/***************************************************************************** Copyright (c) 1996, 2016, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2012, Facebook Inc. Copyright (c) 2013, 2017, MariaDB Corporation. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA *****************************************************************************/ /******************************************************************//** @file dict/dict0dict.cc Data dictionary system Created 1/8/1996 Heikki Tuuri ***********************************************************************/ #include "dict0dict.h" #include "fts0fts.h" #include "fil0fil.h" #include #include #ifdef UNIV_NONINL #include "dict0dict.ic" #include "dict0priv.ic" #endif /** dummy index for ROW_FORMAT=REDUNDANT supremum and infimum records */ UNIV_INTERN dict_index_t* dict_ind_redundant; /** dummy index for ROW_FORMAT=COMPACT supremum and infimum records */ UNIV_INTERN dict_index_t* dict_ind_compact; #if defined UNIV_DEBUG || defined UNIV_IBUF_DEBUG /** Flag to control insert buffer debugging. */ extern UNIV_INTERN uint ibuf_debug; #endif /* UNIV_DEBUG || UNIV_IBUF_DEBUG */ /********************************************************************** Issue a warning that the row is too big. */ void ib_warn_row_too_big(const dict_table_t* table); #ifndef UNIV_HOTBACKUP #include "buf0buf.h" #include "data0type.h" #include "mach0data.h" #include "dict0boot.h" #include "dict0mem.h" #include "dict0crea.h" #include "dict0stats.h" #include "trx0undo.h" #include "btr0btr.h" #include "btr0cur.h" #include "btr0sea.h" #include "os0once.h" #include "page0zip.h" #include "page0page.h" #include "pars0pars.h" #include "pars0sym.h" #include "que0que.h" #include "rem0cmp.h" #include "fts0fts.h" #include "fts0types.h" #include "m_ctype.h" /* my_isspace() */ #include "ha_prototypes.h" /* innobase_strcasecmp(), innobase_casedn_str() */ #include "srv0mon.h" #include "srv0start.h" #include "lock0lock.h" #include "dict0priv.h" #include "row0upd.h" #include "row0mysql.h" #include "row0merge.h" #include "row0log.h" #include "ut0ut.h" /* ut_format_name() */ #include "m_string.h" #include "my_sys.h" #include "mysqld.h" /* system_charset_info */ #include "strfunc.h" /* strconvert() */ #include /** the dictionary system */ UNIV_INTERN dict_sys_t* dict_sys = NULL; /** @brief the data dictionary rw-latch protecting dict_sys table create, drop, etc. reserve this in X-mode; implicit or backround operations purge, rollback, foreign key checks reserve this in S-mode; we cannot trust that MySQL protects implicit or background operations a table drop since MySQL does not know of them; therefore we need this; NOTE: a transaction which reserves this must keep book on the mode in trx_t::dict_operation_lock_mode */ UNIV_INTERN rw_lock_t dict_operation_lock; /** Percentage of compression failures that are allowed in a single round */ UNIV_INTERN ulong zip_failure_threshold_pct = 5; /** Maximum percentage of a page that can be allowed as a pad to avoid compression failures */ UNIV_INTERN ulong zip_pad_max = 50; /* Keys to register rwlocks and mutexes with performance schema */ #ifdef UNIV_PFS_RWLOCK UNIV_INTERN mysql_pfs_key_t dict_operation_lock_key; UNIV_INTERN mysql_pfs_key_t index_tree_rw_lock_key; UNIV_INTERN mysql_pfs_key_t index_online_log_key; UNIV_INTERN mysql_pfs_key_t dict_table_stats_key; #endif /* UNIV_PFS_RWLOCK */ #ifdef UNIV_PFS_MUTEX UNIV_INTERN mysql_pfs_key_t zip_pad_mutex_key; UNIV_INTERN mysql_pfs_key_t dict_sys_mutex_key; UNIV_INTERN mysql_pfs_key_t dict_foreign_err_mutex_key; #endif /* UNIV_PFS_MUTEX */ #define DICT_HEAP_SIZE 100 /*!< initial memory heap size when creating a table or index object */ #define DICT_POOL_PER_TABLE_HASH 512 /*!< buffer pool max size per table hash table fixed size in bytes */ #define DICT_POOL_PER_VARYING 4 /*!< buffer pool max size per data dictionary varying size in bytes */ /** Identifies generated InnoDB foreign key names */ static char dict_ibfk[] = "_ibfk_"; bool innodb_table_stats_not_found = false; bool innodb_index_stats_not_found = false; static bool innodb_table_stats_not_found_reported = false; static bool innodb_index_stats_not_found_reported = false; /*******************************************************************//** Tries to find column names for the index and sets the col field of the index. @return TRUE if the column names were found */ static ibool dict_index_find_cols( /*=================*/ dict_table_t* table, /*!< in: table */ dict_index_t* index); /*!< in: index */ /*******************************************************************//** Builds the internal dictionary cache representation for a clustered index, containing also system fields not defined by the user. @return own: the internal representation of the clustered index */ static dict_index_t* dict_index_build_internal_clust( /*============================*/ const dict_table_t* table, /*!< in: table */ dict_index_t* index); /*!< in: user representation of a clustered index */ /*******************************************************************//** Builds the internal dictionary cache representation for a non-clustered index, containing also system fields not defined by the user. @return own: the internal representation of the non-clustered index */ static dict_index_t* dict_index_build_internal_non_clust( /*================================*/ const dict_table_t* table, /*!< in: table */ dict_index_t* index); /*!< in: user representation of a non-clustered index */ /**********************************************************************//** Builds the internal dictionary cache representation for an FTS index. @return own: the internal representation of the FTS index */ static dict_index_t* dict_index_build_internal_fts( /*==========================*/ dict_table_t* table, /*!< in: table */ dict_index_t* index); /*!< in: user representation of an FTS index */ /**********************************************************************//** Prints a column data. */ static void dict_col_print_low( /*===============*/ const dict_table_t* table, /*!< in: table */ const dict_col_t* col); /*!< in: column */ /**********************************************************************//** Prints an index data. */ static void dict_index_print_low( /*=================*/ dict_index_t* index); /*!< in: index */ /**********************************************************************//** Prints a field data. */ static void dict_field_print_low( /*=================*/ const dict_field_t* field); /*!< in: field */ /**********************************************************************//** Removes an index from the dictionary cache. */ static void dict_index_remove_from_cache_low( /*=============================*/ dict_table_t* table, /*!< in/out: table */ dict_index_t* index, /*!< in, own: index */ ibool lru_evict); /*!< in: TRUE if page being evicted to make room in the table LRU list */ #ifdef UNIV_DEBUG /**********************************************************************//** Validate the dictionary table LRU list. @return TRUE if validate OK */ static ibool dict_lru_validate(void); /*===================*/ /**********************************************************************//** Check if table is in the dictionary table LRU list. @return TRUE if table found */ static ibool dict_lru_find_table( /*================*/ const dict_table_t* find_table); /*!< in: table to find */ /**********************************************************************//** Check if a table exists in the dict table non-LRU list. @return TRUE if table found */ static ibool dict_non_lru_find_table( /*====================*/ const dict_table_t* find_table); /*!< in: table to find */ #endif /* UNIV_DEBUG */ /* Stream for storing detailed information about the latest foreign key and unique key errors. Only created if !srv_read_only_mode */ UNIV_INTERN FILE* dict_foreign_err_file = NULL; /* mutex protecting the foreign and unique error buffers */ UNIV_INTERN ib_mutex_t dict_foreign_err_mutex; /******************************************************************//** Makes all characters in a NUL-terminated UTF-8 string lower case. */ UNIV_INTERN void dict_casedn_str( /*============*/ char* a) /*!< in/out: string to put in lower case */ { innobase_casedn_str(a); } /********************************************************************//** Checks if the database name in two table names is the same. @return TRUE if same db name */ UNIV_INTERN ibool dict_tables_have_same_db( /*=====================*/ const char* name1, /*!< in: table name in the form dbname '/' tablename */ const char* name2) /*!< in: table name in the form dbname '/' tablename */ { for (; *name1 == *name2; name1++, name2++) { if (*name1 == '/') { return(TRUE); } ut_a(*name1); /* the names must contain '/' */ } return(FALSE); } /********************************************************************//** Return the end of table name where we have removed dbname and '/'. @return table name */ UNIV_INTERN const char* dict_remove_db_name( /*================*/ const char* name) /*!< in: table name in the form dbname '/' tablename */ { const char* s = strchr(name, '/'); ut_a(s); return(s + 1); } /********************************************************************//** Get the database name length in a table name. @return database name length */ UNIV_INTERN ulint dict_get_db_name_len( /*=================*/ const char* name) /*!< in: table name in the form dbname '/' tablename */ { const char* s; s = strchr(name, '/'); ut_a(s); return(s - name); } /********************************************************************//** Reserves the dictionary system mutex for MySQL. */ UNIV_INTERN void dict_mutex_enter_for_mysql_func(const char * file, ulint line) /*============================*/ { mutex_enter_func(&(dict_sys->mutex), file, line); } /********************************************************************//** Releases the dictionary system mutex for MySQL. */ UNIV_INTERN void dict_mutex_exit_for_mysql(void) /*===========================*/ { mutex_exit(&(dict_sys->mutex)); } /** Allocate and init a dict_table_t's stats latch. This function must not be called concurrently on the same table object. @param[in,out] table_void table whose stats latch to create */ static void dict_table_stats_latch_alloc( void* table_void) { dict_table_t* table = static_cast(table_void); table->stats_latch = new(std::nothrow) rw_lock_t; ut_a(table->stats_latch != NULL); rw_lock_create(dict_table_stats_key, table->stats_latch, SYNC_INDEX_TREE); } /** Deinit and free a dict_table_t's stats latch. This function must not be called concurrently on the same table object. @param[in,out] table table whose stats latch to free */ static void dict_table_stats_latch_free( dict_table_t* table) { rw_lock_free(table->stats_latch); delete table->stats_latch; } /** Create a dict_table_t's stats latch or delay for lazy creation. This function is only called from either single threaded environment or from a thread that has not shared the table object with other threads. @param[in,out] table table whose stats latch to create @param[in] enabled if false then the latch is disabled and dict_table_stats_lock()/unlock() become noop on this table. */ void dict_table_stats_latch_create( dict_table_t* table, bool enabled) { if (!enabled) { table->stats_latch = NULL; table->stats_latch_created = os_once::DONE; return; } #ifdef HAVE_ATOMIC_BUILTINS /* We create this lazily the first time it is used. */ table->stats_latch = NULL; table->stats_latch_created = os_once::NEVER_DONE; #else /* HAVE_ATOMIC_BUILTINS */ dict_table_stats_latch_alloc(table); table->stats_latch_created = os_once::DONE; #endif /* HAVE_ATOMIC_BUILTINS */ } /** Destroy a dict_table_t's stats latch. This function is only called from either single threaded environment or from a thread that has not shared the table object with other threads. @param[in,out] table table whose stats latch to destroy */ void dict_table_stats_latch_destroy( dict_table_t* table) { if (table->stats_latch_created == os_once::DONE && table->stats_latch != NULL) { dict_table_stats_latch_free(table); } } /**********************************************************************//** Lock the appropriate latch to protect a given table's statistics. */ UNIV_INTERN void dict_table_stats_lock( /*==================*/ dict_table_t* table, /*!< in: table */ ulint latch_mode) /*!< in: RW_S_LATCH or RW_X_LATCH */ { ut_ad(table != NULL); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); #ifdef HAVE_ATOMIC_BUILTINS os_once::do_or_wait_for_done( &table->stats_latch_created, dict_table_stats_latch_alloc, table); #else /* HAVE_ATOMIC_BUILTINS */ ut_ad(table->stats_latch_created == os_once::DONE); #endif /* HAVE_ATOMIC_BUILTINS */ if (table->stats_latch == NULL) { /* This is a dummy table object that is private in the current thread and is not shared between multiple threads, thus we skip any locking. */ return; } switch (latch_mode) { case RW_S_LATCH: rw_lock_s_lock(table->stats_latch); break; case RW_X_LATCH: rw_lock_x_lock(table->stats_latch); break; case RW_NO_LATCH: /* fall through */ default: ut_error; } } /**********************************************************************//** Unlock the latch that has been locked by dict_table_stats_lock() */ UNIV_INTERN void dict_table_stats_unlock( /*====================*/ dict_table_t* table, /*!< in: table */ ulint latch_mode) /*!< in: RW_S_LATCH or RW_X_LATCH */ { ut_ad(table != NULL); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); if (table->stats_latch == NULL) { /* This is a dummy table object that is private in the current thread and is not shared between multiple threads, thus we skip any locking. */ return; } switch (latch_mode) { case RW_S_LATCH: rw_lock_s_unlock(table->stats_latch); break; case RW_X_LATCH: rw_lock_x_unlock(table->stats_latch); break; case RW_NO_LATCH: /* fall through */ default: ut_error; } } /**********************************************************************//** Try to drop any indexes after an aborted index creation. This can also be after a server kill during DROP INDEX. */ static void dict_table_try_drop_aborted( /*========================*/ dict_table_t* table, /*!< in: table, or NULL if it needs to be looked up again */ table_id_t table_id, /*!< in: table identifier */ ulint ref_count) /*!< in: expected table->n_ref_count */ { trx_t* trx; trx = trx_allocate_for_background(); trx->op_info = "try to drop any indexes after an aborted index creation"; row_mysql_lock_data_dictionary(trx); trx_set_dict_operation(trx, TRX_DICT_OP_INDEX); if (table == NULL) { table = dict_table_open_on_id_low( table_id, DICT_ERR_IGNORE_NONE, FALSE); } else { ut_ad(table->id == table_id); } if (table && table->n_ref_count == ref_count && table->drop_aborted) { /* Silence a debug assertion in row_merge_drop_indexes(). */ ut_d(table->n_ref_count++); row_merge_drop_indexes(trx, table, TRUE); ut_d(table->n_ref_count--); ut_ad(table->n_ref_count == ref_count); trx_commit_for_mysql(trx); } row_mysql_unlock_data_dictionary(trx); trx_free_for_background(trx); } /**********************************************************************//** When opening a table, try to drop any indexes after an aborted index creation. Release the dict_sys->mutex. */ static void dict_table_try_drop_aborted_and_mutex_exit( /*=======================================*/ dict_table_t* table, /*!< in: table (may be NULL) */ ibool try_drop) /*!< in: FALSE if should try to drop indexes whose online creation was aborted */ { if (try_drop && table != NULL && table->drop_aborted && table->n_ref_count == 1 && dict_table_get_first_index(table)) { /* Attempt to drop the indexes whose online creation was aborted. */ table_id_t table_id = table->id; mutex_exit(&dict_sys->mutex); dict_table_try_drop_aborted(table, table_id, 1); } else { mutex_exit(&dict_sys->mutex); } } /********************************************************************//** Decrements the count of open handles to a table. */ UNIV_INTERN void dict_table_close( /*=============*/ dict_table_t* table, /*!< in/out: table */ ibool dict_locked, /*!< in: TRUE=data dictionary locked */ ibool try_drop) /*!< in: TRUE=try to drop any orphan indexes after an aborted online index creation */ { if (!dict_locked) { mutex_enter(&dict_sys->mutex); } ut_ad(mutex_own(&dict_sys->mutex)); ut_a(table->n_ref_count > 0); const bool last_handle = !--table->n_ref_count; /* Force persistent stats re-read upon next open of the table so that FLUSH TABLE can be used to forcibly fetch stats from disk if they have been manually modified. We reset table->stat_initialized only if table reference count is 0 because we do not want too frequent stats re-reads (e.g. in other cases than FLUSH TABLE). */ if (last_handle && strchr(table->name, '/') != NULL && dict_stats_is_persistent_enabled(table)) { dict_stats_deinit(table); } MONITOR_DEC(MONITOR_TABLE_REFERENCE); ut_ad(dict_lru_validate()); #ifdef UNIV_DEBUG if (table->can_be_evicted) { ut_ad(dict_lru_find_table(table)); } else { ut_ad(dict_non_lru_find_table(table)); } #endif /* UNIV_DEBUG */ if (!dict_locked) { table_id_t table_id = table->id; const bool drop_aborted = last_handle && try_drop && table->drop_aborted && dict_table_get_first_index(table); mutex_exit(&dict_sys->mutex); if (drop_aborted) { dict_table_try_drop_aborted(NULL, table_id, 0); } } } #endif /* !UNIV_HOTBACKUP */ /**********************************************************************//** Returns a column's name. @return column name. NOTE: not guaranteed to stay valid if table is modified in any way (columns added, etc.). */ UNIV_INTERN const char* dict_table_get_col_name( /*====================*/ const dict_table_t* table, /*!