/***************************************************************************** Copyright (c) 1995, 2017, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2017, MariaDB Corporation. All Rights Reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /**************************************************//** @file buf/buf0flu.cc The database buffer buf_pool flush algorithm Created 11/11/1995 Heikki Tuuri *******************************************************/ #include "buf0flu.h" #ifdef UNIV_NONINL #include "buf0flu.ic" #endif #include "buf0buf.h" #include "buf0checksum.h" #include "srv0start.h" #include "srv0srv.h" #include "page0zip.h" #ifndef UNIV_HOTBACKUP #include "ut0byte.h" #include "ut0lst.h" #include "page0page.h" #include "fil0fil.h" #include "buf0lru.h" #include "buf0rea.h" #include "ibuf0ibuf.h" #include "log0log.h" #include "os0file.h" #include "trx0sys.h" #include "srv0mon.h" #include "mysql/plugin.h" #include "mysql/service_thd_wait.h" /** Number of pages flushed through non flush_list flushes. */ // static ulint buf_lru_flush_page_count = 0; /** Flag indicating if the page_cleaner is in active state. This flag is set to TRUE by the page_cleaner thread when it is spawned and is set back to FALSE at shutdown by the page_cleaner as well. Therefore no need to protect it by a mutex. It is only ever read by the thread doing the shutdown */ UNIV_INTERN ibool buf_page_cleaner_is_active = FALSE; /** Flag indicating if the lru_manager is in active state. */ UNIV_INTERN bool buf_lru_manager_is_active = false; #ifdef UNIV_PFS_THREAD UNIV_INTERN mysql_pfs_key_t buf_page_cleaner_thread_key; UNIV_INTERN mysql_pfs_key_t buf_lru_manager_thread_key; #endif /* UNIV_PFS_THREAD */ /* @} */ /** Handled page counters for a single flush */ struct flush_counters_t { ulint flushed; /*!< number of dirty pages flushed */ ulint evicted; /*!< number of clean pages evicted, including evicted uncompressed page images */ ulint unzip_LRU_evicted;/*!< number of uncompressed page images evicted */ }; /******************************************************************//** Increases flush_list size in bytes with zip_size for compressed page, UNIV_PAGE_SIZE for uncompressed page in inline function */ static inline void incr_flush_list_size_in_bytes( /*==========================*/ buf_block_t* block, /*!< in: control block */ buf_pool_t* buf_pool) /*!< in: buffer pool instance */ { ut_ad(buf_flush_list_mutex_own(buf_pool)); ulint zip_size = page_zip_get_size(&block->page.zip); buf_pool->stat.flush_list_bytes += zip_size ? zip_size : UNIV_PAGE_SIZE; ut_ad(buf_pool->stat.flush_list_bytes <= buf_pool->curr_pool_size); } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /******************************************************************//** Validates the flush list. @return TRUE if ok */ static ibool buf_flush_validate_low( /*===================*/ buf_pool_t* buf_pool); /*!< in: Buffer pool instance */ /******************************************************************//** Validates the flush list some of the time. @return TRUE if ok or the check was skipped */ static ibool buf_flush_validate_skip( /*====================*/ buf_pool_t* buf_pool) /*!< in: Buffer pool instance */ { /** Try buf_flush_validate_low() every this many times */ # define BUF_FLUSH_VALIDATE_SKIP 23 /** The buf_flush_validate_low() call skip counter. Use a signed type because of the race condition below. */ static int buf_flush_validate_count = BUF_FLUSH_VALIDATE_SKIP; /* There is a race condition below, but it does not matter, because this call is only for heuristic purposes. We want to reduce the call frequency of the costly buf_flush_validate_low() check in debug builds. */ if (--buf_flush_validate_count > 0) { return(TRUE); } buf_flush_validate_count = BUF_FLUSH_VALIDATE_SKIP; return(buf_flush_validate_low(buf_pool)); } #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ /*******************************************************************//** Sets hazard pointer during flush_list iteration. */ UNIV_INLINE void buf_flush_set_hp( /*=============*/ buf_pool_t* buf_pool,/*!< in/out: buffer pool instance */ const buf_page_t* bpage) /*!< in: buffer control block */ { ut_ad(buf_flush_list_mutex_own(buf_pool)); ut_ad(buf_pool->flush_list_hp == NULL || bpage == NULL); ut_ad(!bpage || buf_page_in_file(bpage) || buf_page_get_state(bpage) == BUF_BLOCK_REMOVE_HASH); ut_ad(!bpage || bpage->in_flush_list); ut_ad(!bpage || buf_pool_from_bpage(bpage) == buf_pool); buf_pool->flush_list_hp = bpage; } /*******************************************************************//** Checks if the given block is a hazard pointer @return true if bpage is hazard pointer */ UNIV_INLINE bool buf_flush_is_hp( /*============*/ buf_pool_t* buf_pool,/*!< in: buffer pool instance */ const buf_page_t* bpage) /*!< in: buffer control block */ { ut_ad(buf_flush_list_mutex_own(buf_pool)); return(buf_pool->flush_list_hp == bpage); } /*******************************************************************//** Whenever we move a block in flush_list (either to remove it or to relocate it) we check the hazard pointer set by some other thread doing the flush list scan. If the hazard pointer is the same as the one we are about going to move then we set it to NULL to force a rescan in the thread doing the batch. */ UNIV_INLINE void buf_flush_update_hp( /*================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ buf_page_t* bpage) /*!< in: buffer control block */ { ut_ad(buf_flush_list_mutex_own(buf_pool)); if (buf_flush_is_hp(buf_pool, bpage)) { buf_flush_set_hp(buf_pool, NULL); MONITOR_INC(MONITOR_FLUSH_HP_RESCAN); } } /******************************************************************//** Insert a block in the flush_rbt and returns a pointer to its predecessor or NULL if no predecessor. The ordering is maintained on the basis of the key. @return pointer to the predecessor or NULL if no predecessor. */ static buf_page_t* buf_flush_insert_in_flush_rbt( /*==========================*/ buf_page_t* bpage) /*!< in: bpage to be inserted. */ { const ib_rbt_node_t* c_node; const ib_rbt_node_t* p_node; buf_page_t* prev = NULL; buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(buf_flush_list_mutex_own(buf_pool)); /* Insert this buffer into the rbt. */ c_node = rbt_insert(buf_pool->flush_rbt, &bpage, &bpage); ut_a(c_node != NULL); /* Get the predecessor. */ p_node = rbt_prev(buf_pool->flush_rbt, c_node); if (p_node != NULL) { buf_page_t** value; value = rbt_value(buf_page_t*, p_node); prev = *value; ut_a(prev != NULL); } return(prev); } /*********************************************************//** Delete a bpage from the flush_rbt. */ static void buf_flush_delete_from_flush_rbt( /*============================*/ buf_page_t* bpage) /*!< in: bpage to be removed. */ { #ifdef UNIV_DEBUG ibool ret = FALSE; #endif /* UNIV_DEBUG */ buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(buf_flush_list_mutex_own(buf_pool)); #ifdef UNIV_DEBUG ret = #endif /* UNIV_DEBUG */ rbt_delete(buf_pool->flush_rbt, &bpage); ut_ad(ret); } /*****************************************************************//** Compare two modified blocks in the buffer pool. The key for comparison is: key = This comparison is used to maintian ordering of blocks in the buf_pool->flush_rbt. Note that for the purpose of flush_rbt, we only need to order blocks on the oldest_modification. The other two fields are used to uniquely identify the blocks. @return < 0 if b2 < b1, 0 if b2 == b1, > 0 if b2 > b1 */ static int buf_flush_block_cmp( /*================*/ const void* p1, /*!< in: block1 */ const void* p2) /*!< in: block2 */ { int ret; const buf_page_t* b1 = *(const buf_page_t**) p1; const buf_page_t* b2 = *(const buf_page_t**) p2; #ifdef UNIV_DEBUG buf_pool_t* buf_pool = buf_pool_from_bpage(b1); #endif /* UNIV_DEBUG */ ut_ad(b1 != NULL); ut_ad(b2 != NULL); ut_ad(buf_flush_list_mutex_own(buf_pool)); ut_ad(b1->in_flush_list); ut_ad(b2->in_flush_list); if (b2->oldest_modification > b1->oldest_modification) { return(1); } else if (b2->oldest_modification < b1->oldest_modification) { return(-1); } /* If oldest_modification is same then decide on the space. */ ret = (int)(b2->space - b1->space); /* Or else decide ordering on the offset field. */ return(ret ? ret : (int)(b2->offset - b1->offset)); } /********************************************************************//** Initialize the red-black tree to speed up insertions into the flush_list during recovery process. Should be called at the start of recovery process before any page has been read/written. */ UNIV_INTERN void buf_flush_init_flush_rbt(void) /*==========================*/ { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); buf_flush_list_mutex_enter(buf_pool); ut_ad(buf_pool->flush_rbt == NULL); /* Create red black tree for speedy insertions in flush list. */ buf_pool->flush_rbt = rbt_create( sizeof(buf_page_t*), buf_flush_block_cmp); buf_flush_list_mutex_exit(buf_pool); } } /********************************************************************//** Frees up the red-black tree. */ UNIV_INTERN void buf_flush_free_flush_rbt(void) /*==========================*/ { ulint i; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); buf_flush_list_mutex_enter(buf_pool); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_flush_validate_low(buf_pool)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ rbt_free(buf_pool->flush_rbt); buf_pool->flush_rbt = NULL; buf_flush_list_mutex_exit(buf_pool); } } /********************************************************************//** Inserts a modified block into the flush list. */ UNIV_INTERN void buf_flush_insert_into_flush_list( /*=============================*/ buf_pool_t* buf_pool, /*!< buffer pool instance */ buf_block_t* block, /*!< in/out: block which is modified */ lsn_t lsn) /*!