)); break; default: mtr_s_lock(dict_index_get_lock(index), mtr); } page_cursor = btr_cur_get_page_cur(cursor); cursor->index = index; space = dict_index_get_space(index); zip_size = dict_table_zip_size(index->table); page_no = dict_index_get_page(index); height = ULINT_UNDEFINED; for (;;) { buf_block_t* block=NULL; page_t* page=NULL; block = buf_page_get_gen(space, zip_size, page_no, RW_NO_LATCH, NULL, BUF_GET, file, line, mtr, &err); ut_ad((block != NULL) == (err == DB_SUCCESS)); if (err != DB_SUCCESS) { if (err == DB_DECRYPTION_FAILED) { ib_push_warning((void *)NULL, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", index->table->name); index->table->file_unreadable = true; } goto exit_loop; } page = buf_block_get_frame(block); SRV_CORRUPT_TABLE_CHECK(page, { page_cursor->block = 0; page_cursor->rec = 0; if (estimate) { cursor->path_arr->nth_rec = ULINT_UNDEFINED; } /* Can't use break with the macro */ goto exit_loop; }); ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX); ut_ad(index->id == btr_page_get_index_id(page)); block->check_index_page_at_flush = TRUE; if (height == ULINT_UNDEFINED) { /* We are in the root node */ height = btr_page_get_level(page, mtr); root_height = height; ut_a(height >= level); } else { /* TODO: flag the index corrupted if this fails */ ut_ad(height == btr_page_get_level(page, mtr)); } if (height == level) { btr_cur_latch_leaves( page, space, zip_size, page_no, latch_mode & ~BTR_ALREADY_S_LATCHED, cursor, mtr); if (height == 0) { /* In versions <= 3.23.52 we had forgotten to release the tree latch here. If in an index scan we had to scan far to find a record visible to the current transaction, that could starve others waiting for the tree latch. */ switch (latch_mode) { case BTR_MODIFY_TREE: case BTR_CONT_MODIFY_TREE: case BTR_SEARCH_LEAF | BTR_ALREADY_S_LATCHED: case BTR_MODIFY_LEAF | BTR_ALREADY_S_LATCHED: break; default: /* Release the tree s-latch */ mtr_release_s_latch_at_savepoint( mtr, savepoint, dict_index_get_lock(index)); } } } if (from_left) { page_cur_set_before_first(block, page_cursor); } else { page_cur_set_after_last(block, page_cursor); } if (height == level) { if (estimate) { btr_cur_add_path_info(cursor, height, root_height); } break; } ut_ad(height > 0); if (from_left) { page_cur_move_to_next(page_cursor); } else { page_cur_move_to_prev(page_cursor); } if (estimate) { btr_cur_add_path_info(cursor, height, root_height); } height--; node_ptr = page_cur_get_rec(page_cursor); offsets = rec_get_offsets(node_ptr, cursor->index, offsets, ULINT_UNDEFINED, &heap); /* Go to the child node */ page_no = btr_node_ptr_get_child_page_no(node_ptr, offsets); } exit_loop: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return err; } /**********************************************************************//** Positions a cursor at a randomly chosen position within a B-tree. */ UNIV_INTERN void btr_cur_open_at_rnd_pos_func( /*=========================*/ dict_index_t* index, /*!< in: index */ ulint latch_mode, /*!< in: BTR_SEARCH_LEAF, ... */ btr_cur_t* cursor, /*!< in/out: B-tree cursor */ const char* file, /*!< in: file name */ ulint line, /*!< in: line where called */ mtr_t* mtr) /*!< in: mtr */ { page_cur_t* page_cursor; ulint page_no; ulint space; ulint zip_size; ulint height; rec_t* node_ptr; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; rec_offs_init(offsets_); switch (latch_mode) { case BTR_MODIFY_TREE: mtr_x_lock(dict_index_get_lock(index), mtr); break; default: ut_ad(latch_mode != BTR_CONT_MODIFY_TREE); mtr_s_lock(dict_index_get_lock(index), mtr); } page_cursor = btr_cur_get_page_cur(cursor); cursor->index = index; space = dict_index_get_space(index); zip_size = dict_table_zip_size(index->table); page_no = dict_index_get_page(index); height = ULINT_UNDEFINED; for (;;) { buf_block_t* block; page_t* page; dberr_t err=DB_SUCCESS; block = buf_page_get_gen(space, zip_size, page_no, RW_NO_LATCH, NULL, BUF_GET, file, line, mtr, &err); ut_ad((block != NULL) == (err == DB_SUCCESS)); if (err != DB_SUCCESS) { if (err == DB_DECRYPTION_FAILED) { ib_push_warning((void *)NULL, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", index->table->name); index->table->file_unreadable = true; } goto exit_loop; } page = buf_block_get_frame(block); SRV_CORRUPT_TABLE_CHECK(page, { page_cursor->block = 0; page_cursor->rec = 0; goto exit_loop; }); ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX); ut_ad(index->id == btr_page_get_index_id(page)); if (height == ULINT_UNDEFINED) { /* We are in the root node */ height = btr_page_get_level(page, mtr); } if (height == 0) { btr_cur_latch_leaves(page, space, zip_size, page_no, latch_mode, cursor, mtr); } page_cur_open_on_rnd_user_rec(block, page_cursor); if (height == 0) { break; } ut_ad(height > 0); height--; node_ptr = page_cur_get_rec(page_cursor); offsets = rec_get_offsets(node_ptr, cursor->index, offsets, ULINT_UNDEFINED, &heap); /* Go to the child node */ page_no = btr_node_ptr_get_child_page_no(node_ptr, offsets); } exit_loop: if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } /*==================== B-TREE INSERT =========================*/ /*************************************************************//** Inserts a record if there is enough space, or if enough space can be freed by reorganizing. Differs from btr_cur_optimistic_insert because no heuristics is applied to whether it pays to use CPU time for reorganizing the page or not. IMPORTANT: The caller will have to update IBUF_BITMAP_FREE if this is a compressed leaf page in a secondary index. This has to be done either within the same mini-transaction, or by invoking ibuf_reset_free_bits() before mtr_commit(). @return pointer to inserted record if succeed, else NULL */ static MY_ATTRIBUTE((nonnull, warn_unused_result)) rec_t* btr_cur_insert_if_possible( /*=======================*/ btr_cur_t* cursor, /*!< in: cursor on page after which to insert; cursor stays valid */ const dtuple_t* tuple, /*!< in: tuple to insert; the size info need not have been stored to tuple */ ulint** offsets,/*!< out: offsets on *rec */ mem_heap_t** heap, /*!< in/out: pointer to memory heap, or NULL */ ulint n_ext, /*!< in: number of externally stored columns */ mtr_t* mtr) /*!< in/out: mini-transaction */ { page_cur_t* page_cursor; rec_t* rec; ut_ad(dtuple_check_typed(tuple)); ut_ad(mtr_memo_contains(mtr, btr_cur_get_block(cursor), MTR_MEMO_PAGE_X_FIX)); page_cursor = btr_cur_get_page_cur(cursor); /* Now, try the insert */ rec = page_cur_tuple_insert(page_cursor, tuple, cursor->index, offsets, heap, n_ext, mtr); /* If the record did not fit, reorganize. For compressed pages, page_cur_tuple_insert() attempted this already. */ if (!rec && !page_cur_get_page_zip(page_cursor) && btr_page_reorganize(page_cursor, cursor->index, mtr)) { rec = page_cur_tuple_insert( page_cursor, tuple, cursor->index, offsets, heap, n_ext, mtr); } ut_ad(!rec || rec_offs_validate(rec, cursor->index, *offsets)); return(rec); } /*************************************************************//** For an insert, checks the locks and does the undo logging if desired. @return DB_SUCCESS, DB_WAIT_LOCK, DB_FAIL, or error number */ UNIV_INLINE MY_ATTRIBUTE((warn_unused_result, nonnull(2,3,5,6))) dberr_t btr_cur_ins_lock_and_undo( /*======================*/ ulint flags, /*!< in: undo logging and locking flags: if not zero, the parameters index and thr should be specified */ btr_cur_t* cursor, /*!< in: cursor on page after which to insert */ dtuple_t* entry, /*!< in/out: entry to insert */ que_thr_t* thr, /*!< in: query thread or NULL */ mtr_t* mtr, /*!< in/out: mini-transaction */ ibool* inherit)/*!< out: TRUE if the inserted new record maybe should inherit LOCK_GAP type locks from the successor record */ { dict_index_t* index; dberr_t err; rec_t* rec; roll_ptr_t roll_ptr; if (UNIV_UNLIKELY(thr && thr_get_trx(thr)->fake_changes)) { /* skip LOCK, UNDO */ return(DB_SUCCESS); } /* Check if we have to wait for a lock: enqueue an explicit lock request if yes */ rec = btr_cur_get_rec(cursor); index = cursor->index; ut_ad(!dict_index_is_online_ddl(index) || dict_index_is_clust(index) || (flags & BTR_CREATE_FLAG)); err = lock_rec_insert_check_and_lock(flags, rec, btr_cur_get_block(cursor), index, thr, mtr, inherit); if (err != DB_SUCCESS || !dict_index_is_clust(index) || dict_index_is_ibuf(index)) { return(err); } err = trx_undo_report_row_operation(flags, TRX_UNDO_INSERT_OP, thr, index, entry, NULL, 0, NULL, NULL, &roll_ptr); if (err != DB_SUCCESS) { return(err); } /* Now we can fill in the roll ptr field in entry */ if (!(flags & BTR_KEEP_SYS_FLAG)) { row_upd_index_entry_sys_field(entry, index, DATA_ROLL_PTR, roll_ptr); } return(DB_SUCCESS); } #ifdef UNIV_DEBUG /*************************************************************//** Report information about a transaction. */ static void btr_cur_trx_report( /*===============*/ trx_id_t trx_id, /*!< in: transaction id */ const dict_index_t* index, /*!< in: index */ const char* op) /*!< in: operation */ { fprintf(stderr, "Trx with id " TRX_ID_FMT " going to ", trx_id); fputs(op, stderr); dict_index_name_print(stderr, NULL, index); putc('\n', stderr); } #endif /* UNIV_DEBUG */ /*************************************************************//** Tries to perform an insert to a page in an index tree, next to cursor. It is assumed that mtr holds an x-latch on the page. The operation does not succeed if there is too little space on the page. If there is just one record on the page, the insert will always succeed; this is to prevent trying to split a page with just one record. @return DB_SUCCESS, DB_WAIT_LOCK, DB_FAIL, or error number */ UNIV_INTERN dberr_t btr_cur_optimistic_insert( /*======================*/ ulint flags, /*!< in: undo logging and locking flags: if not zero, the parameters index and thr should be specified */ btr_cur_t* cursor, /*!< in: cursor on page after which to insert; cursor stays valid */ ulint** offsets,/*!< out: offsets on *rec */ mem_heap_t** heap, /*!< in/out: pointer to memory heap, or NULL */ dtuple_t* entry, /*!< in/out: entry to insert */ rec_t** rec, /*!< out: pointer to inserted record if succeed */ big_rec_t** big_rec,/*!< out: big rec vector whose fields have to be stored externally by the caller, or NULL */ ulint n_ext, /*!< in: number of externally stored columns */ que_thr_t* thr, /*!< in: query thread or NULL */ mtr_t* mtr) /*!< in/out: mini-transaction; if this function returns DB_SUCCESS on a leaf page of a secondary index in a compressed tablespace, the caller must mtr_commit(mtr) before latching any further pages */ { big_rec_t* big_rec_vec = NULL; dict_index_t* index; page_cur_t* page_cursor; buf_block_t* block; page_t* page; rec_t* dummy; ibool leaf; ibool reorg; ibool inherit = TRUE; ulint zip_size; ulint rec_size; dberr_t err; *big_rec = NULL; block = btr_cur_get_block(cursor); SRV_CORRUPT_TABLE_CHECK(block, return(DB_CORRUPTION);); page = buf_block_get_frame(block); index = cursor->index; ut_ad((thr && thr_get_trx(thr)->fake_changes) || mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX)); ut_ad(!dict_index_is_online_ddl(index) || dict_index_is_clust(index) || (flags & BTR_CREATE_FLAG)); ut_ad(dtuple_check_typed(entry)); zip_size = buf_block_get_zip_size(block); #ifdef UNIV_DEBUG_VALGRIND if (zip_size) { UNIV_MEM_ASSERT_RW(page, UNIV_PAGE_SIZE); UNIV_MEM_ASSERT_RW(block->page.zip.data, zip_size); } #endif /* UNIV_DEBUG_VALGRIND */ #ifdef UNIV_DEBUG if (btr_cur_print_record_ops && thr) { btr_cur_trx_report(thr_get_trx(thr)->id, index, "insert "); dtuple_print(stderr, entry); } #endif /* UNIV_DEBUG */ leaf = page_is_leaf(page); /* Calculate the record size when entry is converted to a record */ rec_size = rec_get_converted_size(index, entry, n_ext); if (page_zip_rec_needs_ext(rec_size, page_is_comp(page), dtuple_get_n_fields(entry), zip_size)) { /* The record is so big that we have to store some fields externally on separate database pages */ big_rec_vec = dtuple_convert_big_rec(index, entry, &n_ext); if (UNIV_UNLIKELY(big_rec_vec == NULL)) { return(DB_TOO_BIG_RECORD); } rec_size = rec_get_converted_size(index, entry, n_ext); } if (zip_size) { /* Estimate the free space of an empty compressed page. Subtract one byte for the encoded heap_no in the modification log. */ ulint free_space_zip = page_zip_empty_size( cursor->index->n_fields, zip_size); ulint n_uniq = dict_index_get_n_unique_in_tree(index); ut_ad(dict_table_is_comp(index->table)); if (free_space_zip == 0) { too_big: if (big_rec_vec) { dtuple_convert_back_big_rec( index, entry, big_rec_vec); } return(DB_TOO_BIG_RECORD); } /* Subtract one byte for the encoded heap_no in the modification log. */ free_space_zip--; /* There should be enough room for two node pointer records on an empty non-leaf page. This prevents infinite page splits. */ if (entry->n_fields >= n_uniq && (REC_NODE_PTR_SIZE + rec_get_converted_size_comp_prefix( index, entry->fields, n_uniq, NULL) /* On a compressed page, there is a two-byte entry in the dense page directory for every record. But there is no record header. */ - (REC_N_NEW_EXTRA_BYTES - 2) > free_space_zip / 2)) { goto too_big; } } LIMIT_OPTIMISTIC_INSERT_DEBUG(page_get_n_recs(page), goto fail); if (leaf && zip_size && (page_get_data_size(page) + rec_size >= dict_index_zip_pad_optimal_page_size(index))) { /* If compression padding tells us that insertion will result in too packed up page i.e.: which is likely to cause compression failure then don't do an optimistic insertion. */ fail: err = DB_FAIL; fail_err: if (big_rec_vec) { dtuple_convert_back_big_rec(index, entry, big_rec_vec); } return(err); } ulint max_size = page_get_max_insert_size_after_reorganize(page, 1); if (page_has_garbage(page)) { if ((max_size < rec_size || max_size < BTR_CUR_PAGE_REORGANIZE_LIMIT) && page_get_n_recs(page) > 1 && page_get_max_insert_size(page, 1) < rec_size) { goto fail; } } else if (max_size < rec_size) { goto fail; } /* If there have been many consecutive inserts to the clustered index leaf page of an uncompressed table, check if we have to split the page to reserve enough free space for future updates of records. */ if (leaf && !zip_size && dict_index_is_clust(index) && page_get_n_recs(page) >= 2 && dict_index_get_space_reserve() + rec_size > max_size && (btr_page_get_split_rec_to_right(cursor, &dummy) || btr_page_get_split_rec_to_left(cursor, &dummy))) { goto fail; } /* Check locks and write to the undo log, if specified */ err = btr_cur_ins_lock_and_undo(flags, cursor, entry, thr, mtr, &inherit); if (UNIV_UNLIKELY(err != DB_SUCCESS)) { goto fail_err; } if (UNIV_UNLIKELY(thr && thr_get_trx(thr)->fake_changes)) { /* skip CHANGE, LOG */ *big_rec = big_rec_vec; return(err); /* == DB_SUCCESS */ } page_cursor = btr_cur_get_page_cur(cursor); /* Now, try the insert */ { const rec_t* page_cursor_rec = page_cur_get_rec(page_cursor); *rec = page_cur_tuple_insert(page_cursor, entry, index, offsets, heap, n_ext, mtr); reorg = page_cursor_rec != page_cur_get_rec(page_cursor); } if (*rec) { } else if (zip_size) { /* Reset the IBUF_BITMAP_FREE bits, because page_cur_tuple_insert() will have attempted page reorganize before failing. */ if (leaf && !dict_index_is_clust(index)) { ibuf_reset_free_bits(block); } goto fail; } else { ut_ad(!reorg); /* If the record did not fit, reorganize */ if (!btr_page_reorganize(page_cursor, index, mtr)) { ut_ad(0); goto fail; } ut_ad(page_get_max_insert_size(page, 1) == max_size); reorg = TRUE; *rec = page_cur_tuple_insert(page_cursor, entry, index, offsets, heap, n_ext, mtr); if (UNIV_UNLIKELY(!*rec)) { fputs("InnoDB: Error: cannot insert tuple ", stderr); dtuple_print(stderr, entry); fputs(" into ", stderr); dict_index_name_print(stderr, thr_get_trx(thr), index); fprintf(stderr, "\nInnoDB: max insert size %lu\n", (ulong) max_size); ut_error; } } #ifdef BTR_CUR_HASH_ADAPT if (!reorg && leaf && (cursor->flag == BTR_CUR_HASH)) { btr_search_update_hash_node_on_insert(cursor); } else { btr_search_update_hash_on_insert(cursor); } #endif if (!(flags & BTR_NO_LOCKING_FLAG) && inherit) { lock_update_insert(block, *rec); } if (leaf && !dict_index_is_clust(index)) { /* Update the free bits of the B-tree page in the insert buffer bitmap. */ /* The free bits in the insert buffer bitmap must never exceed the free space on a page. It is safe to decrement or reset the bits in the bitmap in a mini-transaction that is committed before the mini-transaction that affects the free space. */ /* It is unsafe to increment the bits in a separately committed mini-transaction, because in crash recovery, the free bits could momentarily be set too high. */ if (zip_size) { /* Update the bits in the same mini-transaction. */ ibuf_update_free_bits_zip(block, mtr); } else { /* Decrement the bits in a separate mini-transaction. */ ibuf_update_free_bits_if_full( block, max_size, rec_size + PAGE_DIR_SLOT_SIZE); } } *big_rec = big_rec_vec; return(DB_SUCCESS); } /*************************************************************//** Performs an insert on a page of an index tree. It is assumed that mtr holds an x-latch on the tree and on the cursor page. If the insert is made on the leaf level, to avoid deadlocks, mtr must also own x-latches to brothers of page, if those brothers exist. @return DB_SUCCESS or error number */ UNIV_INTERN dberr_t btr_cur_pessimistic_insert( /*=======================*/ ulint flags, /*!