< in: table */ ulint col_nr) /*!< in: column number */ { ulint i; const char* s; ut_ad(table); ut_ad(col_nr < table->n_def); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); s = table->col_names; if (s) { for (i = 0; i < col_nr; i++) { s += strlen(s) + 1; } } return(s); } #ifndef UNIV_HOTBACKUP /** Allocate and init the autoinc latch of a given table. This function must not be called concurrently on the same table object. @param[in,out] table_void table whose autoinc latch to create */ void dict_table_autoinc_alloc( void* table_void) { dict_table_t* table = static_cast(table_void); table->autoinc_mutex = new (std::nothrow) ib_mutex_t(); ut_a(table->autoinc_mutex != NULL); mutex_create(autoinc_mutex_key, table->autoinc_mutex, SYNC_DICT_AUTOINC_MUTEX); } /** Allocate and init the zip_pad_mutex of a given index. This function must not be called concurrently on the same index object. @param[in,out] index_void index whose zip_pad_mutex to create */ void dict_index_zip_pad_alloc( void* index_void) { dict_index_t* index = static_cast(index_void); index->zip_pad.mutex = new (std::nothrow) os_fast_mutex_t; ut_a(index->zip_pad.mutex != NULL); os_fast_mutex_init(zip_pad_mutex_key, index->zip_pad.mutex); } /********************************************************************//** Acquire the autoinc lock. */ UNIV_INTERN void dict_table_autoinc_lock( /*====================*/ dict_table_t* table) /*!< in/out: table */ { #ifdef HAVE_ATOMIC_BUILTINS os_once::do_or_wait_for_done( &table->autoinc_mutex_created, dict_table_autoinc_alloc, table); #else /* HAVE_ATOMIC_BUILTINS */ ut_ad(table->autoinc_mutex_created == os_once::DONE); #endif /* HAVE_ATOMIC_BUILTINS */ mutex_enter(table->autoinc_mutex); } /** Acquire the zip_pad_mutex latch. @param[in,out] index the index whose zip_pad_mutex to acquire.*/ void dict_index_zip_pad_lock( dict_index_t* index) { #ifdef HAVE_ATOMIC_BUILTINS os_once::do_or_wait_for_done( &index->zip_pad.mutex_created, dict_index_zip_pad_alloc, index); #else /* HAVE_ATOMIC_BUILTINS */ ut_ad(index->zip_pad.mutex_created == os_once::DONE); #endif /* HAVE_ATOMIC_BUILTINS */ os_fast_mutex_lock(index->zip_pad.mutex); } /********************************************************************//** Unconditionally set the autoinc counter. */ UNIV_INTERN void dict_table_autoinc_initialize( /*==========================*/ dict_table_t* table, /*!< in/out: table */ ib_uint64_t value) /*!< in: next value to assign to a row */ { ut_ad(dict_table_autoinc_own(table)); table->autoinc = value; } /************************************************************************ Get all the FTS indexes on a table. @return number of FTS indexes */ UNIV_INTERN ulint dict_table_get_all_fts_indexes( /*===========================*/ dict_table_t* table, /*!< in: table */ ib_vector_t* indexes) /*!< out: all FTS indexes on this table */ { dict_index_t* index; ut_a(ib_vector_size(indexes) == 0); for (index = dict_table_get_first_index(table); index; index = dict_table_get_next_index(index)) { if (index->type == DICT_FTS) { ib_vector_push(indexes, &index); } } return(ib_vector_size(indexes)); } /** Store autoinc value when the table is evicted. @param[in] table table evicted */ UNIV_INTERN void dict_table_autoinc_store( const dict_table_t* table) { ut_ad(mutex_own(&dict_sys->mutex)); if (table->autoinc != 0) { ut_ad(dict_sys->autoinc_map->find(table->id) == dict_sys->autoinc_map->end()); dict_sys->autoinc_map->insert( std::pair( table->id, table->autoinc)); } } /** Restore autoinc value when the table is loaded. @param[in] table table loaded */ UNIV_INTERN void dict_table_autoinc_restore( dict_table_t* table) { ut_ad(mutex_own(&dict_sys->mutex)); autoinc_map_t::iterator it; it = dict_sys->autoinc_map->find(table->id); if (it != dict_sys->autoinc_map->end()) { table->autoinc = it->second; ut_ad(table->autoinc != 0); dict_sys->autoinc_map->erase(it); } } /********************************************************************//** Reads the next autoinc value (== autoinc counter value), 0 if not yet initialized. @return value for a new row, or 0 */ UNIV_INTERN ib_uint64_t dict_table_autoinc_read( /*====================*/ const dict_table_t* table) /*!< in: table */ { ut_ad(dict_table_autoinc_own(table)); return(table->autoinc); } /********************************************************************//** Updates the autoinc counter if the value supplied is greater than the current value. */ UNIV_INTERN void dict_table_autoinc_update_if_greater( /*=================================*/ dict_table_t* table, /*!< in/out: table */ ib_uint64_t value) /*!< in: value which was assigned to a row */ { ut_ad(dict_table_autoinc_own(table)); if (value > table->autoinc) { table->autoinc = value; } } /********************************************************************//** Release the autoinc lock. */ UNIV_INTERN void dict_table_autoinc_unlock( /*======================*/ dict_table_t* table) /*!< in/out: table */ { mutex_exit(table->autoinc_mutex); } #endif /* !UNIV_HOTBACKUP */ /********************************************************************//** Looks for column n in an index. @return position in internal representation of the index; ULINT_UNDEFINED if not contained */ UNIV_INTERN ulint dict_index_get_nth_col_or_prefix_pos( /*=================================*/ const dict_index_t* index, /*!< in: index */ ulint n, /*!< in: column number */ ibool inc_prefix, /*!< in: TRUE=consider column prefixes too */ ulint* prefix_col_pos) /*!< out: col num if prefix */ { const dict_field_t* field; const dict_col_t* col; ulint pos; ulint n_fields; ulint prefixed_pos_dummy; ut_ad(index); ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); ut_ad((inc_prefix && !prefix_col_pos) || (!inc_prefix)); if (!prefix_col_pos) { prefix_col_pos = &prefixed_pos_dummy; } *prefix_col_pos = ULINT_UNDEFINED; if (!prefix_col_pos) { prefix_col_pos = &prefixed_pos_dummy; } *prefix_col_pos = ULINT_UNDEFINED; col = dict_table_get_nth_col(index->table, n); if (dict_index_is_clust(index)) { return(dict_col_get_clust_pos(col, index)); } n_fields = dict_index_get_n_fields(index); for (pos = 0; pos < n_fields; pos++) { field = dict_index_get_nth_field(index, pos); if (col == field->col) { *prefix_col_pos = pos; if (inc_prefix || field->prefix_len == 0) { return(pos); } } } return(ULINT_UNDEFINED); } #ifndef UNIV_HOTBACKUP /********************************************************************//** Returns TRUE if the index contains a column or a prefix of that column. @return TRUE if contains the column or its prefix */ UNIV_INTERN ibool dict_index_contains_col_or_prefix( /*==============================*/ const dict_index_t* index, /*!< in: index */ ulint n) /*!< in: column number */ { const dict_field_t* field; const dict_col_t* col; ulint pos; ulint n_fields; ut_ad(index); ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); if (dict_index_is_clust(index)) { return(TRUE); } col = dict_table_get_nth_col(index->table, n); n_fields = dict_index_get_n_fields(index); for (pos = 0; pos < n_fields; pos++) { field = dict_index_get_nth_field(index, pos); if (col == field->col) { return(TRUE); } } return(FALSE); } /********************************************************************//** Looks for a matching field in an index. The column has to be the same. The column in index must be complete, or must contain a prefix longer than the column in index2. That is, we must be able to construct the prefix in index2 from the prefix in index. @return position in internal representation of the index; ULINT_UNDEFINED if not contained */ UNIV_INTERN ulint dict_index_get_nth_field_pos( /*=========================*/ const dict_index_t* index, /*!< in: index from which to search */ const dict_index_t* index2, /*!< in: index */ ulint n) /*!< in: field number in index2 */ { const dict_field_t* field; const dict_field_t* field2; ulint n_fields; ulint pos; ut_ad(index); ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); field2 = dict_index_get_nth_field(index2, n); n_fields = dict_index_get_n_fields(index); for (pos = 0; pos < n_fields; pos++) { field = dict_index_get_nth_field(index, pos); if (field->col == field2->col && (field->prefix_len == 0 || (field->prefix_len >= field2->prefix_len && field2->prefix_len != 0))) { return(pos); } } return(ULINT_UNDEFINED); } /**********************************************************************//** Returns a table object based on table id. @return table, NULL if does not exist */ UNIV_INTERN dict_table_t* dict_table_open_on_id( /*==================*/ table_id_t table_id, /*!< in: table id */ ibool dict_locked, /*!< in: TRUE=data dictionary locked */ dict_table_op_t table_op) /*!< in: operation to perform */ { dict_table_t* table; if (!dict_locked) { mutex_enter(&dict_sys->mutex); } ut_ad(mutex_own(&dict_sys->mutex)); table = dict_table_open_on_id_low( table_id, table_op == DICT_TABLE_OP_LOAD_TABLESPACE ? DICT_ERR_IGNORE_RECOVER_LOCK : DICT_ERR_IGNORE_NONE, table_op == DICT_TABLE_OP_OPEN_ONLY_IF_CACHED); if (table != NULL) { if (table->can_be_evicted) { dict_move_to_mru(table); } ++table->n_ref_count; MONITOR_INC(MONITOR_TABLE_REFERENCE); } if (!dict_locked) { dict_table_try_drop_aborted_and_mutex_exit( table, table_op == DICT_TABLE_OP_DROP_ORPHAN); } return(table); } /********************************************************************//** Looks for column n position in the clustered index. @return position in internal representation of the clustered index */ UNIV_INTERN ulint dict_table_get_nth_col_pos( /*=======================*/ const dict_table_t* table, /*!< in: table */ ulint n) /*!< in: column number */ { return(dict_index_get_nth_col_pos(dict_table_get_first_index(table), n, NULL)); } /********************************************************************//** Checks if a column is in the ordering columns of the clustered index of a table. Column prefixes are treated like whole columns. @return TRUE if the column, or its prefix, is in the clustered key */ UNIV_INTERN ibool dict_table_col_in_clustered_key( /*============================*/ const dict_table_t* table, /*!< in: table */ ulint n) /*!< in: column number */ { const dict_index_t* index; const dict_field_t* field; const dict_col_t* col; ulint pos; ulint n_fields; ut_ad(table); col = dict_table_get_nth_col(table, n); index = dict_table_get_first_index(table); n_fields = dict_index_get_n_unique(index); for (pos = 0; pos < n_fields; pos++) { field = dict_index_get_nth_field(index, pos); if (col == field->col) { return(TRUE); } } return(FALSE); } /**********************************************************************//** Inits the data dictionary module. */ UNIV_INTERN void dict_init(void) /*===========*/ { dict_sys = static_cast(mem_zalloc(sizeof(*dict_sys))); mutex_create(dict_sys_mutex_key, &dict_sys->mutex, SYNC_DICT); dict_sys->table_hash = hash_create(buf_pool_get_curr_size() / (DICT_POOL_PER_TABLE_HASH * UNIV_WORD_SIZE)); dict_sys->table_id_hash = hash_create(buf_pool_get_curr_size() / (DICT_POOL_PER_TABLE_HASH * UNIV_WORD_SIZE)); rw_lock_create(dict_operation_lock_key, &dict_operation_lock, SYNC_DICT_OPERATION); if (!srv_read_only_mode) { dict_foreign_err_file = os_file_create_tmpfile(NULL); ut_a(dict_foreign_err_file); mutex_create(dict_foreign_err_mutex_key, &dict_foreign_err_mutex, SYNC_NO_ORDER_CHECK); } dict_sys->autoinc_map = new autoinc_map_t(); } /**********************************************************************//** Move to the most recently used segment of the LRU list. */ UNIV_INTERN void dict_move_to_mru( /*=============*/ dict_table_t* table) /*!< in: table to move to MRU */ { ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(dict_lru_validate()); ut_ad(dict_lru_find_table(table)); ut_a(table->can_be_evicted); UT_LIST_REMOVE(table_LRU, dict_sys->table_LRU, table); UT_LIST_ADD_FIRST(table_LRU, dict_sys->table_LRU, table); ut_ad(dict_lru_validate()); } /**********************************************************************//** Returns a table object and increment its open handle count. NOTE! This is a high-level function to be used mainly from outside the 'dict' module. Inside this directory dict_table_get_low is usually the appropriate function. @return table, NULL if does not exist */ UNIV_INTERN dict_table_t* dict_table_open_on_name( /*====================*/ const char* table_name, /*!< in: table name */ ibool dict_locked, /*!< in: TRUE=data dictionary locked */ ibool try_drop, /*!< in: TRUE=try to drop any orphan indexes after an aborted online index creation */ dict_err_ignore_t ignore_err) /*!< in: error to be ignored when loading a table definition */ { dict_table_t* table; if (!dict_locked) { mutex_enter(&(dict_sys->mutex)); } ut_ad(table_name); ut_ad(mutex_own(&dict_sys->mutex)); table = dict_table_check_if_in_cache_low(table_name); if (table == NULL) { table = dict_load_table(table_name, TRUE, ignore_err); } ut_ad(!table || table->cached); if (table != NULL) { /* If table is encrypted or corrupted */ if (ignore_err == DICT_ERR_IGNORE_NONE && !table->is_readable()) { /* Make life easy for drop table. */ if (table->can_be_evicted) { dict_table_move_from_lru_to_non_lru(table); } if (table->corrupted) { if (!dict_locked) { mutex_exit(&dict_sys->mutex); } char buf[MAX_FULL_NAME_LEN]; ut_format_name(table->name, TRUE, buf, sizeof(buf)); ib_logf(IB_LOG_LEVEL_ERROR, "Table %s is corrupted. Please " "drop the table and recreate.", buf); return(NULL); } if (table->can_be_evicted) { dict_move_to_mru(table); } ++table->n_ref_count; if (!dict_locked) { mutex_exit(&dict_sys->mutex); } return (table); } if (table->can_be_evicted) { dict_move_to_mru(table); } ++table->n_ref_count; MONITOR_INC(MONITOR_TABLE_REFERENCE); } ut_ad(dict_lru_validate()); if (!dict_locked) { dict_table_try_drop_aborted_and_mutex_exit(table, try_drop); } return(table); } #endif /* !UNIV_HOTBACKUP */ /**********************************************************************//** Adds system columns to a table object. */ UNIV_INTERN void dict_table_add_system_columns( /*==========================*/ dict_table_t* table, /*!< in/out: table */ mem_heap_t* heap) /*!< in: temporary heap */ { ut_ad(table); ut_ad(table->n_def == table->n_cols - DATA_N_SYS_COLS); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); ut_ad(!table->cached); /* NOTE: the system columns MUST be added in the following order (so that they can be indexed by the numerical value of DATA_ROW_ID, etc.) and as the last columns of the table memory object. The clustered index will not always physically contain all system columns. */ dict_mem_table_add_col(table, heap, "DB_ROW_ID", DATA_SYS, DATA_ROW_ID | DATA_NOT_NULL, DATA_ROW_ID_LEN); #if DATA_ROW_ID != 0 #error "DATA_ROW_ID != 0" #endif dict_mem_table_add_col(table, heap, "DB_TRX_ID", DATA_SYS, DATA_TRX_ID | DATA_NOT_NULL, DATA_TRX_ID_LEN); #if DATA_TRX_ID != 1 #error "DATA_TRX_ID != 1" #endif dict_mem_table_add_col(table, heap, "DB_ROLL_PTR", DATA_SYS, DATA_ROLL_PTR | DATA_NOT_NULL, DATA_ROLL_PTR_LEN); #if DATA_ROLL_PTR != 2 #error "DATA_ROLL_PTR != 2" #endif /* This check reminds that if a new system column is added to the program, it should be dealt with here */ #if DATA_N_SYS_COLS != 3 #error "DATA_N_SYS_COLS != 3" #endif } #ifndef UNIV_HOTBACKUP /**********************************************************************//** Adds a table object to the dictionary cache. */ UNIV_INTERN void dict_table_add_to_cache( /*====================*/ dict_table_t* table, /*!< in: table */ ibool can_be_evicted, /*!< in: TRUE if can be evicted */ mem_heap_t* heap) /*!< in: temporary heap */ { ulint fold; ulint id_fold; ulint i; ulint row_len; ut_ad(dict_lru_validate()); /* The lower limit for what we consider a "big" row */ #define BIG_ROW_SIZE 1024 ut_ad(mutex_own(&(dict_sys->mutex))); dict_table_add_system_columns(table, heap); table->cached = TRUE; fold = ut_fold_string(table->name); id_fold = ut_fold_ull(table->id); row_len = 0; for (i = 0; i < table->n_def; i++) { ulint col_len = dict_col_get_max_size( dict_table_get_nth_col(table, i)); row_len += col_len; /* If we have a single unbounded field, or several gigantic fields, mark the maximum row size as BIG_ROW_SIZE. */ if (row_len >= BIG_ROW_SIZE || col_len >= BIG_ROW_SIZE) { row_len = BIG_ROW_SIZE; break; } } table->big_rows = row_len >= BIG_ROW_SIZE; /* Look for a table with the same name: error if such exists */ { dict_table_t* table2; HASH_SEARCH(name_hash, dict_sys->table_hash, fold, dict_table_t*, table2, ut_ad(table2->cached), ut_strcmp(table2->name, table->name) == 0); ut_a(table2 == NULL); #ifdef UNIV_DEBUG /* Look for the same table pointer with a different name */ HASH_SEARCH_ALL(name_hash, dict_sys->table_hash, dict_table_t*, table2, ut_ad(table2->cached), table2 == table); ut_ad(table2 == NULL); #endif /* UNIV_DEBUG */ } /* Look for a table with the same id: error if such exists */ { dict_table_t* table2; HASH_SEARCH(id_hash, dict_sys->table_id_hash, id_fold, dict_table_t*, table2, ut_ad(table2->cached), table2->id == table->id); ut_a(table2 == NULL); #ifdef UNIV_DEBUG /* Look for the same table pointer with a different id */ HASH_SEARCH_ALL(id_hash, dict_sys->table_id_hash, dict_table_t*, table2, ut_ad(table2->cached), table2 == table); ut_ad(table2 == NULL); #endif /* UNIV_DEBUG */ } /* Add table to hash table of tables */ HASH_INSERT(dict_table_t, name_hash, dict_sys->table_hash, fold, table); /* Add table to hash table of tables based on table id */ HASH_INSERT(dict_table_t, id_hash, dict_sys->table_id_hash, id_fold, table); table->can_be_evicted = can_be_evicted; if (table->can_be_evicted) { UT_LIST_ADD_FIRST(table_LRU, dict_sys->table_LRU, table); } else { UT_LIST_ADD_FIRST(table_LRU, dict_sys->table_non_LRU, table); } dict_table_autoinc_restore(table); ut_ad(dict_lru_validate()); } /**********************************************************************//** Test whether a table can be evicted from the LRU cache. @return TRUE if table can be evicted. */ static ibool dict_table_can_be_evicted( /*======================*/ const dict_table_t* table) /*!