< in: oldest modification */ { ut_ad(srv_shutdown_state != SRV_SHUTDOWN_FLUSH_PHASE); ut_ad(log_flush_order_mutex_own()); ut_ad(mutex_own(&block->mutex)); buf_flush_list_mutex_enter(buf_pool); ut_ad((UT_LIST_GET_FIRST(buf_pool->flush_list) == NULL) || (UT_LIST_GET_FIRST(buf_pool->flush_list)->oldest_modification <= lsn)); /* If we are in the recovery then we need to update the flush red-black tree as well. */ if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) { buf_flush_list_mutex_exit(buf_pool); buf_flush_insert_sorted_into_flush_list(buf_pool, block, lsn); return; } ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); ut_ad(!block->page.in_flush_list); ut_d(block->page.in_flush_list = TRUE); block->page.oldest_modification = lsn; UT_LIST_ADD_FIRST(list, buf_pool->flush_list, &block->page); incr_flush_list_size_in_bytes(block, buf_pool); #ifdef UNIV_DEBUG_VALGRIND { ulint zip_size = buf_block_get_zip_size(block); if (zip_size) { UNIV_MEM_ASSERT_RW(block->page.zip.data, zip_size); } else { UNIV_MEM_ASSERT_RW(block->frame, UNIV_PAGE_SIZE); } } #endif /* UNIV_DEBUG_VALGRIND */ #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_flush_validate_skip(buf_pool)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_flush_list_mutex_exit(buf_pool); } /********************************************************************//** Inserts a modified block into the flush list in the right sorted position. This function is used by recovery, because there the modifications do not necessarily come in the order of lsn's. */ UNIV_INTERN void buf_flush_insert_sorted_into_flush_list( /*====================================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ buf_block_t* block, /*!< in/out: block which is modified */ lsn_t lsn) /*!< in: oldest modification */ { buf_page_t* prev_b; buf_page_t* b; ut_ad(srv_shutdown_state != SRV_SHUTDOWN_FLUSH_PHASE); ut_ad(log_flush_order_mutex_own()); ut_ad(mutex_own(&block->mutex)); ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); buf_flush_list_mutex_enter(buf_pool); /* The field in_LRU_list is protected by buf_pool->LRU_list_mutex, which we are not holding. However, while a block is in the flush list, it is dirty and cannot be discarded, not from the page_hash or from the LRU list. At most, the uncompressed page frame of a compressed block may be discarded or created (copying the block->page to or from a buf_page_t that is dynamically allocated from buf_buddy_alloc()). Because those transitions hold block->mutex and the flush list mutex (via buf_flush_relocate_on_flush_list()), there is no possibility of a race condition in the assertions below. */ ut_ad(block->page.in_LRU_list); ut_ad(block->page.in_page_hash); /* buf_buddy_block_register() will take a block in the BUF_BLOCK_MEMORY state, not a file page. */ ut_ad(!block->page.in_zip_hash); ut_ad(!block->page.in_flush_list); ut_d(block->page.in_flush_list = TRUE); block->page.oldest_modification = lsn; #ifdef UNIV_DEBUG_VALGRIND { ulint zip_size = buf_block_get_zip_size(block); if (zip_size) { UNIV_MEM_ASSERT_RW(block->page.zip.data, zip_size); } else { UNIV_MEM_ASSERT_RW(block->frame, UNIV_PAGE_SIZE); } } #endif /* UNIV_DEBUG_VALGRIND */ prev_b = NULL; /* For the most part when this function is called the flush_rbt should not be NULL. In a very rare boundary case it is possible that the flush_rbt has already been freed by the recovery thread before the last page was hooked up in the flush_list by the io-handler thread. In that case we'll just do a simple linear search in the else block. */ if (buf_pool->flush_rbt) { prev_b = buf_flush_insert_in_flush_rbt(&block->page); } else { b = UT_LIST_GET_FIRST(buf_pool->flush_list); while (b && b->oldest_modification > block->page.oldest_modification) { ut_ad(b->in_flush_list); prev_b = b; b = UT_LIST_GET_NEXT(list, b); } } if (prev_b == NULL) { UT_LIST_ADD_FIRST(list, buf_pool->flush_list, &block->page); } else { UT_LIST_INSERT_AFTER(list, buf_pool->flush_list, prev_b, &block->page); } incr_flush_list_size_in_bytes(block, buf_pool); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_flush_validate_low(buf_pool)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_flush_list_mutex_exit(buf_pool); } /********************************************************************//** Returns TRUE if the file page block is immediately suitable for replacement, i.e., the transition FILE_PAGE => NOT_USED allowed. @return TRUE if can replace immediately */ UNIV_INTERN ibool buf_flush_ready_for_replace( /*========================*/ buf_page_t* bpage) /*!< in: buffer control block, must be buf_page_in_file(bpage) and in the LRU list */ { #ifdef UNIV_DEBUG buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); #endif /* UNIV_DEBUG */ ut_ad(mutex_own(buf_page_get_mutex(bpage))); ut_ad(bpage->in_LRU_list); if (buf_page_in_file(bpage)) { return(bpage->oldest_modification == 0 && bpage->buf_fix_count == 0 && buf_page_get_io_fix(bpage) == BUF_IO_NONE); } ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: buffer block state %lu" " in the LRU list!\n", (ulong) buf_page_get_state(bpage)); ut_print_buf(stderr, bpage, sizeof(buf_page_t)); putc('\n', stderr); return(FALSE); } /********************************************************************//** Returns true if the block is modified and ready for flushing. @return true if can flush immediately */ UNIV_INTERN bool buf_flush_ready_for_flush( /*======================*/ buf_page_t* bpage, /*!< in: buffer control block, must be buf_page_in_file(bpage) */ buf_flush_t flush_type)/*!< in: type of flush */ { ut_ad(flush_type < BUF_FLUSH_N_TYPES); ut_ad(mutex_own(buf_page_get_mutex(bpage)) || flush_type == BUF_FLUSH_LIST); ut_a(buf_page_in_file(bpage) || buf_page_get_state(bpage) == BUF_BLOCK_REMOVE_HASH); if (bpage->oldest_modification == 0 || buf_page_get_io_fix_unlocked(bpage) != BUF_IO_NONE) { return(false); } ut_ad(bpage->in_flush_list); switch (flush_type) { case BUF_FLUSH_LIST: return(buf_page_get_state(bpage) != BUF_BLOCK_REMOVE_HASH); case BUF_FLUSH_LRU: case BUF_FLUSH_SINGLE_PAGE: return(true); case BUF_FLUSH_N_TYPES: break; } ut_error; return(false); } /********************************************************************//** Remove a block from the flush list of modified blocks. */ UNIV_INTERN void buf_flush_remove( /*=============*/ buf_page_t* bpage) /*!< in: pointer to the block in question */ { buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ulint zip_size; ut_ad(mutex_own(buf_page_get_mutex(bpage))); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_ad(buf_page_get_state(bpage) != BUF_BLOCK_ZIP_DIRTY || mutex_own(&buf_pool->LRU_list_mutex)); #endif ut_ad(bpage->in_flush_list); buf_flush_list_mutex_enter(buf_pool); switch (buf_page_get_state(bpage)) { case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_ZIP_PAGE: /* Clean compressed pages should not be on the flush list */ case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; return; case BUF_BLOCK_ZIP_DIRTY: buf_page_set_state(bpage, BUF_BLOCK_ZIP_PAGE); UT_LIST_REMOVE(list, buf_pool->flush_list, bpage); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG buf_LRU_insert_zip_clean(bpage); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ break; case BUF_BLOCK_FILE_PAGE: UT_LIST_REMOVE(list, buf_pool->flush_list, bpage); break; } /* If the flush_rbt is active then delete from there as well. */ if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) { buf_flush_delete_from_flush_rbt(bpage); } /* Must be done after we have removed it from the flush_rbt because we assert on in_flush_list in comparison function. */ ut_d(bpage->in_flush_list = FALSE); zip_size = page_zip_get_size(&bpage->zip); buf_pool->stat.flush_list_bytes -= zip_size ? zip_size : UNIV_PAGE_SIZE; bpage->oldest_modification = 0; #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_flush_validate_skip(buf_pool)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_flush_update_hp(buf_pool, bpage); buf_flush_list_mutex_exit(buf_pool); } /*******************************************************************//** Relocates a buffer control block on the flush_list. Note that it is assumed that the contents of bpage have already been copied to dpage. IMPORTANT: When this function is called bpage and dpage are not exact copies of each other. For example, they both will have different ::state. Also the ::list pointers in dpage may be stale. We need to use the current list node (bpage) to do the list manipulation because the list pointers could have changed between the time that we copied the contents of bpage to the dpage and the flush list manipulation below. */ UNIV_INTERN void buf_flush_relocate_on_flush_list( /*=============================*/ buf_page_t* bpage, /*!< in/out: control block being moved */ buf_page_t* dpage) /*!< in/out: destination block */ { buf_page_t* prev; buf_page_t* prev_b = NULL; buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); /* Must reside in the same buffer pool. */ ut_ad(buf_pool == buf_pool_from_bpage(dpage)); ut_ad(mutex_own(buf_page_get_mutex(bpage))); buf_flush_list_mutex_enter(buf_pool); ut_ad(bpage->in_flush_list); ut_ad(dpage->in_flush_list); /* If recovery is active we must swap the control blocks in the flush_rbt as well. */ if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) { buf_flush_delete_from_flush_rbt(bpage); prev_b = buf_flush_insert_in_flush_rbt(dpage); } /* Must be done after we have removed it from the flush_rbt because we assert on in_flush_list in comparison function. */ ut_d(bpage->in_flush_list = FALSE); prev = UT_LIST_GET_PREV(list, bpage); UT_LIST_REMOVE(list, buf_pool->flush_list, bpage); if (prev) { ut_ad(prev->in_flush_list); UT_LIST_INSERT_AFTER( list, buf_pool->flush_list, prev, dpage); } else { UT_LIST_ADD_FIRST( list, buf_pool->flush_list, dpage); } /* Just an extra check. Previous in flush_list should be the same control block as in flush_rbt. */ ut_a(!buf_pool->flush_rbt || prev_b == prev); #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG ut_a(buf_flush_validate_low(buf_pool)); #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ buf_flush_update_hp(buf_pool, bpage); buf_flush_list_mutex_exit(buf_pool); } /********************************************************************//** Updates the flush system data structures when a write is completed. */ UNIV_INTERN void buf_flush_write_complete( /*=====================*/ buf_page_t* bpage) /*!