< in: undo logging and locking flags: if not zero, the parameter thr should be specified; if no undo logging is specified, then the caller must have reserved enough free extents in the file space so that the insertion will certainly succeed */ btr_cur_t* cursor, /*!< in: cursor after which to insert; cursor stays valid */ ulint** offsets,/*!< out: offsets on *rec */ mem_heap_t** heap, /*!< in/out: pointer to memory heap that can be emptied, or NULL */ dtuple_t* entry, /*!< in/out: entry to insert */ rec_t** rec, /*!< out: pointer to inserted record if succeed */ big_rec_t** big_rec,/*!< out: big rec vector whose fields have to be stored externally by the caller, or NULL */ ulint n_ext, /*!< in: number of externally stored columns */ que_thr_t* thr, /*!< in: query thread or NULL */ mtr_t* mtr) /*!< in/out: mini-transaction */ { dict_index_t* index = cursor->index; ulint zip_size = dict_table_zip_size(index->table); big_rec_t* big_rec_vec = NULL; dberr_t err; ibool inherit = FALSE; ibool success; ulint n_reserved = 0; ut_ad(dtuple_check_typed(entry)); *big_rec = NULL; ut_ad((thr && thr_get_trx(thr)->fake_changes) || mtr_memo_contains(mtr, dict_index_get_lock(btr_cur_get_index(cursor)), MTR_MEMO_X_LOCK)); ut_ad((thr && thr_get_trx(thr)->fake_changes) || mtr_memo_contains(mtr, btr_cur_get_block(cursor), MTR_MEMO_PAGE_X_FIX)); ut_ad(!dict_index_is_online_ddl(index) || dict_index_is_clust(index) || (flags & BTR_CREATE_FLAG)); cursor->flag = BTR_CUR_BINARY; /* Check locks and write to undo log, if specified */ err = btr_cur_ins_lock_and_undo(flags, cursor, entry, thr, mtr, &inherit); if (err != DB_SUCCESS) { return(err); } if (!(flags & BTR_NO_UNDO_LOG_FLAG)) { ut_a(cursor->tree_height != ULINT_UNDEFINED); /* First reserve enough free space for the file segments of the index tree, so that the insert will not fail because of lack of space */ ulint n_extents = cursor->tree_height / 16 + 3; success = fsp_reserve_free_extents(&n_reserved, index->space, n_extents, FSP_NORMAL, mtr); if (!success) { return(DB_OUT_OF_FILE_SPACE); } } if (page_zip_rec_needs_ext(rec_get_converted_size(index, entry, n_ext), dict_table_is_comp(index->table), dtuple_get_n_fields(entry), zip_size)) { /* The record is so big that we have to store some fields externally on separate database pages */ if (UNIV_LIKELY_NULL(big_rec_vec)) { /* This should never happen, but we handle the situation in a robust manner. */ ut_ad(0); dtuple_convert_back_big_rec(index, entry, big_rec_vec); } big_rec_vec = dtuple_convert_big_rec(index, entry, &n_ext); if (big_rec_vec == NULL) { if (n_reserved > 0) { fil_space_release_free_extents(index->space, n_reserved); } return(DB_TOO_BIG_RECORD); } } if (UNIV_UNLIKELY(thr && thr_get_trx(thr)->fake_changes)) { /* skip CHANGE, LOG */ if (n_reserved > 0) { fil_space_release_free_extents(index->space, n_reserved); } *big_rec = big_rec_vec; return(DB_SUCCESS); } if (dict_index_get_page(index) == buf_block_get_page_no(btr_cur_get_block(cursor))) { /* The page is the root page */ *rec = btr_root_raise_and_insert( flags, cursor, offsets, heap, entry, n_ext, mtr); } else { *rec = btr_page_split_and_insert( flags, cursor, offsets, heap, entry, n_ext, mtr); } if (*rec == NULL && os_has_said_disk_full) { return(DB_OUT_OF_FILE_SPACE); } ut_ad(page_rec_get_next(btr_cur_get_rec(cursor)) == *rec); if (!(flags & BTR_NO_LOCKING_FLAG)) { /* The cursor might be moved to the other page, and the max trx id field should be updated after the cursor was fixed. */ if (!dict_index_is_clust(index)) { page_update_max_trx_id( btr_cur_get_block(cursor), btr_cur_get_page_zip(cursor), thr_get_trx(thr)->id, mtr); } if (!page_rec_is_infimum(btr_cur_get_rec(cursor))) { /* split and inserted need to call lock_update_insert() always. */ inherit = TRUE; } buf_block_t* block = btr_cur_get_block(cursor); buf_frame_t* frame = NULL; if (block) { frame = buf_block_get_frame(block); } /* split and inserted need to call lock_update_insert() always. */ if (frame && btr_page_get_prev(frame, mtr) == FIL_NULL) { inherit = TRUE; } } #ifdef BTR_CUR_ADAPT btr_search_update_hash_on_insert(cursor); #endif if (inherit && !(flags & BTR_NO_LOCKING_FLAG)) { lock_update_insert(btr_cur_get_block(cursor), *rec); } if (n_reserved > 0) { fil_space_release_free_extents(index->space, n_reserved); } *big_rec = big_rec_vec; return(DB_SUCCESS); } /*==================== B-TREE UPDATE =========================*/ /*************************************************************//** For an update, checks the locks and does the undo logging. @return DB_SUCCESS, DB_WAIT_LOCK, or error number */ UNIV_INLINE MY_ATTRIBUTE((warn_unused_result)) dberr_t btr_cur_upd_lock_and_undo( /*======================*/ ulint flags, /*!< in: undo logging and locking flags */ btr_cur_t* cursor, /*!< in: cursor on record to update */ const ulint* offsets,/*!< in: rec_get_offsets() on cursor */ const upd_t* update, /*!< in: update vector */ ulint cmpl_info,/*!< in: compiler info on secondary index updates */ que_thr_t* thr, /*!< in: query thread (can be NULL if BTR_NO_LOCKING_FLAG) */ mtr_t* mtr, /*!< in/out: mini-transaction */ roll_ptr_t* roll_ptr)/*!< out: roll pointer */ { dict_index_t* index; const rec_t* rec; dberr_t err; if (UNIV_UNLIKELY(thr_get_trx(thr)->fake_changes)) { /* skip LOCK, UNDO */ return(DB_SUCCESS); } rec = btr_cur_get_rec(cursor); index = cursor->index; ut_ad(rec_offs_validate(rec, index, offsets)); if (!dict_index_is_clust(index)) { ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG)); /* We do undo logging only when we update a clustered index record */ return(lock_sec_rec_modify_check_and_lock( flags, btr_cur_get_block(cursor), rec, index, thr, mtr)); } /* Check if we have to wait for a lock: enqueue an explicit lock request if yes */ if (!(flags & BTR_NO_LOCKING_FLAG)) { err = lock_clust_rec_modify_check_and_lock( flags, btr_cur_get_block(cursor), rec, index, offsets, thr); if (err != DB_SUCCESS) { return(err); } } /* Append the info about the update in the undo log */ return(trx_undo_report_row_operation( flags, TRX_UNDO_MODIFY_OP, thr, index, NULL, update, cmpl_info, rec, offsets, roll_ptr)); } /***********************************************************//** Writes a redo log record of updating a record in-place. */ UNIV_INTERN void btr_cur_update_in_place_log( /*========================*/ ulint flags, /*!< in: flags */ const rec_t* rec, /*!< in: record */ dict_index_t* index, /*!< in: index of the record */ const upd_t* update, /*!< in: update vector */ trx_id_t trx_id, /*!< in: transaction id */ roll_ptr_t roll_ptr, /*!< in: roll ptr */ mtr_t* mtr) /*!< in: mtr */ { byte* log_ptr; const page_t* page = page_align(rec); ut_ad(flags < 256); ut_ad(!!page_is_comp(page) == dict_table_is_comp(index->table)); log_ptr = mlog_open_and_write_index(mtr, rec, index, page_is_comp(page) ? MLOG_COMP_REC_UPDATE_IN_PLACE : MLOG_REC_UPDATE_IN_PLACE, 1 + DATA_ROLL_PTR_LEN + 14 + 2 + MLOG_BUF_MARGIN); if (!log_ptr) { /* Logging in mtr is switched off during crash recovery */ return; } /* For secondary indexes, we could skip writing the dummy system fields to the redo log but we have to change redo log parsing of MLOG_REC_UPDATE_IN_PLACE/MLOG_COMP_REC_UPDATE_IN_PLACE or we have to add new redo log record. For now, just write dummy sys fields to the redo log if we are updating a secondary index record. */ mach_write_to_1(log_ptr, flags); log_ptr++; if (dict_index_is_clust(index)) { log_ptr = row_upd_write_sys_vals_to_log( index, trx_id, roll_ptr, log_ptr, mtr); } else { /* Dummy system fields for a secondary index */ /* TRX_ID Position */ log_ptr += mach_write_compressed(log_ptr, 0); /* ROLL_PTR */ trx_write_roll_ptr(log_ptr, 0); log_ptr += DATA_ROLL_PTR_LEN; /* TRX_ID */ log_ptr += mach_ull_write_compressed(log_ptr, 0); } mach_write_to_2(log_ptr, page_offset(rec)); log_ptr += 2; row_upd_index_write_log(update, log_ptr, mtr); } #endif /* UNIV_HOTBACKUP */ /***********************************************************//** Parses a redo log record of updating a record in-place. @return end of log record or NULL */ UNIV_INTERN byte* btr_cur_parse_update_in_place( /*==========================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr,/*!< in: buffer end */ page_t* page, /*!< in/out: page or NULL */ page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */ dict_index_t* index) /*!< in: index corresponding to page */ { ulint flags; rec_t* rec; upd_t* update; ulint pos; trx_id_t trx_id; roll_ptr_t roll_ptr; ulint rec_offset; mem_heap_t* heap; ulint* offsets; if (end_ptr < ptr + 1) { return(NULL); } flags = mach_read_from_1(ptr); ptr++; ptr = row_upd_parse_sys_vals(ptr, end_ptr, &pos, &trx_id, &roll_ptr); if (ptr == NULL) { return(NULL); } if (end_ptr < ptr + 2) { return(NULL); } rec_offset = mach_read_from_2(ptr); ptr += 2; ut_a(rec_offset <= UNIV_PAGE_SIZE); heap = mem_heap_create(256); ptr = row_upd_index_parse(ptr, end_ptr, heap, &update); if (!ptr || !page) { goto func_exit; } ut_a((ibool)!!page_is_comp(page) == dict_table_is_comp(index->table)); rec = page + rec_offset; /* We do not need to reserve btr_search_latch, as the page is only being recovered, and there cannot be a hash index to it. */ offsets = rec_get_offsets(rec, index, NULL, ULINT_UNDEFINED, &heap); if (!(flags & BTR_KEEP_SYS_FLAG)) { row_upd_rec_sys_fields_in_recovery(rec, page_zip, offsets, pos, trx_id, roll_ptr); } row_upd_rec_in_place(rec, index, offsets, update, page_zip); func_exit: mem_heap_free(heap); return(ptr); } #ifndef UNIV_HOTBACKUP /*************************************************************//** See if there is enough place in the page modification log to log an update-in-place. @retval false if out of space; IBUF_BITMAP_FREE will be reset outside mtr if the page was recompressed @retval true if enough place; IMPORTANT: The caller will have to update IBUF_BITMAP_FREE if this is a secondary index leaf page. This has to be done either within the same mini-transaction, or by invoking ibuf_reset_free_bits() before mtr_commit(mtr). */ UNIV_INTERN bool btr_cur_update_alloc_zip_func( /*==========================*/ page_zip_des_t* page_zip,/*!< in/out: compressed page */ page_cur_t* cursor, /*!< in/out: B-tree page cursor */ dict_index_t* index, /*!< in: the index corresponding to cursor */ #ifdef UNIV_DEBUG ulint* offsets,/*!< in/out: offsets of the cursor record */ #endif /* UNIV_DEBUG */ ulint length, /*!< in: size needed */ bool create, /*!< in: true=delete-and-insert, false=update-in-place */ mtr_t* mtr, /*!< in/out: mini-transaction */ trx_t* trx) /*!< in: NULL or transaction */ { const page_t* page = page_cur_get_page(cursor); ut_ad(page_zip == page_cur_get_page_zip(cursor)); ut_ad(!dict_index_is_ibuf(index)); ut_ad(rec_offs_validate(page_cur_get_rec(cursor), index, offsets)); if (page_zip_available(page_zip, dict_index_is_clust(index), length, create)) { return(true); } if (!page_zip->m_nonempty && !page_has_garbage(page)) { /* The page has been freshly compressed, so reorganizing it will not help. */ return(false); } if (create && page_is_leaf(page) && (length + page_get_data_size(page) >= dict_index_zip_pad_optimal_page_size(index))) { return(false); } if (UNIV_UNLIKELY(trx && trx->fake_changes)) { /* Don't call page_zip_compress_write_log_no_data as that has assert which would fail. Assume there won't be a compression failure. */ return(true); } if (!btr_page_reorganize(cursor, index, mtr)) { goto out_of_space; } rec_offs_make_valid(page_cur_get_rec(cursor), index, offsets); /* After recompressing a page, we must make sure that the free bits in the insert buffer bitmap will not exceed the free space on the page. Because this function will not attempt recompression unless page_zip_available() fails above, it is safe to reset the free bits if page_zip_available() fails again, below. The free bits can safely be reset in a separate mini-transaction. If page_zip_available() succeeds below, we can be sure that the btr_page_reorganize() above did not reduce the free space available on the page. */ if (page_zip_available(page_zip, dict_index_is_clust(index), length, create)) { return(true); } out_of_space: ut_ad(rec_offs_validate(page_cur_get_rec(cursor), index, offsets)); /* Out of space: reset the free bits. */ if (!dict_index_is_clust(index) && page_is_leaf(page)) { ibuf_reset_free_bits(page_cur_get_block(cursor)); } return(false); } /*************************************************************//** Updates a record when the update causes no size changes in its fields. We assume here that the ordering fields of the record do not change. @return locking or undo log related error code, or @retval DB_SUCCESS on success @retval DB_ZIP_OVERFLOW if there is not enough space left on the compressed page (IBUF_BITMAP_FREE was reset outside mtr) */ UNIV_INTERN dberr_t btr_cur_update_in_place( /*====================*/ ulint flags, /*!< in: undo logging and locking flags */ btr_cur_t* cursor, /*!< in: cursor on the record to update; cursor stays valid and positioned on the same record */ ulint* offsets,/*!< in/out: offsets on cursor->page_cur.rec */ const upd_t* update, /*!< in: update vector */ ulint cmpl_info,/*!< in: compiler info on secondary index updates */ que_thr_t* thr, /*!< in: query thread */ trx_id_t trx_id, /*!< in: transaction id */ mtr_t* mtr) /*!< in/out: mini-transaction; if this is a secondary index, the caller must mtr_commit(mtr) before latching any further pages */ { dict_index_t* index; buf_block_t* block; page_zip_des_t* page_zip; dberr_t err; rec_t* rec; roll_ptr_t roll_ptr = 0; ulint was_delete_marked; ibool is_hashed; trx_t* trx; rec = btr_cur_get_rec(cursor); index = cursor->index; ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table)); /* The insert buffer tree should never be updated in place. */ ut_ad(!dict_index_is_ibuf(index)); ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG) || dict_index_is_clust(index)); ut_ad(thr_get_trx(thr)->id == trx_id || (flags & ~(BTR_KEEP_POS_FLAG | BTR_KEEP_IBUF_BITMAP)) == (BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_CREATE_FLAG | BTR_KEEP_SYS_FLAG)); ut_ad(fil_page_get_type(btr_cur_get_page(cursor)) == FIL_PAGE_INDEX); ut_ad(btr_page_get_index_id(btr_cur_get_page(cursor)) == index->id); #ifdef UNIV_DEBUG if (btr_cur_print_record_ops) { btr_cur_trx_report(trx_id, index, "update "); rec_print_new(stderr, rec, offsets); } #endif /* UNIV_DEBUG */ block = btr_cur_get_block(cursor); page_zip = buf_block_get_page_zip(block); trx = thr_get_trx(thr); /* Check that enough space is available on the compressed page. */ if (page_zip) { if (!btr_cur_update_alloc_zip( page_zip, btr_cur_get_page_cur(cursor), index, offsets, rec_offs_size(offsets), false, mtr, trx)) { return(DB_ZIP_OVERFLOW); } rec = btr_cur_get_rec(cursor); } /* Do lock checking and undo logging */ err = btr_cur_upd_lock_and_undo(flags, cursor, offsets, update, cmpl_info, thr, mtr, &roll_ptr); if (UNIV_UNLIKELY(err != DB_SUCCESS)) { /* We may need to update the IBUF_BITMAP_FREE bits after a reorganize that was done in btr_cur_update_alloc_zip(). */ goto func_exit; } if (UNIV_UNLIKELY(trx->fake_changes)) { /* skip CHANGE, LOG */ return(err); /* == DB_SUCCESS */ } if (!(flags & BTR_KEEP_SYS_FLAG)) { row_upd_rec_sys_fields(rec, NULL, index, offsets, thr_get_trx(thr), roll_ptr); } was_delete_marked = rec_get_deleted_flag( rec, page_is_comp(buf_block_get_frame(block))); is_hashed = (block->index != NULL); if (is_hashed) { /* TO DO: Can we skip this if none of the fields index->search_info->curr_n_fields are being updated? */ /* The function row_upd_changes_ord_field_binary works only if the update vector was built for a clustered index, we must NOT call it if index is secondary */ if (!dict_index_is_clust(index) || row_upd_changes_ord_field_binary(index, update, thr, NULL, NULL)) { /* Remove possible hash index pointer to this record */ btr_search_update_hash_on_delete(cursor); } rw_lock_x_lock(btr_search_get_latch(cursor->index)); } row_upd_rec_in_place(rec, index, offsets, update, page_zip); if (is_hashed) { rw_lock_x_unlock(btr_search_get_latch(cursor->index)); } btr_cur_update_in_place_log(flags, rec, index, update, trx_id, roll_ptr, mtr); if (was_delete_marked && !rec_get_deleted_flag( rec, page_is_comp(buf_block_get_frame(block)))) { /* The new updated record owns its possible externally stored fields */ btr_cur_unmark_extern_fields(page_zip, rec, index, offsets, mtr); } ut_ad(err == DB_SUCCESS); func_exit: if (page_zip && !(flags & BTR_KEEP_IBUF_BITMAP) && !dict_index_is_clust(index) && block) { buf_frame_t* frame = buf_block_get_frame(block); if (frame && page_is_leaf(frame)) { /* Update the free bits in the insert buffer. */ ibuf_update_free_bits_zip(block, mtr); } } return(err); } /*************************************************************//** Tries to update a record on a page in an index tree. It is assumed that mtr holds an x-latch on the page. The operation does not succeed if there is too little space on the page or if the update would result in too empty a page, so that tree compression is recommended. We assume here that the ordering fields of the record do not change. @return error code, including @retval DB_SUCCESS on success @retval DB_OVERFLOW if the updated record does not fit @retval DB_UNDERFLOW if the page would become too empty @retval DB_ZIP_OVERFLOW if there is not enough space left on the compressed page (IBUF_BITMAP_FREE was reset outside mtr) */ UNIV_INTERN dberr_t btr_cur_optimistic_update( /*======================*/ ulint flags, /*!