< in: table to test */ { ut_ad(mutex_own(&dict_sys->mutex)); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&dict_operation_lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_a(table->can_be_evicted); ut_a(table->foreign_set.empty()); ut_a(table->referenced_set.empty()); if (table->n_ref_count == 0) { dict_index_t* index; /* The transaction commit and rollback are called from outside the handler interface. This means that there is a window where the table->n_ref_count can be zero but the table instance is in "use". */ if (lock_table_has_locks(table)) { return(FALSE); } for (index = dict_table_get_first_index(table); index != NULL; index = dict_table_get_next_index(index)) { btr_search_t* info = btr_search_get_info(index); /* We are not allowed to free the in-memory index struct dict_index_t until all entries in the adaptive hash index that point to any of the page belonging to his b-tree index are dropped. This is so because dropping of these entries require access to dict_index_t struct. To avoid such scenario we keep a count of number of such pages in the search_info and only free the dict_index_t struct when this count drops to zero. See also: dict_index_remove_from_cache_low() */ if (btr_search_info_get_ref_count(info, index) > 0) { return(FALSE); } } return(TRUE); } return(FALSE); } /**********************************************************************//** Make room in the table cache by evicting an unused table. The unused table should not be part of FK relationship and currently not used in any user transaction. There is no guarantee that it will remove a table. @return number of tables evicted. If the number of tables in the dict_LRU is less than max_tables it will not do anything. */ UNIV_INTERN ulint dict_make_room_in_cache( /*====================*/ ulint max_tables, /*!< in: max tables allowed in cache */ ulint pct_check) /*!< in: max percent to check */ { ulint i; ulint len; dict_table_t* table; ulint check_up_to; ulint n_evicted = 0; ut_a(pct_check > 0); ut_a(pct_check <= 100); ut_ad(mutex_own(&dict_sys->mutex)); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&dict_operation_lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ ut_ad(dict_lru_validate()); i = len = UT_LIST_GET_LEN(dict_sys->table_LRU); if (len < max_tables) { return(0); } check_up_to = len - ((len * pct_check) / 100); /* Check for overflow */ ut_a(i == 0 || check_up_to <= i); /* Find a suitable candidate to evict from the cache. Don't scan the entire LRU list. Only scan pct_check list entries. */ for (table = UT_LIST_GET_LAST(dict_sys->table_LRU); table != NULL && i > check_up_to && (len - n_evicted) > max_tables; --i) { dict_table_t* prev_table; prev_table = UT_LIST_GET_PREV(table_LRU, table); if (dict_table_can_be_evicted(table)) { dict_table_remove_from_cache_low(table, TRUE); ++n_evicted; } table = prev_table; } return(n_evicted); } /**********************************************************************//** Move a table to the non-LRU list from the LRU list. */ UNIV_INTERN void dict_table_move_from_lru_to_non_lru( /*================================*/ dict_table_t* table) /*!< in: table to move from LRU to non-LRU */ { ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(dict_lru_find_table(table)); ut_a(table->can_be_evicted); UT_LIST_REMOVE(table_LRU, dict_sys->table_LRU, table); UT_LIST_ADD_LAST(table_LRU, dict_sys->table_non_LRU, table); table->can_be_evicted = FALSE; } /**********************************************************************//** Move a table to the LRU list from the non-LRU list. */ UNIV_INTERN void dict_table_move_from_non_lru_to_lru( /*================================*/ dict_table_t* table) /*!< in: table to move from non-LRU to LRU */ { ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(dict_non_lru_find_table(table)); ut_a(!table->can_be_evicted); UT_LIST_REMOVE(table_LRU, dict_sys->table_non_LRU, table); UT_LIST_ADD_LAST(table_LRU, dict_sys->table_LRU, table); table->can_be_evicted = TRUE; } /**********************************************************************//** Looks for an index with the given id given a table instance. @return index or NULL */ UNIV_INTERN dict_index_t* dict_table_find_index_on_id( /*========================*/ const dict_table_t* table, /*!< in: table instance */ index_id_t id) /*!< in: index id */ { dict_index_t* index; for (index = dict_table_get_first_index(table); index != NULL; index = dict_table_get_next_index(index)) { if (id == index->id) { /* Found */ return(index); } } return(NULL); } /**********************************************************************//** Looks for an index with the given id. NOTE that we do not reserve the dictionary mutex: this function is for emergency purposes like printing info of a corrupt database page! @return index or NULL if not found in cache */ UNIV_INTERN dict_index_t* dict_index_find_on_id_low( /*======================*/ index_id_t id) /*!< in: index id */ { dict_table_t* table; /* This can happen if the system tablespace is the wrong page size */ if (dict_sys == NULL) { return(NULL); } for (table = UT_LIST_GET_FIRST(dict_sys->table_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { dict_index_t* index = dict_table_find_index_on_id(table, id); if (index != NULL) { return(index); } } for (table = UT_LIST_GET_FIRST(dict_sys->table_non_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { dict_index_t* index = dict_table_find_index_on_id(table, id); if (index != NULL) { return(index); } } return(NULL); } /** Function object to remove a foreign key constraint from the referenced_set of the referenced table. The foreign key object is also removed from the dictionary cache. The foreign key constraint is not removed from the foreign_set of the table containing the constraint. */ struct dict_foreign_remove_partial { void operator()(dict_foreign_t* foreign) { dict_table_t* table = foreign->referenced_table; if (table != NULL) { table->referenced_set.erase(foreign); } dict_foreign_free(foreign); } }; /**********************************************************************//** Renames a table object. @return TRUE if success */ UNIV_INTERN dberr_t dict_table_rename_in_cache( /*=======================*/ dict_table_t* table, /*!< in/out: table */ const char* new_name, /*!< in: new name */ ibool rename_also_foreigns)/*!< in: in ALTER TABLE we want to preserve the original table name in constraints which reference it */ { dberr_t err; dict_foreign_t* foreign; dict_index_t* index; ulint fold; char old_name[MAX_FULL_NAME_LEN + 1]; os_file_type_t ftype; ibool exists; ut_ad(mutex_own(&(dict_sys->mutex))); /* store the old/current name to an automatic variable */ if (strlen(table->name) + 1 <= sizeof(old_name)) { memcpy(old_name, table->name, strlen(table->name) + 1); } else { ut_print_timestamp(stderr); fprintf(stderr, "InnoDB: too long table name: '%s', " "max length is %d\n", table->name, MAX_FULL_NAME_LEN); ut_error; } fold = ut_fold_string(new_name); /* Look for a table with the same name: error if such exists */ dict_table_t* table2; HASH_SEARCH(name_hash, dict_sys->table_hash, fold, dict_table_t*, table2, ut_ad(table2->cached), (ut_strcmp(table2->name, new_name) == 0)); DBUG_EXECUTE_IF("dict_table_rename_in_cache_failure", if (table2 == NULL) { table2 = (dict_table_t*) -1; } ); if (table2) { ib_logf(IB_LOG_LEVEL_ERROR, "Cannot rename table '%s' to '%s' since the " "dictionary cache already contains '%s'.", old_name, new_name, new_name); return(DB_ERROR); } /* If the table is stored in a single-table tablespace, rename the .ibd file and rebuild the .isl file if needed. */ if (dict_table_is_discarded(table)) { char* filepath; ut_ad(table->space != TRX_SYS_SPACE); if (DICT_TF_HAS_DATA_DIR(table->flags)) { dict_get_and_save_data_dir_path(table, true); ut_a(table->data_dir_path); filepath = os_file_make_remote_pathname( table->data_dir_path, table->name, "ibd"); } else { filepath = fil_make_ibd_name(table->name, false); } fil_delete_tablespace(table->space, true); /* Delete any temp file hanging around. */ if (os_file_status(filepath, &exists, &ftype) && exists && !os_file_delete_if_exists(innodb_file_temp_key, filepath)) { ib_logf(IB_LOG_LEVEL_INFO, "Delete of %s failed.", filepath); } mem_free(filepath); } else if (table->space != TRX_SYS_SPACE) { if (DICT_TF2_FLAG_IS_SET(table, DICT_TF2_TEMPORARY)) { ut_print_timestamp(stderr); fputs(" InnoDB: Error: trying to rename a" " TEMPORARY TABLE ", stderr); ut_print_name(stderr, NULL, TRUE, old_name); if (table->dir_path_of_temp_table != NULL) { fputs(" (", stderr); ut_print_filename( stderr, table->dir_path_of_temp_table); fputs(" )\n", stderr); } return(DB_ERROR); } char* new_path = NULL; char* old_path = fil_space_get_first_path(table->space); if (DICT_TF_HAS_DATA_DIR(table->flags)) { new_path = os_file_make_new_pathname( old_path, new_name); err = fil_create_link_file(new_name, new_path); if (err != DB_SUCCESS) { mem_free(new_path); mem_free(old_path); return(DB_TABLESPACE_EXISTS); } } else { new_path = fil_make_ibd_name(new_name, false); } /* New filepath must not exist. */ err = fil_rename_tablespace_check( table->space, old_path, new_path, false); if (err != DB_SUCCESS) { mem_free(old_path); mem_free(new_path); return(err); } ibool success = fil_rename_tablespace( old_name, table->space, new_name, new_path); mem_free(old_path); mem_free(new_path); /* If the tablespace is remote, a new .isl file was created If success, delete the old one. If not, delete the new one. */ if (DICT_TF_HAS_DATA_DIR(table->flags)) { fil_delete_link_file(success ? old_name : new_name); } if (!success) { return(DB_ERROR); } } /* Remove table from the hash tables of tables */ HASH_DELETE(dict_table_t, name_hash, dict_sys->table_hash, ut_fold_string(old_name), table); if (strlen(new_name) > strlen(table->name)) { /* We allocate MAX_FULL_NAME_LEN + 1 bytes here to avoid memory fragmentation, we assume a repeated calls of ut_realloc() with the same size do not cause fragmentation */ ut_a(strlen(new_name) <= MAX_FULL_NAME_LEN); table->name = static_cast( ut_realloc(table->name, MAX_FULL_NAME_LEN + 1)); } memcpy(table->name, new_name, strlen(new_name) + 1); /* Add table to hash table of tables */ HASH_INSERT(dict_table_t, name_hash, dict_sys->table_hash, fold, table); /* Update the table_name field in indexes */ for (index = dict_table_get_first_index(table); index != NULL; index = dict_table_get_next_index(index)) { index->table_name = table->name; } if (!rename_also_foreigns) { /* In ALTER TABLE we think of the rename table operation in the direction table -> temporary table (#sql...) as dropping the table with the old name and creating a new with the new name. Thus we kind of drop the constraints from the dictionary cache here. The foreign key constraints will be inherited to the new table from the system tables through a call of dict_load_foreigns. */ /* Remove the foreign constraints from the cache */ std::for_each(table->foreign_set.begin(), table->foreign_set.end(), dict_foreign_remove_partial()); table->foreign_set.clear(); /* Reset table field in referencing constraints */ for (dict_foreign_set::iterator it = table->referenced_set.begin(); it != table->referenced_set.end(); ++it) { foreign = *it; foreign->referenced_table = NULL; foreign->referenced_index = NULL; } /* Make the set of referencing constraints empty */ table->referenced_set.clear(); return(DB_SUCCESS); } /* Update the table name fields in foreign constraints, and update also the constraint id of new format >= 4.0.18 constraints. Note that at this point we have already changed table->name to the new name. */ dict_foreign_set fk_set; for (;;) { dict_foreign_set::iterator it = table->foreign_set.begin(); if (it == table->foreign_set.end()) { break; } foreign = *it; if (foreign->referenced_table) { foreign->referenced_table->referenced_set.erase(foreign); } if (ut_strlen(foreign->foreign_table_name) < ut_strlen(table->name)) { /* Allocate a longer name buffer; TODO: store buf len to save memory */ foreign->foreign_table_name = mem_heap_strdup( foreign->heap, table->name); dict_mem_foreign_table_name_lookup_set(foreign, TRUE); } else { strcpy(foreign->foreign_table_name, table->name); dict_mem_foreign_table_name_lookup_set(foreign, FALSE); } if (strchr(foreign->id, '/')) { /* This is a >= 4.0.18 format id */ ulint db_len; char* old_id; char old_name_cs_filename[MAX_TABLE_NAME_LEN+20]; uint errors = 0; /* All table names are internally stored in charset my_charset_filename (except the temp tables and the partition identifier suffix in partition tables). The foreign key constraint names are internally stored in UTF-8 charset. The variable fkid here is used to store foreign key constraint name in charset my_charset_filename for comparison further below. */ char fkid[MAX_TABLE_NAME_LEN+20]; ibool on_tmp = FALSE; /* The old table name in my_charset_filename is stored in old_name_cs_filename */ strncpy(old_name_cs_filename, old_name, MAX_TABLE_NAME_LEN); if (strstr(old_name, TEMP_TABLE_PATH_PREFIX) == NULL) { innobase_convert_to_system_charset( strchr(old_name_cs_filename, '/') + 1, strchr(old_name, '/') + 1, MAX_TABLE_NAME_LEN, &errors); if (errors) { /* There has been an error to convert old table into UTF-8. This probably means that the old table name is actually in UTF-8. */ innobase_convert_to_filename_charset( strchr(old_name_cs_filename, '/') + 1, strchr(old_name, '/') + 1, MAX_TABLE_NAME_LEN); } else { /* Old name already in my_charset_filename */ strncpy(old_name_cs_filename, old_name, MAX_TABLE_NAME_LEN); } } strncpy(fkid, foreign->id, MAX_TABLE_NAME_LEN); if (strstr(fkid, TEMP_TABLE_PATH_PREFIX) == NULL) { innobase_convert_to_filename_charset( strchr(fkid, '/') + 1, strchr(foreign->id, '/') + 1, MAX_TABLE_NAME_LEN+20); } else { on_tmp = TRUE; } old_id = mem_strdup(foreign->id); if (ut_strlen(fkid) > ut_strlen(old_name_cs_filename) + ((sizeof dict_ibfk) - 1) && !memcmp(fkid, old_name_cs_filename, ut_strlen(old_name_cs_filename)) && !memcmp(fkid + ut_strlen(old_name_cs_filename), dict_ibfk, (sizeof dict_ibfk) - 1)) { /* This is a generated >= 4.0.18 format id */ char table_name[MAX_TABLE_NAME_LEN] = ""; uint errors = 0; if (strlen(table->name) > strlen(old_name)) { foreign->id = static_cast( mem_heap_alloc( foreign->heap, strlen(table->name) + strlen(old_id) + 1)); } /* Convert the table name to UTF-8 */ strncpy(table_name, table->name, MAX_TABLE_NAME_LEN); innobase_convert_to_system_charset( strchr(table_name, '/') + 1, strchr(table->name, '/') + 1, MAX_TABLE_NAME_LEN, &errors); if (errors) { /* Table name could not be converted from charset my_charset_filename to UTF-8. This means that the table name is already in UTF-8 (#mysql#50). */ strncpy(table_name, table->name, MAX_TABLE_NAME_LEN); } /* Replace the prefix 'databasename/tablename' with the new names */ strcpy(foreign->id, table_name); if (on_tmp) { strcat(foreign->id, old_id + ut_strlen(old_name)); } else { sprintf(strchr(foreign->id, '/') + 1, "%s%s", strchr(table_name, '/') +1, strstr(old_id, "_ibfk_") ); } } else { /* This is a >= 4.0.18 format id where the user gave the id name */ db_len = dict_get_db_name_len(table->name) + 1; if (dict_get_db_name_len(table->name) > dict_get_db_name_len(foreign->id)) { foreign->id = static_cast( mem_heap_alloc( foreign->heap, db_len + strlen(old_id) + 1)); } /* Replace the database prefix in id with the one from table->name */ ut_memcpy(foreign->id, table->name, db_len); strcpy(foreign->id + db_len, dict_remove_db_name(old_id)); } mem_free(old_id); } table->foreign_set.erase(it); fk_set.insert(foreign); if (foreign->referenced_table) { foreign->referenced_table->referenced_set.insert(foreign); } } ut_a(table->foreign_set.empty()); table->foreign_set.swap(fk_set); for (dict_foreign_set::iterator it = table->referenced_set.begin(); it != table->referenced_set.end(); ++it) { foreign = *it; if (ut_strlen(foreign->referenced_table_name) < ut_strlen(table->name)) { /* Allocate a longer name buffer; TODO: store buf len to save memory */ foreign->referenced_table_name = mem_heap_strdup( foreign->heap, table->name); dict_mem_referenced_table_name_lookup_set( foreign, TRUE); } else { /* Use the same buffer */ strcpy(foreign->referenced_table_name, table->name); dict_mem_referenced_table_name_lookup_set( foreign, FALSE); } } return(DB_SUCCESS); } /**********************************************************************//** Change the id of a table object in the dictionary cache. This is used in DISCARD TABLESPACE. */ UNIV_INTERN void dict_table_change_id_in_cache( /*==========================*/ dict_table_t* table, /*!< in/out: table object already in cache */ table_id_t new_id) /*!< in: new id to set */ { ut_ad(table); ut_ad(mutex_own(&(dict_sys->mutex))); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); /* Remove the table from the hash table of id's */ HASH_DELETE(dict_table_t, id_hash, dict_sys->table_id_hash, ut_fold_ull(table->id), table); table->id = new_id; /* Add the table back to the hash table */ HASH_INSERT(dict_table_t, id_hash, dict_sys->table_id_hash, ut_fold_ull(table->id), table); } /**********************************************************************//** Removes a table object from the dictionary cache. */ void dict_table_remove_from_cache_low( /*=============================*/ dict_table_t* table, /*!< in, own: table */ ibool lru_evict) /*!