< in: pointer to the block in question */ { buf_flush_t flush_type = buf_page_get_flush_type(bpage); buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); mutex_enter(&buf_pool->flush_state_mutex); buf_flush_remove(bpage); buf_page_set_io_fix(bpage, BUF_IO_NONE); buf_pool->n_flush[flush_type]--; ut_ad(buf_pool->n_flush[flush_type] != ULINT_MAX); if (buf_pool->n_flush[flush_type] == 0 && buf_pool->init_flush[flush_type] == FALSE) { /* The running flush batch has ended */ os_event_set(buf_pool->no_flush[flush_type]); } buf_dblwr_update(bpage, flush_type); mutex_exit(&buf_pool->flush_state_mutex); } #endif /* !UNIV_HOTBACKUP */ /********************************************************************//** Calculate the checksum of a page from compressed table and update the page. */ UNIV_INTERN void buf_flush_update_zip_checksum( /*==========================*/ buf_frame_t* page, /*!< in/out: Page to update */ ulint zip_size, /*!< in: Compressed page size */ lsn_t lsn) /*!< in: Lsn to stamp on the page */ { ut_a(zip_size > 0); ib_uint32_t checksum = static_cast( page_zip_calc_checksum( page, zip_size, static_cast( srv_checksum_algorithm))); mach_write_to_8(page + FIL_PAGE_LSN, lsn); memset(page + FIL_PAGE_FILE_FLUSH_LSN, 0, 8); mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM, checksum); } /********************************************************************//** Initializes a page for writing to the tablespace. */ UNIV_INTERN void buf_flush_init_for_writing( /*=======================*/ byte* page, /*!< in/out: page */ void* page_zip_, /*!< in/out: compressed page, or NULL */ lsn_t newest_lsn) /*!< in: newest modification lsn to the page */ { ib_uint32_t checksum = 0 /* silence bogus gcc warning */; ut_ad(page); if (page_zip_) { page_zip_des_t* page_zip; ulint zip_size; page_zip = static_cast(page_zip_); zip_size = page_zip_get_size(page_zip); ut_ad(zip_size); ut_ad(ut_is_2pow(zip_size)); ut_ad(zip_size <= UNIV_ZIP_SIZE_MAX); switch (UNIV_EXPECT(fil_page_get_type(page), FIL_PAGE_INDEX)) { case FIL_PAGE_TYPE_ALLOCATED: case FIL_PAGE_INODE: case FIL_PAGE_IBUF_BITMAP: case FIL_PAGE_TYPE_FSP_HDR: case FIL_PAGE_TYPE_XDES: /* These are essentially uncompressed pages. */ memcpy(page_zip->data, page, zip_size); /* fall through */ case FIL_PAGE_TYPE_ZBLOB: case FIL_PAGE_TYPE_ZBLOB2: case FIL_PAGE_INDEX: buf_flush_update_zip_checksum( page_zip->data, zip_size, newest_lsn); return; } ut_print_timestamp(stderr); fputs(" InnoDB: ERROR: The compressed page to be written" " seems corrupt:", stderr); ut_print_buf(stderr, page, zip_size); fputs("\nInnoDB: Possibly older version of the page:", stderr); ut_print_buf(stderr, page_zip->data, zip_size); putc('\n', stderr); ut_error; } /* Write the newest modification lsn to the page header and trailer */ mach_write_to_8(page + FIL_PAGE_LSN, newest_lsn); mach_write_to_8(page + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM, newest_lsn); /* Store the new formula checksum */ switch ((srv_checksum_algorithm_t) srv_checksum_algorithm) { case SRV_CHECKSUM_ALGORITHM_CRC32: case SRV_CHECKSUM_ALGORITHM_STRICT_CRC32: checksum = buf_calc_page_crc32(page); mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM, checksum); break; case SRV_CHECKSUM_ALGORITHM_INNODB: case SRV_CHECKSUM_ALGORITHM_STRICT_INNODB: checksum = (ib_uint32_t) buf_calc_page_new_checksum(page); mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM, checksum); checksum = (ib_uint32_t) buf_calc_page_old_checksum(page); break; case SRV_CHECKSUM_ALGORITHM_NONE: case SRV_CHECKSUM_ALGORITHM_STRICT_NONE: checksum = BUF_NO_CHECKSUM_MAGIC; mach_write_to_4(page + FIL_PAGE_SPACE_OR_CHKSUM, checksum); break; /* no default so the compiler will emit a warning if new enum is added and not handled here */ } /* With the InnoDB checksum, we overwrite the first 4 bytes of the end lsn field to store the old formula checksum. Since it depends also on the field FIL_PAGE_SPACE_OR_CHKSUM, it has to be calculated after storing the new formula checksum. In other cases we write the same value to both fields. If CRC32 is used then it is faster to use that checksum (calculated above) instead of calculating another one. We can afford to store something other than buf_calc_page_old_checksum() or BUF_NO_CHECKSUM_MAGIC in this field because the file will not be readable by old versions of MySQL/InnoDB anyway (older than MySQL 5.6.3) */ mach_write_to_4(page + UNIV_PAGE_SIZE - FIL_PAGE_END_LSN_OLD_CHKSUM, checksum); } #ifndef UNIV_HOTBACKUP /********************************************************************//** Does an asynchronous write of a buffer page. NOTE: in simulated aio and also when the doublewrite buffer is used, we must call buf_dblwr_flush_buffered_writes after we have posted a batch of writes! */ static void buf_flush_write_block_low( /*======================*/ buf_page_t* bpage, /*!< in: buffer block to write */ buf_flush_t flush_type, /*!< in: type of flush */ bool sync) /*!< in: true if sync IO request */ { ulint zip_size = buf_page_get_zip_size(bpage); page_t* frame = NULL; #ifdef UNIV_DEBUG buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); ut_ad(!mutex_own(&buf_pool->LRU_list_mutex)); #endif #ifdef UNIV_LOG_DEBUG static ibool univ_log_debug_warned; #endif /* UNIV_LOG_DEBUG */ ut_ad(buf_page_in_file(bpage)); /* We are not holding block_mutex here. Nevertheless, it is safe to access bpage, because it is io_fixed and oldest_modification != 0. Thus, it cannot be relocated in the buffer pool or removed from flush_list or LRU_list. */ ut_ad(!buf_flush_list_mutex_own(buf_pool)); ut_ad(!mutex_own(buf_page_get_mutex(bpage))); ut_ad(buf_page_get_io_fix_unlocked(bpage) == BUF_IO_WRITE); ut_ad(bpage->oldest_modification != 0); #ifdef UNIV_IBUF_COUNT_DEBUG ut_a(ibuf_count_get(bpage->space, bpage->offset) == 0); #endif ut_ad(bpage->newest_modification != 0); #ifdef UNIV_LOG_DEBUG if (!univ_log_debug_warned) { univ_log_debug_warned = TRUE; fputs("Warning: cannot force log to disk if" " UNIV_LOG_DEBUG is defined!\n" "Crash recovery will not work!\n", stderr); } #else /* Force the log to the disk before writing the modified block */ log_write_up_to(bpage->newest_modification, LOG_WAIT_ALL_GROUPS, TRUE); #endif switch (buf_page_get_state(bpage)) { case BUF_BLOCK_POOL_WATCH: case BUF_BLOCK_ZIP_PAGE: /* The page should be dirty. */ case BUF_BLOCK_NOT_USED: case BUF_BLOCK_READY_FOR_USE: case BUF_BLOCK_MEMORY: case BUF_BLOCK_REMOVE_HASH: ut_error; break; case BUF_BLOCK_ZIP_DIRTY: frame = bpage->zip.data; mach_write_to_8(frame + FIL_PAGE_LSN, bpage->newest_modification); ut_a(page_zip_verify_checksum(frame, zip_size)); memset(frame + FIL_PAGE_FILE_FLUSH_LSN, 0, 8); break; case BUF_BLOCK_FILE_PAGE: frame = bpage->zip.data; if (!frame) { frame = ((buf_block_t*) bpage)->frame; } buf_flush_init_for_writing(((buf_block_t*) bpage)->frame, bpage->zip.data ? &bpage->zip : NULL, bpage->newest_modification); break; } if (!srv_use_doublewrite_buf || !buf_dblwr) { fil_io(OS_FILE_WRITE | OS_AIO_SIMULATED_WAKE_LATER, sync, buf_page_get_space(bpage), zip_size, buf_page_get_page_no(bpage), 0, zip_size ? zip_size : UNIV_PAGE_SIZE, frame, bpage); } else if (flush_type == BUF_FLUSH_SINGLE_PAGE) { buf_dblwr_write_single_page(bpage, sync); } else { ut_ad(!sync); buf_dblwr_add_to_batch(bpage); } /* When doing single page flushing the IO is done synchronously and we flush the changes to disk only for the tablespace we are working on. */ if (sync) { ut_ad(flush_type == BUF_FLUSH_SINGLE_PAGE); fil_flush(buf_page_get_space(bpage)); buf_page_io_complete(bpage); } /* Increment the counter of I/O operations used for selecting LRU policy. */ buf_LRU_stat_inc_io(); } /********************************************************************//** Writes a flushable page asynchronously from the buffer pool to a file. NOTE: in simulated aio we must call os_aio_simulated_wake_handler_threads after we have posted a batch of writes! NOTE: buf_page_get_mutex(bpage) must be held upon entering this function, and it will be released by this function if it returns true. LRU_list_mutex must be held iff performing a single page flush and will be released by the function if it returns true. @return TRUE if the page was flushed */ UNIV_INTERN bool buf_flush_page( /*===========*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ buf_page_t* bpage, /*!< in: buffer control block */ buf_flush_t flush_type, /*!< in: type of flush */ bool sync) /*!< in: true if sync IO request */ { ut_ad(flush_type < BUF_FLUSH_N_TYPES); /* Hold the LRU list mutex iff called for a single page LRU flush. A single page LRU flush is already non-performant, and holding the LRU list mutex allows us to avoid having to store the previous LRU list page or to restart the LRU scan in buf_flush_single_page_from_LRU(). */ ut_ad(flush_type == BUF_FLUSH_SINGLE_PAGE || !mutex_own(&buf_pool->LRU_list_mutex)); ut_ad(flush_type != BUF_FLUSH_SINGLE_PAGE || mutex_own(&buf_pool->LRU_list_mutex)); ut_ad(buf_page_in_file(bpage)); ut_ad(!sync || flush_type == BUF_FLUSH_SINGLE_PAGE); ib_mutex_t* block_mutex = buf_page_get_mutex(bpage); ut_ad(mutex_own(block_mutex)); ut_ad(buf_flush_ready_for_flush(bpage, flush_type)); bool is_uncompressed; is_uncompressed = (buf_page_get_state(bpage) == BUF_BLOCK_FILE_PAGE); ut_ad(is_uncompressed == (block_mutex != &buf_pool->zip_mutex)); ibool flush; rw_lock_t* rw_lock; bool no_fix_count = bpage->buf_fix_count == 0; if (!is_uncompressed) { flush = TRUE; rw_lock = NULL; } else if (!