< in: undo logging and locking flags */ btr_cur_t* cursor, /*!< in: cursor on the record to update; cursor stays valid and positioned on the same record */ ulint** offsets,/*!< out: offsets on cursor->page_cur.rec */ mem_heap_t** heap, /*!< in/out: pointer to NULL or memory heap */ const upd_t* update, /*!< in: update vector; this must also contain trx id and roll ptr fields */ ulint cmpl_info,/*!< in: compiler info on secondary index updates */ que_thr_t* thr, /*!< in: query thread */ trx_id_t trx_id, /*!< in: transaction id */ mtr_t* mtr) /*!< in/out: mini-transaction; if this is a secondary index, the caller must mtr_commit(mtr) before latching any further pages */ { dict_index_t* index; page_cur_t* page_cursor; dberr_t err; buf_block_t* block; page_t* page; page_zip_des_t* page_zip; rec_t* rec; ulint max_size; ulint new_rec_size; ulint old_rec_size; ulint max_ins_size = 0; dtuple_t* new_entry; roll_ptr_t roll_ptr; ulint i; ulint n_ext; block = btr_cur_get_block(cursor); page = buf_block_get_frame(block); rec = btr_cur_get_rec(cursor); index = cursor->index; ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table)); ut_ad(thr_get_trx(thr)->fake_changes || mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX)); /* The insert buffer tree should never be updated in place. */ ut_ad(!dict_index_is_ibuf(index)); ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG) || dict_index_is_clust(index)); ut_ad(thr_get_trx(thr)->id == trx_id || (flags & ~(BTR_KEEP_POS_FLAG | BTR_KEEP_IBUF_BITMAP)) == (BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_CREATE_FLAG | BTR_KEEP_SYS_FLAG)); ut_ad(fil_page_get_type(page) == FIL_PAGE_INDEX); ut_ad(btr_page_get_index_id(page) == index->id); *offsets = rec_get_offsets(rec, index, *offsets, ULINT_UNDEFINED, heap); #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG ut_a(!rec_offs_any_null_extern(rec, *offsets) || trx_is_recv(thr_get_trx(thr))); #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ #ifdef UNIV_DEBUG if (btr_cur_print_record_ops) { btr_cur_trx_report(trx_id, index, "update "); rec_print_new(stderr, rec, *offsets); } #endif /* UNIV_DEBUG */ if (!row_upd_changes_field_size_or_external(index, *offsets, update)) { /* The simplest and the most common case: the update does not change the size of any field and none of the updated fields is externally stored in rec or update, and there is enough space on the compressed page to log the update. */ return(btr_cur_update_in_place( flags, cursor, *offsets, update, cmpl_info, thr, trx_id, mtr)); } if (rec_offs_any_extern(*offsets)) { any_extern: /* Externally stored fields are treated in pessimistic update */ return(DB_OVERFLOW); } for (i = 0; i < upd_get_n_fields(update); i++) { if (dfield_is_ext(&upd_get_nth_field(update, i)->new_val)) { goto any_extern; } } page_cursor = btr_cur_get_page_cur(cursor); if (!*heap) { *heap = mem_heap_create( rec_offs_size(*offsets) + DTUPLE_EST_ALLOC(rec_offs_n_fields(*offsets))); } new_entry = row_rec_to_index_entry(rec, index, *offsets, &n_ext, *heap); /* We checked above that there are no externally stored fields. */ ut_a(!n_ext); /* The page containing the clustered index record corresponding to new_entry is latched in mtr. Thus the following call is safe. */ row_upd_index_replace_new_col_vals_index_pos(new_entry, index, update, FALSE, *heap); old_rec_size = rec_offs_size(*offsets); new_rec_size = rec_get_converted_size(index, new_entry, 0); page_zip = buf_block_get_page_zip(block); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ if (page_zip) { if (page_zip_rec_needs_ext(new_rec_size, page_is_comp(page), dict_index_get_n_fields(index), page_zip_get_size(page_zip))) { goto any_extern; } if (!btr_cur_update_alloc_zip( page_zip, page_cursor, index, *offsets, new_rec_size, true, mtr, thr_get_trx(thr))) { return(DB_ZIP_OVERFLOW); } rec = page_cur_get_rec(page_cursor); } if (UNIV_UNLIKELY(new_rec_size >= (page_get_free_space_of_empty(page_is_comp(page)) / 2))) { /* We may need to update the IBUF_BITMAP_FREE bits after a reorganize that was done in btr_cur_update_alloc_zip(). */ err = DB_OVERFLOW; goto func_exit; } if (UNIV_UNLIKELY(page_get_data_size(page) - old_rec_size + new_rec_size < BTR_CUR_PAGE_COMPRESS_LIMIT)) { /* We may need to update the IBUF_BITMAP_FREE bits after a reorganize that was done in btr_cur_update_alloc_zip(). */ /* The page would become too empty */ err = DB_UNDERFLOW; goto func_exit; } /* We do not attempt to reorganize if the page is compressed. This is because the page may fail to compress after reorganization. */ max_size = page_zip ? page_get_max_insert_size(page, 1) : (old_rec_size + page_get_max_insert_size_after_reorganize(page, 1)); if (!page_zip) { max_ins_size = page_get_max_insert_size_after_reorganize(page, 1); } if (!(((max_size >= BTR_CUR_PAGE_REORGANIZE_LIMIT) && (max_size >= new_rec_size)) || (page_get_n_recs(page) <= 1))) { /* We may need to update the IBUF_BITMAP_FREE bits after a reorganize that was done in btr_cur_update_alloc_zip(). */ /* There was not enough space, or it did not pay to reorganize: for simplicity, we decide what to do assuming a reorganization is needed, though it might not be necessary */ err = DB_OVERFLOW; goto func_exit; } /* Do lock checking and undo logging */ err = btr_cur_upd_lock_and_undo(flags, cursor, *offsets, update, cmpl_info, thr, mtr, &roll_ptr); if (err != DB_SUCCESS) { /* We may need to update the IBUF_BITMAP_FREE bits after a reorganize that was done in btr_cur_update_alloc_zip(). */ goto func_exit; } if (UNIV_UNLIKELY(thr_get_trx(thr)->fake_changes)) { /* skip CHANGE, LOG */ ut_ad(err == DB_SUCCESS); return(DB_SUCCESS); } /* Ok, we may do the replacement. Store on the page infimum the explicit locks on rec, before deleting rec (see the comment in btr_cur_pessimistic_update). */ lock_rec_store_on_page_infimum(block, rec); btr_search_update_hash_on_delete(cursor); page_cur_delete_rec(page_cursor, index, *offsets, mtr); page_cur_move_to_prev(page_cursor); if (!(flags & BTR_KEEP_SYS_FLAG)) { row_upd_index_entry_sys_field(new_entry, index, DATA_ROLL_PTR, roll_ptr); row_upd_index_entry_sys_field(new_entry, index, DATA_TRX_ID, trx_id); } /* There are no externally stored columns in new_entry */ rec = btr_cur_insert_if_possible( cursor, new_entry, offsets, heap, 0/*n_ext*/, mtr); ut_a(rec); /* <- We calculated above the insert would fit */ /* Restore the old explicit lock state on the record */ lock_rec_restore_from_page_infimum(block, rec, block); page_cur_move_to_next(page_cursor); ut_ad(err == DB_SUCCESS); func_exit: if (!(flags & BTR_KEEP_IBUF_BITMAP) && !dict_index_is_clust(index) && page_is_leaf(page)) { if (page_zip) { ibuf_update_free_bits_zip(block, mtr); } else { ibuf_update_free_bits_low(block, max_ins_size, mtr); } } return(err); } /*************************************************************//** If, in a split, a new supremum record was created as the predecessor of the updated record, the supremum record must inherit exactly the locks on the updated record. In the split it may have inherited locks from the successor of the updated record, which is not correct. This function restores the right locks for the new supremum. */ static void btr_cur_pess_upd_restore_supremum( /*==============================*/ buf_block_t* block, /*!< in: buffer block of rec */ const rec_t* rec, /*!< in: updated record */ mtr_t* mtr) /*!< in: mtr */ { page_t* page; buf_block_t* prev_block; ulint space; ulint zip_size; ulint prev_page_no; page = buf_block_get_frame(block); if (page_rec_get_next(page_get_infimum_rec(page)) != rec) { /* Updated record is not the first user record on its page */ return; } space = buf_block_get_space(block); zip_size = buf_block_get_zip_size(block); prev_page_no = btr_page_get_prev(page, mtr); ut_ad(prev_page_no != FIL_NULL); prev_block = buf_page_get_with_no_latch(space, zip_size, prev_page_no, mtr); #ifdef UNIV_BTR_DEBUG ut_a(btr_page_get_next(prev_block->frame, mtr) == page_get_page_no(page)); #endif /* UNIV_BTR_DEBUG */ /* We must already have an x-latch on prev_block! */ ut_ad(mtr_memo_contains(mtr, prev_block, MTR_MEMO_PAGE_X_FIX)); lock_rec_reset_and_inherit_gap_locks(prev_block, block, PAGE_HEAP_NO_SUPREMUM, page_rec_get_heap_no(rec)); } /*************************************************************//** Check if the total length of the modified blob for the row is within 10% of the total redo log size. This constraint on the blob length is to avoid overwriting the redo logs beyond the last checkpoint lsn. @return DB_SUCCESS or DB_TOO_BIG_FOR_REDO. */ static dberr_t btr_check_blob_limit(const big_rec_t* big_rec_vec) { const ib_uint64_t redo_size = srv_n_log_files * srv_log_file_size * UNIV_PAGE_SIZE; const ib_uint64_t redo_10p = redo_size / 10; ib_uint64_t total_blob_len = 0; dberr_t err = DB_SUCCESS; /* Calculate the total number of bytes for blob data */ for (ulint i = 0; i < big_rec_vec->n_fields; i++) { total_blob_len += big_rec_vec->fields[i].len; } if (total_blob_len > redo_10p) { ib_logf(IB_LOG_LEVEL_ERROR, "The total blob data" " length (" UINT64PF ") is greater than" " 10%% of the total redo log size (" UINT64PF "). Please increase total redo log size.", total_blob_len, redo_size); err = DB_TOO_BIG_FOR_REDO; } return(err); } /*************************************************************//** Performs an update of a record on a page of a tree. It is assumed that mtr holds an x-latch on the tree and on the cursor page. If the update is made on the leaf level, to avoid deadlocks, mtr must also own x-latches to brothers of page, if those brothers exist. We assume here that the ordering fields of the record do not change. @return DB_SUCCESS or error code */ UNIV_INTERN dberr_t btr_cur_pessimistic_update( /*=======================*/ ulint flags, /*!< in: undo logging, locking, and rollback flags */ btr_cur_t* cursor, /*!< in/out: cursor on the record to update; cursor may become invalid if *big_rec == NULL || !(flags & BTR_KEEP_POS_FLAG) */ ulint** offsets,/*!< out: offsets on cursor->page_cur.rec */ mem_heap_t** offsets_heap, /*!< in/out: pointer to memory heap that can be emptied, or NULL */ mem_heap_t* entry_heap, /*!< in/out: memory heap for allocating big_rec and the index tuple */ big_rec_t** big_rec,/*!< out: big rec vector whose fields have to be stored externally by the caller, or NULL */ const upd_t* update, /*!< in: update vector; this is allowed also contain trx id and roll ptr fields, but the values in update vector have no effect */ ulint cmpl_info,/*!< in: compiler info on secondary index updates */ que_thr_t* thr, /*!< in: query thread */ trx_id_t trx_id, /*!< in: transaction id */ mtr_t* mtr) /*!< in/out: mini-transaction; must be committed before latching any further pages */ { big_rec_t* big_rec_vec = NULL; big_rec_t* dummy_big_rec; dict_index_t* index; buf_block_t* block; page_t* page; page_zip_des_t* page_zip; rec_t* rec; page_cur_t* page_cursor; dberr_t err; dberr_t optim_err; roll_ptr_t roll_ptr; ibool was_first; ulint n_reserved = 0; ulint n_ext; trx_t* trx; ulint max_ins_size = 0; *offsets = NULL; *big_rec = NULL; block = btr_cur_get_block(cursor); page = buf_block_get_frame(block); page_zip = buf_block_get_page_zip(block); index = cursor->index; ut_ad(thr_get_trx(thr)->fake_changes || mtr_memo_contains(mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK)); ut_ad(thr_get_trx(thr)->fake_changes || mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX)); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ /* The insert buffer tree should never be updated in place. */ ut_ad(!dict_index_is_ibuf(index)); ut_ad(dict_index_is_online_ddl(index) == !!(flags & BTR_CREATE_FLAG) || dict_index_is_clust(index)); ut_ad(thr_get_trx(thr)->id == trx_id || (flags & ~BTR_KEEP_POS_FLAG) == (BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_CREATE_FLAG | BTR_KEEP_SYS_FLAG)); err = optim_err = btr_cur_optimistic_update( flags | BTR_KEEP_IBUF_BITMAP, cursor, offsets, offsets_heap, update, cmpl_info, thr, trx_id, mtr); switch (err) { case DB_ZIP_OVERFLOW: case DB_UNDERFLOW: case DB_OVERFLOW: break; default: err_exit: /* We suppressed this with BTR_KEEP_IBUF_BITMAP. For DB_ZIP_OVERFLOW, the IBUF_BITMAP_FREE bits were already reset by btr_cur_update_alloc_zip() if the page was recompressed. */ if (page_zip && optim_err != DB_ZIP_OVERFLOW && !dict_index_is_clust(index) && page_is_leaf(page)) { ibuf_update_free_bits_zip(block, mtr); } return(err); } /* Do lock checking and undo logging */ err = btr_cur_upd_lock_and_undo(flags, cursor, *offsets, update, cmpl_info, thr, mtr, &roll_ptr); if (err != DB_SUCCESS) { goto err_exit; } if (optim_err == DB_OVERFLOW) { ulint reserve_flag; ulint n_extents; /* First reserve enough free space for the file segments of the index tree, so that the update will not fail because of lack of space */ if (UNIV_UNLIKELY(cursor->tree_height == ULINT_UNDEFINED)) { /* When the tree height is uninitialized due to fake changes, reserve some hardcoded number of extents. */ ut_a(thr_get_trx(thr)->fake_changes); n_extents = 3; } else { n_extents = cursor->tree_height / 16 + 3; } if (flags & BTR_NO_UNDO_LOG_FLAG) { reserve_flag = FSP_CLEANING; } else { reserve_flag = FSP_NORMAL; } if (!fsp_reserve_free_extents(&n_reserved, index->space, n_extents, reserve_flag, mtr)) { err = DB_OUT_OF_FILE_SPACE; goto err_exit; } } rec = btr_cur_get_rec(cursor); *offsets = rec_get_offsets( rec, index, *offsets, ULINT_UNDEFINED, offsets_heap); dtuple_t* new_entry = row_rec_to_index_entry( rec, index, *offsets, &n_ext, entry_heap); /* The page containing the clustered index record corresponding to new_entry is latched in mtr. If the clustered index record is delete-marked, then its externally stored fields cannot have been purged yet, because then the purge would also have removed the clustered index record itself. Thus the following call is safe. */ row_upd_index_replace_new_col_vals_index_pos(new_entry, index, update, FALSE, entry_heap); trx = thr_get_trx(thr); if (!(flags & BTR_KEEP_SYS_FLAG) && UNIV_LIKELY(!trx->fake_changes)) { row_upd_index_entry_sys_field(new_entry, index, DATA_ROLL_PTR, roll_ptr); row_upd_index_entry_sys_field(new_entry, index, DATA_TRX_ID, trx_id); } if ((flags & BTR_NO_UNDO_LOG_FLAG) && rec_offs_any_extern(*offsets)) { /* We are in a transaction rollback undoing a row update: we must free possible externally stored fields which got new values in the update, if they are not inherited values. They can be inherited if we have updated the primary key to another value, and then update it back again. */ ut_ad(big_rec_vec == NULL); /* fake_changes should not cause undo. so never reaches here */ ut_ad(!