< in: TRUE if table being evicted to make room in the table LRU list */ { dict_foreign_t* foreign; dict_index_t* index; ut_ad(table); ut_ad(dict_lru_validate()); ut_a(table->n_ref_count == 0); ut_a(table->n_rec_locks == 0); ut_ad(mutex_own(&(dict_sys->mutex))); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); /* Remove the foreign constraints from the cache */ std::for_each(table->foreign_set.begin(), table->foreign_set.end(), dict_foreign_remove_partial()); table->foreign_set.clear(); /* Reset table field in referencing constraints */ for (dict_foreign_set::iterator it = table->referenced_set.begin(); it != table->referenced_set.end(); ++it) { foreign = *it; foreign->referenced_table = NULL; foreign->referenced_index = NULL; } /* Remove the indexes from the cache */ for (index = UT_LIST_GET_LAST(table->indexes); index != NULL; index = UT_LIST_GET_LAST(table->indexes)) { dict_index_remove_from_cache_low(table, index, lru_evict); } /* Remove table from the hash tables of tables */ HASH_DELETE(dict_table_t, name_hash, dict_sys->table_hash, ut_fold_string(table->name), table); HASH_DELETE(dict_table_t, id_hash, dict_sys->table_id_hash, ut_fold_ull(table->id), table); /* Remove table from LRU or non-LRU list. */ if (table->can_be_evicted) { ut_ad(dict_lru_find_table(table)); UT_LIST_REMOVE(table_LRU, dict_sys->table_LRU, table); } else { ut_ad(dict_non_lru_find_table(table)); UT_LIST_REMOVE(table_LRU, dict_sys->table_non_LRU, table); } ut_ad(dict_lru_validate()); if (lru_evict) { dict_table_autoinc_store(table); } if (lru_evict && table->drop_aborted) { /* When evicting the table definition, drop the orphan indexes from the data dictionary and free the index pages. */ trx_t* trx = trx_allocate_for_background(); ut_ad(mutex_own(&dict_sys->mutex)); #ifdef UNIV_SYNC_DEBUG ut_ad(rw_lock_own(&dict_operation_lock, RW_LOCK_EX)); #endif /* UNIV_SYNC_DEBUG */ /* Mimic row_mysql_lock_data_dictionary(). */ trx->dict_operation_lock_mode = RW_X_LATCH; trx_set_dict_operation(trx, TRX_DICT_OP_INDEX); row_merge_drop_indexes_dict(trx, table->id); trx_commit_for_mysql(trx); trx->dict_operation_lock_mode = 0; trx_free_for_background(trx); } dict_mem_table_free(table); } /**********************************************************************//** Removes a table object from the dictionary cache. */ UNIV_INTERN void dict_table_remove_from_cache( /*=========================*/ dict_table_t* table) /*!< in, own: table */ { dict_table_remove_from_cache_low(table, FALSE); } /****************************************************************//** If the given column name is reserved for InnoDB system columns, return TRUE. @return TRUE if name is reserved */ UNIV_INTERN ibool dict_col_name_is_reserved( /*======================*/ const char* name) /*!< in: column name */ { /* This check reminds that if a new system column is added to the program, it should be dealt with here. */ #if DATA_N_SYS_COLS != 3 #error "DATA_N_SYS_COLS != 3" #endif static const char* reserved_names[] = { "DB_ROW_ID", "DB_TRX_ID", "DB_ROLL_PTR" }; ulint i; for (i = 0; i < UT_ARR_SIZE(reserved_names); i++) { if (innobase_strcasecmp(name, reserved_names[i]) == 0) { return(TRUE); } } return(FALSE); } #if 1 /* This function is not very accurate at determining whether an UNDO record will be too big. See innodb_4k.test, Bug 13336585, for a testcase that shows an index that can be created but cannot be updated. */ /****************************************************************//** If an undo log record for this table might not fit on a single page, return TRUE. @return TRUE if the undo log record could become too big */ static ibool dict_index_too_big_for_undo( /*========================*/ const dict_table_t* table, /*!< in: table */ const dict_index_t* new_index) /*!< in: index */ { /* Make sure that all column prefixes will fit in the undo log record in trx_undo_page_report_modify() right after trx_undo_page_init(). */ ulint i; const dict_index_t* clust_index = dict_table_get_first_index(table); ulint undo_page_len = TRX_UNDO_PAGE_HDR - TRX_UNDO_PAGE_HDR_SIZE + 2 /* next record pointer */ + 1 /* type_cmpl */ + 11 /* trx->undo_no */ + 11 /* table->id */ + 1 /* rec_get_info_bits() */ + 11 /* DB_TRX_ID */ + 11 /* DB_ROLL_PTR */ + 10 + FIL_PAGE_DATA_END /* trx_undo_left() */ + 2/* pointer to previous undo log record */; /* FTS index consists of auxiliary tables, they shall be excluded from index row size check */ if (new_index->type & DICT_FTS) { return(false); } if (!clust_index) { ut_a(dict_index_is_clust(new_index)); clust_index = new_index; } /* Add the size of the ordering columns in the clustered index. */ for (i = 0; i < clust_index->n_uniq; i++) { const dict_col_t* col = dict_index_get_nth_col(clust_index, i); /* Use the maximum output size of mach_write_compressed(), although the encoded length should always fit in 2 bytes. */ undo_page_len += 5 + dict_col_get_max_size(col); } /* Add the old values of the columns to be updated. First, the amount and the numbers of the columns. These are written by mach_write_compressed() whose maximum output length is 5 bytes. However, given that the quantities are below REC_MAX_N_FIELDS (10 bits), the maximum length is 2 bytes per item. */ undo_page_len += 2 * (dict_table_get_n_cols(table) + 1); for (i = 0; i < clust_index->n_def; i++) { const dict_col_t* col = dict_index_get_nth_col(clust_index, i); ulint max_size = dict_col_get_max_size(col); ulint fixed_size = dict_col_get_fixed_size(col, dict_table_is_comp(table)); ulint max_prefix = col->max_prefix; if (fixed_size) { /* Fixed-size columns are stored locally. */ max_size = fixed_size; } else if (max_size <= BTR_EXTERN_FIELD_REF_SIZE * 2) { /* Short columns are stored locally. */ } else if (!col->ord_part || (col->max_prefix < (ulint) DICT_MAX_FIELD_LEN_BY_FORMAT(table))) { /* See if col->ord_part would be set because of new_index. Also check if the new index could have longer prefix on columns that already had ord_part set */ ulint j; for (j = 0; j < new_index->n_uniq; j++) { if (dict_index_get_nth_col( new_index, j) == col) { const dict_field_t* field = dict_index_get_nth_field( new_index, j); if (field->prefix_len > col->max_prefix) { max_prefix = field->prefix_len; } goto is_ord_part; } } if (col->ord_part) { goto is_ord_part; } /* This is not an ordering column in any index. Thus, it can be stored completely externally. */ max_size = BTR_EXTERN_FIELD_REF_SIZE; } else { ulint max_field_len; is_ord_part: max_field_len = DICT_MAX_FIELD_LEN_BY_FORMAT(table); /* This is an ordering column in some index. A long enough prefix must be written to the undo log. See trx_undo_page_fetch_ext(). */ max_size = ut_min(max_size, max_field_len); /* We only store the needed prefix length in undo log */ if (max_prefix) { ut_ad(dict_table_get_format(table) >= UNIV_FORMAT_B); max_size = ut_min(max_prefix, max_size); } max_size += BTR_EXTERN_FIELD_REF_SIZE; } undo_page_len += 5 + max_size; } return(undo_page_len >= UNIV_PAGE_SIZE); } #endif /****************************************************************//** If a record of this index might not fit on a single B-tree page, return TRUE. @return TRUE if the index record could become too big */ static ibool dict_index_too_big_for_tree( /*========================*/ const dict_table_t* table, /*!< in: table */ const dict_index_t* new_index) /*!< in: index */ { ulint zip_size; ulint comp; ulint i; /* maximum possible storage size of a record */ ulint rec_max_size; /* maximum allowed size of a record on a leaf page */ ulint page_rec_max; /* maximum allowed size of a node pointer record */ ulint page_ptr_max; /* FTS index consists of auxiliary tables, they shall be excluded from index row size check */ if (new_index->type & DICT_FTS) { return(false); } DBUG_EXECUTE_IF( "ib_force_create_table", return(FALSE);); comp = dict_table_is_comp(table); zip_size = dict_table_zip_size(table); if (zip_size && zip_size < UNIV_PAGE_SIZE) { /* On a compressed page, two records must fit in the uncompressed page modification log. On compressed pages with zip_size == UNIV_PAGE_SIZE, this limit will never be reached. */ ut_ad(comp); /* The maximum allowed record size is the size of an empty page, minus a byte for recoding the heap number in the page modification log. The maximum allowed node pointer size is half that. */ page_rec_max = page_zip_empty_size(new_index->n_fields, zip_size); if (page_rec_max) { page_rec_max--; } page_ptr_max = page_rec_max / 2; /* On a compressed page, there is a two-byte entry in the dense page directory for every record. But there is no record header. */ rec_max_size = 2; } else { /* The maximum allowed record size is half a B-tree page(16k for 64k page size). No additional sparse page directory entry will be generated for the first few user records. */ page_rec_max = (comp || UNIV_PAGE_SIZE < UNIV_PAGE_SIZE_MAX) ? page_get_free_space_of_empty(comp) / 2 : REDUNDANT_REC_MAX_DATA_SIZE; page_ptr_max = page_rec_max; /* Each record has a header. */ rec_max_size = comp ? REC_N_NEW_EXTRA_BYTES : REC_N_OLD_EXTRA_BYTES; } if (comp) { /* Include the "null" flags in the maximum possible record size. */ rec_max_size += UT_BITS_IN_BYTES(new_index->n_nullable); } else { /* For each column, include a 2-byte offset and a "null" flag. The 1-byte format is only used in short records that do not contain externally stored columns. Such records could never exceed the page limit, even when using the 2-byte format. */ rec_max_size += 2 * new_index->n_fields; } /* Compute the maximum possible record size. */ for (i = 0; i < new_index->n_fields; i++) { const dict_field_t* field = dict_index_get_nth_field(new_index, i); const dict_col_t* col = dict_field_get_col(field); ulint field_max_size; ulint field_ext_max_size; /* In dtuple_convert_big_rec(), variable-length columns that are longer than BTR_EXTERN_FIELD_REF_SIZE * 2 may be chosen for external storage. Fixed-length columns, and all columns of secondary index records are always stored inline. */ /* Determine the maximum length of the index field. The field_ext_max_size should be computed as the worst case in rec_get_converted_size_comp() for REC_STATUS_ORDINARY records. */ field_max_size = dict_col_get_fixed_size(col, comp); if (field_max_size) { /* dict_index_add_col() should guarantee this */ ut_ad(!field->prefix_len || field->fixed_len == field->prefix_len); /* Fixed lengths are not encoded in ROW_FORMAT=COMPACT. */ field_ext_max_size = 0; goto add_field_size; } field_max_size = dict_col_get_max_size(col); field_ext_max_size = field_max_size < 256 ? 1 : 2; if (field->prefix_len) { if (field->prefix_len < field_max_size) { field_max_size = field->prefix_len; } } else if (field_max_size > BTR_EXTERN_FIELD_REF_SIZE * 2 && dict_index_is_clust(new_index)) { /* In the worst case, we have a locally stored column of BTR_EXTERN_FIELD_REF_SIZE * 2 bytes. The length can be stored in one byte. If the column were stored externally, the lengths in the clustered index page would be BTR_EXTERN_FIELD_REF_SIZE and 2. */ field_max_size = BTR_EXTERN_FIELD_REF_SIZE * 2; field_ext_max_size = 1; } if (comp) { /* Add the extra size for ROW_FORMAT=COMPACT. For ROW_FORMAT=REDUNDANT, these bytes were added to rec_max_size before this loop. */ rec_max_size += field_ext_max_size; } add_field_size: rec_max_size += field_max_size; /* Check the size limit on leaf pages. */ if (UNIV_UNLIKELY(rec_max_size >= page_rec_max)) { return(TRUE); } /* Check the size limit on non-leaf pages. Records stored in non-leaf B-tree pages consist of the unique columns of the record (the key columns of the B-tree) and a node pointer field. When we have processed the unique columns, rec_max_size equals the size of the node pointer record minus the node pointer column. */ if (i + 1 == dict_index_get_n_unique_in_tree(new_index) && rec_max_size + REC_NODE_PTR_SIZE >= page_ptr_max) { return(TRUE); } } return(FALSE); } /**********************************************************************//** Adds an index to the dictionary cache. @return DB_SUCCESS, DB_TOO_BIG_RECORD, or DB_CORRUPTION */ UNIV_INTERN dberr_t dict_index_add_to_cache( /*====================*/ dict_table_t* table, /*!< in: table on which the index is */ dict_index_t* index, /*!< in, own: index; NOTE! The index memory object is freed in this function! */ ulint page_no,/*!< in: root page number of the index */ ibool strict) /*!< in: TRUE=refuse to create the index if records could be too big to fit in an B-tree page */ { dict_index_t* new_index; ulint n_ord; ulint i; ut_ad(index); ut_ad(mutex_own(&(dict_sys->mutex))); ut_ad(index->n_def == index->n_fields); ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); ut_ad(!dict_index_is_online_ddl(index)); ut_ad(mem_heap_validate(index->heap)); ut_a(!dict_index_is_clust(index) || UT_LIST_GET_LEN(table->indexes) == 0); if (!dict_index_find_cols(table, index)) { dict_mem_index_free(index); return(DB_CORRUPTION); } /* Build the cache internal representation of the index, containing also the added system fields */ if (index->type == DICT_FTS) { new_index = dict_index_build_internal_fts(table, index); } else if (dict_index_is_clust(index)) { new_index = dict_index_build_internal_clust(table, index); } else { new_index = dict_index_build_internal_non_clust(table, index); } /* Set the n_fields value in new_index to the actual defined number of fields in the cache internal representation */ new_index->n_fields = new_index->n_def; new_index->trx_id = index->trx_id; if (dict_index_too_big_for_tree(table, new_index)) { if (strict) { too_big: dict_mem_index_free(new_index); dict_mem_index_free(index); return(DB_TOO_BIG_RECORD); } else if (current_thd != NULL) { /* Avoid the warning to be printed during recovery. */ ib_warn_row_too_big(table); } } if (dict_index_is_univ(index)) { n_ord = new_index->n_fields; } else { n_ord = new_index->n_uniq; } #if 1 /* The following code predetermines whether to call dict_index_too_big_for_undo(). This function is not accurate. See innodb_4k.test, Bug 13336585, for a testcase that shows an index that can be created but cannot be updated. */ switch (dict_table_get_format(table)) { case UNIV_FORMAT_A: /* ROW_FORMAT=REDUNDANT and ROW_FORMAT=COMPACT store prefixes of externally stored columns locally within the record. There are no special considerations for the undo log record size. */ goto undo_size_ok; case UNIV_FORMAT_B: /* In ROW_FORMAT=DYNAMIC and ROW_FORMAT=COMPRESSED, column prefix indexes require that prefixes of externally stored columns are written to the undo log. This may make the undo log record bigger than the record on the B-tree page. The maximum size of an undo log record is the page size. That must be checked for below. */ break; #if UNIV_FORMAT_B != UNIV_FORMAT_MAX # error "UNIV_FORMAT_B != UNIV_FORMAT_MAX" #endif } for (i = 0; i < n_ord; i++) { const dict_field_t* field = dict_index_get_nth_field(new_index, i); const dict_col_t* col = dict_field_get_col(field); /* In dtuple_convert_big_rec(), variable-length columns that are longer than BTR_EXTERN_FIELD_REF_SIZE * 2 may be chosen for external storage. If the column appears in an ordering column of an index, a longer prefix determined by dict_max_field_len_store_undo() will be copied to the undo log by trx_undo_page_report_modify() and trx_undo_page_fetch_ext(). It suffices to check the capacity of the undo log whenever new_index includes a column prefix on a column that may be stored externally. */ if (field->prefix_len /* prefix index */ && (!col->ord_part /* not yet ordering column */ || field->prefix_len > col->max_prefix) && !dict_col_get_fixed_size(col, TRUE) /* variable-length */ && dict_col_get_max_size(col) > BTR_EXTERN_FIELD_REF_SIZE * 2 /* long enough */) { if (dict_index_too_big_for_undo(table, new_index)) { /* An undo log record might not fit in a single page. Refuse to create this index. */ goto too_big; } break; } } undo_size_ok: #endif /* Flag the ordering columns and also set column max_prefix */ for (i = 0; i < n_ord; i++) { const dict_field_t* field = dict_index_get_nth_field(new_index, i); field->col->ord_part = 1; if (field->prefix_len > field->col->max_prefix) { field->col->max_prefix = field->prefix_len; } } if (!dict_index_is_univ(new_index)) { new_index->stat_n_diff_key_vals = static_cast(mem_heap_zalloc( new_index->heap, dict_index_get_n_unique(new_index) * sizeof(*new_index->stat_n_diff_key_vals))); new_index->stat_n_sample_sizes = static_cast(mem_heap_zalloc( new_index->heap, dict_index_get_n_unique(new_index) * sizeof(*new_index->stat_n_sample_sizes))); new_index->stat_n_non_null_key_vals = static_cast(mem_heap_zalloc( new_index->heap, dict_index_get_n_unique(new_index) * sizeof(*new_index->stat_n_non_null_key_vals))); } new_index->stat_index_size = 1; new_index->stat_n_leaf_pages = 1; new_index->stat_defrag_n_pages_freed = 0; new_index->stat_defrag_n_page_split = 0; new_index->stat_defrag_sample_next_slot = 0; memset(&new_index->stat_defrag_data_size_sample, 0x0, sizeof(ulint) * STAT_DEFRAG_DATA_SIZE_N_SAMPLE); /* Add the new index as the last index for the table */ UT_LIST_ADD_LAST(indexes, table->indexes, new_index); new_index->table = table; new_index->table_name = table->name; new_index->search_info = btr_search_info_create(new_index->heap); new_index->page = page_no; rw_lock_create(index_tree_rw_lock_key, &new_index->lock, dict_index_is_ibuf(index) ? SYNC_IBUF_INDEX_TREE : SYNC_INDEX_TREE); dict_mem_index_free(index); return(DB_SUCCESS); } /**********************************************************************//** Removes an index from the dictionary cache. */ static void dict_index_remove_from_cache_low( /*=============================*/ dict_table_t* table, /*!< in/out: table */ dict_index_t* index, /*!< in, own: index */ ibool lru_evict) /*!