(no_fix_count || flush_type == BUF_FLUSH_LIST)) { /* This is a heuristic, to avoid expensive S attempts. */ flush = FALSE; } else { rw_lock = &reinterpret_cast(bpage)->lock; if (flush_type != BUF_FLUSH_LIST) { flush = rw_lock_s_lock_gen_nowait( rw_lock, BUF_IO_WRITE); } else { /* Will S lock later */ flush = TRUE; } } if (flush) { /* We are committed to flushing by the time we get here */ mutex_enter(&buf_pool->flush_state_mutex); buf_page_set_io_fix(bpage, BUF_IO_WRITE); buf_page_set_flush_type(bpage, flush_type); if (buf_pool->n_flush[flush_type] == 0) { os_event_reset(buf_pool->no_flush[flush_type]); } ++buf_pool->n_flush[flush_type]; ut_ad(buf_pool->n_flush[flush_type] != 0); mutex_exit(&buf_pool->flush_state_mutex); mutex_exit(block_mutex); if (flush_type == BUF_FLUSH_SINGLE_PAGE) mutex_exit(&buf_pool->LRU_list_mutex); if (flush_type == BUF_FLUSH_LIST && is_uncompressed && !rw_lock_s_lock_gen_nowait(rw_lock, BUF_IO_WRITE)) { /* avoiding deadlock possibility involves doublewrite buffer, should flush it, because it might hold the another block->lock. */ buf_dblwr_flush_buffered_writes(); rw_lock_s_lock_gen(rw_lock, BUF_IO_WRITE); } /* Even though bpage is not protected by any mutex at this point, it is safe to access bpage, because it is io_fixed and oldest_modification != 0. Thus, it cannot be relocated in the buffer pool or removed from flush_list or LRU_list. */ buf_flush_write_block_low(bpage, flush_type, sync); } return(flush); } # if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG /********************************************************************//** Writes a flushable page asynchronously from the buffer pool to a file. NOTE: block and LRU list mutexes must be held upon entering this function, and they will be released by this function after flushing. This is loosely based on buf_flush_batch() and buf_flush_page(). @return TRUE if the page was flushed and the mutexes released */ UNIV_INTERN ibool buf_flush_page_try( /*===============*/ buf_pool_t* buf_pool, /*!< in/out: buffer pool instance */ buf_block_t* block) /*!< in/out: buffer control block */ { ut_ad(buf_block_get_state(block) == BUF_BLOCK_FILE_PAGE); ut_ad(mutex_own(&block->mutex)); ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); if (!buf_flush_ready_for_flush(&block->page, BUF_FLUSH_SINGLE_PAGE)) { return(FALSE); } /* The following call will release the LRU list and block mutex if successful. */ return(buf_flush_page( buf_pool, &block->page, BUF_FLUSH_SINGLE_PAGE, true)); } # endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ /***********************************************************//** Check the page is in buffer pool and can be flushed. @return true if the page can be flushed. */ static bool buf_flush_check_neighbor( /*=====================*/ ulint space, /*!< in: space id */ ulint offset, /*!< in: page offset */ buf_flush_t flush_type) /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ { buf_page_t* bpage; buf_pool_t* buf_pool = buf_pool_get(space, offset); bool ret; prio_rw_lock_t* hash_lock; ib_mutex_t* block_mutex; ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST); /* We only want to flush pages from this buffer pool. */ bpage = buf_page_hash_get_s_locked(buf_pool, space, offset, &hash_lock); if (!bpage) { return(false); } block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); rw_lock_s_unlock(hash_lock); ut_a(buf_page_in_file(bpage)); /* We avoid flushing 'non-old' blocks in an LRU flush, because the flushed blocks are soon freed */ ret = false; if (flush_type != BUF_FLUSH_LRU || buf_page_is_old(bpage)) { if (buf_flush_ready_for_flush(bpage, flush_type)) { ret = true; } } mutex_exit(block_mutex); return(ret); } /***********************************************************//** Flushes to disk all flushable pages within the flush area. @return number of pages flushed */ static ulint buf_flush_try_neighbors( /*====================*/ ulint space, /*!< in: space id */ ulint offset, /*!< in: page offset */ buf_flush_t flush_type, /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ ulint n_flushed, /*!< in: number of pages flushed so far in this batch */ ulint n_to_flush) /*!< in: maximum number of pages we are allowed to flush */ { ulint i; ulint low; ulint high; buf_pool_t* buf_pool = buf_pool_get(space, offset); ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST); ut_ad(!mutex_own(&buf_pool->LRU_list_mutex)); ut_ad(!buf_flush_list_mutex_own(buf_pool)); if (UT_LIST_GET_LEN(buf_pool->LRU) < BUF_LRU_OLD_MIN_LEN || srv_flush_neighbors == 0) { /* If there is little space or neighbor flushing is not enabled then just flush the victim. */ low = offset; high = offset + 1; } else { /* When flushed, dirty blocks are searched in neighborhoods of this size, and flushed along with the original page. */ ulint buf_flush_area; buf_flush_area = ut_min( BUF_READ_AHEAD_AREA(buf_pool), buf_pool->curr_size / 16); low = (offset / buf_flush_area) * buf_flush_area; high = (offset / buf_flush_area + 1) * buf_flush_area; if (srv_flush_neighbors == 1) { /* adjust 'low' and 'high' to limit for contiguous dirty area */ if (offset > low) { for (i = offset - 1; i >= low && buf_flush_check_neighbor( space, i, flush_type); i--) { /* do nothing */ } low = i + 1; } for (i = offset + 1; i < high && buf_flush_check_neighbor( space, i, flush_type); i++) { /* do nothing */ } high = i; } } /* fprintf(stderr, "Flush area: low %lu high %lu\n", low, high); */ if (high > fil_space_get_size(space)) { high = fil_space_get_size(space); } ulint count = 0; for (i = low; i < high; i++) { prio_rw_lock_t* hash_lock; ib_mutex_t* block_mutex; if ((count + n_flushed) >= n_to_flush) { /* We have already flushed enough pages and should call it a day. There is, however, one exception. If the page whose neighbors we are flushing has not been flushed yet then we'll try to flush the victim that we selected originally. */ if (i <= offset) { i = offset; } else { break; } } buf_pool = buf_pool_get(space, i); /* We only want to flush pages from this buffer pool. */ buf_page_t* bpage = buf_page_hash_get_s_locked(buf_pool, space, i, &hash_lock); if (bpage == NULL) { continue; } block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); rw_lock_s_unlock(hash_lock); ut_a(buf_page_in_file(bpage)); /* We avoid flushing 'non-old' blocks in an LRU flush, because the flushed blocks are soon freed */ if (flush_type != BUF_FLUSH_LRU || i == offset || buf_page_is_old(bpage)) { if (buf_flush_ready_for_flush(bpage, flush_type) && (i == offset || bpage->buf_fix_count == 0) && buf_flush_page( buf_pool, bpage, flush_type, false)) { ++count; continue; } } mutex_exit(block_mutex); } if (count > 0) { MONITOR_INC_VALUE_CUMULATIVE( MONITOR_FLUSH_NEIGHBOR_TOTAL_PAGE, MONITOR_FLUSH_NEIGHBOR_COUNT, MONITOR_FLUSH_NEIGHBOR_PAGES, (count - 1)); } return(count); } /********************************************************************//** Check if the block is modified and ready for flushing. If the the block is ready to flush then flush the page and try o flush its neighbors. @return TRUE if, depending on the flush type, either LRU or flush list mutex was released during this function. This does not guarantee that some pages were written as well. Number of pages written are incremented to the count. */ static ibool buf_flush_page_and_try_neighbors( /*=============================*/ buf_page_t* bpage, /*!< in: buffer control block, must be buf_page_in_file(bpage) */ buf_flush_t flush_type, /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ ulint n_to_flush, /*!< in: number of pages to flush */ ulint* count) /*!< in/out: number of pages flushed */ { ibool flushed; ib_mutex_t* block_mutex = NULL; #ifdef UNIV_DEBUG buf_pool_t* buf_pool = buf_pool_from_bpage(bpage); #endif /* UNIV_DEBUG */ ut_ad((flush_type == BUF_FLUSH_LRU && mutex_own(&buf_pool->LRU_list_mutex)) || (flush_type == BUF_FLUSH_LIST && buf_flush_list_mutex_own(buf_pool))); if (flush_type == BUF_FLUSH_LRU) { block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); } ut_a(buf_page_in_file(bpage) || (buf_page_get_state(bpage) == BUF_BLOCK_REMOVE_HASH )); if (buf_flush_ready_for_flush(bpage, flush_type)) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_bpage(bpage); if (flush_type == BUF_FLUSH_LRU) { mutex_exit(&buf_pool->LRU_list_mutex); } /* These fields are protected by the buf_page_get_mutex() mutex. */ /* Read the fields directly in order to avoid asserting on BUF_BLOCK_REMOVE_HASH pages. */ ulint space = bpage->space; ulint offset = bpage->offset; if (flush_type == BUF_FLUSH_LRU) { mutex_exit(block_mutex); } else { buf_flush_list_mutex_exit(buf_pool); } /* Try to flush also all the neighbors */ *count += buf_flush_try_neighbors( space, offset, flush_type, *count, n_to_flush); if (flush_type == BUF_FLUSH_LRU) { mutex_enter(&buf_pool->LRU_list_mutex); } else { buf_flush_list_mutex_enter(buf_pool); } flushed = TRUE; } else if (flush_type == BUF_FLUSH_LRU) { mutex_exit(block_mutex); flushed = FALSE; } else { flushed = FALSE; } ut_ad((flush_type == BUF_FLUSH_LRU && mutex_own(&buf_pool->LRU_list_mutex)) || (flush_type == BUF_FLUSH_LIST && buf_flush_list_mutex_own(buf_pool))); return(flushed); } /*******************************************************************//** This utility moves the uncompressed frames of pages to the free list. Note that this function does not actually flush any data to disk. It just detaches the uncompressed frames from the compressed pages at the tail of the unzip_LRU and puts those freed frames in the free list. Note that it is a best effort attempt and it is not guaranteed that after a call to this function there will be 'max' blocks in the free list. @return number of blocks moved to the free list. */ static ulint buf_free_from_unzip_LRU_list_batch( /*===============================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ ulint max) /*!< in: desired number of blocks in the free_list */ { buf_block_t* block; ulint scanned = 0; ulint count = 0; ulint free_len = UT_LIST_GET_LEN(buf_pool->free); ulint lru_len = UT_LIST_GET_LEN(buf_pool->unzip_LRU); ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); block = UT_LIST_GET_LAST(buf_pool->unzip_LRU); while (block != NULL && count < max && free_len < srv_LRU_scan_depth && lru_len > UT_LIST_GET_LEN(buf_pool->LRU) / 10) { ib_mutex_t* block_mutex = buf_page_get_mutex(&block->page); ++scanned; mutex_enter(block_mutex); if (buf_LRU_free_page(&block->page, false)) { mutex_exit(block_mutex); /* Block was freed. LRU list mutex potentially released and reacquired */ ++count; mutex_enter(&buf_pool->LRU_list_mutex); block = UT_LIST_GET_LAST(buf_pool->unzip_LRU); } else { mutex_exit(block_mutex); block = UT_LIST_GET_PREV(unzip_LRU, block); } free_len = UT_LIST_GET_LEN(buf_pool->free); lru_len = UT_LIST_GET_LEN(buf_pool->unzip_LRU); } ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); if (scanned) { MONITOR_INC_VALUE_CUMULATIVE( MONITOR_LRU_BATCH_SCANNED, MONITOR_LRU_BATCH_SCANNED_NUM_CALL, MONITOR_LRU_BATCH_SCANNED_PER_CALL, scanned); } return(count); } /*******************************************************************//** This utility flushes dirty blocks from the end of the LRU list. The calling thread is not allowed to own any latches on pages! It attempts to make 'max' blocks available in the free list. Note that it is a best effort attempt and it is not guaranteed that after a call to this function there will be 'max' blocks in the free list. @return number of blocks for which the write request was queued. */ MY_ATTRIBUTE((nonnull)) static void buf_flush_LRU_list_batch( /*=====================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ ulint max, /*!