(trx->fake_changes)); btr_rec_free_updated_extern_fields( index, rec, page_zip, *offsets, update, trx_is_recv(thr_get_trx(thr)) ? RB_RECOVERY : RB_NORMAL, mtr); } /* We have to set appropriate extern storage bits in the new record to be inserted: we have to remember which fields were such */ ut_ad(!page_is_comp(page) || !rec_get_node_ptr_flag(rec)); ut_ad(rec_offs_validate(rec, index, *offsets)); n_ext += btr_push_update_extern_fields(new_entry, update, entry_heap); if (page_zip) { ut_ad(page_is_comp(page)); if (page_zip_rec_needs_ext( rec_get_converted_size(index, new_entry, n_ext), TRUE, dict_index_get_n_fields(index), page_zip_get_size(page_zip))) { goto make_external; } } else if (page_zip_rec_needs_ext( rec_get_converted_size(index, new_entry, n_ext), page_is_comp(page), 0, 0)) { make_external: big_rec_vec = dtuple_convert_big_rec(index, new_entry, &n_ext); if (UNIV_UNLIKELY(big_rec_vec == NULL)) { /* We cannot goto return_after_reservations, because we may need to update the IBUF_BITMAP_FREE bits, which was suppressed by BTR_KEEP_IBUF_BITMAP. */ #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ if (n_reserved > 0) { fil_space_release_free_extents( index->space, n_reserved); } err = DB_TOO_BIG_RECORD; goto err_exit; } ut_ad(page_is_leaf(page)); ut_ad(dict_index_is_clust(index)); ut_ad(flags & BTR_KEEP_POS_FLAG); } if (UNIV_UNLIKELY(trx->fake_changes)) { /* skip CHANGE, LOG */ err = DB_SUCCESS; goto return_after_reservations; } if (big_rec_vec) { err = btr_check_blob_limit(big_rec_vec); if (err != DB_SUCCESS) { if (n_reserved > 0) { fil_space_release_free_extents( index->space, n_reserved); } goto err_exit; } } if (!page_zip) { max_ins_size = page_get_max_insert_size_after_reorganize(page, 1); } /* Store state of explicit locks on rec on the page infimum record, before deleting rec. The page infimum acts as a dummy carrier of the locks, taking care also of lock releases, before we can move the locks back on the actual record. There is a special case: if we are inserting on the root page and the insert causes a call of btr_root_raise_and_insert. Therefore we cannot in the lock system delete the lock structs set on the root page even if the root page carries just node pointers. */ lock_rec_store_on_page_infimum(block, rec); btr_search_update_hash_on_delete(cursor); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ page_cursor = btr_cur_get_page_cur(cursor); page_cur_delete_rec(page_cursor, index, *offsets, mtr); page_cur_move_to_prev(page_cursor); rec = btr_cur_insert_if_possible(cursor, new_entry, offsets, offsets_heap, n_ext, mtr); if (rec) { page_cursor->rec = rec; lock_rec_restore_from_page_infimum(btr_cur_get_block(cursor), rec, block); if (!rec_get_deleted_flag(rec, rec_offs_comp(*offsets))) { /* The new inserted record owns its possible externally stored fields */ btr_cur_unmark_extern_fields( page_zip, rec, index, *offsets, mtr); } bool adjust = big_rec_vec && (flags & BTR_KEEP_POS_FLAG); if (btr_cur_compress_if_useful(cursor, adjust, mtr)) { if (adjust) { rec_offs_make_valid( page_cursor->rec, index, *offsets); } } else if (!dict_index_is_clust(index) && page_is_leaf(page)) { /* Update the free bits in the insert buffer. This is the same block which was skipped by BTR_KEEP_IBUF_BITMAP. */ if (page_zip) { ibuf_update_free_bits_zip(block, mtr); } else { ibuf_update_free_bits_low(block, max_ins_size, mtr); } } err = DB_SUCCESS; goto return_after_reservations; } else { /* If the page is compressed and it initially compresses very well, and there is a subsequent insert of a badly-compressing record, it is possible for btr_cur_optimistic_update() to return DB_UNDERFLOW and btr_cur_insert_if_possible() to return FALSE. */ ut_a(page_zip || optim_err != DB_UNDERFLOW); /* Out of space: reset the free bits. This is the same block which was skipped by BTR_KEEP_IBUF_BITMAP. */ if (!dict_index_is_clust(index) && page_is_leaf(page)) { ibuf_reset_free_bits(block); } } if (big_rec_vec) { ut_ad(page_is_leaf(page)); ut_ad(dict_index_is_clust(index)); ut_ad(flags & BTR_KEEP_POS_FLAG); /* btr_page_split_and_insert() in btr_cur_pessimistic_insert() invokes mtr_memo_release(mtr, index->lock, MTR_MEMO_X_LOCK). We must keep the index->lock when we created a big_rec, so that row_upd_clust_rec() can store the big_rec in the same mini-transaction. */ mtr_x_lock(dict_index_get_lock(index), mtr); } /* Was the record to be updated positioned as the first user record on its page? */ was_first = page_cur_is_before_first(page_cursor); /* Lock checks and undo logging were already performed by btr_cur_upd_lock_and_undo(). We do not try btr_cur_optimistic_insert() because btr_cur_insert_if_possible() already failed above. */ err = btr_cur_pessimistic_insert(BTR_NO_UNDO_LOG_FLAG | BTR_NO_LOCKING_FLAG | BTR_KEEP_SYS_FLAG, cursor, offsets, offsets_heap, new_entry, &rec, &dummy_big_rec, n_ext, NULL, mtr); ut_a(rec); ut_a(err == DB_SUCCESS); ut_a(dummy_big_rec == NULL); ut_ad(rec_offs_validate(rec, cursor->index, *offsets)); page_cursor->rec = rec; if (dict_index_is_sec_or_ibuf(index)) { /* Update PAGE_MAX_TRX_ID in the index page header. It was not updated by btr_cur_pessimistic_insert() because of BTR_NO_LOCKING_FLAG. */ buf_block_t* rec_block; rec_block = btr_cur_get_block(cursor); page_update_max_trx_id(rec_block, buf_block_get_page_zip(rec_block), trx_id, mtr); } if (!rec_get_deleted_flag(rec, rec_offs_comp(*offsets))) { /* The new inserted record owns its possible externally stored fields */ buf_block_t* rec_block = btr_cur_get_block(cursor); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); page = buf_block_get_frame(rec_block); #endif /* UNIV_ZIP_DEBUG */ page_zip = buf_block_get_page_zip(rec_block); btr_cur_unmark_extern_fields(page_zip, rec, index, *offsets, mtr); } lock_rec_restore_from_page_infimum(btr_cur_get_block(cursor), rec, block); /* If necessary, restore also the correct lock state for a new, preceding supremum record created in a page split. While the old record was nonexistent, the supremum might have inherited its locks from a wrong record. */ if (!was_first) { btr_cur_pess_upd_restore_supremum(btr_cur_get_block(cursor), rec, mtr); } return_after_reservations: #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ if (n_reserved > 0) { fil_space_release_free_extents(index->space, n_reserved); } *big_rec = big_rec_vec; return(err); } /*==================== B-TREE DELETE MARK AND UNMARK ===============*/ /****************************************************************//** Writes the redo log record for delete marking or unmarking of an index record. */ UNIV_INLINE void btr_cur_del_mark_set_clust_rec_log( /*===============================*/ rec_t* rec, /*!< in: record */ dict_index_t* index, /*!< in: index of the record */ trx_id_t trx_id, /*!< in: transaction id */ roll_ptr_t roll_ptr,/*!< in: roll ptr to the undo log record */ mtr_t* mtr) /*!< in: mtr */ { byte* log_ptr; ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table)); log_ptr = mlog_open_and_write_index(mtr, rec, index, page_rec_is_comp(rec) ? MLOG_COMP_REC_CLUST_DELETE_MARK : MLOG_REC_CLUST_DELETE_MARK, 1 + 1 + DATA_ROLL_PTR_LEN + 14 + 2); if (!log_ptr) { /* Logging in mtr is switched off during crash recovery */ return; } *log_ptr++ = 0; *log_ptr++ = 1; log_ptr = row_upd_write_sys_vals_to_log( index, trx_id, roll_ptr, log_ptr, mtr); mach_write_to_2(log_ptr, page_offset(rec)); log_ptr += 2; mlog_close(mtr, log_ptr); } #endif /* !UNIV_HOTBACKUP */ /****************************************************************//** Parses the redo log record for delete marking or unmarking of a clustered index record. @return end of log record or NULL */ UNIV_INTERN byte* btr_cur_parse_del_mark_set_clust_rec( /*=================================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr,/*!< in: buffer end */ page_t* page, /*!< in/out: page or NULL */ page_zip_des_t* page_zip,/*!< in/out: compressed page, or NULL */ dict_index_t* index) /*!< in: index corresponding to page */ { ulint flags; ulint val; ulint pos; trx_id_t trx_id; roll_ptr_t roll_ptr; ulint offset; rec_t* rec; ut_ad(!page || !!page_is_comp(page) == dict_table_is_comp(index->table)); if (end_ptr < ptr + 2) { return(NULL); } flags = mach_read_from_1(ptr); ptr++; val = mach_read_from_1(ptr); ptr++; ptr = row_upd_parse_sys_vals(ptr, end_ptr, &pos, &trx_id, &roll_ptr); if (ptr == NULL) { return(NULL); } if (end_ptr < ptr + 2) { return(NULL); } offset = mach_read_from_2(ptr); ptr += 2; ut_a(offset <= UNIV_PAGE_SIZE); if (page) { rec = page + offset; /* We do not need to reserve btr_search_latch, as the page is only being recovered, and there cannot be a hash index to it. Besides, these fields are being updated in place and the adaptive hash index does not depend on them. */ btr_rec_set_deleted_flag(rec, page_zip, val); if (!(flags & BTR_KEEP_SYS_FLAG)) { mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; rec_offs_init(offsets_); row_upd_rec_sys_fields_in_recovery( rec, page_zip, rec_get_offsets(rec, index, offsets_, ULINT_UNDEFINED, &heap), pos, trx_id, roll_ptr); if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } } } return(ptr); } #ifndef UNIV_HOTBACKUP /***********************************************************//** Marks a clustered index record deleted. Writes an undo log record to undo log on this delete marking. Writes in the trx id field the id of the deleting transaction, and in the roll ptr field pointer to the undo log record created. @return DB_SUCCESS, DB_LOCK_WAIT, or error number */ UNIV_INTERN dberr_t btr_cur_del_mark_set_clust_rec( /*===========================*/ buf_block_t* block, /*!< in/out: buffer block of the record */ rec_t* rec, /*!< in/out: record */ dict_index_t* index, /*!< in: clustered index of the record */ const ulint* offsets,/*!< in: rec_get_offsets(rec) */ que_thr_t* thr, /*!< in: query thread */ mtr_t* mtr) /*!< in/out: mini-transaction */ { roll_ptr_t roll_ptr; dberr_t err; page_zip_des_t* page_zip; trx_t* trx; ut_ad(dict_index_is_clust(index)); ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(index->table)); ut_ad(buf_block_get_frame(block) == page_align(rec)); ut_ad(page_is_leaf(page_align(rec))); #ifdef UNIV_DEBUG if (btr_cur_print_record_ops) { btr_cur_trx_report(thr_get_trx(thr)->id, index, "del mark "); rec_print_new(stderr, rec, offsets); } #endif /* UNIV_DEBUG */ ut_ad(dict_index_is_clust(index)); ut_ad(!rec_get_deleted_flag(rec, rec_offs_comp(offsets))); if (UNIV_UNLIKELY(thr_get_trx(thr)->fake_changes)) { /* skip LOCK, UNDO, CHANGE, LOG */ return(DB_SUCCESS); } err = lock_clust_rec_modify_check_and_lock(BTR_NO_LOCKING_FLAG, block, rec, index, offsets, thr); if (err != DB_SUCCESS) { return(err); } err = trx_undo_report_row_operation(0, TRX_UNDO_MODIFY_OP, thr, index, NULL, NULL, 0, rec, offsets, &roll_ptr); if (err != DB_SUCCESS) { return(err); } /* The btr_search_latch is not needed here, because the adaptive hash index does not depend on the delete-mark and the delete-mark is being updated in place. */ page_zip = buf_block_get_page_zip(block); btr_blob_dbg_set_deleted_flag(rec, index, offsets, TRUE); btr_rec_set_deleted_flag(rec, page_zip, TRUE); trx = thr_get_trx(thr); if (dict_index_is_online_ddl(index)) { row_log_table_delete(rec, index, offsets, NULL); } row_upd_rec_sys_fields(rec, page_zip, index, offsets, trx, roll_ptr); btr_cur_del_mark_set_clust_rec_log(rec, index, trx->id, roll_ptr, mtr); return(err); } /****************************************************************//** Writes the redo log record for a delete mark setting of a secondary index record. */ UNIV_INLINE void btr_cur_del_mark_set_sec_rec_log( /*=============================*/ rec_t* rec, /*!< in: record */ ibool val, /*!< in: value to set */ mtr_t* mtr) /*!< in: mtr */ { byte* log_ptr; ut_ad(val <= 1); log_ptr = mlog_open(mtr, 11 + 1 + 2); if (!log_ptr) { /* Logging in mtr is switched off during crash recovery: in that case mlog_open returns NULL */ return; } log_ptr = mlog_write_initial_log_record_fast( rec, MLOG_REC_SEC_DELETE_MARK, log_ptr, mtr); mach_write_to_1(log_ptr, val); log_ptr++; mach_write_to_2(log_ptr, page_offset(rec)); log_ptr += 2; mlog_close(mtr, log_ptr); } #endif /* !UNIV_HOTBACKUP */ /****************************************************************//** Parses the redo log record for delete marking or unmarking of a secondary index record. @return end of log record or NULL */ UNIV_INTERN byte* btr_cur_parse_del_mark_set_sec_rec( /*===============================*/ byte* ptr, /*!< in: buffer */ byte* end_ptr,/*!< in: buffer end */ page_t* page, /*!< in/out: page or NULL */ page_zip_des_t* page_zip)/*!< in/out: compressed page, or NULL */ { ulint val; ulint offset; rec_t* rec; if (end_ptr < ptr + 3) { return(NULL); } val = mach_read_from_1(ptr); ptr++; offset = mach_read_from_2(ptr); ptr += 2; ut_a(offset <= UNIV_PAGE_SIZE); if (page) { rec = page + offset; /* We do not need to reserve btr_search_latch, as the page is only being recovered, and there cannot be a hash index to it. Besides, the delete-mark flag is being updated in place and the adaptive hash index does not depend on it. */ btr_rec_set_deleted_flag(rec, page_zip, val); } return(ptr); } #ifndef UNIV_HOTBACKUP /***********************************************************//** Sets a secondary index record delete mark to TRUE or FALSE. @return DB_SUCCESS, DB_LOCK_WAIT, or error number */ UNIV_INTERN dberr_t btr_cur_del_mark_set_sec_rec( /*=========================*/ ulint flags, /*!< in: locking flag */ btr_cur_t* cursor, /*!< in: cursor */ ibool val, /*!< in: value to set */ que_thr_t* thr, /*!< in: query thread */ mtr_t* mtr) /*!< in/out: mini-transaction */ { buf_block_t* block; rec_t* rec; dberr_t err; if (UNIV_UNLIKELY(thr_get_trx(thr)->fake_changes)) { /* skip LOCK, CHANGE, LOG */ return(DB_SUCCESS); } block = btr_cur_get_block(cursor); rec = btr_cur_get_rec(cursor); #ifdef UNIV_DEBUG if (btr_cur_print_record_ops) { btr_cur_trx_report(thr_get_trx(thr)->id, cursor->index, "del mark "); rec_print(stderr, rec, cursor->index); } #endif /* UNIV_DEBUG */ err = lock_sec_rec_modify_check_and_lock(flags, btr_cur_get_block(cursor), rec, cursor->index, thr, mtr); if (err != DB_SUCCESS) { return(err); } ut_ad(!!page_rec_is_comp(rec) == dict_table_is_comp(cursor->index->table)); /* We do not need to reserve btr_search_latch, as the delete-mark flag is being updated in place and the adaptive hash index does not depend on it. */ btr_rec_set_deleted_flag(rec, buf_block_get_page_zip(block), val); btr_cur_del_mark_set_sec_rec_log(rec, val, mtr); return(DB_SUCCESS); } /***********************************************************//** Sets a secondary index record's delete mark to the given value. This function is only used by the insert buffer merge mechanism. */ UNIV_INTERN void btr_cur_set_deleted_flag_for_ibuf( /*==============================*/ rec_t* rec, /*!< in/out: record */ page_zip_des_t* page_zip, /*!< in/out: compressed page corresponding to rec, or NULL when the tablespace is uncompressed */ ibool val, /*!< in: value to set */ mtr_t* mtr) /*!< in/out: mini-transaction */ { /* We do not need to reserve btr_search_latch, as the page has just been read to the buffer pool and there cannot be a hash index to it. Besides, the delete-mark flag is being updated in place and the adaptive hash index does not depend on it. */ btr_rec_set_deleted_flag(rec, page_zip, val); btr_cur_del_mark_set_sec_rec_log(rec, val, mtr); } /*==================== B-TREE RECORD REMOVE =========================*/ /*************************************************************//** Tries to compress a page of the tree if it seems useful. It is assumed that mtr holds an x-latch on the tree and on the cursor page. To avoid deadlocks, mtr must also own x-latches to brothers of page, if those brothers exist. NOTE: it is assumed that the caller has reserved enough free extents so that the compression will always succeed if done! @return TRUE if compression occurred */ UNIV_INTERN ibool btr_cur_compress_if_useful( /*=======================*/ btr_cur_t* cursor, /*!< in/out: cursor on the page to compress; cursor does not stay valid if !adjust and compression occurs */ ibool adjust, /*!< in: TRUE if should adjust the cursor position even if compression occurs */ mtr_t* mtr) /*!< in/out: mini-transaction */ { ut_ad(mtr_memo_contains(mtr, dict_index_get_lock(btr_cur_get_index(cursor)), MTR_MEMO_X_LOCK)); ut_ad(mtr_memo_contains(mtr, btr_cur_get_block(cursor), MTR_MEMO_PAGE_X_FIX)); return(btr_cur_compress_recommendation(cursor, mtr) && btr_compress(cursor, adjust, mtr)); } /*******************************************************//** Removes the record on which the tree cursor is positioned on a leaf page. It is assumed that the mtr has an x-latch on the page where the cursor is positioned, but no latch on the whole tree. @return TRUE if success, i.e., the page did not become too empty */ UNIV_INTERN ibool btr_cur_optimistic_delete_func( /*===========================*/ btr_cur_t* cursor, /*!< in: cursor on leaf page, on the record to delete; cursor stays valid: if deletion succeeds, on function exit it points to the successor of the deleted record */ #ifdef UNIV_DEBUG ulint flags, /*!< in: BTR_CREATE_FLAG or 0 */ #endif /* UNIV_DEBUG */ mtr_t* mtr) /*!< in: mtr; if this function returns TRUE on a leaf page of a secondary index, the mtr must be committed before latching any further pages */ { buf_block_t* block; rec_t* rec; mem_heap_t* heap = NULL; ulint offsets_[REC_OFFS_NORMAL_SIZE]; ulint* offsets = offsets_; ibool no_compress_needed; rec_offs_init(offsets_); ut_ad(flags == 0 || flags == BTR_CREATE_FLAG); ut_ad(mtr_memo_contains(mtr, btr_cur_get_block(cursor), MTR_MEMO_PAGE_X_FIX)); /* This is intended only for leaf page deletions */ block = btr_cur_get_block(cursor); SRV_CORRUPT_TABLE_CHECK(block, return(DB_CORRUPTION);); ut_ad(page_is_leaf(buf_block_get_frame(block))); ut_ad(!dict_index_is_online_ddl(cursor->index) || dict_index_is_clust(cursor->index) || (flags & BTR_CREATE_FLAG)); rec = btr_cur_get_rec(cursor); offsets = rec_get_offsets(rec, cursor->index, offsets, ULINT_UNDEFINED, &heap); no_compress_needed = !rec_offs_any_extern(offsets) && btr_cur_can_delete_without_compress( cursor, rec_offs_size(offsets), mtr); if (no_compress_needed) { page_t* page = buf_block_get_frame(block); page_zip_des_t* page_zip= buf_block_get_page_zip(block); lock_update_delete(block, rec); btr_search_update_hash_on_delete(cursor); if (page_zip) { #ifdef UNIV_ZIP_DEBUG ut_a(page_zip_validate(page_zip, page, cursor->index)); #endif /* UNIV_ZIP_DEBUG */ page_cur_delete_rec(btr_cur_get_page_cur(cursor), cursor->index, offsets, mtr); #ifdef UNIV_ZIP_DEBUG ut_a(page_zip_validate(page_zip, page, cursor->index)); #endif /* UNIV_ZIP_DEBUG */ /* On compressed pages, the IBUF_BITMAP_FREE space is not affected by deleting (purging) records, because it is defined as the minimum of space available *without* reorganize, and space available in the modification log. */ } else { const ulint max_ins = page_get_max_insert_size_after_reorganize( page, 1); page_cur_delete_rec(btr_cur_get_page_cur(cursor), cursor->index, offsets, mtr); /* The change buffer does not handle inserts into non-leaf pages, into clustered indexes, or into the change buffer. */ if (page_is_leaf(page) && !dict_index_is_clust(cursor->index) && !dict_index_is_ibuf(cursor->index)) { ibuf_update_free_bits_low(block, max_ins, mtr); } } } if (UNIV_LIKELY_NULL(heap)) { mem_heap_free(heap); } return(no_compress_needed); } /*************************************************************//** Removes the record on which the tree cursor is positioned. Tries to compress the page if its fillfactor drops below a threshold or if it is the only page on the level. It is assumed that mtr holds an x-latch on the tree and on the cursor page. To avoid deadlocks, mtr must also own x-latches to brothers of page, if those brothers exist. @return TRUE if compression occurred */ UNIV_INTERN ibool btr_cur_pessimistic_delete( /*=======================*/ dberr_t* err, /*!