< in: TRUE if index being evicted to make room in the table LRU list */ { ulint retries = 0; btr_search_t* info; ut_ad(table && index); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); ut_ad(index->magic_n == DICT_INDEX_MAGIC_N); ut_ad(mutex_own(&(dict_sys->mutex))); /* No need to acquire the dict_index_t::lock here because there can't be any active operations on this index (or table). */ if (index->online_log) { ut_ad(index->online_status == ONLINE_INDEX_CREATION); row_log_free(index->online_log); } /* We always create search info whether or not adaptive hash index is enabled or not. */ info = btr_search_get_info(index); ut_ad(info); /* We are not allowed to free the in-memory index struct dict_index_t until all entries in the adaptive hash index that point to any of the page belonging to his b-tree index are dropped. This is so because dropping of these entries require access to dict_index_t struct. To avoid such scenario We keep a count of number of such pages in the search_info and only free the dict_index_t struct when this count drops to zero. See also: dict_table_can_be_evicted() */ do { ulint ref_count = btr_search_info_get_ref_count(info, index); if (ref_count == 0) { break; } /* Sleep for 10ms before trying again. */ os_thread_sleep(10000); ++retries; if (retries % 500 == 0) { /* No luck after 5 seconds of wait. */ fprintf(stderr, "InnoDB: Error: Waited for" " %lu secs for hash index" " ref_count (%lu) to drop" " to 0.\n" "index: \"%s\"" " table: \"%s\"\n", retries/100, ref_count, index->name, table->name); } /* To avoid a hang here we commit suicide if the ref_count doesn't drop to zero in 600 seconds. */ if (retries >= 60000) { ut_error; } } while (srv_shutdown_state == SRV_SHUTDOWN_NONE || !lru_evict); rw_lock_free(&index->lock); /* Remove the index from the list of indexes of the table */ UT_LIST_REMOVE(indexes, table->indexes, index); dict_mem_index_free(index); } /**********************************************************************//** Removes an index from the dictionary cache. */ UNIV_INTERN void dict_index_remove_from_cache( /*=========================*/ dict_table_t* table, /*!< in/out: table */ dict_index_t* index) /*!< in, own: index */ { dict_index_remove_from_cache_low(table, index, FALSE); } /*******************************************************************//** Tries to find column names for the index and sets the col field of the index. @return TRUE if the column names were found */ static ibool dict_index_find_cols( /*=================*/ dict_table_t* table, /*!< in: table */ dict_index_t* index) /*!< in: index */ { ulint i; ut_ad(table && index); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); ut_ad(mutex_own(&(dict_sys->mutex))); for (i = 0; i < index->n_fields; i++) { ulint j; dict_field_t* field = dict_index_get_nth_field(index, i); for (j = 0; j < table->n_cols; j++) { if (!innobase_strcasecmp(dict_table_get_col_name(table, j), field->name)) { field->col = dict_table_get_nth_col(table, j); goto found; } } #ifdef UNIV_DEBUG /* It is an error not to find a matching column. */ fputs("InnoDB: Error: no matching column for ", stderr); ut_print_name(stderr, NULL, FALSE, field->name); fputs(" in ", stderr); dict_index_name_print(stderr, NULL, index); fputs("!\n", stderr); #endif /* UNIV_DEBUG */ return(FALSE); found: ; } return(TRUE); } #endif /* !UNIV_HOTBACKUP */ /*******************************************************************//** Adds a column to index. */ UNIV_INTERN void dict_index_add_col( /*===============*/ dict_index_t* index, /*!< in/out: index */ const dict_table_t* table, /*!< in: table */ dict_col_t* col, /*!< in: column */ ulint prefix_len) /*!< in: column prefix length */ { dict_field_t* field; const char* col_name; col_name = dict_table_get_col_name(table, dict_col_get_no(col)); dict_mem_index_add_field(index, col_name, prefix_len); field = dict_index_get_nth_field(index, index->n_def - 1); field->col = col; field->fixed_len = (unsigned int) dict_col_get_fixed_size( col, dict_table_is_comp(table)); if (prefix_len && field->fixed_len > prefix_len) { field->fixed_len = (unsigned int) prefix_len; } /* Long fixed-length fields that need external storage are treated as variable-length fields, so that the extern flag can be embedded in the length word. */ if (field->fixed_len > DICT_MAX_FIXED_COL_LEN) { field->fixed_len = 0; } #if DICT_MAX_FIXED_COL_LEN != 768 /* The comparison limit above must be constant. If it were changed, the disk format of some fixed-length columns would change, which would be a disaster. */ # error "DICT_MAX_FIXED_COL_LEN != 768" #endif if (!(col->prtype & DATA_NOT_NULL)) { index->n_nullable++; } } #ifndef UNIV_HOTBACKUP /*******************************************************************//** Copies fields contained in index2 to index1. */ static void dict_index_copy( /*============*/ dict_index_t* index1, /*!< in: index to copy to */ dict_index_t* index2, /*!< in: index to copy from */ const dict_table_t* table, /*!< in: table */ ulint start, /*!< in: first position to copy */ ulint end) /*!< in: last position to copy */ { dict_field_t* field; ulint i; /* Copy fields contained in index2 */ for (i = start; i < end; i++) { field = dict_index_get_nth_field(index2, i); dict_index_add_col(index1, table, field->col, field->prefix_len); } } /*******************************************************************//** Copies types of fields contained in index to tuple. */ UNIV_INTERN void dict_index_copy_types( /*==================*/ dtuple_t* tuple, /*!< in/out: data tuple */ const dict_index_t* index, /*!< in: index */ ulint n_fields) /*!< in: number of field types to copy */ { ulint i; if (dict_index_is_univ(index)) { dtuple_set_types_binary(tuple, n_fields); return; } for (i = 0; i < n_fields; i++) { const dict_field_t* ifield; dtype_t* dfield_type; ifield = dict_index_get_nth_field(index, i); dfield_type = dfield_get_type(dtuple_get_nth_field(tuple, i)); dict_col_copy_type(dict_field_get_col(ifield), dfield_type); } } /*******************************************************************//** Copies types of columns contained in table to tuple and sets all fields of the tuple to the SQL NULL value. This function should be called right after dtuple_create(). */ UNIV_INTERN void dict_table_copy_types( /*==================*/ dtuple_t* tuple, /*!< in/out: data tuple */ const dict_table_t* table) /*!< in: table */ { ulint i; for (i = 0; i < dtuple_get_n_fields(tuple); i++) { dfield_t* dfield = dtuple_get_nth_field(tuple, i); dtype_t* dtype = dfield_get_type(dfield); dfield_set_null(dfield); dict_col_copy_type(dict_table_get_nth_col(table, i), dtype); } } /******************************************************************** Wait until all the background threads of the given table have exited, i.e., bg_threads == 0. Note: bg_threads_mutex must be reserved when calling this. */ UNIV_INTERN void dict_table_wait_for_bg_threads_to_exit( /*===================================*/ dict_table_t* table, /*< in: table */ ulint delay) /*< in: time in microseconds to wait between checks of bg_threads. */ { fts_t* fts = table->fts; #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&fts->bg_threads_mutex)); #endif /* UNIV_SYNC_DEBUG */ while (fts->bg_threads > 0) { mutex_exit(&fts->bg_threads_mutex); os_thread_sleep(delay); mutex_enter(&fts->bg_threads_mutex); } } /*******************************************************************//** Builds the internal dictionary cache representation for a clustered index, containing also system fields not defined by the user. @return own: the internal representation of the clustered index */ static dict_index_t* dict_index_build_internal_clust( /*============================*/ const dict_table_t* table, /*!< in: table */ dict_index_t* index) /*!< in: user representation of a clustered index */ { dict_index_t* new_index; dict_field_t* field; ulint trx_id_pos; ulint i; ibool* indexed; ut_ad(table && index); ut_ad(dict_index_is_clust(index)); ut_ad(mutex_own(&(dict_sys->mutex))); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); /* Create a new index object with certainly enough fields */ new_index = dict_mem_index_create(table->name, index->name, table->space, index->type, index->n_fields + table->n_cols); /* Copy other relevant data from the old index struct to the new struct: it inherits the values */ new_index->n_user_defined_cols = index->n_fields; new_index->id = index->id; btr_search_index_init(new_index); /* Copy the fields of index */ dict_index_copy(new_index, index, table, 0, index->n_fields); if (dict_index_is_univ(index)) { /* No fixed number of fields determines an entry uniquely */ new_index->n_uniq = REC_MAX_N_FIELDS; } else if (dict_index_is_unique(index)) { /* Only the fields defined so far are needed to identify the index entry uniquely */ new_index->n_uniq = new_index->n_def; } else { /* Also the row id is needed to identify the entry */ new_index->n_uniq = 1 + new_index->n_def; } new_index->trx_id_offset = 0; if (!dict_index_is_ibuf(index)) { /* Add system columns, trx id first */ trx_id_pos = new_index->n_def; #if DATA_ROW_ID != 0 # error "DATA_ROW_ID != 0" #endif #if DATA_TRX_ID != 1 # error "DATA_TRX_ID != 1" #endif #if DATA_ROLL_PTR != 2 # error "DATA_ROLL_PTR != 2" #endif if (!dict_index_is_unique(index)) { dict_index_add_col(new_index, table, dict_table_get_sys_col( table, DATA_ROW_ID), 0); trx_id_pos++; } dict_index_add_col(new_index, table, dict_table_get_sys_col(table, DATA_TRX_ID), 0); dict_index_add_col(new_index, table, dict_table_get_sys_col(table, DATA_ROLL_PTR), 0); for (i = 0; i < trx_id_pos; i++) { ulint fixed_size = dict_col_get_fixed_size( dict_index_get_nth_col(new_index, i), dict_table_is_comp(table)); if (fixed_size == 0) { new_index->trx_id_offset = 0; break; } if (dict_index_get_nth_field(new_index, i)->prefix_len > 0) { new_index->trx_id_offset = 0; break; } /* Add fixed_size to new_index->trx_id_offset. Because the latter is a bit-field, an overflow can theoretically occur. Check for it. */ fixed_size += new_index->trx_id_offset; new_index->trx_id_offset = fixed_size; if (new_index->trx_id_offset != fixed_size) { /* Overflow. Pretend that this is a variable-length PRIMARY KEY. */ ut_ad(0); new_index->trx_id_offset = 0; break; } } } /* Remember the table columns already contained in new_index */ indexed = static_cast( mem_zalloc(table->n_cols * sizeof *indexed)); /* Mark the table columns already contained in new_index */ for (i = 0; i < new_index->n_def; i++) { field = dict_index_get_nth_field(new_index, i); /* If there is only a prefix of the column in the index field, do not mark the column as contained in the index */ if (field->prefix_len == 0) { indexed[field->col->ind] = TRUE; } } /* Add to new_index non-system columns of table not yet included there */ for (i = 0; i + DATA_N_SYS_COLS < (ulint) table->n_cols; i++) { dict_col_t* col = dict_table_get_nth_col(table, i); ut_ad(col->mtype != DATA_SYS); if (!indexed[col->ind]) { dict_index_add_col(new_index, table, col, 0); } } mem_free(indexed); ut_ad(dict_index_is_ibuf(index) || (UT_LIST_GET_LEN(table->indexes) == 0)); new_index->cached = TRUE; return(new_index); } /*******************************************************************//** Builds the internal dictionary cache representation for a non-clustered index, containing also system fields not defined by the user. @return own: the internal representation of the non-clustered index */ static dict_index_t* dict_index_build_internal_non_clust( /*================================*/ const dict_table_t* table, /*!< in: table */ dict_index_t* index) /*!< in: user representation of a non-clustered index */ { dict_field_t* field; dict_index_t* new_index; dict_index_t* clust_index; ulint i; ibool* indexed; ut_ad(table && index); ut_ad(!dict_index_is_clust(index)); ut_ad(mutex_own(&(dict_sys->mutex))); ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); /* The clustered index should be the first in the list of indexes */ clust_index = UT_LIST_GET_FIRST(table->indexes); ut_ad(clust_index); ut_ad(dict_index_is_clust(clust_index)); ut_ad(!dict_index_is_univ(clust_index)); /* Create a new index */ new_index = dict_mem_index_create( table->name, index->name, index->space, index->type, index->n_fields + 1 + clust_index->n_uniq); /* Copy other relevant data from the old index struct to the new struct: it inherits the values */ new_index->n_user_defined_cols = index->n_fields; new_index->id = index->id; btr_search_index_init(new_index); /* Copy fields from index to new_index */ dict_index_copy(new_index, index, table, 0, index->n_fields); /* Remember the table columns already contained in new_index */ indexed = static_cast( mem_zalloc(table->n_cols * sizeof *indexed)); /* Mark the table columns already contained in new_index */ for (i = 0; i < new_index->n_def; i++) { field = dict_index_get_nth_field(new_index, i); /* If there is only a prefix of the column in the index field, do not mark the column as contained in the index */ if (field->prefix_len == 0) { indexed[field->col->ind] = TRUE; } } /* Add to new_index the columns necessary to determine the clustered index entry uniquely */ for (i = 0; i < clust_index->n_uniq; i++) { field = dict_index_get_nth_field(clust_index, i); if (!indexed[field->col->ind]) { dict_index_add_col(new_index, table, field->col, field->prefix_len); } } mem_free(indexed); if (dict_index_is_unique(index)) { new_index->n_uniq = index->n_fields; } else { new_index->n_uniq = new_index->n_def; } /* Set the n_fields value in new_index to the actual defined number of fields */ new_index->n_fields = new_index->n_def; new_index->cached = TRUE; return(new_index); } /*********************************************************************** Builds the internal dictionary cache representation for an FTS index. @return own: the internal representation of the FTS index */ static dict_index_t* dict_index_build_internal_fts( /*==========================*/ dict_table_t* table, /*!< in: table */ dict_index_t* index) /*!< in: user representation of an FTS index */ { dict_index_t* new_index; ut_ad(table && index); ut_ad(index->type == DICT_FTS); #ifdef UNIV_SYNC_DEBUG ut_ad(mutex_own(&(dict_sys->mutex))); #endif /* UNIV_SYNC_DEBUG */ ut_ad(table->magic_n == DICT_TABLE_MAGIC_N); /* Create a new index */ new_index = dict_mem_index_create( table->name, index->name, index->space, index->type, index->n_fields); /* Copy other relevant data from the old index struct to the new struct: it inherits the values */ new_index->n_user_defined_cols = index->n_fields; new_index->id = index->id; btr_search_index_init(new_index); /* Copy fields from index to new_index */ dict_index_copy(new_index, index, table, 0, index->n_fields); new_index->n_uniq = 0; new_index->cached = TRUE; if (table->fts->cache == NULL) { table->fts->cache = fts_cache_create(table); } rw_lock_x_lock(&table->fts->cache->init_lock); /* Notify the FTS cache about this index. */ fts_cache_index_cache_create(table, new_index); rw_lock_x_unlock(&table->fts->cache->init_lock); return(new_index); } /*====================== FOREIGN KEY PROCESSING ========================*/ #define DB_FOREIGN_KEY_IS_PREFIX_INDEX 200 #define DB_FOREIGN_KEY_COL_NOT_NULL 201 #define DB_FOREIGN_KEY_COLS_NOT_EQUAL 202 #define DB_FOREIGN_KEY_INDEX_NOT_FOUND 203 /*********************************************************************//** Checks if a table is referenced by foreign keys. @return TRUE if table is referenced by a foreign key */ UNIV_INTERN ibool dict_table_is_referenced_by_foreign_key( /*====================================*/ const dict_table_t* table) /*!< in: InnoDB table */ { return(!table->referenced_set.empty()); } /**********************************************************************//** Removes a foreign constraint struct from the dictionary cache. */ UNIV_INTERN void dict_foreign_remove_from_cache( /*===========================*/ dict_foreign_t* foreign) /*!< in, own: foreign constraint */ { ut_ad(mutex_own(&(dict_sys->mutex))); ut_a(foreign); if (foreign->referenced_table != NULL) { foreign->referenced_table->referenced_set.erase(foreign); } if (foreign->foreign_table != NULL) { foreign->foreign_table->foreign_set.erase(foreign); } dict_foreign_free(foreign); } /**********************************************************************//** Looks for the foreign constraint from the foreign and referenced lists of a table. @return foreign constraint */ static dict_foreign_t* dict_foreign_find( /*==============*/ dict_table_t* table, /*!< in: table object */ dict_foreign_t* foreign) /*!< in: foreign constraint */ { ut_ad(mutex_own(&(dict_sys->mutex))); ut_ad(dict_foreign_set_validate(table->foreign_set)); ut_ad(dict_foreign_set_validate(table->referenced_set)); dict_foreign_set::iterator it = table->foreign_set.find(foreign); if (it != table->foreign_set.end()) { return(*it); } it = table->referenced_set.find(foreign); if (it != table->referenced_set.end()) { return(*it); } return(NULL); } /*********************************************************************//** Tries to find an index whose first fields are the columns in the array, in the same order and is not marked for deletion and is not the same as types_idx. @return matching index, NULL if not found */ UNIV_INTERN dict_index_t* dict_foreign_find_index( /*====================*/ const dict_table_t* table, /*!< in: table */ const char** col_names, /*!< in: column names, or NULL to use table->col_names */ const char** columns,/*!< in: array of column names */ ulint n_cols, /*!< in: number of columns */ const dict_index_t* types_idx, /*!< in: NULL or an index whose types the column types must match */ bool check_charsets, /*!< in: whether to check charsets. only has an effect if types_idx != NULL */ ulint check_null, /*!