< in: desired number of blocks in the free_list */ bool limited_scan, /*!< in: if true, allow to scan only up to srv_LRU_scan_depth pages in total */ flush_counters_t* n) /*!< out: flushed/evicted page counts */ { buf_page_t* bpage; ulint scanned = 0; ulint lru_position = 0; ulint max_lru_position; ulint max_scanned_pages; ulint free_len = UT_LIST_GET_LEN(buf_pool->free); ulint lru_len = UT_LIST_GET_LEN(buf_pool->LRU); n->flushed = 0; n->evicted = 0; n->unzip_LRU_evicted = 0; ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); max_scanned_pages = limited_scan ? srv_LRU_scan_depth : lru_len * max; max_lru_position = ut_min(srv_LRU_scan_depth, lru_len); bpage = UT_LIST_GET_LAST(buf_pool->LRU); while (bpage != NULL && (srv_cleaner_eviction_factor ? n->evicted : n->flushed) < max && free_len < srv_LRU_scan_depth && lru_len > BUF_LRU_MIN_LEN && lru_position < max_lru_position && scanned < max_scanned_pages) { ib_mutex_t* block_mutex = buf_page_get_mutex(bpage); ibool evict; ulint failed_acquire; ++scanned; ++lru_position; failed_acquire = mutex_enter_nowait(block_mutex); evict = UNIV_LIKELY(!failed_acquire) && buf_flush_ready_for_replace(bpage); if (UNIV_LIKELY(!failed_acquire) && !evict) { mutex_exit(block_mutex); } /* If the block is ready to be replaced we try to free it i.e.: put it on the free list. Otherwise we try to flush the block and its neighbors. In this case we'll put it on the free list in the next pass. We do this extra work of putting blocks to the free list instead of just flushing them because after every flush we have to restart the scan from the tail of the LRU list and if we don't clear the tail of the flushed pages then the scan becomes O(n*n). */ if (evict) { if (buf_LRU_free_page(bpage, true)) { mutex_exit(block_mutex); n->evicted++; lru_position = 0; mutex_enter(&buf_pool->LRU_list_mutex); bpage = UT_LIST_GET_LAST(buf_pool->LRU); } else { bpage = UT_LIST_GET_PREV(LRU, bpage); mutex_exit(block_mutex); } } else if (UNIV_LIKELY(!failed_acquire)) { ulint space; ulint offset; buf_page_t* prev_bpage; prev_bpage = UT_LIST_GET_PREV(LRU, bpage); /* Save the previous bpage */ if (prev_bpage != NULL) { space = prev_bpage->space; offset = prev_bpage->offset; } else { space = ULINT_UNDEFINED; offset = ULINT_UNDEFINED; } if (buf_flush_page_and_try_neighbors( bpage, BUF_FLUSH_LRU, max, &n->flushed)) { /* LRU list mutex was released. reposition the iterator. Note: the prev block could have been repositioned too but that should be rare. */ if (prev_bpage != NULL) { ut_ad(space != ULINT_UNDEFINED); ut_ad(offset != ULINT_UNDEFINED); prev_bpage = buf_page_hash_get( buf_pool, space, offset); } } bpage = prev_bpage; } free_len = UT_LIST_GET_LEN(buf_pool->free); lru_len = UT_LIST_GET_LEN(buf_pool->LRU); } ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); /* We keep track of all flushes happening as part of LRU flush. When estimating the desired rate at which flush_list should be flushed, we factor in this value. */ buf_pool->stat.buf_lru_flush_page_count += n->flushed; if (scanned) { MONITOR_INC_VALUE_CUMULATIVE( MONITOR_LRU_BATCH_SCANNED, MONITOR_LRU_BATCH_SCANNED_NUM_CALL, MONITOR_LRU_BATCH_SCANNED_PER_CALL, scanned); } } /*******************************************************************//** Flush and move pages from LRU or unzip_LRU list to the free list. Whether LRU or unzip_LRU is used depends on the state of the system. @return number of blocks for which either the write request was queued or in case of unzip_LRU the number of blocks actually moved to the free list */ MY_ATTRIBUTE((nonnull)) static void buf_do_LRU_batch( /*=============*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ ulint max, /*!< in: desired number of blocks in the free_list */ bool limited_scan, /*!< in: if true, allow to scan only up to srv_LRU_scan_depth pages in total */ flush_counters_t* n) /*!< out: flushed/evicted page counts */ { ut_ad(mutex_own(&buf_pool->LRU_list_mutex)); if (buf_LRU_evict_from_unzip_LRU(buf_pool)) { n->unzip_LRU_evicted = buf_free_from_unzip_LRU_list_batch(buf_pool, max); } else { n->unzip_LRU_evicted = 0; } if (max > n->unzip_LRU_evicted) { buf_flush_LRU_list_batch(buf_pool, max - n->unzip_LRU_evicted, limited_scan, n); } else { n->evicted = 0; n->flushed = 0; } n->evicted += n->unzip_LRU_evicted; } /*******************************************************************//** This utility flushes dirty blocks from the end of the flush_list. the calling thread is not allowed to own any latches on pages! @return number of blocks for which the write request was queued; ULINT_UNDEFINED if there was a flush of the same type already running */ static ulint buf_do_flush_list_batch( /*====================*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ ulint min_n, /*!< in: wished minimum mumber of blocks flushed (it is not guaranteed that the actual number is that big, though) */ lsn_t lsn_limit) /*!< all blocks whose oldest_modification is smaller than this should be flushed (if their number does not exceed min_n) */ { ulint count = 0; ulint scanned = 0; /* Start from the end of the list looking for a suitable block to be flushed. */ buf_flush_list_mutex_enter(buf_pool); ulint len = UT_LIST_GET_LEN(buf_pool->flush_list); /* In order not to degenerate this scan to O(n*n) we attempt to preserve pointer of previous block in the flush list. To do so we declare it a hazard pointer. Any thread working on the flush list must check the hazard pointer and if it is removing the same block then it must reset it. */ for (buf_page_t* bpage = UT_LIST_GET_LAST(buf_pool->flush_list); count < min_n && bpage != NULL && len > 0 && bpage->oldest_modification < lsn_limit; ++scanned) { buf_page_t* prev; ut_a(bpage->oldest_modification > 0); ut_ad(bpage->in_flush_list); prev = UT_LIST_GET_PREV(list, bpage); buf_flush_set_hp(buf_pool, prev); #ifdef UNIV_DEBUG bool flushed = #endif /* UNIV_DEBUG */ buf_flush_page_and_try_neighbors( bpage, BUF_FLUSH_LIST, min_n, &count); ut_ad(flushed || buf_flush_is_hp(buf_pool, prev)); if (!buf_flush_is_hp(buf_pool, prev)) { /* The hazard pointer was reset by some other thread. Restart the scan. */ ut_ad(buf_flush_is_hp(buf_pool, NULL)); bpage = UT_LIST_GET_LAST(buf_pool->flush_list); len = UT_LIST_GET_LEN(buf_pool->flush_list); } else { bpage = prev; --len; buf_flush_set_hp(buf_pool, NULL); } ut_ad(!bpage || bpage->in_flush_list); } buf_flush_list_mutex_exit(buf_pool); MONITOR_INC_VALUE_CUMULATIVE(MONITOR_FLUSH_BATCH_SCANNED, MONITOR_FLUSH_BATCH_SCANNED_NUM_CALL, MONITOR_FLUSH_BATCH_SCANNED_PER_CALL, scanned); return(count); } /*******************************************************************//** This utility flushes dirty blocks from the end of the LRU list or flush_list. NOTE 1: in the case of an LRU flush the calling thread may own latches to pages: to avoid deadlocks, this function must be written so that it cannot end up waiting for these latches! NOTE 2: in the case of a flush list flush, the calling thread is not allowed to own any latches on pages! @return number of blocks for which the write request was queued */ MY_ATTRIBUTE((nonnull)) static void buf_flush_batch( /*============*/ buf_pool_t* buf_pool, /*!< in: buffer pool instance */ buf_flush_t flush_type, /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST; if BUF_FLUSH_LIST, then the caller must not own any latches on pages */ ulint min_n, /*!< in: wished minimum mumber of blocks flushed (it is not guaranteed that the actual number is that big, though) */ lsn_t lsn_limit, /*!< in: in the case of BUF_FLUSH_LIST all blocks whose oldest_modification is smaller than this should be flushed (if their number does not exceed min_n), otherwise ignored */ bool limited_lru_scan,/*!< in: for LRU flushes, if true, allow to scan only up to srv_LRU_scan_depth pages in total */ flush_counters_t* n) /*!< out: flushed/evicted page counts */ { ut_ad(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST); #ifdef UNIV_SYNC_DEBUG ut_ad((flush_type != BUF_FLUSH_LIST) || sync_thread_levels_empty_except_dict()); #endif /* UNIV_SYNC_DEBUG */ /* Note: The buffer pool mutexes are released and reacquired within the flush functions. */ switch (flush_type) { case BUF_FLUSH_LRU: mutex_enter(&buf_pool->LRU_list_mutex); buf_do_LRU_batch(buf_pool, min_n, limited_lru_scan, n); mutex_exit(&buf_pool->LRU_list_mutex); break; case BUF_FLUSH_LIST: ut_ad(!limited_lru_scan); n->flushed = buf_do_flush_list_batch(buf_pool, min_n, lsn_limit); n->evicted = 0; break; default: ut_error; } #ifdef UNIV_DEBUG if (buf_debug_prints && n->flushed > 0) { fprintf(stderr, flush_type == BUF_FLUSH_LRU ? "Flushed %lu pages in LRU flush\n" : "Flushed %lu pages in flush list flush\n", (ulong) n->flushed); } #endif /* UNIV_DEBUG */ } /******************************************************************//** Gather the aggregated stats for both flush list and LRU list flushing */ static void buf_flush_common( /*=============*/ buf_flush_t flush_type, /*!< in: type of flush */ ulint page_count) /*!< in: number of pages flushed */ { if (page_count) { buf_dblwr_flush_buffered_writes(); } ut_a(flush_type == BUF_FLUSH_LRU || flush_type == BUF_FLUSH_LIST); #ifdef UNIV_DEBUG if (buf_debug_prints && page_count > 0) { fprintf(stderr, flush_type == BUF_FLUSH_LRU ? "Flushed %lu pages in LRU flush\n" : "Flushed %lu pages in flush list flush\n", (ulong) page_count); } #endif /* UNIV_DEBUG */ srv_stats.buf_pool_flushed.add(page_count); } /******************************************************************//** Start a buffer flush batch for LRU or flush list */ static ibool buf_flush_start( /*============*/ buf_pool_t* buf_pool, /*!