< out: DB_SUCCESS or DB_OUT_OF_FILE_SPACE; the latter may occur because we may have to update node pointers on upper levels, and in the case of variable length keys these may actually grow in size */ ibool has_reserved_extents, /*!< in: TRUE if the caller has already reserved enough free extents so that he knows that the operation will succeed */ btr_cur_t* cursor, /*!< in: cursor on the record to delete; if compression does not occur, the cursor stays valid: it points to successor of deleted record on function exit */ ulint flags, /*!< in: BTR_CREATE_FLAG or 0 */ enum trx_rb_ctx rb_ctx, /*!< in: rollback context */ mtr_t* mtr) /*!< in: mtr */ { buf_block_t* block; page_t* page; page_zip_des_t* page_zip; dict_index_t* index; rec_t* rec; ulint n_reserved = 0; ibool success; ibool ret = FALSE; ulint level; mem_heap_t* heap; ulint* offsets; block = btr_cur_get_block(cursor); page = buf_block_get_frame(block); index = btr_cur_get_index(cursor); ut_ad(flags == 0 || flags == BTR_CREATE_FLAG); ut_ad(!dict_index_is_online_ddl(index) || dict_index_is_clust(index) || (flags & BTR_CREATE_FLAG)); ut_ad(mtr_memo_contains(mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK)); ut_ad(mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX)); if (!has_reserved_extents) { /* First reserve enough free space for the file segments of the index tree, so that the node pointer updates will not fail because of lack of space */ ut_a(cursor->tree_height != ULINT_UNDEFINED); ulint n_extents = cursor->tree_height / 32 + 1; success = fsp_reserve_free_extents(&n_reserved, index->space, n_extents, FSP_CLEANING, mtr); if (!success) { *err = DB_OUT_OF_FILE_SPACE; return(FALSE); } } heap = mem_heap_create(1024); rec = btr_cur_get_rec(cursor); page_zip = buf_block_get_page_zip(block); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ offsets = rec_get_offsets(rec, index, NULL, ULINT_UNDEFINED, &heap); if (rec_offs_any_extern(offsets)) { btr_rec_free_externally_stored_fields(index, rec, offsets, page_zip, rb_ctx, mtr); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ } if (UNIV_UNLIKELY(page_get_n_recs(page) < 2) && UNIV_UNLIKELY(dict_index_get_page(index) != buf_block_get_page_no(block))) { /* If there is only one record, drop the whole page in btr_discard_page, if this is not the root page */ btr_discard_page(cursor, mtr); ret = TRUE; goto return_after_reservations; } if (flags == 0) { lock_update_delete(block, rec); } level = btr_page_get_level(page, mtr); if (level > 0 && UNIV_UNLIKELY(rec == page_rec_get_next( page_get_infimum_rec(page)))) { rec_t* next_rec = page_rec_get_next(rec); if (btr_page_get_prev(page, mtr) == FIL_NULL) { /* If we delete the leftmost node pointer on a non-leaf level, we must mark the new leftmost node pointer as the predefined minimum record */ /* This will make page_zip_validate() fail until page_cur_delete_rec() completes. This is harmless, because everything will take place within a single mini-transaction and because writing to the redo log is an atomic operation (performed by mtr_commit()). */ btr_set_min_rec_mark(next_rec, mtr); } else { /* Otherwise, if we delete the leftmost node pointer on a page, we have to change the father node pointer so that it is equal to the new leftmost node pointer on the page */ btr_node_ptr_delete(index, block, mtr); dtuple_t* node_ptr = dict_index_build_node_ptr( index, next_rec, buf_block_get_page_no(block), heap, level); btr_insert_on_non_leaf_level( flags, index, level + 1, node_ptr, mtr); } } btr_search_update_hash_on_delete(cursor); page_cur_delete_rec(btr_cur_get_page_cur(cursor), index, offsets, mtr); #ifdef UNIV_ZIP_DEBUG ut_a(!page_zip || page_zip_validate(page_zip, page, index)); #endif /* UNIV_ZIP_DEBUG */ ut_ad(btr_check_node_ptr(index, block, mtr)); return_after_reservations: *err = DB_SUCCESS; mem_heap_free(heap); if (ret == FALSE) { ret = btr_cur_compress_if_useful(cursor, FALSE, mtr); } if (n_reserved > 0) { fil_space_release_free_extents(index->space, n_reserved); } return(ret); } /*******************************************************************//** Adds path information to the cursor for the current page, for which the binary search has been performed. */ static void btr_cur_add_path_info( /*==================*/ btr_cur_t* cursor, /*!< in: cursor positioned on a page */ ulint height, /*!< in: height of the page in tree; 0 means leaf node */ ulint root_height) /*!< in: root node height in tree */ { btr_path_t* slot; const rec_t* rec; const page_t* page; ut_a(cursor->path_arr); if (root_height >= BTR_PATH_ARRAY_N_SLOTS - 1) { /* Do nothing; return empty path */ slot = cursor->path_arr; slot->nth_rec = ULINT_UNDEFINED; return; } if (height == 0) { /* Mark end of slots for path */ slot = cursor->path_arr + root_height + 1; slot->nth_rec = ULINT_UNDEFINED; } rec = btr_cur_get_rec(cursor); slot = cursor->path_arr + (root_height - height); page = page_align(rec); slot->nth_rec = page_rec_get_n_recs_before(rec); slot->n_recs = page_get_n_recs(page); slot->page_no = page_get_page_no(page); slot->page_level = btr_page_get_level_low(page); } /*******************************************************************//** Estimate the number of rows between slot1 and slot2 for any level on a B-tree. This function starts from slot1->page and reads a few pages to the right, counting their records. If we reach slot2->page quickly then we know exactly how many records there are between slot1 and slot2 and we set is_n_rows_exact to TRUE. If we cannot reach slot2->page quickly then we calculate the average number of records in the pages scanned so far and assume that all pages that we did not scan up to slot2->page contain the same number of records, then we multiply that average to the number of pages between slot1->page and slot2->page (which is n_rows_on_prev_level). In this case we set is_n_rows_exact to FALSE. @return number of rows (exact or estimated) */ static ib_int64_t btr_estimate_n_rows_in_range_on_level( /*==================================*/ dict_index_t* index, /*!< in: index */ btr_path_t* slot1, /*!< in: left border */ btr_path_t* slot2, /*!< in: right border */ ib_int64_t n_rows_on_prev_level, /*!< in: number of rows on the previous level for the same descend paths; used to determine the numbe of pages on this level */ ibool* is_n_rows_exact) /*!< out: TRUE if the returned value is exact i.e. not an estimation */ { ulint space; ib_int64_t n_rows; ulint n_pages_read; ulint page_no; ulint zip_size; ulint level; space = dict_index_get_space(index); n_rows = 0; n_pages_read = 0; /* Assume by default that we will scan all pages between slot1->page_no and slot2->page_no */ *is_n_rows_exact = TRUE; /* add records from slot1->page_no which are to the right of the record which serves as a left border of the range, if any */ if (slot1->nth_rec < slot1->n_recs) { n_rows += slot1->n_recs - slot1->nth_rec; } /* add records from slot2->page_no which are to the left of the record which servers as a right border of the range, if any */ if (slot2->nth_rec > 1) { n_rows += slot2->nth_rec - 1; } /* count the records in the pages between slot1->page_no and slot2->page_no (non inclusive), if any */ zip_size = fil_space_get_zip_size(space); /* Do not read more than this number of pages in order not to hurt performance with this code which is just an estimation. If we read this many pages before reaching slot2->page_no then we estimate the average from the pages scanned so far */ # define N_PAGES_READ_LIMIT 10 page_no = slot1->page_no; level = slot1->page_level; do { mtr_t mtr; page_t* page; buf_block_t* block; dberr_t err=DB_SUCCESS; mtr_start(&mtr); /* Fetch the page. Because we are not holding the index->lock, the tree may have changed and we may be attempting to read a page that is no longer part of the B-tree. We pass BUF_GET_POSSIBLY_FREED in order to silence a debug assertion about this. */ block = buf_page_get_gen(space, zip_size, page_no, RW_S_LATCH, NULL, BUF_GET_POSSIBLY_FREED, __FILE__, __LINE__, &mtr, &err); ut_ad((block != NULL) == (err == DB_SUCCESS)); if (err != DB_SUCCESS) { if (err == DB_DECRYPTION_FAILED) { ib_push_warning((void *)NULL, DB_DECRYPTION_FAILED, "Table %s is encrypted but encryption service or" " used key_id is not available. " " Can't continue reading table.", index->table->name); index->table->file_unreadable = true; } mtr_commit(&mtr); goto inexact; } page = buf_block_get_frame(block); /* It is possible that the tree has been reorganized in the meantime and this is a different page. If this happens the calculated estimate will be bogus, which is not fatal as this is only an estimate. We are sure that a page with page_no exists because InnoDB never frees pages, only reuses them. */ if (fil_page_get_type(page) != FIL_PAGE_INDEX || btr_page_get_index_id(page) != index->id || btr_page_get_level_low(page) != level) { /* The page got reused for something else */ mtr_commit(&mtr); goto inexact; } /* It is possible but highly unlikely that the page was originally written by an old version of InnoDB that did not initialize FIL_PAGE_TYPE on other than B-tree pages. For example, this could be an almost-empty BLOB page that happens to contain the magic values in the fields that we checked above. */ n_pages_read++; if (page_no != slot1->page_no) { /* Do not count the records on slot1->page_no, we already counted them before this loop. */ n_rows += page_get_n_recs(page); } page_no = btr_page_get_next(page, &mtr); mtr_commit(&mtr); if (n_pages_read == N_PAGES_READ_LIMIT || page_no == FIL_NULL) { /* Either we read too many pages or we reached the end of the level without passing through slot2->page_no, the tree must have changed in the meantime */ goto inexact; } } while (page_no != slot2->page_no); return(n_rows); inexact: *is_n_rows_exact = FALSE; /* We did interrupt before reaching slot2->page */ if (n_pages_read > 0) { /* The number of pages on this level is n_rows_on_prev_level, multiply it by the average number of recs per page so far */ n_rows = n_rows_on_prev_level * n_rows / n_pages_read; } else { /* The tree changed before we could even start with slot1->page_no */ n_rows = 10; } return(n_rows); } /** If the tree gets changed too much between the two dives for the left and right boundary then btr_estimate_n_rows_in_range_low() will retry that many times before giving up and returning the value stored in rows_in_range_arbitrary_ret_val. */ static const unsigned rows_in_range_max_retries = 4; /** We pretend that a range has that many records if the tree keeps changing for rows_in_range_max_retries retries while we try to estimate the records in a given range. */ static const ib_int64_t rows_in_range_arbitrary_ret_val = 10; /** Estimates the number of rows in a given index range. @param[in] index index @param[in] tuple1 range start, may also be empty tuple @param[in] mode1 search mode for range start @param[in] tuple2 range end, may also be empty tuple @param[in] mode2 search mode for range end @param[in] trx trx @param[in] nth_attempt if the tree gets modified too much while we are trying to analyze it, then we will retry (this function will call itself, incrementing this parameter) @return estimated number of rows; if after rows_in_range_max_retries retries the tree keeps changing, then we will just return rows_in_range_arbitrary_ret_val as a result (if nth_attempt >= rows_in_range_max_retries and the tree is modified between the two dives). */ static ib_int64_t btr_estimate_n_rows_in_range_low( dict_index_t* index, const dtuple_t* tuple1, ulint mode1, const dtuple_t* tuple2, ulint mode2, trx_t* trx, unsigned nth_attempt) { btr_path_t path1[BTR_PATH_ARRAY_N_SLOTS]; btr_path_t path2[BTR_PATH_ARRAY_N_SLOTS]; btr_cur_t cursor; btr_path_t* slot1; btr_path_t* slot2; ibool diverged; ibool diverged_lot; ulint divergence_level; ib_int64_t n_rows; ibool is_n_rows_exact; ulint i; mtr_t mtr; ib_int64_t table_n_rows; table_n_rows = dict_table_get_n_rows(index->table); mtr_start_trx(&mtr, trx); cursor.path_arr = path1; if (dtuple_get_n_fields(tuple1) > 0) { btr_cur_search_to_nth_level(index, 0, tuple1, mode1, BTR_SEARCH_LEAF | BTR_ESTIMATE, &cursor, 0, __FILE__, __LINE__, &mtr); } else { btr_cur_open_at_index_side(true, index, BTR_SEARCH_LEAF | BTR_ESTIMATE, &cursor, 0, &mtr); } mtr_commit(&mtr); if (index->table->file_unreadable) { return (0); } mtr_start_trx(&mtr, trx); #ifdef UNIV_DEBUG if (!strcmp(index->name, "iC")) { DEBUG_SYNC_C("btr_estimate_n_rows_in_range_between_dives"); } #endif cursor.path_arr = path2; if (dtuple_get_n_fields(tuple2) > 0) { btr_cur_search_to_nth_level(index, 0, tuple2, mode2, BTR_SEARCH_LEAF | BTR_ESTIMATE, &cursor, 0, __FILE__, __LINE__, &mtr); } else { btr_cur_open_at_index_side(false, index, BTR_SEARCH_LEAF | BTR_ESTIMATE, &cursor, 0, &mtr); } mtr_commit(&mtr); /* We have the path information for the range in path1 and path2 */ n_rows = 1; is_n_rows_exact = TRUE; diverged = FALSE; /* This becomes true when the path is not the same any more */ diverged_lot = FALSE; /* This becomes true when the paths are not the same or adjacent any more */ divergence_level = 1000000; /* This is the level where paths diverged a lot */ for (i = 0; ; i++) { ut_ad(i < BTR_PATH_ARRAY_N_SLOTS); slot1 = path1 + i; slot2 = path2 + i; if (slot1->nth_rec == ULINT_UNDEFINED || slot2->nth_rec == ULINT_UNDEFINED) { if (i > divergence_level + 1 && !is_n_rows_exact) { /* In trees whose height is > 1 our algorithm tends to underestimate: multiply the estimate by 2: */ n_rows = n_rows * 2; } DBUG_EXECUTE_IF("bug14007649", return(n_rows);); /* Do not estimate the number of rows in the range to over 1 / 2 of the estimated rows in the whole table */ if (n_rows > table_n_rows / 2 && !is_n_rows_exact) { n_rows = table_n_rows / 2; /* If there are just 0 or 1 rows in the table, then we estimate all rows are in the range */ if (n_rows == 0) { n_rows = table_n_rows; } } return(n_rows); } if (!diverged && slot1->nth_rec != slot2->nth_rec) { /* If both slots do not point to the same page or if the paths have crossed and the same page on both apparently contains a different number of records, this means that the tree must have changed between the dive for slot1 and the dive for slot2 at the beginning of this function. */ if (slot1->page_no != slot2->page_no || slot1->page_level != slot2->page_level || (slot1->nth_rec >= slot2->nth_rec && slot1->n_recs != slot2->n_recs)) { /* If the tree keeps changing even after a few attempts, then just return some arbitrary number. */ if (nth_attempt >= rows_in_range_max_retries) { return(rows_in_range_arbitrary_ret_val); } const ib_int64_t ret = btr_estimate_n_rows_in_range_low( index, tuple1, mode1, tuple2, mode2, trx, nth_attempt + 1); return(ret); } diverged = TRUE; if (slot1->nth_rec < slot2->nth_rec) { n_rows = slot2->nth_rec - slot1->nth_rec; if (n_rows > 1) { diverged_lot = TRUE; divergence_level = i; } } else { /* It is possible that slot1->nth_rec >= slot2->nth_rec if, for example, we have a single page tree which contains (inf, 5, 6, supr) and we select where x > 20 and x < 30; in this case slot1->nth_rec will point to the supr record and slot2->nth_rec will point to 6 */ return(0); } } else if (diverged && !diverged_lot) { if (slot1->nth_rec < slot1->n_recs || slot2->nth_rec > 1) { diverged_lot = TRUE; divergence_level = i; n_rows = 0; if (slot1->nth_rec < slot1->n_recs) { n_rows += slot1->n_recs - slot1->nth_rec; } if (slot2->nth_rec > 1) { n_rows += slot2->nth_rec - 1; } } } else if (diverged_lot) { n_rows = btr_estimate_n_rows_in_range_on_level( index, slot1, slot2, n_rows, &is_n_rows_exact); } } } /** Estimates the number of rows in a given index range. @param[in] index index @param[in] tuple1 range start, may also be empty tuple @param[in] mode1 search mode for range start @param[in] tuple2 range end, may also be empty tuple @param[in] mode2 search mode for range end @param[in] trx trx @return estimated number of rows */ ib_int64_t btr_estimate_n_rows_in_range( dict_index_t* index, const dtuple_t* tuple1, ulint mode1, const dtuple_t* tuple2, ulint mode2, trx_t* trx) { const ib_int64_t ret = btr_estimate_n_rows_in_range_low( index, tuple1, mode1, tuple2, mode2, trx, 1 /* first attempt */); return(ret); } /*******************************************************************//** Record the number of non_null key values in a given index for each n-column prefix of the index where 1 <= n <= dict_index_get_n_unique(index). The estimates are eventually stored in the array: index->stat_n_non_null_key_vals[], which is indexed from 0 to n-1. */ static void btr_record_not_null_field_in_rec( /*=============================*/ ulint n_unique, /*!