< in: nonzero if none of the columns must be declared NOT NULL */ ulint* error, /*!< out: error code */ ulint* err_col_no, /*!< out: column number where error happened */ dict_index_t** err_index) /*!< out: index where error happened */ { dict_index_t* index; ut_ad(mutex_own(&dict_sys->mutex)); if (error) { *error = DB_FOREIGN_KEY_INDEX_NOT_FOUND; } index = dict_table_get_first_index(table); while (index != NULL) { if (types_idx != index && !(index->type & DICT_FTS) && !index->to_be_dropped && !dict_index_is_online_ddl(index) && dict_foreign_qualify_index( table, col_names, columns, n_cols, index, types_idx, check_charsets, check_null, error, err_col_no,err_index)) { if (error) { *error = DB_SUCCESS; } return(index); } index = dict_table_get_next_index(index); } return(NULL); } #ifdef WITH_WSREP dict_index_t* wsrep_dict_foreign_find_index( /*====================*/ dict_table_t* table, /*!< in: table */ const char** col_names, /*!< in: column names, or NULL to use table->col_names */ const char** columns,/*!< in: array of column names */ ulint n_cols, /*!< in: number of columns */ dict_index_t* types_idx, /*!< in: NULL or an index to whose types the column types must match */ ibool check_charsets, /*!< in: whether to check charsets. only has an effect if types_idx != NULL */ ulint check_null) /*!< in: nonzero if none of the columns must be declared NOT NULL */ { return dict_foreign_find_index( table, col_names, columns, n_cols, types_idx, check_charsets, check_null, NULL, NULL, NULL); } #endif /* WITH_WSREP */ /**********************************************************************//** Report an error in a foreign key definition. */ static void dict_foreign_error_report_low( /*==========================*/ FILE* file, /*!< in: output stream */ const char* name) /*!< in: table name */ { rewind(file); ut_print_timestamp(file); fprintf(file, " Error in foreign key constraint of table %s:\n", name); } /**********************************************************************//** Report an error in a foreign key definition. */ static void dict_foreign_error_report( /*======================*/ FILE* file, /*!< in: output stream */ dict_foreign_t* fk, /*!< in: foreign key constraint */ const char* msg) /*!< in: the error message */ { std::string fk_str; mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(file, fk->foreign_table_name); fputs(msg, file); fputs(" Constraint:\n", file); fk_str = dict_print_info_on_foreign_key_in_create_format(NULL, fk, TRUE); fputs(fk_str.c_str(), file); putc('\n', file); if (fk->foreign_index) { fputs("The index in the foreign key in table is ", file); ut_print_name(file, NULL, FALSE, fk->foreign_index->name); fputs("\n" "See " REFMAN "innodb-foreign-key-constraints.html\n" "for correct foreign key definition.\n", file); } mutex_exit(&dict_foreign_err_mutex); } /**********************************************************************//** Adds a foreign key constraint object to the dictionary cache. May free the object if there already is an object with the same identifier in. At least one of the foreign table and the referenced table must already be in the dictionary cache! @return DB_SUCCESS or error code */ UNIV_INTERN dberr_t dict_foreign_add_to_cache( /*======================*/ dict_foreign_t* foreign, /*!< in, own: foreign key constraint */ const char** col_names, /*!< in: column names, or NULL to use foreign->foreign_table->col_names */ bool check_charsets, /*!< in: whether to check charset compatibility */ dict_err_ignore_t ignore_err) /*!< in: error to be ignored */ { dict_table_t* for_table; dict_table_t* ref_table; dict_foreign_t* for_in_cache = NULL; dict_index_t* index; ibool added_to_referenced_list= FALSE; FILE* ef = dict_foreign_err_file; ut_ad(mutex_own(&(dict_sys->mutex))); for_table = dict_table_check_if_in_cache_low( foreign->foreign_table_name_lookup); ref_table = dict_table_check_if_in_cache_low( foreign->referenced_table_name_lookup); ut_a(for_table || ref_table); if (for_table) { for_in_cache = dict_foreign_find(for_table, foreign); } if (!for_in_cache && ref_table) { for_in_cache = dict_foreign_find(ref_table, foreign); } if (for_in_cache) { dict_foreign_free(foreign); } else { for_in_cache = foreign; } if (ref_table && !for_in_cache->referenced_table) { index = dict_foreign_find_index( ref_table, NULL, for_in_cache->referenced_col_names, for_in_cache->n_fields, for_in_cache->foreign_index, check_charsets, false, NULL, NULL, NULL); if (index == NULL && !(ignore_err & DICT_ERR_IGNORE_FK_NOKEY)) { dict_foreign_error_report( ef, for_in_cache, "there is no index in referenced table" " which would contain\n" "the columns as the first columns," " or the data types in the\n" "referenced table do not match" " the ones in table."); if (for_in_cache == foreign) { dict_foreign_free(foreign); } return(DB_CANNOT_ADD_CONSTRAINT); } for_in_cache->referenced_table = ref_table; for_in_cache->referenced_index = index; std::pair ret = ref_table->referenced_set.insert(for_in_cache); ut_a(ret.second); /* second is true if the insertion took place */ added_to_referenced_list = TRUE; } if (for_table && !for_in_cache->foreign_table) { ulint index_error; ulint err_col; dict_index_t *err_index=NULL; index = dict_foreign_find_index( for_table, col_names, for_in_cache->foreign_col_names, for_in_cache->n_fields, for_in_cache->referenced_index, check_charsets, for_in_cache->type & (DICT_FOREIGN_ON_DELETE_SET_NULL | DICT_FOREIGN_ON_UPDATE_SET_NULL), &index_error, &err_col, &err_index); if (index == NULL && !(ignore_err & DICT_ERR_IGNORE_FK_NOKEY)) { dict_foreign_error_report( ef, for_in_cache, "there is no index in the table" " which would contain\n" "the columns as the first columns," " or the data types in the\n" "table do not match" " the ones in the referenced table\n" "or one of the ON ... SET NULL columns" " is declared NOT NULL."); if (for_in_cache == foreign) { if (added_to_referenced_list) { const dict_foreign_set::size_type n = ref_table->referenced_set .erase(for_in_cache); ut_a(n == 1); /* the number of elements removed must be one */ } dict_foreign_free(foreign); } return(DB_CANNOT_ADD_CONSTRAINT); } for_in_cache->foreign_table = for_table; for_in_cache->foreign_index = index; std::pair ret = for_table->foreign_set.insert(for_in_cache); ut_a(ret.second); /* second is true if the insertion took place */ } /* We need to move the table to the non-LRU end of the table LRU list. Otherwise it will be evicted from the cache. */ if (ref_table != NULL && ref_table->can_be_evicted) { dict_table_move_from_lru_to_non_lru(ref_table); } if (for_table != NULL && for_table->can_be_evicted) { dict_table_move_from_lru_to_non_lru(for_table); } ut_ad(dict_lru_validate()); return(DB_SUCCESS); } /*********************************************************************//** Scans from pointer onwards. Stops if is at the start of a copy of 'string' where characters are compared without case sensitivity, and only outside `` or "" quotes. Stops also at NUL. @return scanned up to this */ static const char* dict_scan_to( /*=========*/ const char* ptr, /*!< in: scan from */ const char* string) /*!< in: look for this */ { char quote = '\0'; bool escape = false; for (; *ptr; ptr++) { if (*ptr == quote) { /* Closing quote character: do not look for starting quote or the keyword. */ /* If the quote character is escaped by a backslash, ignore it. */ if (escape) { escape = false; } else { quote = '\0'; } } else if (quote) { /* Within quotes: do nothing. */ if (escape) { escape = false; } else if (*ptr == '\\') { escape = true; } } else if (*ptr == '`' || *ptr == '"' || *ptr == '\'') { /* Starting quote: remember the quote character. */ quote = *ptr; } else { /* Outside quotes: look for the keyword. */ ulint i; for (i = 0; string[i]; i++) { if (toupper((int)(unsigned char)(ptr[i])) != toupper((int)(unsigned char) (string[i]))) { goto nomatch; } } break; nomatch: ; } } return(ptr); } /*********************************************************************//** Accepts a specified string. Comparisons are case-insensitive. @return if string was accepted, the pointer is moved after that, else ptr is returned */ static const char* dict_accept( /*========*/ struct charset_info_st* cs,/*!< in: the character set of ptr */ const char* ptr, /*!< in: scan from this */ const char* string, /*!< in: accept only this string as the next non-whitespace string */ ibool* success)/*!< out: TRUE if accepted */ { const char* old_ptr = ptr; const char* old_ptr2; *success = FALSE; while (my_isspace(cs, *ptr)) { ptr++; } old_ptr2 = ptr; ptr = dict_scan_to(ptr, string); if (*ptr == '\0' || old_ptr2 != ptr) { return(old_ptr); } *success = TRUE; return(ptr + ut_strlen(string)); } /*********************************************************************//** Scans an id. For the lexical definition of an 'id', see the code below. Strips backquotes or double quotes from around the id. @return scanned to */ static const char* dict_scan_id( /*=========*/ struct charset_info_st* cs,/*!< in: the character set of ptr */ const char* ptr, /*!< in: scanned to */ mem_heap_t* heap, /*!< in: heap where to allocate the id (NULL=id will not be allocated, but it will point to string near ptr) */ const char** id, /*!< out,own: the id; NULL if no id was scannable */ ibool table_id,/*!< in: TRUE=convert the allocated id as a table name; FALSE=convert to UTF-8 */ ibool accept_also_dot) /*!< in: TRUE if also a dot can appear in a non-quoted id; in a quoted id it can appear always */ { char quote = '\0'; ulint len = 0; const char* s; char* str; char* dst; *id = NULL; while (my_isspace(cs, *ptr)) { ptr++; } if (*ptr == '\0') { return(ptr); } if (*ptr == '`' || *ptr == '"') { quote = *ptr++; } s = ptr; if (quote) { for (;;) { if (!*ptr) { /* Syntax error */ return(ptr); } if (*ptr == quote) { ptr++; if (*ptr != quote) { break; } } ptr++; len++; } } else { while (!my_isspace(cs, *ptr) && *ptr != '(' && *ptr != ')' && (accept_also_dot || *ptr != '.') && *ptr != ',' && *ptr != '\0') { ptr++; } len = ptr - s; } if (UNIV_UNLIKELY(!heap)) { /* no heap given: id will point to source string */ *id = s; return(ptr); } if (quote) { char* d; str = d = static_cast( mem_heap_alloc(heap, len + 1)); while (len--) { if ((*d++ = *s++) == quote) { s++; } } *d++ = 0; len = d - str; ut_ad(*s == quote); ut_ad(s + 1 == ptr); } else { str = mem_heap_strdupl(heap, s, len); } if (!table_id) { convert_id: /* Convert the identifier from connection character set to UTF-8. */ len = 3 * len + 1; *id = dst = static_cast(mem_heap_alloc(heap, len)); innobase_convert_from_id(cs, dst, str, len); } else if (!strncmp(str, srv_mysql50_table_name_prefix, sizeof(srv_mysql50_table_name_prefix) - 1)) { /* This is a pre-5.1 table name containing chars other than [A-Za-z0-9]. Discard the prefix and use raw UTF-8 encoding. */ str += sizeof(srv_mysql50_table_name_prefix) - 1; len -= sizeof(srv_mysql50_table_name_prefix) - 1; goto convert_id; } else { /* Encode using filename-safe characters. */ len = 5 * len + 1; *id = dst = static_cast(mem_heap_alloc(heap, len)); innobase_convert_from_table_id(cs, dst, str, len); } return(ptr); } /*********************************************************************//** Tries to scan a column name. @return scanned to */ static const char* dict_scan_col( /*==========*/ struct charset_info_st* cs, /*!< in: the character set of ptr */ const char* ptr, /*!< in: scanned to */ ibool* success,/*!< out: TRUE if success */ dict_table_t* table, /*!< in: table in which the column is */ const dict_col_t** column, /*!< out: pointer to column if success */ mem_heap_t* heap, /*!< in: heap where to allocate */ const char** name) /*!< out,own: the column name; NULL if no name was scannable */ { ulint i; *success = FALSE; ptr = dict_scan_id(cs, ptr, heap, name, FALSE, TRUE); if (*name == NULL) { return(ptr); /* Syntax error */ } if (table == NULL) { *success = TRUE; *column = NULL; } else { for (i = 0; i < dict_table_get_n_cols(table); i++) { const char* col_name = dict_table_get_col_name( table, i); if (0 == innobase_strcasecmp(col_name, *name)) { /* Found */ *success = TRUE; *column = dict_table_get_nth_col(table, i); strcpy((char*) *name, col_name); break; } } } return(ptr); } /*********************************************************************//** Open a table from its database and table name, this is currently used by foreign constraint parser to get the referenced table. @return complete table name with database and table name, allocated from heap memory passed in */ UNIV_INTERN char* dict_get_referenced_table( /*======================*/ const char* name, /*!< in: foreign key table name */ const char* database_name, /*!< in: table db name */ ulint database_name_len, /*!< in: db name length */ const char* table_name, /*!< in: table name */ ulint table_name_len, /*!< in: table name length */ dict_table_t** table, /*!< out: table object or NULL */ mem_heap_t* heap) /*!< in/out: heap memory */ { char* ref; const char* db_name; if (!database_name) { /* Use the database name of the foreign key table */ db_name = name; database_name_len = dict_get_db_name_len(name); } else { db_name = database_name; } /* Copy database_name, '/', table_name, '\0' */ ref = static_cast( mem_heap_alloc(heap, database_name_len + table_name_len + 2)); memcpy(ref, db_name, database_name_len); ref[database_name_len] = '/'; memcpy(ref + database_name_len + 1, table_name, table_name_len + 1); /* Values; 0 = Store and compare as given; case sensitive 1 = Store and compare in lower; case insensitive 2 = Store as given, compare in lower; case semi-sensitive */ if (innobase_get_lower_case_table_names() == 2) { innobase_casedn_str(ref); *table = dict_table_get_low(ref); memcpy(ref, db_name, database_name_len); ref[database_name_len] = '/'; memcpy(ref + database_name_len + 1, table_name, table_name_len + 1); } else { #ifndef __WIN__ if (innobase_get_lower_case_table_names() == 1) { innobase_casedn_str(ref); } #else innobase_casedn_str(ref); #endif /* !__WIN__ */ *table = dict_table_get_low(ref); } return(ref); } /*********************************************************************//** Scans a table name from an SQL string. @return scanned to */ static const char* dict_scan_table_name( /*=================*/ struct charset_info_st* cs,/*!< in: the character set of ptr */ const char* ptr, /*!< in: scanned to */ dict_table_t** table, /*!< out: table object or NULL */ const char* name, /*!< in: foreign key table name */ ibool* success,/*!< out: TRUE if ok name found */ mem_heap_t* heap, /*!< in: heap where to allocate the id */ const char** ref_name)/*!< out,own: the table name; NULL if no name was scannable */ { const char* database_name = NULL; ulint database_name_len = 0; const char* table_name = NULL; const char* scan_name; *success = FALSE; *table = NULL; ptr = dict_scan_id(cs, ptr, heap, &scan_name, TRUE, FALSE); if (scan_name == NULL) { return(ptr); /* Syntax error */ } if (*ptr == '.') { /* We scanned the database name; scan also the table name */ ptr++; database_name = scan_name; database_name_len = strlen(database_name); ptr = dict_scan_id(cs, ptr, heap, &table_name, TRUE, FALSE); if (table_name == NULL) { return(ptr); /* Syntax error */ } } else { /* To be able to read table dumps made with InnoDB-4.0.17 or earlier, we must allow the dot separator between the database name and the table name also to appear within a quoted identifier! InnoDB used to print a constraint as: ... REFERENCES `databasename.tablename` ... starting from 4.0.18 it is ... REFERENCES `databasename`.`tablename` ... */ const char* s; for (s = scan_name; *s; s++) { if (*s == '.') { database_name = scan_name; database_name_len = s - scan_name; scan_name = ++s; break;/* to do: multiple dots? */ } } table_name = scan_name; } *ref_name = dict_get_referenced_table( name, database_name, database_name_len, table_name, strlen(table_name), table, heap); *success = TRUE; return(ptr); } /*********************************************************************//** Skips one id. The id is allowed to contain also '.'. @return scanned to */ static const char* dict_skip_word( /*===========*/ struct charset_info_st* cs,/*!< in: the character set of ptr */ const char* ptr, /*!< in: scanned to */ ibool* success)/*!< out: TRUE if success, FALSE if just spaces left in string or a syntax error */ { const char* start; *success = FALSE; ptr = dict_scan_id(cs, ptr, NULL, &start, FALSE, TRUE); if (start) { *success = TRUE; } return(ptr); } /*********************************************************************//** Removes MySQL comments from an SQL string. A comment is either (a) '#' to the end of the line, (b) '--[space]' to the end of the line, or (c) '[slash][asterisk]' till the next '[asterisk][slash]' (like the familiar C comment syntax). @return own: SQL string stripped from comments; the caller must free this with mem_free()! */ static char* dict_strip_comments( /*================*/ const char* sql_string, /*!< in: SQL string */ size_t sql_length) /*!