< buffer pool instance */ buf_flush_t flush_type) /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ { mutex_enter(&buf_pool->flush_state_mutex); if (buf_pool->n_flush[flush_type] > 0 || buf_pool->init_flush[flush_type] == TRUE) { /* There is already a flush batch of the same type running */ mutex_exit(&buf_pool->flush_state_mutex); return(FALSE); } buf_pool->init_flush[flush_type] = TRUE; mutex_exit(&buf_pool->flush_state_mutex); return(TRUE); } /******************************************************************//** End a buffer flush batch for LRU or flush list */ static void buf_flush_end( /*==========*/ buf_pool_t* buf_pool, /*!< buffer pool instance */ buf_flush_t flush_type) /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ { mutex_enter(&buf_pool->flush_state_mutex); buf_pool->init_flush[flush_type] = FALSE; buf_pool->try_LRU_scan = TRUE; if (buf_pool->n_flush[flush_type] == 0) { /* The running flush batch has ended */ os_event_set(buf_pool->no_flush[flush_type]); } mutex_exit(&buf_pool->flush_state_mutex); } /******************************************************************//** Waits until a flush batch of the given type ends */ UNIV_INTERN void buf_flush_wait_batch_end( /*=====================*/ buf_pool_t* buf_pool, /*!< buffer pool instance */ buf_flush_t type) /*!< in: BUF_FLUSH_LRU or BUF_FLUSH_LIST */ { ut_ad(type == BUF_FLUSH_LRU || type == BUF_FLUSH_LIST); if (buf_pool == NULL) { ulint i; for (i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); thd_wait_begin(NULL, THD_WAIT_DISKIO); os_event_wait(buf_pool->no_flush[type]); thd_wait_end(NULL); } } else { thd_wait_begin(NULL, THD_WAIT_DISKIO); os_event_wait(buf_pool->no_flush[type]); thd_wait_end(NULL); } } /*******************************************************************//** This utility flushes dirty blocks from the end of the LRU list and also puts replaceable clean pages from the end of the LRU list to the free list. NOTE: The calling thread is not allowed to own any latches on pages! @return true if a batch was queued successfully. false if another batch of same type was already running. */ MY_ATTRIBUTE((nonnull)) static bool buf_flush_LRU( /*==========*/ buf_pool_t* buf_pool, /*!< in/out: buffer pool instance */ ulint min_n, /*!< in: wished minimum mumber of blocks flushed (it is not guaranteed that the actual number is that big, though) */ bool limited_scan, /*!< in: if true, allow to scan only up to srv_LRU_scan_depth pages in total */ flush_counters_t *n) /*!< out: flushed/evicted page counts */ { if (!buf_flush_start(buf_pool, BUF_FLUSH_LRU)) { n->flushed = 0; n->evicted = 0; n->unzip_LRU_evicted = 0; return(false); } buf_flush_batch(buf_pool, BUF_FLUSH_LRU, min_n, 0, limited_scan, n); buf_flush_end(buf_pool, BUF_FLUSH_LRU); buf_flush_common(BUF_FLUSH_LRU, n->flushed); return(true); } /*******************************************************************//** This utility flushes dirty blocks from the end of the flush list of all buffer pool instances. NOTE: The calling thread is not allowed to own any latches on pages! @return true if a batch was queued successfully for each buffer pool instance. false if another batch of same type was already running in at least one of the buffer pool instance */ UNIV_INTERN bool buf_flush_list( /*===========*/ ulint min_n, /*!< in: wished minimum mumber of blocks flushed (it is not guaranteed that the actual number is that big, though) */ lsn_t lsn_limit, /*!< in the case BUF_FLUSH_LIST all blocks whose oldest_modification is smaller than this should be flushed (if their number does not exceed min_n), otherwise ignored */ ulint* n_processed) /*!< out: the number of pages which were processed is passed back to caller. Ignored if NULL */ { ulint i; ulint requested_pages[MAX_BUFFER_POOLS]; bool active_instance[MAX_BUFFER_POOLS]; ulint remaining_instances = srv_buf_pool_instances; bool timeout = false; ulint flush_start_time = 0; for (i = 0; i < srv_buf_pool_instances; i++) { requested_pages[i] = 0; active_instance[i] = true; } if (n_processed) { *n_processed = 0; } if (min_n != ULINT_MAX) { /* Ensure that flushing is spread evenly amongst the buffer pool instances. When min_n is ULINT_MAX we need to flush everything up to the lsn limit so no limit here. */ min_n = (min_n + srv_buf_pool_instances - 1) / srv_buf_pool_instances; if (lsn_limit != LSN_MAX) { flush_start_time = ut_time_ms(); } } /* Flush to lsn_limit in all buffer pool instances */ while (remaining_instances && !timeout) { ulint flush_common_batch = 0; for (i = 0; i < srv_buf_pool_instances; i++) { if (flush_start_time && (ut_time_ms() - flush_start_time >= srv_cleaner_max_flush_time)) { timeout = true; break; } if (active_instance[i]) { buf_pool_t* buf_pool; ulint chunk_size; flush_counters_t n; chunk_size = ut_min( srv_cleaner_flush_chunk_size, min_n - requested_pages[i]); buf_pool = buf_pool_from_array(i); if (!buf_flush_start(buf_pool, BUF_FLUSH_LIST)) { continue; } buf_flush_batch(buf_pool, BUF_FLUSH_LIST, chunk_size, lsn_limit, false, &n); buf_flush_end(buf_pool, BUF_FLUSH_LIST); flush_common_batch += n.flushed; if (n_processed) { *n_processed += n.flushed; } requested_pages[i] += chunk_size; if (requested_pages[i] >= min_n || !n.flushed) { active_instance[i] = false; remaining_instances--; } if (n.flushed) { MONITOR_INC_VALUE_CUMULATIVE( MONITOR_FLUSH_BATCH_TOTAL_PAGE, MONITOR_FLUSH_BATCH_COUNT, MONITOR_FLUSH_BATCH_PAGES, n.flushed); } } } buf_flush_common(BUF_FLUSH_LIST, flush_common_batch); } /* If we haven't flushed all the instances due to timeout or a repeat failure to start a flush, return failure */ for (i = 0; i < srv_buf_pool_instances; i++) { if (active_instance[i]) { return(false); } } return(true); } /******************************************************************//** This function picks up a single dirty page from the tail of the LRU list, flushes it, removes it from page_hash and LRU list and puts it on the free list. It is called from user threads when they are unable to find a replaceable page at the tail of the LRU list i.e.: when the background LRU flushing in the page_cleaner thread is not fast enough to keep pace with the workload. @return TRUE if success. */ UNIV_INTERN ibool buf_flush_single_page_from_LRU( /*===========================*/ buf_pool_t* buf_pool) /*!< in/out: buffer pool instance */ { ulint scanned; buf_page_t* bpage; ibool flushed = FALSE; mutex_enter(&buf_pool->LRU_list_mutex); for (bpage = UT_LIST_GET_LAST(buf_pool->LRU), scanned = 1; bpage != NULL; bpage = UT_LIST_GET_PREV(LRU, bpage), ++scanned) { ib_mutex_t* block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); if (buf_flush_ready_for_flush(bpage, BUF_FLUSH_SINGLE_PAGE)) { /* The following call will release the LRU list and block mutex. */ flushed = buf_flush_page(buf_pool, bpage, BUF_FLUSH_SINGLE_PAGE, true); if (flushed) { /* buf_flush_page() will release the block mutex */ break; } } mutex_exit(block_mutex); } if (!flushed) mutex_exit(&buf_pool->LRU_list_mutex); MONITOR_INC_VALUE_CUMULATIVE( MONITOR_LRU_SINGLE_FLUSH_SCANNED, MONITOR_LRU_SINGLE_FLUSH_SCANNED_NUM_CALL, MONITOR_LRU_SINGLE_FLUSH_SCANNED_PER_CALL, scanned); if (bpage == NULL) { /* Can't find a single flushable page. */ return(FALSE); } ibool freed = FALSE; /* At this point the page has been written to the disk. As we are not holding LRU list or buf_page_get_mutex() mutex therefore we cannot use the bpage safely. It may have been plucked out of the LRU list by some other thread or it may even have relocated in case of a compressed page. We need to start the scan of LRU list again to remove the block from the LRU list and put it on the free list. */ mutex_enter(&buf_pool->LRU_list_mutex); for (bpage = UT_LIST_GET_LAST(buf_pool->LRU); bpage != NULL; bpage = UT_LIST_GET_PREV(LRU, bpage)) { ib_mutex_t* block_mutex = buf_page_get_mutex(bpage); mutex_enter(block_mutex); ibool ready = buf_flush_ready_for_replace(bpage); if (ready) { bool evict_zip; evict_zip = !buf_LRU_evict_from_unzip_LRU(buf_pool);; freed = buf_LRU_free_page(bpage, evict_zip); mutex_exit(block_mutex); break; } mutex_exit(block_mutex); } if (!freed) mutex_exit(&buf_pool->LRU_list_mutex); return(freed); } /*********************************************************************//** Clears up tail of the LRU lists: * Put replaceable pages at the tail of LRU to the free list * Flush dirty pages at the tail of LRU to the disk The depth to which we scan each buffer pool is controlled by dynamic config parameter innodb_LRU_scan_depth. @return number of flushed and evicted pages */ UNIV_INTERN ulint buf_flush_LRU_tail(void) /*====================*/ { ulint total_flushed = 0; ulint total_evicted = 0; ulint start_time = ut_time_ms(); ulint scan_depth[MAX_BUFFER_POOLS]; ulint requested_pages[MAX_BUFFER_POOLS]; bool active_instance[MAX_BUFFER_POOLS]; bool limited_scan[MAX_BUFFER_POOLS]; ulint previous_evicted[MAX_BUFFER_POOLS]; ulint remaining_instances = srv_buf_pool_instances; ulint lru_chunk_size = srv_cleaner_lru_chunk_size; ulint free_list_lwm = srv_LRU_scan_depth / 100 * srv_cleaner_free_list_lwm; for (ulint i = 0; i < srv_buf_pool_instances; i++) { const buf_pool_t* buf_pool = buf_pool_from_array(i); scan_depth[i] = ut_min(srv_LRU_scan_depth, UT_LIST_GET_LEN(buf_pool->LRU)); requested_pages[i] = 0; active_instance[i] = true; limited_scan[i] = true; previous_evicted[i] = 0; } while (remaining_instances) { if (ut_time_ms() - start_time >= srv_cleaner_max_lru_time) { break; } for (ulint i = 0; i < srv_buf_pool_instances; i++) { if (!active_instance[i]) { continue; } ulint free_len = free_list_lwm; buf_pool_t* buf_pool = buf_pool_from_array(i); do { flush_counters_t n; ut_ad(requested_pages[i] <= scan_depth[i]); /* Currently page_cleaner is the only thread that can trigger an LRU flush. It is possible that a batch triggered during last iteration is still running, */ if (buf_flush_LRU(buf_pool, lru_chunk_size, limited_scan[i], &n)) { /* Allowed only one batch per buffer pool instance. */ buf_flush_wait_batch_end( buf_pool, BUF_FLUSH_LRU); } total_flushed += n.flushed; /* When we evict less pages than we did on a previous try we relax the LRU scan limit in order to attempt to evict more */ limited_scan[i] = (previous_evicted[i] > n.evicted); previous_evicted[i] = n.evicted; total_evicted += n.evicted; requested_pages[i] += lru_chunk_size; /* If we failed to flush or evict this instance, do not bother anymore. But take into account that we might have zero flushed pages because the flushing request was fully satisfied by unzip_LRU evictions. */ if (requested_pages[i] >= scan_depth[i] || !