< in: dict_index_get_n_unique(index), number of columns uniquely determine an index entry */ const ulint* offsets, /*!< in: rec_get_offsets(rec, index), its size could be for all fields or that of "n_unique" */ ib_uint64_t* n_not_null) /*!< in/out: array to record number of not null rows for n-column prefix */ { ulint i; ut_ad(rec_offs_n_fields(offsets) >= n_unique); if (n_not_null == NULL) { return; } for (i = 0; i < n_unique; i++) { if (rec_offs_nth_sql_null(offsets, i)) { break; } n_not_null[i]++; } } /*******************************************************************//** Estimates the number of different key values in a given index, for each n-column prefix of the index where 1 <= n <= dict_index_get_n_unique(index). The estimates are stored in the array index->stat_n_diff_key_vals[] (indexed 0..n_uniq-1) and the number of pages that were sampled is saved in index->stat_n_sample_sizes[]. If innodb_stats_method is nulls_ignored, we also record the number of non-null values for each prefix and stored the estimates in array index->stat_n_non_null_key_vals. */ UNIV_INTERN void btr_estimate_number_of_different_key_vals( /*======================================*/ dict_index_t* index) /*!< in: index */ { btr_cur_t cursor; page_t* page; rec_t* rec; ulint n_cols; ulint matched_fields; ulint matched_bytes; ib_uint64_t* n_diff; ib_uint64_t* n_not_null; ibool stats_null_not_equal; ullint n_sample_pages=1; /* number of pages to sample */ ulint not_empty_flag = 0; ulint total_external_size = 0; ulint i; ulint j; ullint add_on; mtr_t mtr; mem_heap_t* heap = NULL; ulint* offsets_rec = NULL; ulint* offsets_next_rec = NULL; n_cols = dict_index_get_n_unique(index); heap = mem_heap_create((sizeof *n_diff + sizeof *n_not_null) * n_cols + dict_index_get_n_fields(index) * (sizeof *offsets_rec + sizeof *offsets_next_rec)); n_diff = (ib_uint64_t*) mem_heap_zalloc( heap, n_cols * sizeof(ib_int64_t)); n_not_null = NULL; /* Check srv_innodb_stats_method setting, and decide whether we need to record non-null value and also decide if NULL is considered equal (by setting stats_null_not_equal value) */ switch (srv_innodb_stats_method) { case SRV_STATS_NULLS_IGNORED: n_not_null = (ib_uint64_t*) mem_heap_zalloc( heap, n_cols * sizeof *n_not_null); /* fall through */ case SRV_STATS_NULLS_UNEQUAL: /* for both SRV_STATS_NULLS_IGNORED and SRV_STATS_NULLS_UNEQUAL case, we will treat NULLs as unequal value */ stats_null_not_equal = TRUE; break; case SRV_STATS_NULLS_EQUAL: stats_null_not_equal = FALSE; break; default: ut_error; } if (srv_stats_sample_traditional) { /* It makes no sense to test more pages than are contained in the index, thus we lower the number if it is too high */ if (srv_stats_transient_sample_pages > index->stat_index_size) { if (index->stat_index_size > 0) { n_sample_pages = index->stat_index_size; } } else { n_sample_pages = srv_stats_transient_sample_pages; } } else { /* New logaritmic number of pages that are estimated. Number of pages estimated should be between 1 and index->stat_index_size. If we have only 0 or 1 index pages then we can only take 1 sample. We have already initialized n_sample_pages to 1. So taking index size as I and sample as S and log(I)*S as L requirement 1) we want the out limit of the expression to not exceed I; requirement 2) we want the ideal pages to be at least S; so the current expression is min(I, max( min(S,I), L) looking for simplifications: case 1: assume S < I min(I, max( min(S,I), L) -> min(I , max( S, L)) but since L=LOG2(I)*S and log2(I) >=1 L>S always so max(S,L) = L. so we have: min(I , L) case 2: assume I < S min(I, max( min(S,I), L) -> min(I, max( I, L)) case 2a: L > I min(I, max( I, L)) -> min(I, L) -> I case 2b: when L < I min(I, max( I, L)) -> min(I, I ) -> I so taking all case2 paths is I, our expression is: n_pages = S < I? min(I,L) : I */ if (index->stat_index_size > 1) { n_sample_pages = (srv_stats_transient_sample_pages < index->stat_index_size) ? (ulint) ut_min((double) index->stat_index_size, log2(index->stat_index_size)*srv_stats_transient_sample_pages) : index->stat_index_size; } } /* Sanity check */ ut_ad(n_sample_pages > 0 && n_sample_pages <= (index->stat_index_size < 1 ? 1 : index->stat_index_size)); /* We sample some pages in the index to get an estimate */ for (i = 0; i < n_sample_pages; i++) { mtr_start(&mtr); btr_cur_open_at_rnd_pos(index, BTR_SEARCH_LEAF, &cursor, &mtr); /* Count the number of different key values for each prefix of the key on this index page. If the prefix does not determine the index record uniquely in the B-tree, then we subtract one because otherwise our algorithm would give a wrong estimate for an index where there is just one key value. */ if (index->table->file_unreadable) { mtr_commit(&mtr); goto exit_loop; } page = btr_cur_get_page(&cursor); SRV_CORRUPT_TABLE_CHECK(page, goto exit_loop;); DBUG_EXECUTE_IF("ib_corrupt_page_while_stats_calc", page = NULL;); SRV_CORRUPT_TABLE_CHECK(page, { mtr_commit(&mtr); goto exit_loop; }); rec = page_rec_get_next(page_get_infimum_rec(page)); if (!page_rec_is_supremum(rec)) { not_empty_flag = 1; offsets_rec = rec_get_offsets(rec, index, offsets_rec, ULINT_UNDEFINED, &heap); if (n_not_null != NULL) { btr_record_not_null_field_in_rec( n_cols, offsets_rec, n_not_null); } } while (!page_rec_is_supremum(rec)) { rec_t* next_rec = page_rec_get_next(rec); if (page_rec_is_supremum(next_rec)) { total_external_size += btr_rec_get_externally_stored_len( rec, offsets_rec); break; } matched_fields = 0; matched_bytes = 0; offsets_next_rec = rec_get_offsets(next_rec, index, offsets_next_rec, ULINT_UNDEFINED, &heap); cmp_rec_rec_with_match(rec, next_rec, offsets_rec, offsets_next_rec, index, stats_null_not_equal, &matched_fields, &matched_bytes); for (j = matched_fields; j < n_cols; j++) { /* We add one if this index record has a different prefix from the previous */ n_diff[j]++; } if (n_not_null != NULL) { btr_record_not_null_field_in_rec( n_cols, offsets_next_rec, n_not_null); } total_external_size += btr_rec_get_externally_stored_len( rec, offsets_rec); rec = next_rec; /* Initialize offsets_rec for the next round and assign the old offsets_rec buffer to offsets_next_rec. */ { ulint* offsets_tmp = offsets_rec; offsets_rec = offsets_next_rec; offsets_next_rec = offsets_tmp; } } if (n_cols == dict_index_get_n_unique_in_tree(index)) { /* If there is more than one leaf page in the tree, we add one because we know that the first record on the page certainly had a different prefix than the last record on the previous index page in the alphabetical order. Before this fix, if there was just one big record on each clustered index page, the algorithm grossly underestimated the number of rows in the table. */ if (btr_page_get_prev(page, &mtr) != FIL_NULL || btr_page_get_next(page, &mtr) != FIL_NULL) { n_diff[n_cols - 1]++; } } mtr_commit(&mtr); } exit_loop: /* If we saw k borders between different key values on n_sample_pages leaf pages, we can estimate how many there will be in index->stat_n_leaf_pages */ /* We must take into account that our sample actually represents also the pages used for external storage of fields (those pages are included in index->stat_n_leaf_pages) */ for (j = 0; j < n_cols; j++) { index->stat_n_diff_key_vals[j] = BTR_TABLE_STATS_FROM_SAMPLE( n_diff[j], index, n_sample_pages, total_external_size, not_empty_flag); /* If the tree is small, smaller than 10 * n_sample_pages + total_external_size, then the above estimate is ok. For bigger trees it is common that we do not see any borders between key values in the few pages we pick. But still there may be n_sample_pages different key values, or even more. Let us try to approximate that: */ add_on = index->stat_n_leaf_pages / (10 * (n_sample_pages + total_external_size)); if (add_on > n_sample_pages) { add_on = n_sample_pages; } index->stat_n_diff_key_vals[j] += add_on; index->stat_n_sample_sizes[j] = n_sample_pages; /* Update the stat_n_non_null_key_vals[] with our sampled result. stat_n_non_null_key_vals[] is created and initialized to zero in dict_index_add_to_cache(), along with stat_n_diff_key_vals[] array */ if (n_not_null != NULL) { index->stat_n_non_null_key_vals[j] = BTR_TABLE_STATS_FROM_SAMPLE( n_not_null[j], index, n_sample_pages, total_external_size, not_empty_flag); } } mem_heap_free(heap); } /*================== EXTERNAL STORAGE OF BIG FIELDS ===================*/ /***********************************************************//** Gets the offset of the pointer to the externally stored part of a field. @return offset of the pointer to the externally stored part */ static ulint btr_rec_get_field_ref_offs( /*=======================*/ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ ulint n) /*!< in: index of the external field */ { ulint field_ref_offs; ulint local_len; ut_a(rec_offs_nth_extern(offsets, n)); field_ref_offs = rec_get_nth_field_offs(offsets, n, &local_len); ut_a(local_len != UNIV_SQL_NULL); ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE); return(field_ref_offs + local_len - BTR_EXTERN_FIELD_REF_SIZE); } /** Gets a pointer to the externally stored part of a field. @param rec record @param offsets rec_get_offsets(rec) @param n index of the externally stored field @return pointer to the externally stored part */ #define btr_rec_get_field_ref(rec, offsets, n) \ ((rec) + btr_rec_get_field_ref_offs(offsets, n)) /** Gets the externally stored size of a record, in units of a database page. @param[in] rec record @param[in] offsets array returned by rec_get_offsets() @return externally stored part, in units of a database page */ ulint btr_rec_get_externally_stored_len( const rec_t* rec, const ulint* offsets) { ulint n_fields; ulint total_extern_len = 0; ulint i; ut_ad(!rec_offs_comp(offsets) || !rec_get_node_ptr_flag(rec)); if (!rec_offs_any_extern(offsets)) { return(0); } n_fields = rec_offs_n_fields(offsets); for (i = 0; i < n_fields; i++) { if (rec_offs_nth_extern(offsets, i)) { ulint extern_len = mach_read_from_4( btr_rec_get_field_ref(rec, offsets, i) + BTR_EXTERN_LEN + 4); total_extern_len += ut_calc_align(extern_len, UNIV_PAGE_SIZE); } } return(total_extern_len / UNIV_PAGE_SIZE); } /*******************************************************************//** Sets the ownership bit of an externally stored field in a record. */ static void btr_cur_set_ownership_of_extern_field( /*==================================*/ page_zip_des_t* page_zip,/*!< in/out: compressed page whose uncompressed part will be updated, or NULL */ rec_t* rec, /*!< in/out: clustered index record */ dict_index_t* index, /*!< in: index of the page */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ ulint i, /*!< in: field number */ ibool val, /*!< in: value to set */ mtr_t* mtr) /*!< in: mtr, or NULL if not logged */ { byte* data; ulint local_len; ulint byte_val; data = rec_get_nth_field(rec, offsets, i, &local_len); ut_ad(rec_offs_nth_extern(offsets, i)); ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE); local_len -= BTR_EXTERN_FIELD_REF_SIZE; byte_val = mach_read_from_1(data + local_len + BTR_EXTERN_LEN); if (val) { byte_val = byte_val & (~BTR_EXTERN_OWNER_FLAG); } else { #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG ut_a(!(byte_val & BTR_EXTERN_OWNER_FLAG)); #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ byte_val = byte_val | BTR_EXTERN_OWNER_FLAG; } if (page_zip) { mach_write_to_1(data + local_len + BTR_EXTERN_LEN, byte_val); page_zip_write_blob_ptr(page_zip, rec, index, offsets, i, mtr); } else if (mtr != NULL) { mlog_write_ulint(data + local_len + BTR_EXTERN_LEN, byte_val, MLOG_1BYTE, mtr); } else { mach_write_to_1(data + local_len + BTR_EXTERN_LEN, byte_val); } btr_blob_dbg_owner(rec, index, offsets, i, val); } /*******************************************************************//** Marks non-updated off-page fields as disowned by this record. The ownership must be transferred to the updated record which is inserted elsewhere in the index tree. In purge only the owner of externally stored field is allowed to free the field. */ UNIV_INTERN void btr_cur_disown_inherited_fields( /*============================*/ page_zip_des_t* page_zip,/*!< in/out: compressed page whose uncompressed part will be updated, or NULL */ rec_t* rec, /*!< in/out: record in a clustered index */ dict_index_t* index, /*!< in: index of the page */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ const upd_t* update, /*!< in: update vector */ mtr_t* mtr) /*!< in/out: mini-transaction */ { ulint i; ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(!rec_offs_comp(offsets) || !rec_get_node_ptr_flag(rec)); ut_ad(rec_offs_any_extern(offsets)); for (i = 0; i < rec_offs_n_fields(offsets); i++) { if (rec_offs_nth_extern(offsets, i) && !upd_get_field_by_field_no(update, i)) { btr_cur_set_ownership_of_extern_field( page_zip, rec, index, offsets, i, FALSE, mtr); } } } /*******************************************************************//** Marks all extern fields in a record as owned by the record. This function should be called if the delete mark of a record is removed: a not delete marked record always owns all its extern fields. */ static void btr_cur_unmark_extern_fields( /*=========================*/ page_zip_des_t* page_zip,/*!< in/out: compressed page whose uncompressed part will be updated, or NULL */ rec_t* rec, /*!< in/out: record in a clustered index */ dict_index_t* index, /*!< in: index of the page */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ mtr_t* mtr) /*!< in: mtr, or NULL if not logged */ { ulint n; ulint i; ut_ad(!rec_offs_comp(offsets) || !rec_get_node_ptr_flag(rec)); n = rec_offs_n_fields(offsets); if (!rec_offs_any_extern(offsets)) { return; } for (i = 0; i < n; i++) { if (rec_offs_nth_extern(offsets, i)) { btr_cur_set_ownership_of_extern_field( page_zip, rec, index, offsets, i, TRUE, mtr); } } } /*******************************************************************//** Flags the data tuple fields that are marked as extern storage in the update vector. We use this function to remember which fields we must mark as extern storage in a record inserted for an update. @return number of flagged external columns */ UNIV_INTERN ulint btr_push_update_extern_fields( /*==========================*/ dtuple_t* tuple, /*!< in/out: data tuple */ const upd_t* update, /*!< in: update vector */ mem_heap_t* heap) /*!< in: memory heap */ { ulint n_pushed = 0; ulint n; const upd_field_t* uf; uf = update->fields; n = upd_get_n_fields(update); for (; n--; uf++) { if (dfield_is_ext(&uf->new_val)) { dfield_t* field = dtuple_get_nth_field(tuple, uf->field_no); if (!dfield_is_ext(field)) { dfield_set_ext(field); n_pushed++; } switch (uf->orig_len) { byte* data; ulint len; byte* buf; case 0: break; case BTR_EXTERN_FIELD_REF_SIZE: /* Restore the original locally stored part of the column. In the undo log, InnoDB writes a longer prefix of externally stored columns, so that column prefixes in secondary indexes can be reconstructed. */ dfield_set_data(field, (byte*) dfield_get_data(field) + dfield_get_len(field) - BTR_EXTERN_FIELD_REF_SIZE, BTR_EXTERN_FIELD_REF_SIZE); dfield_set_ext(field); break; default: /* Reconstruct the original locally stored part of the column. The data will have to be copied. */ ut_a(uf->orig_len > BTR_EXTERN_FIELD_REF_SIZE); data = (byte*) dfield_get_data(field); len = dfield_get_len(field); buf = (byte*) mem_heap_alloc(heap, uf->orig_len); /* Copy the locally stored prefix. */ memcpy(buf, data, uf->orig_len - BTR_EXTERN_FIELD_REF_SIZE); /* Copy the BLOB pointer. */ memcpy(buf + uf->orig_len - BTR_EXTERN_FIELD_REF_SIZE, data + len - BTR_EXTERN_FIELD_REF_SIZE, BTR_EXTERN_FIELD_REF_SIZE); dfield_set_data(field, buf, uf->orig_len); dfield_set_ext(field); } } } return(n_pushed); } /*******************************************************************//** Returns the length of a BLOB part stored on the header page. @return part length */ static ulint btr_blob_get_part_len( /*==================*/ const byte* blob_header) /*!< in: blob header */ { return(mach_read_from_4(blob_header + BTR_BLOB_HDR_PART_LEN)); } /*******************************************************************//** Returns the page number where the next BLOB part is stored. @return page number or FIL_NULL if no more pages */ static ulint btr_blob_get_next_page_no( /*======================*/ const byte* blob_header) /*!< in: blob header */ { return(mach_read_from_4(blob_header + BTR_BLOB_HDR_NEXT_PAGE_NO)); } /*******************************************************************//** Deallocate a buffer block that was reserved for a BLOB part. */ static void btr_blob_free( /*==========*/ buf_block_t* block, /*!< in: buffer block */ ibool all, /*!< in: TRUE=remove also the compressed page if there is one */ mtr_t* mtr) /*!