< in: length of sql_string */ { char* str; const char* sptr; const char* eptr = sql_string + sql_length; char* ptr; /* unclosed quote character (0 if none) */ char quote = 0; bool escape = false; DBUG_ENTER("dict_strip_comments"); DBUG_PRINT("dict_strip_comments", ("%s", sql_string)); str = static_cast(mem_alloc(sql_length + 1)); sptr = sql_string; ptr = str; for (;;) { scan_more: if (sptr >= eptr || *sptr == '\0') { end_of_string: *ptr = '\0'; ut_a(ptr <= str + sql_length); DBUG_PRINT("dict_strip_comments", ("%s", str)); DBUG_RETURN(str); } if (*sptr == quote) { /* Closing quote character: do not look for starting quote or comments. */ /* If the quote character is escaped by a backslash, ignore it. */ if (escape) { escape = false; } else { quote = 0; } } else if (quote) { /* Within quotes: do not look for starting quotes or comments. */ if (escape) { escape = false; } else if (*sptr == '\\') { escape = true; } } else if (*sptr == '"' || *sptr == '`' || *sptr == '\'') { /* Starting quote: remember the quote character. */ quote = *sptr; } else if (*sptr == '#' || (sptr[0] == '-' && sptr[1] == '-' && sptr[2] == ' ')) { for (;;) { if (++sptr >= eptr) { goto end_of_string; } /* In Unix a newline is 0x0A while in Windows it is 0x0D followed by 0x0A */ switch (*sptr) { case (char) 0X0A: case (char) 0x0D: case '\0': goto scan_more; } } } else if (!quote && *sptr == '/' && *(sptr + 1) == '*') { sptr += 2; for (;;) { if (sptr >= eptr) { goto end_of_string; } switch (*sptr) { case '\0': goto scan_more; case '*': if (sptr[1] == '/') { sptr += 2; goto scan_more; } } sptr++; } } *ptr = *sptr; ptr++; sptr++; } } /*********************************************************************//** Finds the highest [number] for foreign key constraints of the table. Looks only at the >= 4.0.18-format id's, which are of the form databasename/tablename_ibfk_[number]. @return highest number, 0 if table has no new format foreign key constraints */ UNIV_INTERN ulint dict_table_get_highest_foreign_id( /*==============================*/ dict_table_t* table) /*!< in: table in the dictionary memory cache */ { dict_foreign_t* foreign; char* endp; ulint biggest_id = 0; ulint id; ulint len; ut_a(table); len = ut_strlen(table->name); for (dict_foreign_set::iterator it = table->foreign_set.begin(); it != table->foreign_set.end(); ++it) { char fkid[MAX_TABLE_NAME_LEN+20]; foreign = *it; strcpy(fkid, foreign->id); /* Convert foreign key identifier on dictionary memory cache to filename charset. */ innobase_convert_to_filename_charset( strchr(fkid, '/') + 1, strchr(foreign->id, '/') + 1, MAX_TABLE_NAME_LEN); if (ut_strlen(fkid) > ((sizeof dict_ibfk) - 1) + len && 0 == ut_memcmp(fkid, table->name, len) && 0 == ut_memcmp(fkid + len, dict_ibfk, (sizeof dict_ibfk) - 1) && fkid[len + ((sizeof dict_ibfk) - 1)] != '0') { /* It is of the >= 4.0.18 format */ id = strtoul(fkid + len + ((sizeof dict_ibfk) - 1), &endp, 10); if (*endp == '\0') { ut_a(id != biggest_id); if (id > biggest_id) { biggest_id = id; } } } } return(biggest_id); } /*********************************************************************//** Reports a simple foreign key create clause syntax error. */ static void dict_foreign_report_syntax_err( /*===========================*/ const char* fmt, /*!< in: syntax err msg */ const char* oper, /*!< in: operation */ const char* name, /*!< in: table name */ const char* start_of_latest_foreign, /*!< in: start of the foreign key clause in the SQL string */ const char* ptr) /*!< in: place of the syntax error */ { ut_ad(!srv_read_only_mode); FILE* ef = dict_foreign_err_file; mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, name); fprintf(ef, fmt, oper, name, start_of_latest_foreign, ptr); mutex_exit(&dict_foreign_err_mutex); } /*********************************************************************//** Push warning message to SQL-layer based on foreign key constraint index match error. */ static void dict_foreign_push_index_error( /*==========================*/ trx_t* trx, /*!< in: trx */ const char* operation, /*!< in: operation create or alter */ const char* create_name, /*!< in: table name in create or alter table */ const char* latest_foreign, /*!< in: start of latest foreign key constraint name */ const char** columns, /*!< in: foreign key columns */ ulint index_error, /*!< in: error code */ ulint err_col, /*!< in: column where error happened */ dict_index_t* err_index, /*!< in: index where error happened */ dict_table_t* table, /*!< in: table */ FILE* ef) /*!< in: output stream */ { switch (index_error) { case DB_FOREIGN_KEY_INDEX_NOT_FOUND: { fprintf(ef, "%s table '%s' with foreign key constraint" " failed. There is no index in the referenced" " table where the referenced columns appear" " as the first columns near '%s'.\n", operation, create_name, latest_foreign); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table '%s' with foreign key constraint" " failed. There is no index in the referenced" " table where the referenced columns appear" " as the first columns near '%s'.", operation, create_name, latest_foreign); break; } case DB_FOREIGN_KEY_IS_PREFIX_INDEX: { fprintf(ef, "%s table '%s' with foreign key constraint" " failed. There is only prefix index in the referenced" " table where the referenced columns appear" " as the first columns near '%s'.\n", operation, create_name, latest_foreign); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table '%s' with foreign key constraint" " failed. There is only prefix index in the referenced" " table where the referenced columns appear" " as the first columns near '%s'.", operation, create_name, latest_foreign); break; } case DB_FOREIGN_KEY_COL_NOT_NULL: { fprintf(ef, "%s table %s with foreign key constraint" " failed. You have defined a SET NULL condition but " "column '%s' on index is defined as NOT NULL near '%s'.\n", operation, create_name, columns[err_col], latest_foreign); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. You have defined a SET NULL condition but " "column '%s' on index is defined as NOT NULL near '%s'.", operation, create_name, columns[err_col], latest_foreign); break; } case DB_FOREIGN_KEY_COLS_NOT_EQUAL: { dict_field_t* field; const char* col_name; field = dict_index_get_nth_field(err_index, err_col); col_name = dict_table_get_col_name( table, dict_col_get_no(field->col)); fprintf(ef, "%s table %s with foreign key constraint" " failed. Field type or character set for column '%s' " "does not mach referenced column '%s' near '%s'.\n", operation, create_name, columns[err_col], col_name, latest_foreign); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Field type or character set for column '%s' " "does not mach referenced column '%s' near '%s'.", operation, create_name, columns[err_col], col_name, latest_foreign); break; } default: ut_error; } } /*********************************************************************//** Scans a table create SQL string and adds to the data dictionary the foreign key constraints declared in the string. This function should be called after the indexes for a table have been created. Each foreign key constraint must be accompanied with indexes in both participating tables. The indexes are allowed to contain more fields than mentioned in the constraint. @return error code or DB_SUCCESS */ static dberr_t dict_create_foreign_constraints_low( /*================================*/ trx_t* trx, /*!< in: transaction */ mem_heap_t* heap, /*!< in: memory heap */ struct charset_info_st* cs,/*!< in: the character set of sql_string */ const char* sql_string, /*!< in: CREATE TABLE or ALTER TABLE statement where foreign keys are declared like: FOREIGN KEY (a, b) REFERENCES table2(c, d), table2 can be written also with the database name before it: test.table2; the default database is the database of parameter name */ const char* name, /*!< in: table full name in the normalized form database_name/table_name */ ibool reject_fks) /*!< in: if TRUE, fail with error code DB_CANNOT_ADD_CONSTRAINT if any foreign keys are found. */ { dict_table_t* table = NULL; dict_table_t* referenced_table = NULL; dict_table_t* table_to_alter = NULL; dict_table_t* table_to_create = NULL; ulint highest_id_so_far = 0; ulint number = 1; dict_index_t* index = NULL; dict_foreign_t* foreign = NULL; const char* ptr = sql_string; const char* start_of_latest_foreign = sql_string; const char* start_of_latest_set = NULL; FILE* ef = dict_foreign_err_file; ulint index_error = DB_SUCCESS; dict_index_t* err_index = NULL; ulint err_col; const char* constraint_name; ibool success; dberr_t error; const char* ptr1; const char* ptr2; ulint i; ulint j; ibool is_on_delete; ulint n_on_deletes; ulint n_on_updates; const dict_col_t*columns[500]; const char* column_names[500]; const char* ref_column_names[500]; const char* referenced_table_name; dict_foreign_set local_fk_set; dict_foreign_set_free local_fk_set_free(local_fk_set); const char* create_table_name; const char* orig; char create_name[MAX_TABLE_NAME_LEN + 1]; char operation[8]; ut_ad(!srv_read_only_mode); ut_ad(mutex_own(&(dict_sys->mutex))); table = dict_table_get_low(name); /* First check if we are actually doing an ALTER TABLE, and in that case look for the table being altered */ orig = ptr; ptr = dict_accept(cs, ptr, "ALTER", &success); strcpy((char *)operation, success ? "Alter " : "Create "); if (!success) { orig = ptr; ptr = dict_scan_to(ptr, "CREATE"); ptr = dict_scan_to(ptr, "TABLE"); ptr = dict_accept(cs, ptr, "TABLE", &success); if (success) { ptr = dict_scan_table_name(cs, ptr, &table_to_create, name, &success, heap, &create_table_name); } if (success) { char *bufend; bufend = innobase_convert_name((char *)create_name, MAX_TABLE_NAME_LEN, create_table_name, strlen(create_table_name), trx->mysql_thd, TRUE); create_name[bufend-create_name]='\0'; ptr = orig; } else { char *bufend; ptr = orig; bufend = innobase_convert_name((char *)create_name, MAX_TABLE_NAME_LEN, name, strlen(name), trx->mysql_thd, TRUE); create_name[bufend-create_name]='\0'; } goto loop; } if (table == NULL) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, create_name); dict_foreign_error_report_low(ef, create_name); fprintf(ef, "%s table %s with foreign key constraint" " failed. Table %s not found from data dictionary." " Error close to %s.\n", operation, create_name, create_name, start_of_latest_foreign); mutex_exit(&dict_foreign_err_mutex); ib_push_warning(trx, DB_ERROR, "%s table %s with foreign key constraint" " failed. Table %s not found from data dictionary." " Error close to %s.", operation, create_name, create_name, start_of_latest_foreign); return(DB_ERROR); } /* If not alter table jump to loop */ if (!success) { goto loop; } orig = ptr; ptr = dict_accept(cs, ptr, "TABLE", &success); if (!success) { goto loop; } /* We are doing an ALTER TABLE: scan the table name we are altering */ orig = ptr; ptr = dict_scan_table_name(cs, ptr, &table_to_alter, name, &success, heap, &referenced_table_name); if (table_to_alter) { char *bufend; bufend = innobase_convert_name((char *)create_name, MAX_TABLE_NAME_LEN, table_to_alter->name, strlen(table_to_alter->name), trx->mysql_thd, TRUE); create_name[bufend-create_name]='\0'; } else { char *bufend; bufend = innobase_convert_name((char *)create_name, MAX_TABLE_NAME_LEN, referenced_table_name, strlen(referenced_table_name), trx->mysql_thd, TRUE); create_name[bufend-create_name]='\0'; } if (!success) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, create_name); fprintf(ef, "%s table %s with foreign key constraint" " failed. Table %s not found from data dictionary." " Error close to %s.\n", operation, create_name, create_name, orig); mutex_exit(&dict_foreign_err_mutex); ib_push_warning(trx, DB_ERROR, "%s table %s with foreign key constraint" " failed. Table %s not found from data dictionary." " Error close to %s.", operation, create_name, create_name, orig); return(DB_ERROR); } /* Starting from 4.0.18 and 4.1.2, we generate foreign key id's in the format databasename/tablename_ibfk_[number], where [number] is local to the table; look for the highest [number] for table_to_alter, so that we can assign to new constraints higher numbers. */ /* If we are altering a temporary table, the table name after ALTER TABLE does not correspond to the internal table name, and table_to_alter is NULL. TODO: should we fix this somehow? */ if (table_to_alter == NULL) { highest_id_so_far = 0; } else { highest_id_so_far = dict_table_get_highest_foreign_id( table_to_alter); } number = highest_id_so_far + 1; /* Scan for foreign key declarations in a loop */ loop: /* Scan either to "CONSTRAINT" or "FOREIGN", whichever is closer */ ptr1 = dict_scan_to(ptr, "CONSTRAINT"); ptr2 = dict_scan_to(ptr, "FOREIGN"); constraint_name = NULL; if (ptr1 < ptr2) { /* The user may have specified a constraint name. Pick it so that we can store 'databasename/constraintname' as the id of of the constraint to system tables. */ ptr = ptr1; orig = ptr; ptr = dict_accept(cs, ptr, "CONSTRAINT", &success); ut_a(success); if (!my_isspace(cs, *ptr) && *ptr != '"' && *ptr != '`') { goto loop; } while (my_isspace(cs, *ptr)) { ptr++; } /* read constraint name unless got "CONSTRAINT FOREIGN" */ if (ptr != ptr2) { ptr = dict_scan_id(cs, ptr, heap, &constraint_name, FALSE, FALSE); } } else { ptr = ptr2; } if (*ptr == '\0') { /* The proper way to reject foreign keys for temporary tables would be to split the lexing and syntactical analysis of foreign key clauses from the actual adding of them, so that ha_innodb.cc could first parse the SQL command, determine if there are any foreign keys, and if so, immediately reject the command if the table is a temporary one. For now, this kludge will work. */ if (reject_fks && !local_fk_set.empty()) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, create_name); fprintf(ef, "%s table %s with foreign key constraint" " failed. Temporary tables can't have foreign key constraints." " Error close to %s.\n", operation, create_name, start_of_latest_foreign); mutex_exit(&dict_foreign_err_mutex); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Temporary tables can't have foreign key constraints." " Error close to %s.", operation, create_name, start_of_latest_foreign); return(DB_CANNOT_ADD_CONSTRAINT); } /**********************************************************/ /* The following call adds the foreign key constraints to the data dictionary system tables on disk */ error = dict_create_add_foreigns_to_dictionary( local_fk_set, table, trx); if (error == DB_SUCCESS) { table->foreign_set.insert(local_fk_set.begin(), local_fk_set.end()); std::for_each(local_fk_set.begin(), local_fk_set.end(), dict_foreign_add_to_referenced_table()); local_fk_set.clear(); } return(error); } start_of_latest_foreign = ptr; orig = ptr; ptr = dict_accept(cs, ptr, "FOREIGN", &success); if (!success) { goto loop; } if (!my_isspace(cs, *ptr)) { goto loop; } orig = ptr; ptr = dict_accept(cs, ptr, "KEY", &success); if (!success) { goto loop; } if (my_isspace(cs, *ptr)) { ptr1 = dict_accept(cs, ptr, "IF", &success); if (success) { if (!my_isspace(cs, *ptr1)) { goto loop; } ptr1 = dict_accept(cs, ptr1, "NOT", &success); if (!success) { goto loop; } ptr1 = dict_accept(cs, ptr1, "EXISTS", &success); if (!success) { goto loop; } ptr = ptr1; } } orig = ptr; ptr = dict_accept(cs, ptr, "(", &success); if (!success) { if (constraint_name) { /* MySQL allows also an index id before the '('; we skip it */ ptr = dict_skip_word(cs, ptr, &success); if (!success) { dict_foreign_report_syntax_err( "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.\n", operation, create_name, start_of_latest_foreign, orig); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.", operation, create_name, start_of_latest_foreign, orig); return(DB_CANNOT_ADD_CONSTRAINT); } } else { while (my_isspace(cs, *ptr)) { ptr++; } ptr = dict_scan_id(cs, ptr, heap, &constraint_name, FALSE, FALSE); } ptr = dict_accept(cs, ptr, "(", &success); if (!success) { /* We do not flag a syntax error here because in an ALTER TABLE we may also have DROP FOREIGN KEY abc */ goto loop; } } i = 0; /* Scan the columns in the first list */ col_loop1: ut_a(i < (sizeof column_names) / sizeof *column_names); orig = ptr; ptr = dict_scan_col(cs, ptr, &success, table, columns + i, heap, column_names + i); if (!success) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, create_name); fprintf(ef, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.\n", operation, create_name, start_of_latest_foreign, orig); mutex_exit(&dict_foreign_err_mutex); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.", operation, create_name, start_of_latest_foreign, orig); return(DB_CANNOT_ADD_CONSTRAINT); } i++; ptr = dict_accept(cs, ptr, ",", &success); if (success) { goto col_loop1; } orig = ptr; ptr = dict_accept(cs, ptr, ")", &success); if (!success) { dict_foreign_report_syntax_err( "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.\n", operation, create_name, start_of_latest_foreign, orig); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.", operation, create_name, start_of_latest_foreign, orig); return(DB_CANNOT_ADD_CONSTRAINT); } /* Try to find an index which contains the columns as the first fields and in the right order. There is no need to check column type match (on types_idx), since the referenced table can be NULL if foreign_key_checks is set to 0 */ index = dict_foreign_find_index( table, NULL, column_names, i, NULL, TRUE, FALSE, &index_error, &err_col, &err_index); if (!index) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, create_name); fputs("There is no index in table ", ef); ut_print_name(ef, NULL, TRUE, create_name); fprintf(ef, " where the columns appear\n" "as the first columns. Constraint:\n%s\n" "See " REFMAN "innodb-foreign-key-constraints.html\n" "for correct foreign key definition.\n", start_of_latest_foreign); dict_foreign_push_index_error(trx, operation, create_name, start_of_latest_foreign, column_names, index_error, err_col, err_index, table, ef); mutex_exit(&dict_foreign_err_mutex); return(DB_CANNOT_ADD_CONSTRAINT); } orig = ptr; ptr = dict_accept(cs, ptr, "REFERENCES", &success); if (!success || !my_isspace(cs, *ptr)) { dict_foreign_report_syntax_err( "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.