(srv_cleaner_eviction_factor ? n.evicted : (n.flushed + n.unzip_LRU_evicted))) { active_instance[i] = false; remaining_instances--; } else { free_len = UT_LIST_GET_LEN( buf_pool->free); } } while (active_instance[i] && free_len <= free_list_lwm); } } if (total_flushed) { MONITOR_INC_VALUE_CUMULATIVE( MONITOR_LRU_BATCH_TOTAL_PAGE, MONITOR_LRU_BATCH_COUNT, MONITOR_LRU_BATCH_PAGES, total_flushed); } return(total_flushed + total_evicted); } /*********************************************************************//** Wait for any possible LRU flushes that are in progress to end. */ UNIV_INTERN void buf_flush_wait_LRU_batch_end(void) /*==============================*/ { for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); mutex_enter(&buf_pool->flush_state_mutex); if (buf_pool->n_flush[BUF_FLUSH_LRU] > 0 || buf_pool->init_flush[BUF_FLUSH_LRU]) { mutex_exit(&buf_pool->flush_state_mutex); buf_flush_wait_batch_end(buf_pool, BUF_FLUSH_LRU); } else { mutex_exit(&buf_pool->flush_state_mutex); } } } /*********************************************************************//** Flush a batch of dirty pages from the flush list @return number of pages flushed, 0 if no page is flushed or if another flush_list type batch is running */ static ulint page_cleaner_do_flush_batch( /*========================*/ ulint n_to_flush, /*!< in: number of pages that we should attempt to flush. */ lsn_t lsn_limit) /*!< in: LSN up to which flushing must happen */ { ulint n_flushed; buf_flush_list(n_to_flush, lsn_limit, &n_flushed); return(n_flushed); } /*********************************************************************//** Calculates if flushing is required based on number of dirty pages in the buffer pool. @return percent of io_capacity to flush to manage dirty page ratio */ static ulint af_get_pct_for_dirty() /*==================*/ { ulint dirty_pct = buf_get_modified_ratio_pct(); if (dirty_pct > 0 && srv_max_buf_pool_modified_pct == 0) { return(100); } ut_a(srv_max_dirty_pages_pct_lwm <= srv_max_buf_pool_modified_pct); if (srv_max_dirty_pages_pct_lwm == 0) { /* The user has not set the option to preflush dirty pages as we approach the high water mark. */ if (dirty_pct > srv_max_buf_pool_modified_pct) { /* We have crossed the high water mark of dirty pages In this case we start flushing at 100% of innodb_io_capacity. */ return(100); } } else if (dirty_pct > srv_max_dirty_pages_pct_lwm) { /* We should start flushing pages gradually. */ return((dirty_pct * 100) / (srv_max_buf_pool_modified_pct + 1)); } return(0); } /*********************************************************************//** Calculates if flushing is required based on redo generation rate. @return percent of io_capacity to flush to manage redo space */ static ulint af_get_pct_for_lsn( /*===============*/ lsn_t age) /*!< in: current age of LSN. */ { lsn_t max_async_age; lsn_t lsn_age_factor; lsn_t af_lwm = (srv_adaptive_flushing_lwm * log_get_capacity()) / 100; if (age < af_lwm) { /* No adaptive flushing. */ return(0); } max_async_age = log_get_max_modified_age_async(); if (age < max_async_age && !srv_adaptive_flushing) { /* We have still not reached the max_async point and the user has disabled adaptive flushing. */ return(0); } /* If we are here then we know that either: 1) User has enabled adaptive flushing 2) User may have disabled adaptive flushing but we have reached max_async_age. */ lsn_age_factor = (age * 100) / max_async_age; ut_ad(srv_max_io_capacity >= srv_io_capacity); switch ((srv_cleaner_lsn_age_factor_t)srv_cleaner_lsn_age_factor) { case SRV_CLEANER_LSN_AGE_FACTOR_LEGACY: return(static_cast( ((srv_max_io_capacity / srv_io_capacity) * (lsn_age_factor * sqrt((double)lsn_age_factor))) / 7.5)); case SRV_CLEANER_LSN_AGE_FACTOR_HIGH_CHECKPOINT: return(static_cast( ((srv_max_io_capacity / srv_io_capacity) * (lsn_age_factor * lsn_age_factor * sqrt((double)lsn_age_factor))) / 700.5)); default: ut_error; } } /*********************************************************************//** This function is called approximately once every second by the page_cleaner thread. Based on various factors it decides if there is a need to do flushing. If flushing is needed it is performed and the number of pages flushed is returned. @return number of pages flushed */ static ulint page_cleaner_flush_pages_if_needed(void) /*====================================*/ { static lsn_t lsn_avg_rate = 0; static lsn_t prev_lsn = 0; static lsn_t last_lsn = 0; static ulint sum_pages = 0; static ulint last_pages = 0; static ulint prev_pages = 0; static ulint avg_page_rate = 0; static ulint n_iterations = 0; lsn_t oldest_lsn; lsn_t cur_lsn; lsn_t age; lsn_t lsn_rate; ulint n_pages = 0; ulint pct_for_dirty = 0; ulint pct_for_lsn = 0; ulint pct_total = 0; int age_factor = 0; cur_lsn = log_get_lsn_nowait(); /* log_get_lsn_nowait tries to get log_sys->mutex with mutex_enter_nowait, if this does not succeed function returns 0, do not use that value to update stats. */ if (cur_lsn == 0) { return(0); } if (prev_lsn == 0) { /* First time around. */ prev_lsn = cur_lsn; return(0); } if (prev_lsn == cur_lsn) { return(0); } /* We update our variables every srv_flushing_avg_loops iterations to smooth out transition in workload. */ if (++n_iterations >= srv_flushing_avg_loops) { avg_page_rate = ((sum_pages / srv_flushing_avg_loops) + avg_page_rate) / 2; /* How much LSN we have generated since last call. */ lsn_rate = (cur_lsn - prev_lsn) / srv_flushing_avg_loops; lsn_avg_rate = (lsn_avg_rate + lsn_rate) / 2; prev_lsn = cur_lsn; n_iterations = 0; sum_pages = 0; } oldest_lsn = buf_pool_get_oldest_modification(); ut_ad(oldest_lsn <= log_get_lsn()); age = cur_lsn > oldest_lsn ? cur_lsn - oldest_lsn : 0; pct_for_dirty = af_get_pct_for_dirty(); pct_for_lsn = af_get_pct_for_lsn(age); pct_total = ut_max(pct_for_dirty, pct_for_lsn); /* Cap the maximum IO capacity that we are going to use by max_io_capacity. */ n_pages = PCT_IO(pct_total); if (age < log_get_max_modified_age_async()) n_pages = (n_pages + avg_page_rate) / 2; if (n_pages > srv_max_io_capacity) { n_pages = srv_max_io_capacity; } if (last_pages && cur_lsn - last_lsn > lsn_avg_rate / 2) { age_factor = static_cast(prev_pages / last_pages); } MONITOR_SET(MONITOR_FLUSH_N_TO_FLUSH_REQUESTED, n_pages); prev_pages = n_pages; n_pages = page_cleaner_do_flush_batch( n_pages, oldest_lsn + lsn_avg_rate * (age_factor + 1)); last_lsn= cur_lsn; last_pages= n_pages + 1; MONITOR_SET(MONITOR_FLUSH_AVG_PAGE_RATE, avg_page_rate); MONITOR_SET(MONITOR_FLUSH_LSN_AVG_RATE, lsn_avg_rate); MONITOR_SET(MONITOR_FLUSH_PCT_FOR_DIRTY, pct_for_dirty); MONITOR_SET(MONITOR_FLUSH_PCT_FOR_LSN, pct_for_lsn); if (n_pages) { MONITOR_INC_VALUE_CUMULATIVE( MONITOR_FLUSH_ADAPTIVE_TOTAL_PAGE, MONITOR_FLUSH_ADAPTIVE_COUNT, MONITOR_FLUSH_ADAPTIVE_PAGES, n_pages); sum_pages += n_pages; } return(n_pages); } /*********************************************************************//** Puts the page_cleaner thread to sleep if it has finished work in less than a second */ static void page_cleaner_sleep_if_needed( /*=========================*/ ulint next_loop_time) /*!< in: time when next loop iteration should start */ { /* No sleep if we are cleaning the buffer pool during the shutdown with everything else finished */ if (srv_shutdown_state == SRV_SHUTDOWN_FLUSH_PHASE) return; ulint cur_time = ut_time_ms(); if (next_loop_time > cur_time) { /* Get sleep interval in micro seconds. We use ut_min() to avoid long sleep in case of wrap around. */ os_thread_sleep(ut_min(1000000, (next_loop_time - cur_time) * 1000)); } } /*********************************************************************//** Returns the aggregate free list length over all buffer pool instances. @return total free list length. */ MY_ATTRIBUTE((warn_unused_result)) static ulint buf_get_total_free_list_length(void) /*================================*/ { ulint result = 0; for (ulint i = 0; i < srv_buf_pool_instances; i++) { result += UT_LIST_GET_LEN(buf_pool_from_array(i)->free); } return result; } /** Returns the aggregate LRU list length over all buffer pool instances. @return total LRU list length. */ MY_ATTRIBUTE((warn_unused_result)) static ulint buf_get_total_LRU_list_length(void) { ulint result = 0; for (ulint i = 0; i < srv_buf_pool_instances; i++) { result += UT_LIST_GET_LEN(buf_pool_from_array(i)->LRU); } return result; } /*********************************************************************//** Adjust the desired page cleaner thread sleep time for LRU flushes. */ MY_ATTRIBUTE((nonnull)) static void page_cleaner_adapt_lru_sleep_time( /*==============================*/ ulint* lru_sleep_time, /*!< in/out: desired page cleaner thread sleep time for LRU flushes */ ulint lru_n_flushed) /*!< in: number of flushed in previous batch */ { ulint free_len = buf_get_total_free_list_length(); ulint max_free_len = ut_min(buf_get_total_LRU_list_length(), srv_LRU_scan_depth * srv_buf_pool_instances); if (free_len < max_free_len / 100 && lru_n_flushed) { /* Free lists filled less than 1% and iteration was able to flush, no sleep */ *lru_sleep_time = 0; } else if (free_len > max_free_len / 5 || (free_len < max_free_len / 100 && lru_n_flushed == 0)) { /* Free lists filled more than 20% or no pages flushed in previous batch, sleep a bit more */ *lru_sleep_time += 1; if (*lru_sleep_time > srv_cleaner_max_lru_time) *lru_sleep_time = srv_cleaner_max_lru_time; } else if (free_len < max_free_len / 20 && *lru_sleep_time >= 50) { /* Free lists filled less than 5%, sleep a bit less */ *lru_sleep_time -= 50; } else { /* Free lists filled between 5% and 20%, no change */ } } /*********************************************************************//** Get the desired page cleaner thread sleep time for flush list flushes. @return desired sleep time */ MY_ATTRIBUTE((warn_unused_result)) static ulint page_cleaner_adapt_flush_sleep_time(void) /*=====================================*/ { lsn_t age = log_get_lsn() - log_sys->last_checkpoint_lsn; if (age > log_sys->max_modified_age_sync) { /* No sleep if in sync preflush zone */ return(0); } /* In all other cases flush list factors do not influence the page cleaner sleep time */ return(srv_cleaner_max_flush_time); } /******************************************************************//** page_cleaner thread tasked with flushing dirty pages from the buffer pool flush lists. As of now we'll have only one instance of this thread. @return a dummy parameter */ extern "C" UNIV_INTERN os_thread_ret_t DECLARE_THREAD(buf_flush_page_cleaner_thread)( /*==========================================*/ void* arg MY_ATTRIBUTE((unused))) /*!