< in: mini-transaction to commit */ { buf_pool_t* buf_pool = buf_pool_from_block(block); ulint space = buf_block_get_space(block); ulint page_no = buf_block_get_page_no(block); bool freed = false; ut_ad(mtr_memo_contains(mtr, block, MTR_MEMO_PAGE_X_FIX)); mtr_commit(mtr); mutex_enter(&buf_pool->LRU_list_mutex); mutex_enter(&block->mutex); /* Only free the block if it is still allocated to the same file page. */ if (buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE && buf_block_get_space(block) == space && buf_block_get_page_no(block) == page_no) { freed = buf_LRU_free_page(&block->page, all); if (!freed && all && block->page.zip.data /* Now, buf_LRU_free_page() may release mutexes temporarily */ && buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE && buf_block_get_space(block) == space && buf_block_get_page_no(block) == page_no) { /* Attempt to deallocate the uncompressed page if the whole block cannot be deallocted. */ freed = buf_LRU_free_page(&block->page, false); } } if (!freed) { mutex_exit(&buf_pool->LRU_list_mutex); } mutex_exit(&block->mutex); } /*******************************************************************//** Stores the fields in big_rec_vec to the tablespace and puts pointers to them in rec. The extern flags in rec will have to be set beforehand. The fields are stored on pages allocated from leaf node file segment of the index tree. @return DB_SUCCESS or DB_OUT_OF_FILE_SPACE or DB_TOO_BIG_FOR_REDO */ UNIV_INTERN dberr_t btr_store_big_rec_extern_fields( /*============================*/ dict_index_t* index, /*!< in: index of rec; the index tree MUST be X-latched */ buf_block_t* rec_block, /*!< in/out: block containing rec */ rec_t* rec, /*!< in/out: record */ const ulint* offsets, /*!< in: rec_get_offsets(rec, index); the "external storage" flags in offsets will not correspond to rec when this function returns */ const big_rec_t*big_rec_vec, /*!< in: vector containing fields to be stored externally */ mtr_t* btr_mtr, /*!< in: mtr containing the latches to the clustered index */ enum blob_op op) /*! in: operation code */ { ulint rec_page_no; byte* field_ref; ulint extern_len; ulint store_len; ulint page_no; ulint space_id; ulint zip_size; ulint prev_page_no; ulint hint_page_no; ulint i; mtr_t mtr; mtr_t* alloc_mtr; mem_heap_t* heap = NULL; page_zip_des_t* page_zip; z_stream c_stream; buf_block_t** freed_pages = NULL; ulint n_freed_pages = 0; dberr_t error = DB_SUCCESS; ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(rec_offs_any_extern(offsets)); ut_ad(mtr_memo_contains(btr_mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK)); ut_ad(mtr_memo_contains(btr_mtr, rec_block, MTR_MEMO_PAGE_X_FIX)); ut_ad(buf_block_get_frame(rec_block) == page_align(rec)); ut_a(dict_index_is_clust(index)); page_zip = buf_block_get_page_zip(rec_block); ut_a(dict_table_zip_size(index->table) == buf_block_get_zip_size(rec_block)); space_id = buf_block_get_space(rec_block); zip_size = buf_block_get_zip_size(rec_block); rec_page_no = buf_block_get_page_no(rec_block); ut_a(fil_page_get_type(page_align(rec)) == FIL_PAGE_INDEX); error = btr_check_blob_limit(big_rec_vec); if (error != DB_SUCCESS) { ut_ad(op == BTR_STORE_INSERT); return(error); } if (page_zip) { int err; /* Zlib deflate needs 128 kilobytes for the default window size, plus 512 << memLevel, plus a few kilobytes for small objects. We use reduced memLevel to limit the memory consumption, and preallocate the heap, hoping to avoid memory fragmentation. */ heap = mem_heap_create(250000); page_zip_set_alloc(&c_stream, heap); err = deflateInit2(&c_stream, page_zip_level, Z_DEFLATED, 15, 7, Z_DEFAULT_STRATEGY); ut_a(err == Z_OK); } if (btr_blob_op_is_update(op)) { /* Avoid reusing pages that have been previously freed in btr_mtr. */ if (btr_mtr->n_freed_pages) { if (heap == NULL) { heap = mem_heap_create( btr_mtr->n_freed_pages * sizeof *freed_pages); } freed_pages = static_cast( mem_heap_alloc( heap, btr_mtr->n_freed_pages * sizeof *freed_pages)); n_freed_pages = 0; } /* Because btr_mtr will be committed after mtr, it is possible that the tablespace has been extended when the B-tree record was updated or inserted, or it will be extended while allocating pages for big_rec. TODO: In mtr (not btr_mtr), write a redo log record about extending the tablespace to its current size, and remember the current size. Whenever the tablespace grows as pages are allocated, write further redo log records to mtr. (Currently tablespace extension is not covered by the redo log. If it were, the record would only be written to btr_mtr, which is committed after mtr.) */ alloc_mtr = btr_mtr; } else { /* Use the local mtr for allocations. */ alloc_mtr = &mtr; } #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG /* All pointers to externally stored columns in the record must either be zero or they must be pointers to inherited columns, owned by this record or an earlier record version. */ for (i = 0; i < rec_offs_n_fields(offsets); i++) { if (!rec_offs_nth_extern(offsets, i)) { continue; } field_ref = btr_rec_get_field_ref(rec, offsets, i); ut_a(!(field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG)); /* Either this must be an update in place, or the BLOB must be inherited, or the BLOB pointer must be zero (will be written in this function). */ ut_a(op == BTR_STORE_UPDATE || (field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_INHERITED_FLAG) || !memcmp(field_ref, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); } #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ /* We have to create a file segment to the tablespace for each field and put the pointer to the field in rec */ for (i = 0; i < big_rec_vec->n_fields; i++) { field_ref = btr_rec_get_field_ref( rec, offsets, big_rec_vec->fields[i].field_no); #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG /* A zero BLOB pointer should have been initially inserted. */ ut_a(!memcmp(field_ref, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ extern_len = big_rec_vec->fields[i].len; UNIV_MEM_ASSERT_RW(big_rec_vec->fields[i].data, extern_len); ut_a(extern_len > 0); prev_page_no = FIL_NULL; if (page_zip) { int err = deflateReset(&c_stream); ut_a(err == Z_OK); c_stream.next_in = (Bytef*) big_rec_vec->fields[i].data; c_stream.avail_in = static_cast(extern_len); } for (;;) { buf_block_t* block; page_t* page; mtr_start(&mtr); if (prev_page_no == FIL_NULL) { hint_page_no = 1 + rec_page_no; } else { hint_page_no = prev_page_no + 1; } alloc_another: block = btr_page_alloc(index, hint_page_no, FSP_NO_DIR, 0, alloc_mtr, &mtr); if (UNIV_UNLIKELY(block == NULL)) { mtr_commit(&mtr); error = DB_OUT_OF_FILE_SPACE; goto func_exit; } if (rw_lock_get_x_lock_count(&block->lock) > 1) { /* This page must have been freed in btr_mtr previously. Put it aside, and allocate another page for the BLOB data. */ ut_ad(alloc_mtr == btr_mtr); ut_ad(btr_blob_op_is_update(op)); ut_ad(n_freed_pages < btr_mtr->n_freed_pages); freed_pages[n_freed_pages++] = block; goto alloc_another; } page_no = buf_block_get_page_no(block); page = buf_block_get_frame(block); if (prev_page_no != FIL_NULL) { buf_block_t* prev_block; page_t* prev_page; prev_block = buf_page_get(space_id, zip_size, prev_page_no, RW_X_LATCH, &mtr); buf_block_dbg_add_level(prev_block, SYNC_EXTERN_STORAGE); prev_page = buf_block_get_frame(prev_block); if (page_zip) { mlog_write_ulint( prev_page + FIL_PAGE_NEXT, page_no, MLOG_4BYTES, &mtr); memcpy(buf_block_get_page_zip( prev_block) ->data + FIL_PAGE_NEXT, prev_page + FIL_PAGE_NEXT, 4); } else { mlog_write_ulint( prev_page + FIL_PAGE_DATA + BTR_BLOB_HDR_NEXT_PAGE_NO, page_no, MLOG_4BYTES, &mtr); } } else if (dict_index_is_online_ddl(index)) { row_log_table_blob_alloc(index, page_no); } if (page_zip) { int err; page_zip_des_t* blob_page_zip; /* Write FIL_PAGE_TYPE to the redo log separately, before logging any other changes to the page, so that the debug assertions in recv_parse_or_apply_log_rec_body() can be made simpler. Before InnoDB Plugin 1.0.4, the initialization of FIL_PAGE_TYPE was logged as part of the mlog_log_string() below. */ mlog_write_ulint(page + FIL_PAGE_TYPE, prev_page_no == FIL_NULL ? FIL_PAGE_TYPE_ZBLOB : FIL_PAGE_TYPE_ZBLOB2, MLOG_2BYTES, &mtr); c_stream.next_out = page + FIL_PAGE_DATA; c_stream.avail_out = static_cast(page_zip_get_size(page_zip)) - FIL_PAGE_DATA; err = deflate(&c_stream, Z_FINISH); ut_a(err == Z_OK || err == Z_STREAM_END); ut_a(err == Z_STREAM_END || c_stream.avail_out == 0); /* Write the "next BLOB page" pointer */ mlog_write_ulint(page + FIL_PAGE_NEXT, FIL_NULL, MLOG_4BYTES, &mtr); /* Initialize the unused "prev page" pointer */ mlog_write_ulint(page + FIL_PAGE_PREV, FIL_NULL, MLOG_4BYTES, &mtr); /* Write a back pointer to the record into the otherwise unused area. This information could be useful in debugging. Later, we might want to implement the possibility to relocate BLOB pages. Then, we would need to be able to adjust the BLOB pointer in the record. We do not store the heap number of the record, because it can change in page_zip_reorganize() or btr_page_reorganize(). However, also the page number of the record may change when B-tree nodes are split or merged. */ mlog_write_ulint(page + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION, space_id, MLOG_4BYTES, &mtr); mlog_write_ulint(page + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION + 4, rec_page_no, MLOG_4BYTES, &mtr); /* Zero out the unused part of the page. */ memset(page + page_zip_get_size(page_zip) - c_stream.avail_out, 0, c_stream.avail_out); mlog_log_string(page + FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION, page_zip_get_size(page_zip) - FIL_PAGE_FILE_FLUSH_LSN_OR_KEY_VERSION, &mtr); /* Copy the page to compressed storage, because it will be flushed to disk from there. */ blob_page_zip = buf_block_get_page_zip(block); ut_ad(blob_page_zip); ut_ad(page_zip_get_size(blob_page_zip) == page_zip_get_size(page_zip)); memcpy(blob_page_zip->data, page, page_zip_get_size(page_zip)); if (err == Z_OK && prev_page_no != FIL_NULL) { goto next_zip_page; } if (alloc_mtr == &mtr) { rec_block = buf_page_get( space_id, zip_size, rec_page_no, RW_X_LATCH, &mtr); buf_block_dbg_add_level( rec_block, SYNC_NO_ORDER_CHECK); } if (err == Z_STREAM_END) { mach_write_to_4(field_ref + BTR_EXTERN_LEN, 0); mach_write_to_4(field_ref + BTR_EXTERN_LEN + 4, c_stream.total_in); } else { memset(field_ref + BTR_EXTERN_LEN, 0, 8); } if (prev_page_no == FIL_NULL) { btr_blob_dbg_add_blob( rec, big_rec_vec->fields[i] .field_no, page_no, index, "store"); mach_write_to_4(field_ref + BTR_EXTERN_SPACE_ID, space_id); mach_write_to_4(field_ref + BTR_EXTERN_PAGE_NO, page_no); mach_write_to_4(field_ref + BTR_EXTERN_OFFSET, FIL_PAGE_NEXT); } page_zip_write_blob_ptr( page_zip, rec, index, offsets, big_rec_vec->fields[i].field_no, alloc_mtr); next_zip_page: prev_page_no = page_no; /* Commit mtr and release the uncompressed page frame to save memory. */ btr_blob_free(block, FALSE, &mtr); if (err == Z_STREAM_END) { break; } } else { mlog_write_ulint(page + FIL_PAGE_TYPE, FIL_PAGE_TYPE_BLOB, MLOG_2BYTES, &mtr); if (extern_len > (UNIV_PAGE_SIZE - FIL_PAGE_DATA - BTR_BLOB_HDR_SIZE - FIL_PAGE_DATA_END)) { store_len = UNIV_PAGE_SIZE - FIL_PAGE_DATA - BTR_BLOB_HDR_SIZE - FIL_PAGE_DATA_END; } else { store_len = extern_len; } mlog_write_string(page + FIL_PAGE_DATA + BTR_BLOB_HDR_SIZE, (const byte*) big_rec_vec->fields[i].data + big_rec_vec->fields[i].len - extern_len, store_len, &mtr); mlog_write_ulint(page + FIL_PAGE_DATA + BTR_BLOB_HDR_PART_LEN, store_len, MLOG_4BYTES, &mtr); mlog_write_ulint(page + FIL_PAGE_DATA + BTR_BLOB_HDR_NEXT_PAGE_NO, FIL_NULL, MLOG_4BYTES, &mtr); extern_len -= store_len; if (alloc_mtr == &mtr) { rec_block = buf_page_get( space_id, zip_size, rec_page_no, RW_X_LATCH, &mtr); buf_block_dbg_add_level( rec_block, SYNC_NO_ORDER_CHECK); } mlog_write_ulint(field_ref + BTR_EXTERN_LEN, 0, MLOG_4BYTES, alloc_mtr); mlog_write_ulint(field_ref + BTR_EXTERN_LEN + 4, big_rec_vec->fields[i].len - extern_len, MLOG_4BYTES, alloc_mtr); if (prev_page_no == FIL_NULL) { btr_blob_dbg_add_blob( rec, big_rec_vec->fields[i] .field_no, page_no, index, "store"); mlog_write_ulint(field_ref + BTR_EXTERN_SPACE_ID, space_id, MLOG_4BYTES, alloc_mtr); mlog_write_ulint(field_ref + BTR_EXTERN_PAGE_NO, page_no, MLOG_4BYTES, alloc_mtr); mlog_write_ulint(field_ref + BTR_EXTERN_OFFSET, FIL_PAGE_DATA, MLOG_4BYTES, alloc_mtr); } prev_page_no = page_no; mtr_commit(&mtr); if (extern_len == 0) { break; } } } DBUG_EXECUTE_IF("btr_store_big_rec_extern", error = DB_OUT_OF_FILE_SPACE; goto func_exit;); } func_exit: if (page_zip) { deflateEnd(&c_stream); } if (n_freed_pages) { ulint i; ut_ad(alloc_mtr == btr_mtr); ut_ad(btr_blob_op_is_update(op)); for (i = 0; i < n_freed_pages; i++) { btr_page_free_low(index, freed_pages[i], 0, true, alloc_mtr); } } if (heap != NULL) { mem_heap_free(heap); } #if defined UNIV_DEBUG || defined UNIV_BLOB_LIGHT_DEBUG /* All pointers to externally stored columns in the record must be valid. */ for (i = 0; i < rec_offs_n_fields(offsets); i++) { if (!rec_offs_nth_extern(offsets, i)) { continue; } field_ref = btr_rec_get_field_ref(rec, offsets, i); /* The pointer must not be zero if the operation succeeded. */ ut_a(0 != memcmp(field_ref, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE) || error != DB_SUCCESS); /* The column must not be disowned by this record. */ ut_a(!(field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG)); } #endif /* UNIV_DEBUG || UNIV_BLOB_LIGHT_DEBUG */ return(error); } /*******************************************************************//** Check the FIL_PAGE_TYPE on an uncompressed BLOB page. */ static void btr_check_blob_fil_page_type( /*=========================*/ ulint space_id, /*!< in: space id */ ulint page_no, /*!< in: page number */ const page_t* page, /*!< in: page */ ibool read) /*!< in: TRUE=read, FALSE=purge */ { ulint type = fil_page_get_type(page); ut_a(space_id == page_get_space_id(page)); ut_a(page_no == page_get_page_no(page)); if (UNIV_UNLIKELY(type != FIL_PAGE_TYPE_BLOB)) { ulint flags = fil_space_get_flags(space_id); #ifndef UNIV_DEBUG /* Improve debug test coverage */ if (dict_tf_get_format(flags) == UNIV_FORMAT_A) { /* Old versions of InnoDB did not initialize FIL_PAGE_TYPE on BLOB pages. Do not print anything about the type mismatch when reading a BLOB page that is in Antelope format.*/ return; } #endif /* !UNIV_DEBUG */ ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: FIL_PAGE_TYPE=%lu" " on BLOB %s space %lu page %lu flags %lx\n", (ulong) type, read ? "read" : "purge", (ulong) space_id, (ulong) page_no, (ulong) flags); ut_error; } } /*******************************************************************//** Frees the space in an externally stored field to the file space management if the field in data is owned by the externally stored field, in a rollback we may have the additional condition that the field must not be inherited. */ UNIV_INTERN void btr_free_externally_stored_field( /*=============================*/ dict_index_t* index, /*!< in: index of the data, the index tree MUST be X-latched; if the tree height is 1, then also the root page must be X-latched! (this is relevant in the case this function is called from purge where 'data' is located on an undo log page, not an index page) */ byte* field_ref, /*!< in/out: field reference */ const rec_t* rec, /*!< in: record containing field_ref, for page_zip_write_blob_ptr(), or NULL */ const ulint* offsets, /*!< in: rec_get_offsets(rec, index), or NULL */ page_zip_des_t* page_zip, /*!< in: compressed page corresponding to rec, or NULL if rec == NULL */ ulint i, /*!< in: field number of field_ref; ignored if rec == NULL */ enum trx_rb_ctx rb_ctx, /*!< in: rollback context */ mtr_t* local_mtr MY_ATTRIBUTE((unused))) /*!< in: mtr containing the latch to data an an X-latch to the index tree */ { page_t* page; const ulint space_id = mach_read_from_4( field_ref + BTR_EXTERN_SPACE_ID); const ulint start_page = mach_read_from_4( field_ref + BTR_EXTERN_PAGE_NO); ulint rec_zip_size = dict_table_zip_size(index->table); ulint ext_zip_size; ulint page_no; ulint next_page_no; mtr_t mtr; ut_ad(dict_index_is_clust(index)); ut_ad(mtr_memo_contains(local_mtr, dict_index_get_lock(index), MTR_MEMO_X_LOCK)); ut_ad(mtr_memo_contains_page(local_mtr, field_ref, MTR_MEMO_PAGE_X_FIX)); ut_ad(!rec || rec_offs_validate(rec, index, offsets)); ut_ad(!rec || field_ref == btr_rec_get_field_ref(rec, offsets, i)); if (UNIV_UNLIKELY(!memcmp(field_ref, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE))) { /* In the rollback, we may encounter a clustered index record with some unwritten off-page columns. There is nothing to free then. */ if (rb_ctx == RB_NONE) { char buf[3 * 512]; char *bufend; ulint ispace = dict_index_get_space(index); bufend = innobase_convert_name(buf, sizeof buf, index->name, strlen(index->name), NULL, FALSE); buf[bufend - buf]='\0'; ib_logf(IB_LOG_LEVEL_ERROR, "Unwritten off-page columns in " "rollback context %d. Table %s index %s space_id %lu " "index space %lu.", rb_ctx, index->table->name, buf, space_id, ispace); } ut_a(rb_ctx != RB_NONE); return; } ut_ad(space_id == index->space); if (UNIV_UNLIKELY(space_id != dict_index_get_space(index))) { ext_zip_size = fil_space_get_zip_size(space_id); /* This must be an undo log record in the system tablespace, that is, in row_purge_upd_exist_or_extern(). Currently, externally stored records are stored in the same tablespace as the referring records. */ ut_ad(!page_get_space_id(page_align(field_ref))); ut_ad(!rec); ut_ad(!page_zip); } else { ext_zip_size = rec_zip_size; } if (!rec) { /* This is a call from row_purge_upd_exist_or_extern(). */ ut_ad(!page_zip); rec_zip_size = 0; } #ifdef UNIV_BLOB_DEBUG if (!