< in: a dummy parameter required by os_thread_create */ { my_thread_init(); ulint next_loop_time = ut_time_ms() + 1000; ulint n_flushed = 0; ulint last_activity = srv_get_activity_count(); ulint last_activity_time = ut_time_ms(); ut_ad(!srv_read_only_mode); #ifdef UNIV_PFS_THREAD pfs_register_thread(buf_page_cleaner_thread_key); #endif /* UNIV_PFS_THREAD */ srv_cleaner_tid = os_thread_get_tid(); os_thread_set_priority(srv_cleaner_tid, srv_sched_priority_cleaner); #ifdef UNIV_DEBUG_THREAD_CREATION fprintf(stderr, "InnoDB: page_cleaner thread running, id %lu\n", os_thread_pf(os_thread_get_curr_id())); #endif /* UNIV_DEBUG_THREAD_CREATION */ buf_page_cleaner_is_active = TRUE; while (srv_shutdown_state == SRV_SHUTDOWN_NONE) { ulint page_cleaner_sleep_time; ibool server_active; srv_current_thread_priority = srv_cleaner_thread_priority; page_cleaner_sleep_if_needed(next_loop_time); page_cleaner_sleep_time = page_cleaner_adapt_flush_sleep_time(); next_loop_time = ut_time_ms() + page_cleaner_sleep_time; server_active = srv_check_activity(last_activity); if (server_active || ut_time_ms() - last_activity_time < 1000) { if (server_active) { last_activity = srv_get_activity_count(); last_activity_time = ut_time_ms(); } /* Flush pages from flush_list if required */ page_cleaner_flush_pages_if_needed(); n_flushed = 0; } else { n_flushed = page_cleaner_do_flush_batch( PCT_IO(100), LSN_MAX); if (n_flushed) { MONITOR_INC_VALUE_CUMULATIVE( MONITOR_FLUSH_BACKGROUND_TOTAL_PAGE, MONITOR_FLUSH_BACKGROUND_COUNT, MONITOR_FLUSH_BACKGROUND_PAGES, n_flushed); } } /* Flush pages from end of LRU if required */ n_flushed = buf_flush_LRU_tail(); } ut_ad(srv_shutdown_state > 0); if (srv_fast_shutdown == 2) { /* In very fast shutdown we simulate a crash of buffer pool. We are not required to do any flushing */ goto thread_exit; } /* In case of normal and slow shutdown the page_cleaner thread must wait for all other activity in the server to die down. Note that we can start flushing the buffer pool as soon as the server enters shutdown phase but we must stay alive long enough to ensure that any work done by the master or purge threads is also flushed. During shutdown we pass through two stages. In the first stage, when SRV_SHUTDOWN_CLEANUP is set other threads like the master and the purge threads may be working as well. We start flushing the buffer pool but can't be sure that no new pages are being dirtied until we enter SRV_SHUTDOWN_FLUSH_PHASE phase. */ do { n_flushed = page_cleaner_do_flush_batch(PCT_IO(100), LSN_MAX); /* We sleep only if there are no pages to flush */ if (n_flushed == 0) { os_thread_sleep(100000); } } while (srv_shutdown_state == SRV_SHUTDOWN_CLEANUP); /* At this point all threads including the master and the purge thread must have been suspended. */ ut_a(srv_get_active_thread_type() == SRV_NONE); ut_a(srv_shutdown_state == SRV_SHUTDOWN_FLUSH_PHASE); /* We can now make a final sweep on flushing the buffer pool and exit after we have cleaned the whole buffer pool. It is important that we wait for any running batch that has been triggered by us to finish. Otherwise we can end up considering end of that batch as a finish of our final sweep and we'll come out of the loop leaving behind dirty pages in the flush_list */ buf_flush_wait_batch_end(NULL, BUF_FLUSH_LIST); buf_flush_wait_LRU_batch_end(); bool success; do { success = buf_flush_list(PCT_IO(100), LSN_MAX, &n_flushed); buf_flush_wait_batch_end(NULL, BUF_FLUSH_LIST); } while (!success || n_flushed > 0); /* Some sanity checks */ ut_a(srv_get_active_thread_type() == SRV_NONE); ut_a(srv_shutdown_state == SRV_SHUTDOWN_FLUSH_PHASE); for (ulint i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool = buf_pool_from_array(i); ut_a(UT_LIST_GET_LEN(buf_pool->flush_list) == 0); } /* We have lived our life. Time to die. */ thread_exit: buf_page_cleaner_is_active = FALSE; my_thread_end(); /* We count the number of threads in os_thread_exit(). A created thread should always use that to exit and not use return() to exit. */ os_thread_exit(NULL); OS_THREAD_DUMMY_RETURN; } /******************************************************************//** lru_manager thread tasked with performing LRU flushes and evictions to refill the buffer pool free lists. As of now we'll have only one instance of this thread. @return a dummy parameter */ extern "C" UNIV_INTERN os_thread_ret_t DECLARE_THREAD(buf_flush_lru_manager_thread)( /*==========================================*/ void* arg MY_ATTRIBUTE((unused))) /*!< in: a dummy parameter required by os_thread_create */ { ulint next_loop_time = ut_time_ms() + 1000; ulint lru_sleep_time = srv_cleaner_max_lru_time; ulint lru_n_flushed = 1; #ifdef UNIV_PFS_THREAD pfs_register_thread(buf_lru_manager_thread_key); #endif /* UNIV_PFS_THREAD */ srv_lru_manager_tid = os_thread_get_tid(); os_thread_set_priority(srv_lru_manager_tid, srv_sched_priority_cleaner); #ifdef UNIV_DEBUG_THREAD_CREATION fprintf(stderr, "InnoDB: lru_manager thread running, id %lu\n", os_thread_pf(os_thread_get_curr_id())); #endif /* UNIV_DEBUG_THREAD_CREATION */ buf_lru_manager_is_active = true; /* On server shutdown, the LRU manager thread runs through cleanup phase to provide free pages for the master and purge threads. */ while (srv_shutdown_state == SRV_SHUTDOWN_NONE || srv_shutdown_state == SRV_SHUTDOWN_CLEANUP) { srv_current_thread_priority = srv_cleaner_thread_priority; page_cleaner_sleep_if_needed(next_loop_time); page_cleaner_adapt_lru_sleep_time(&lru_sleep_time, lru_n_flushed); next_loop_time = ut_time_ms() + lru_sleep_time; lru_n_flushed = buf_flush_LRU_tail(); } buf_lru_manager_is_active = false; /* We count the number of threads in os_thread_exit(). A created thread should always use that to exit and not use return() to exit. */ os_thread_exit(NULL); OS_THREAD_DUMMY_RETURN; } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /** Functor to validate the flush list. */ struct Check { void operator()(const buf_page_t* elem) { ut_a(elem->in_flush_list); } }; /******************************************************************//** Validates the flush list. @return TRUE if ok */ static ibool buf_flush_validate_low( /*===================*/ buf_pool_t* buf_pool) /*!< in: Buffer pool instance */ { buf_page_t* bpage; const ib_rbt_node_t* rnode = NULL; ut_ad(buf_flush_list_mutex_own(buf_pool)); UT_LIST_VALIDATE(list, buf_page_t, buf_pool->flush_list, Check()); bpage = UT_LIST_GET_FIRST(buf_pool->flush_list); /* If we are in recovery mode i.e.: flush_rbt != NULL then each block in the flush_list must also be present in the flush_rbt. */ if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) { rnode = rbt_first(buf_pool->flush_rbt); } while (bpage != NULL) { const lsn_t om = bpage->oldest_modification; ut_ad(buf_pool_from_bpage(bpage) == buf_pool); ut_ad(bpage->in_flush_list); /* A page in buf_pool->flush_list can be in BUF_BLOCK_REMOVE_HASH state. This happens when a page is in the middle of being relocated. In that case the original descriptor can have this state and still be in the flush list waiting to acquire the buf_pool->flush_list_mutex to complete the relocation. */ ut_a(buf_page_in_file(bpage) || buf_page_get_state(bpage) == BUF_BLOCK_REMOVE_HASH); ut_a(om > 0); if (UNIV_LIKELY_NULL(buf_pool->flush_rbt)) { buf_page_t** prpage; ut_a(rnode); prpage = rbt_value(buf_page_t*, rnode); ut_a(*prpage); ut_a(*prpage == bpage); rnode = rbt_next(buf_pool->flush_rbt, rnode); } bpage = UT_LIST_GET_NEXT(list, bpage); ut_a(!bpage || om >= bpage->oldest_modification); } /* By this time we must have exhausted the traversal of flush_rbt (if active) as well. */ ut_a(rnode == NULL); return(TRUE); } /******************************************************************//** Validates the flush list. @return TRUE if ok */ UNIV_INTERN ibool buf_flush_validate( /*===============*/ buf_pool_t* buf_pool) /*!< buffer pool instance */ { ibool ret; buf_flush_list_mutex_enter(buf_pool); ret = buf_flush_validate_low(buf_pool); buf_flush_list_mutex_exit(buf_pool); return(ret); } #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #endif /* !UNIV_HOTBACKUP */ #ifdef UNIV_DEBUG /******************************************************************//** Check if there are any dirty pages that belong to a space id in the flush list in a particular buffer pool. @return number of dirty pages present in a single buffer pool */ UNIV_INTERN ulint buf_pool_get_dirty_pages_count( /*===========================*/ buf_pool_t* buf_pool, /*!< in: buffer pool */ ulint id) /*!< in: space id to check */ { ulint count = 0; buf_flush_list_mutex_enter(buf_pool); buf_page_t* bpage; for (bpage = UT_LIST_GET_FIRST(buf_pool->flush_list); bpage != 0; bpage = UT_LIST_GET_NEXT(list, bpage)) { ut_ad(buf_page_in_file(bpage) || buf_page_get_state(bpage) == BUF_BLOCK_REMOVE_HASH); ut_ad(bpage->in_flush_list); ut_ad(bpage->oldest_modification > 0); if (bpage->space == id) { ++count; } } buf_flush_list_mutex_exit(buf_pool); return(count); } /******************************************************************//** Check if there are any dirty pages that belong to a space id in the flush list. @return number of dirty pages present in all the buffer pools */ UNIV_INTERN ulint buf_flush_get_dirty_pages_count( /*============================*/ ulint id) /*!< in: space id to check */ { ulint count = 0; for (ulint i = 0; i < srv_buf_pool_instances; ++i) { buf_pool_t* buf_pool; buf_pool = buf_pool_from_array(i); count += buf_pool_get_dirty_pages_count(buf_pool, id); } return(count); } #endif /* UNIV_DEBUG */