(field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_OWNER_FLAG) && !((field_ref[BTR_EXTERN_LEN] & BTR_EXTERN_INHERITED_FLAG) && (rb_ctx == RB_NORMAL || rb_ctx == RB_RECOVERY))) { /* This off-page column will be freed. Check that no references remain. */ btr_blob_dbg_t b; b.blob_page_no = start_page; if (rec) { /* Remove the reference from the record to the BLOB. If the BLOB were not freed, the reference would be removed when the record is removed. Freeing the BLOB will overwrite the BTR_EXTERN_PAGE_NO in the field_ref of the record with FIL_NULL, which would make the btr_blob_dbg information inconsistent with the record. */ b.ref_page_no = page_get_page_no(page_align(rec)); b.ref_heap_no = page_rec_get_heap_no(rec); b.ref_field_no = i; btr_blob_dbg_rbt_delete(index, &b, "free"); } btr_blob_dbg_assert_empty(index, b.blob_page_no); } #endif /* UNIV_BLOB_DEBUG */ for (;;) { #ifdef UNIV_SYNC_DEBUG buf_block_t* rec_block; #endif /* UNIV_SYNC_DEBUG */ buf_block_t* ext_block; mtr_start(&mtr); #ifdef UNIV_SYNC_DEBUG rec_block = #endif /* UNIV_SYNC_DEBUG */ buf_page_get(page_get_space_id(page_align(field_ref)), rec_zip_size, page_get_page_no(page_align(field_ref)), RW_X_LATCH, &mtr); buf_block_dbg_add_level(rec_block, SYNC_NO_ORDER_CHECK); page_no = mach_read_from_4(field_ref + BTR_EXTERN_PAGE_NO); if (/* There is no external storage data */ page_no == FIL_NULL /* This field does not own the externally stored field */ || (mach_read_from_1(field_ref + BTR_EXTERN_LEN) & BTR_EXTERN_OWNER_FLAG) /* Rollback and inherited field */ || ((rb_ctx == RB_NORMAL || rb_ctx == RB_RECOVERY) && (mach_read_from_1(field_ref + BTR_EXTERN_LEN) & BTR_EXTERN_INHERITED_FLAG))) { /* Do not free */ mtr_commit(&mtr); return; } if (page_no == start_page && dict_index_is_online_ddl(index)) { row_log_table_blob_free(index, start_page); } ext_block = buf_page_get(space_id, ext_zip_size, page_no, RW_X_LATCH, &mtr); buf_block_dbg_add_level(ext_block, SYNC_EXTERN_STORAGE); page = buf_block_get_frame(ext_block); if (ext_zip_size) { /* Note that page_zip will be NULL in row_purge_upd_exist_or_extern(). */ switch (fil_page_get_type(page)) { case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: break; default: ut_error; } next_page_no = mach_read_from_4(page + FIL_PAGE_NEXT); btr_page_free_low(index, ext_block, 0, true, &mtr); if (page_zip != NULL) { mach_write_to_4(field_ref + BTR_EXTERN_PAGE_NO, next_page_no); mach_write_to_4(field_ref + BTR_EXTERN_LEN + 4, 0); page_zip_write_blob_ptr(page_zip, rec, index, offsets, i, &mtr); } else { mlog_write_ulint(field_ref + BTR_EXTERN_PAGE_NO, next_page_no, MLOG_4BYTES, &mtr); mlog_write_ulint(field_ref + BTR_EXTERN_LEN + 4, 0, MLOG_4BYTES, &mtr); } } else { ut_a(!page_zip); btr_check_blob_fil_page_type(space_id, page_no, page, FALSE); next_page_no = mach_read_from_4( page + FIL_PAGE_DATA + BTR_BLOB_HDR_NEXT_PAGE_NO); /* We must supply the page level (= 0) as an argument because we did not store it on the page (we save the space overhead from an index page header. */ btr_page_free_low(index, ext_block, 0, true, &mtr); mlog_write_ulint(field_ref + BTR_EXTERN_PAGE_NO, next_page_no, MLOG_4BYTES, &mtr); /* Zero out the BLOB length. If the server crashes during the execution of this function, trx_rollback_or_clean_all_recovered() could dereference the half-deleted BLOB, fetching a wrong prefix for the BLOB. */ mlog_write_ulint(field_ref + BTR_EXTERN_LEN + 4, 0, MLOG_4BYTES, &mtr); } /* Commit mtr and release the BLOB block to save memory. */ btr_blob_free(ext_block, TRUE, &mtr); } } /***********************************************************//** Frees the externally stored fields for a record. */ static void btr_rec_free_externally_stored_fields( /*==================================*/ dict_index_t* index, /*!< in: index of the data, the index tree MUST be X-latched */ rec_t* rec, /*!< in/out: record */ const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ page_zip_des_t* page_zip,/*!< in: compressed page whose uncompressed part will be updated, or NULL */ enum trx_rb_ctx rb_ctx, /*!< in: rollback context */ mtr_t* mtr) /*!< in: mini-transaction handle which contains an X-latch to record page and to the index tree */ { ulint n_fields; ulint i; ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(mtr_memo_contains_page(mtr, rec, MTR_MEMO_PAGE_X_FIX)); /* Free possible externally stored fields in the record */ ut_ad(dict_table_is_comp(index->table) == !!rec_offs_comp(offsets)); n_fields = rec_offs_n_fields(offsets); for (i = 0; i < n_fields; i++) { if (rec_offs_nth_extern(offsets, i)) { btr_free_externally_stored_field( index, btr_rec_get_field_ref(rec, offsets, i), rec, offsets, page_zip, i, rb_ctx, mtr); } } } /***********************************************************//** Frees the externally stored fields for a record, if the field is mentioned in the update vector. */ static void btr_rec_free_updated_extern_fields( /*===============================*/ dict_index_t* index, /*!< in: index of rec; the index tree MUST be X-latched */ rec_t* rec, /*!< in/out: record */ page_zip_des_t* page_zip,/*!< in: compressed page whose uncompressed part will be updated, or NULL */ const ulint* offsets,/*!< in: rec_get_offsets(rec, index) */ const upd_t* update, /*!< in: update vector */ enum trx_rb_ctx rb_ctx, /*!< in: rollback context */ mtr_t* mtr) /*!< in: mini-transaction handle which contains an X-latch to record page and to the tree */ { ulint n_fields; ulint i; ut_ad(rec_offs_validate(rec, index, offsets)); ut_ad(mtr_memo_contains_page(mtr, rec, MTR_MEMO_PAGE_X_FIX)); /* Free possible externally stored fields in the record */ n_fields = upd_get_n_fields(update); for (i = 0; i < n_fields; i++) { const upd_field_t* ufield = upd_get_nth_field(update, i); if (rec_offs_nth_extern(offsets, ufield->field_no)) { ulint len; byte* data = rec_get_nth_field( rec, offsets, ufield->field_no, &len); ut_a(len >= BTR_EXTERN_FIELD_REF_SIZE); btr_free_externally_stored_field( index, data + len - BTR_EXTERN_FIELD_REF_SIZE, rec, offsets, page_zip, ufield->field_no, rb_ctx, mtr); } } } /*******************************************************************//** Copies the prefix of an uncompressed BLOB. The clustered index record that points to this BLOB must be protected by a lock or a page latch. @return number of bytes written to buf */ static ulint btr_copy_blob_prefix( /*=================*/ byte* buf, /*!< out: the externally stored part of the field, or a prefix of it */ ulint len, /*!< in: length of buf, in bytes */ ulint space_id,/*!< in: space id of the BLOB pages */ ulint page_no,/*!< in: page number of the first BLOB page */ ulint offset, /*!< in: offset on the first BLOB page */ trx_t* trx) /*!< in: transaction handle */ { ulint copied_len = 0; for (;;) { mtr_t mtr; buf_block_t* block; const page_t* page; const byte* blob_header; ulint part_len; ulint copy_len; mtr_start_trx(&mtr, trx); block = buf_page_get(space_id, 0, page_no, RW_S_LATCH, &mtr); buf_block_dbg_add_level(block, SYNC_EXTERN_STORAGE); page = buf_block_get_frame(block); btr_check_blob_fil_page_type(space_id, page_no, page, TRUE); blob_header = page + offset; part_len = btr_blob_get_part_len(blob_header); copy_len = ut_min(part_len, len - copied_len); memcpy(buf + copied_len, blob_header + BTR_BLOB_HDR_SIZE, copy_len); copied_len += copy_len; page_no = btr_blob_get_next_page_no(blob_header); mtr_commit(&mtr); if (page_no == FIL_NULL || copy_len != part_len) { UNIV_MEM_ASSERT_RW(buf, copied_len); return(copied_len); } /* On other BLOB pages except the first the BLOB header always is at the page data start: */ offset = FIL_PAGE_DATA; ut_ad(copied_len <= len); } } /*******************************************************************//** Copies the prefix of a compressed BLOB. The clustered index record that points to this BLOB must be protected by a lock or a page latch. @return number of bytes written to buf */ static ulint btr_copy_zblob_prefix( /*==================*/ byte* buf, /*!< out: the externally stored part of the field, or a prefix of it */ ulint len, /*!< in: length of buf, in bytes */ ulint zip_size,/*!< in: compressed BLOB page size */ ulint space_id,/*!< in: space id of the BLOB pages */ ulint page_no,/*!< in: page number of the first BLOB page */ ulint offset) /*!< in: offset on the first BLOB page */ { ulint page_type = FIL_PAGE_TYPE_ZBLOB; mem_heap_t* heap; int err; z_stream d_stream; d_stream.next_out = buf; d_stream.avail_out = static_cast(len); d_stream.next_in = Z_NULL; d_stream.avail_in = 0; /* Zlib inflate needs 32 kilobytes for the default window size, plus a few kilobytes for small objects. */ heap = mem_heap_create(40000); page_zip_set_alloc(&d_stream, heap); ut_ad(ut_is_2pow(zip_size)); ut_ad(zip_size >= UNIV_ZIP_SIZE_MIN); ut_ad(zip_size <= UNIV_ZIP_SIZE_MAX); ut_ad(space_id); err = inflateInit(&d_stream); ut_a(err == Z_OK); for (;;) { buf_page_t* bpage; ulint next_page_no; /* There is no latch on bpage directly. Instead, bpage is protected by the B-tree page latch that is being held on the clustered index record, or, in row_merge_copy_blobs(), by an exclusive table lock. */ bpage = buf_page_get_zip(space_id, zip_size, page_no); if (UNIV_UNLIKELY(!bpage)) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Cannot load" " compressed BLOB" " page %lu space %lu\n", (ulong) page_no, (ulong) space_id); goto func_exit; } if (UNIV_UNLIKELY (fil_page_get_type(bpage->zip.data) != page_type)) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Unexpected type %lu of" " compressed BLOB" " page %lu space %lu\n", (ulong) fil_page_get_type(bpage->zip.data), (ulong) page_no, (ulong) space_id); ut_ad(0); goto end_of_blob; } next_page_no = mach_read_from_4(bpage->zip.data + offset); if (UNIV_LIKELY(offset == FIL_PAGE_NEXT)) { /* When the BLOB begins at page header, the compressed data payload does not immediately follow the next page pointer. */ offset = FIL_PAGE_DATA; } else { offset += 4; } d_stream.next_in = bpage->zip.data + offset; d_stream.avail_in = static_cast(zip_size - offset); err = inflate(&d_stream, Z_NO_FLUSH); switch (err) { case Z_OK: if (!d_stream.avail_out) { goto end_of_blob; } break; case Z_STREAM_END: if (next_page_no == FIL_NULL) { goto end_of_blob; } /* fall through */ default: inflate_error: ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: inflate() of" " compressed BLOB" " page %lu space %lu returned %d (%s)\n", (ulong) page_no, (ulong) space_id, err, d_stream.msg); case Z_BUF_ERROR: goto end_of_blob; } if (next_page_no == FIL_NULL) { if (!d_stream.avail_in) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: unexpected end of" " compressed BLOB" " page %lu space %lu\n", (ulong) page_no, (ulong) space_id); } else { err = inflate(&d_stream, Z_FINISH); switch (err) { case Z_STREAM_END: case Z_BUF_ERROR: break; default: goto inflate_error; } } end_of_blob: buf_page_release_zip(bpage); goto func_exit; } buf_page_release_zip(bpage); /* On other BLOB pages except the first the BLOB header always is at the page header: */ page_no = next_page_no; offset = FIL_PAGE_NEXT; page_type = FIL_PAGE_TYPE_ZBLOB2; } func_exit: inflateEnd(&d_stream); mem_heap_free(heap); UNIV_MEM_ASSERT_RW(buf, d_stream.total_out); return(d_stream.total_out); } /*******************************************************************//** Copies the prefix of an externally stored field of a record. The clustered index record that points to this BLOB must be protected by a lock or a page latch. @return number of bytes written to buf */ static ulint btr_copy_externally_stored_field_prefix_low( /*========================================*/ byte* buf, /*!< out: the externally stored part of the field, or a prefix of it */ ulint len, /*!< in: length of buf, in bytes */ ulint zip_size,/*!< in: nonzero=compressed BLOB page size, zero for uncompressed BLOBs */ ulint space_id,/*!< in: space id of the first BLOB page */ ulint page_no,/*!< in: page number of the first BLOB page */ ulint offset, /*!< in: offset on the first BLOB page */ trx_t* trx) /*!< in: transaction handle */ { if (UNIV_UNLIKELY(len == 0)) { return(0); } if (zip_size) { return(btr_copy_zblob_prefix(buf, len, zip_size, space_id, page_no, offset)); } else { return(btr_copy_blob_prefix(buf, len, space_id, page_no, offset, trx)); } } /*******************************************************************//** Copies the prefix of an externally stored field of a record. The clustered index record must be protected by a lock or a page latch. @return the length of the copied field, or 0 if the column was being or has been deleted */ UNIV_INTERN ulint btr_copy_externally_stored_field_prefix( /*====================================*/ byte* buf, /*!< out: the field, or a prefix of it */ ulint len, /*!< in: length of buf, in bytes */ ulint zip_size,/*!< in: nonzero=compressed BLOB page size, zero for uncompressed BLOBs */ const byte* data, /*!< in: 'internally' stored part of the field containing also the reference to the external part; must be protected by a lock or a page latch */ ulint local_len,/*!< in: length of data, in bytes */ trx_t* trx) /*!< in: transaction handle */ { ulint space_id; ulint page_no; ulint offset; ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE); local_len -= BTR_EXTERN_FIELD_REF_SIZE; if (UNIV_UNLIKELY(local_len >= len)) { memcpy(buf, data, len); return(len); } memcpy(buf, data, local_len); data += local_len; ut_a(memcmp(data, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE)); if (!mach_read_from_4(data + BTR_EXTERN_LEN + 4)) { /* The externally stored part of the column has been (partially) deleted. Signal the half-deleted BLOB to the caller. */ return(0); } space_id = mach_read_from_4(data + BTR_EXTERN_SPACE_ID); page_no = mach_read_from_4(data + BTR_EXTERN_PAGE_NO); offset = mach_read_from_4(data + BTR_EXTERN_OFFSET); return(local_len + btr_copy_externally_stored_field_prefix_low(buf + local_len, len - local_len, zip_size, space_id, page_no, offset, trx)); } /*******************************************************************//** Copies an externally stored field of a record to mem heap. The clustered index record must be protected by a lock or a page latch. @return the whole field copied to heap */ UNIV_INTERN byte* btr_copy_externally_stored_field( /*=============================*/ ulint* len, /*!< out: length of the whole field */ const byte* data, /*!< in: 'internally' stored part of the field containing also the reference to the external part; must be protected by a lock or a page latch */ ulint zip_size,/*!< in: nonzero=compressed BLOB page size, zero for uncompressed BLOBs */ ulint local_len,/*!< in: length of data */ mem_heap_t* heap, /*!< in: mem heap */ trx_t* trx) /*!< in: transaction handle */ { ulint space_id; ulint page_no; ulint offset; ulint extern_len; byte* buf; ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE); local_len -= BTR_EXTERN_FIELD_REF_SIZE; space_id = mach_read_from_4(data + local_len + BTR_EXTERN_SPACE_ID); page_no = mach_read_from_4(data + local_len + BTR_EXTERN_PAGE_NO); offset = mach_read_from_4(data + local_len + BTR_EXTERN_OFFSET); /* Currently a BLOB cannot be bigger than 4 GB; we leave the 4 upper bytes in the length field unused */ extern_len = mach_read_from_4(data + local_len + BTR_EXTERN_LEN + 4); buf = (byte*) mem_heap_alloc(heap, local_len + extern_len); memcpy(buf, data, local_len); *len = local_len + btr_copy_externally_stored_field_prefix_low(buf + local_len, extern_len, zip_size, space_id, page_no, offset, trx); return(buf); } /*******************************************************************//** Copies an externally stored field of a record to mem heap. @return the field copied to heap, or NULL if the field is incomplete */ UNIV_INTERN byte* btr_rec_copy_externally_stored_field( /*=================================*/ const rec_t* rec, /*!< in: record in a clustered index; must be protected by a lock or a page latch */ const ulint* offsets,/*!< in: array returned by rec_get_offsets() */ ulint zip_size,/*!< in: nonzero=compressed BLOB page size, zero for uncompressed BLOBs */ ulint no, /*!< in: field number */ ulint* len, /*!< out: length of the field */ mem_heap_t* heap, /*!< in: mem heap */ trx_t* trx) /*!< in: transaction handle */ { ulint local_len; const byte* data; ut_a(rec_offs_nth_extern(offsets, no)); /* An externally stored field can contain some initial data from the field, and in the last 20 bytes it has the space id, page number, and offset where the rest of the field data is stored, and the data length in addition to the data stored locally. We may need to store some data locally to get the local record length above the 128 byte limit so that field offsets are stored in two bytes, and the extern bit is available in those two bytes. */ data = rec_get_nth_field(rec, offsets, no, &local_len); ut_a(local_len >= BTR_EXTERN_FIELD_REF_SIZE); if (UNIV_UNLIKELY (!memcmp(data + local_len - BTR_EXTERN_FIELD_REF_SIZE, field_ref_zero, BTR_EXTERN_FIELD_REF_SIZE))) { /* The externally stored field was not written yet. This record should only be seen by recv_recovery_rollback_active() or any TRX_ISO_READ_UNCOMMITTED transactions. */ return(NULL); } return(btr_copy_externally_stored_field(len, data, zip_size, local_len, heap, trx)); } #endif /* !UNIV_HOTBACKUP */