\n", operation, create_name, start_of_latest_foreign, orig); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.", operation, create_name, start_of_latest_foreign, orig); return(DB_CANNOT_ADD_CONSTRAINT); } /* Let us create a constraint struct */ foreign = dict_mem_foreign_create(); if (constraint_name) { ulint db_len; /* Catenate 'databasename/' to the constraint name specified by the user: we conceive the constraint as belonging to the same MySQL 'database' as the table itself. We store the name to foreign->id. */ db_len = dict_get_db_name_len(table->name); foreign->id = static_cast(mem_heap_alloc( foreign->heap, db_len + strlen(constraint_name) + 2)); ut_memcpy(foreign->id, table->name, db_len); foreign->id[db_len] = '/'; strcpy(foreign->id + db_len + 1, constraint_name); } if (foreign->id == NULL) { error = dict_create_add_foreign_id(&number, table->name, foreign); if (error != DB_SUCCESS) { dict_foreign_free(foreign); return(error); } } std::pair ret = local_fk_set.insert(foreign); if (!ret.second) { /* A duplicate foreign key name has been found */ dict_foreign_free(foreign); return(DB_CANNOT_ADD_CONSTRAINT); } foreign->foreign_table = table; foreign->foreign_table_name = mem_heap_strdup( foreign->heap, table->name); dict_mem_foreign_table_name_lookup_set(foreign, TRUE); foreign->foreign_index = index; foreign->n_fields = (unsigned int) i; foreign->foreign_col_names = static_cast( mem_heap_alloc(foreign->heap, i * sizeof(void*))); for (i = 0; i < foreign->n_fields; i++) { foreign->foreign_col_names[i] = mem_heap_strdup( foreign->heap, dict_table_get_col_name(table, dict_col_get_no(columns[i]))); } ptr = dict_scan_table_name(cs, ptr, &referenced_table, name, &success, heap, &referenced_table_name); /* Note that referenced_table can be NULL if the user has suppressed checking of foreign key constraints! */ if (!success || (!referenced_table && trx->check_foreigns)) { char buf[MAX_TABLE_NAME_LEN + 1] = ""; char* bufend; bufend = innobase_convert_name(buf, MAX_TABLE_NAME_LEN, referenced_table_name, strlen(referenced_table_name), trx->mysql_thd, TRUE); buf[bufend - buf] = '\0'; ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint failed. Referenced table %s not found in the data dictionary " "near '%s'.", operation, create_name, buf, start_of_latest_foreign); mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, create_name); fprintf(ef, "%s table %s with foreign key constraint failed. Referenced table %s not found in the data dictionary " "near '%s'.\n", operation, create_name, buf, start_of_latest_foreign); mutex_exit(&dict_foreign_err_mutex); return(DB_CANNOT_ADD_CONSTRAINT); } orig = ptr; ptr = dict_accept(cs, ptr, "(", &success); if (!success) { dict_foreign_report_syntax_err( "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.\n", operation, create_name, start_of_latest_foreign, orig); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.", operation, create_name, start_of_latest_foreign, orig); return(DB_CANNOT_ADD_CONSTRAINT); } /* Scan the columns in the second list */ i = 0; col_loop2: orig = ptr; ptr = dict_scan_col(cs, ptr, &success, referenced_table, columns + i, heap, ref_column_names + i); i++; if (!success) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, create_name); fprintf(ef, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.\n", operation, create_name, start_of_latest_foreign, orig); mutex_exit(&dict_foreign_err_mutex); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.", operation, create_name, start_of_latest_foreign, orig); return(DB_CANNOT_ADD_CONSTRAINT); } orig = ptr; ptr = dict_accept(cs, ptr, ",", &success); if (success) { goto col_loop2; } orig = ptr; ptr = dict_accept(cs, ptr, ")", &success); if (!success || foreign->n_fields != i) { dict_foreign_report_syntax_err( "%s table %s with foreign key constraint" " failed. Parse error in '%s' near '%s'. Referencing column count does not match referenced column count.\n", operation, create_name, start_of_latest_foreign, orig); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s' near '%s'. Referencing column count %d does not match referenced column count %d.\n", operation, create_name, start_of_latest_foreign, orig, i, foreign->n_fields); return(DB_CANNOT_ADD_CONSTRAINT); } n_on_deletes = 0; n_on_updates = 0; scan_on_conditions: /* Loop here as long as we can find ON ... conditions */ start_of_latest_set = ptr; ptr = dict_accept(cs, ptr, "ON", &success); if (!success) { goto try_find_index; } orig = ptr; ptr = dict_accept(cs, ptr, "DELETE", &success); if (!success) { orig = ptr; ptr = dict_accept(cs, ptr, "UPDATE", &success); if (!success) { dict_foreign_report_syntax_err( "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.\n", operation, create_name, start_of_latest_foreign, start_of_latest_set); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.", operation, create_name, start_of_latest_foreign, start_of_latest_set); return(DB_CANNOT_ADD_CONSTRAINT); } is_on_delete = FALSE; n_on_updates++; } else { is_on_delete = TRUE; n_on_deletes++; } orig = ptr; ptr = dict_accept(cs, ptr, "RESTRICT", &success); if (success) { goto scan_on_conditions; } orig = ptr; ptr = dict_accept(cs, ptr, "CASCADE", &success); if (success) { if (is_on_delete) { foreign->type |= DICT_FOREIGN_ON_DELETE_CASCADE; } else { foreign->type |= DICT_FOREIGN_ON_UPDATE_CASCADE; } goto scan_on_conditions; } orig = ptr; ptr = dict_accept(cs, ptr, "NO", &success); if (success) { orig = ptr; ptr = dict_accept(cs, ptr, "ACTION", &success); if (!success) { dict_foreign_report_syntax_err( "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.\n", operation, create_name, start_of_latest_foreign, start_of_latest_set); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.", operation, create_name, start_of_latest_foreign, start_of_latest_set); return(DB_CANNOT_ADD_CONSTRAINT); } if (is_on_delete) { foreign->type |= DICT_FOREIGN_ON_DELETE_NO_ACTION; } else { foreign->type |= DICT_FOREIGN_ON_UPDATE_NO_ACTION; } goto scan_on_conditions; } orig = ptr; ptr = dict_accept(cs, ptr, "SET", &success); if (!success) { dict_foreign_report_syntax_err( "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.\n", operation, create_name, start_of_latest_foreign, start_of_latest_set); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.", operation, create_name, start_of_latest_foreign, start_of_latest_set); return(DB_CANNOT_ADD_CONSTRAINT); } orig = ptr; ptr = dict_accept(cs, ptr, "NULL", &success); if (!success) { dict_foreign_report_syntax_err( "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.\n", operation, create_name, start_of_latest_foreign, start_of_latest_set); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. Parse error in '%s'" " near '%s'.", operation, create_name, start_of_latest_foreign, start_of_latest_set); return(DB_CANNOT_ADD_CONSTRAINT); } for (j = 0; j < foreign->n_fields; j++) { if ((dict_index_get_nth_col(foreign->foreign_index, j)->prtype) & DATA_NOT_NULL) { const dict_col_t* col = dict_index_get_nth_col(foreign->foreign_index, j); const char* col_name = dict_table_get_col_name(foreign->foreign_index->table, dict_col_get_no(col)); /* It is not sensible to define SET NULL if the column is not allowed to be NULL! */ mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, create_name); fprintf(ef, "%s table %s with foreign key constraint" " failed. You have defined a SET NULL condition but column '%s' is defined as NOT NULL" " in '%s' near '%s'.\n", operation, create_name, col_name, start_of_latest_foreign, start_of_latest_set); mutex_exit(&dict_foreign_err_mutex); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. You have defined a SET NULL condition but column '%s' is defined as NOT NULL" " in '%s' near '%s'.", operation, create_name, col_name, start_of_latest_foreign, start_of_latest_set); return(DB_CANNOT_ADD_CONSTRAINT); } } if (is_on_delete) { foreign->type |= DICT_FOREIGN_ON_DELETE_SET_NULL; } else { foreign->type |= DICT_FOREIGN_ON_UPDATE_SET_NULL; } goto scan_on_conditions; try_find_index: if (n_on_deletes > 1 || n_on_updates > 1) { /* It is an error to define more than 1 action */ mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, create_name); fprintf(ef, "%s table %s with foreign key constraint" " failed. You have more than one on delete or on update clause" " in '%s' near '%s'.\n", operation, create_name, start_of_latest_foreign, start_of_latest_set); ib_push_warning(trx, DB_CANNOT_ADD_CONSTRAINT, "%s table %s with foreign key constraint" " failed. You have more than one on delete or on update clause" " in '%s' near '%s'.", operation, create_name, start_of_latest_foreign, start_of_latest_set); dict_foreign_free(foreign); mutex_exit(&dict_foreign_err_mutex); return(DB_CANNOT_ADD_CONSTRAINT); } /* Try to find an index which contains the columns as the first fields and in the right order, and the types are the same as in foreign->foreign_index */ if (referenced_table) { index = dict_foreign_find_index(referenced_table, NULL, ref_column_names, i, foreign->foreign_index, TRUE, FALSE, &index_error, &err_col, &err_index); if (!index) { mutex_enter(&dict_foreign_err_mutex); dict_foreign_error_report_low(ef, create_name); fprintf(ef, "%s:\n" "Cannot find an index in the" " referenced table where the\n" "referenced columns appear as the" " first columns, or column types\n" "in the table and the referenced table" " do not match for constraint.\n" "Note that the internal storage type of" " ENUM and SET changed in\n" "tables created with >= InnoDB-4.1.12," " and such columns in old tables\n" "cannot be referenced by such columns" " in new tables.\n" "See " REFMAN "innodb-foreign-key-constraints.html\n" "for correct foreign key definition.\n", start_of_latest_foreign); dict_foreign_push_index_error(trx, operation, create_name, start_of_latest_foreign, column_names, index_error, err_col, err_index, referenced_table, ef); mutex_exit(&dict_foreign_err_mutex); return(DB_CANNOT_ADD_CONSTRAINT); } } else { ut_a(trx->check_foreigns == FALSE); index = NULL; } foreign->referenced_index = index; foreign->referenced_table = referenced_table; foreign->referenced_table_name = mem_heap_strdup( foreign->heap, referenced_table_name); dict_mem_referenced_table_name_lookup_set(foreign, TRUE); foreign->referenced_col_names = static_cast( mem_heap_alloc(foreign->heap, i * sizeof(void*))); for (i = 0; i < foreign->n_fields; i++) { foreign->referenced_col_names[i] = mem_heap_strdup(foreign->heap, ref_column_names[i]); } goto loop; } /************************************************************************** Determines whether a string starts with the specified keyword. @return TRUE if str starts with keyword */ UNIV_INTERN ibool dict_str_starts_with_keyword( /*=========================*/ THD* thd, /*!< in: MySQL thread handle */ const char* str, /*!< in: string to scan for keyword */ const char* keyword) /*!< in: keyword to look for */ { struct charset_info_st* cs = innobase_get_charset(thd); ibool success; dict_accept(cs, str, keyword, &success); return(success); } /*********************************************************************//** Scans a table create SQL string and adds to the data dictionary the foreign key constraints declared in the string. This function should be called after the indexes for a table have been created. Each foreign key constraint must be accompanied with indexes in both participating tables. The indexes are allowed to contain more fields than mentioned in the constraint. @return error code or DB_SUCCESS */ UNIV_INTERN dberr_t dict_create_foreign_constraints( /*============================*/ trx_t* trx, /*!< in: transaction */ const char* sql_string, /*!< in: table create statement where foreign keys are declared like: FOREIGN KEY (a, b) REFERENCES table2(c, d), table2 can be written also with the database name before it: test.table2; the default database id the database of parameter name */ size_t sql_length, /*!< in: length of sql_string */ const char* name, /*!< in: table full name in the normalized form database_name/table_name */ ibool reject_fks) /*!< in: if TRUE, fail with error code DB_CANNOT_ADD_CONSTRAINT if any foreign keys are found. */ { char* str; dberr_t err; mem_heap_t* heap; ut_a(trx); ut_a(trx->mysql_thd); str = dict_strip_comments(sql_string, sql_length); heap = mem_heap_create(10000); err = dict_create_foreign_constraints_low( trx, heap, innobase_get_charset(trx->mysql_thd), str, name, reject_fks); mem_heap_free(heap); mem_free(str); return(err); } /**********************************************************************//** Parses the CONSTRAINT id's to be dropped in an ALTER TABLE statement. @return DB_SUCCESS or DB_CANNOT_DROP_CONSTRAINT if syntax error or the constraint id does not match */ UNIV_INTERN dberr_t dict_foreign_parse_drop_constraints( /*================================*/ mem_heap_t* heap, /*!< in: heap from which we can allocate memory */ trx_t* trx, /*!< in: transaction */ dict_table_t* table, /*!< in: table */ ulint* n, /*!< out: number of constraints to drop */ const char*** constraints_to_drop) /*!< out: id's of the constraints to drop */ { ibool success; char* str; size_t len; const char* ptr; const char* ptr1; const char* id; struct charset_info_st* cs; ut_a(trx); ut_a(trx->mysql_thd); cs = innobase_get_charset(trx->mysql_thd); *n = 0; *constraints_to_drop = static_cast( mem_heap_alloc(heap, 1000 * sizeof(char*))); ptr = innobase_get_stmt(trx->mysql_thd, &len); str = dict_strip_comments(ptr, len); ptr = str; ut_ad(mutex_own(&(dict_sys->mutex))); loop: ptr = dict_scan_to(ptr, "DROP"); if (*ptr == '\0') { mem_free(str); return(DB_SUCCESS); } ptr = dict_accept(cs, ptr, "DROP", &success); if (!my_isspace(cs, *ptr)) { goto loop; } ptr = dict_accept(cs, ptr, "FOREIGN", &success); if (!success || !my_isspace(cs, *ptr)) { goto loop; } ptr = dict_accept(cs, ptr, "KEY", &success); if (!success) { goto syntax_error; } ptr1 = dict_accept(cs, ptr, "IF", &success); if (success && my_isspace(cs, *ptr1)) { ptr1 = dict_accept(cs, ptr1, "EXISTS", &success); if (success) { ptr = ptr1; } } ptr = dict_scan_id(cs, ptr, heap, &id, FALSE, TRUE); if (id == NULL) { goto syntax_error; } ut_a(*n < 1000); (*constraints_to_drop)[*n] = id; (*n)++; if (std::find_if(table->foreign_set.begin(), table->foreign_set.end(), dict_foreign_matches_id(id)) == table->foreign_set.end()) { if (!srv_read_only_mode) { FILE* ef = dict_foreign_err_file; mutex_enter(&dict_foreign_err_mutex); rewind(ef); ut_print_timestamp(ef); fputs(" Error in dropping of a foreign key " "constraint of table ", ef); ut_print_name(ef, NULL, TRUE, table->name); fputs(",\nin SQL command\n", ef); fputs(str, ef); fputs("\nCannot find a constraint with the " "given id ", ef); ut_print_name(ef, NULL, FALSE, id); fputs(".\n", ef); mutex_exit(&dict_foreign_err_mutex); } mem_free(str); return(DB_CANNOT_DROP_CONSTRAINT); } goto loop; syntax_error: if (!srv_read_only_mode) { FILE* ef = dict_foreign_err_file; mutex_enter(&dict_foreign_err_mutex); rewind(ef); ut_print_timestamp(ef); fputs(" Syntax error in dropping of a" " foreign key constraint of table ", ef); ut_print_name(ef, NULL, TRUE, table->name); fprintf(ef, ",\n" "close to:\n%s\n in SQL command\n%s\n", ptr, str); mutex_exit(&dict_foreign_err_mutex); } mem_free(str); return(DB_CANNOT_DROP_CONSTRAINT); } /*==================== END OF FOREIGN KEY PROCESSING ====================*/ /**********************************************************************//** Returns an index object if it is found in the dictionary cache. Assumes that dict_sys->mutex is already being held. @return index, NULL if not found */ UNIV_INTERN dict_index_t* dict_index_get_if_in_cache_low( /*===========================*/ index_id_t index_id) /*!< in: index id */ { ut_ad(mutex_own(&(dict_sys->mutex))); return(dict_index_find_on_id_low(index_id)); } #if defined UNIV_DEBUG || defined UNIV_BUF_DEBUG /**********************************************************************//** Returns an index object if it is found in the dictionary cache. @return index, NULL if not found */ UNIV_INTERN dict_index_t* dict_index_get_if_in_cache( /*=======================*/ index_id_t index_id) /*!< in: index id */ { dict_index_t* index; if (dict_sys == NULL) { return(NULL); } mutex_enter(&(dict_sys->mutex)); index = dict_index_get_if_in_cache_low(index_id); mutex_exit(&(dict_sys->mutex)); return(index); } #endif /* UNIV_DEBUG || UNIV_BUF_DEBUG */ #ifdef UNIV_DEBUG /**********************************************************************//** Checks that a tuple has n_fields_cmp value in a sensible range, so that no comparison can occur with the page number field in a node pointer. @return TRUE if ok */ UNIV_INTERN ibool dict_index_check_search_tuple( /*==========================*/ const dict_index_t* index, /*!< in: index tree */ const dtuple_t* tuple) /*!< in: tuple used in a search */ { ut_a(index); ut_a(dtuple_get_n_fields_cmp(tuple) <= dict_index_get_n_unique_in_tree(index)); return(TRUE); } #endif /* UNIV_DEBUG */ /**********************************************************************//** Builds a node pointer out of a physical record and a page number. @return own: node pointer */ UNIV_INTERN dtuple_t* dict_index_build_node_ptr( /*======================*/ const dict_index_t* index, /*!< in: index */ const rec_t* rec, /*!< in: record for which to build node pointer */ ulint page_no,/*!< in: page number to put in node pointer */ mem_heap_t* heap, /*!< in: memory heap where pointer created */ ulint level) /*!< in: level of rec in tree: 0 means leaf level */ { dtuple_t* tuple; dfield_t* field; byte* buf; ulint n_unique; if (dict_index_is_univ(index)) { /* In a universal index tree, we take the whole record as the node pointer if the record is on the leaf level, on non-leaf levels we remove the last field, which contains the page number of the child page */ ut_a(!dict_table_is_comp(index->table)); n_unique = rec_get_n_fields_old(rec); if (level > 0) { ut_a(n_unique > 1); n_unique--; } } else { n_unique = dict_index_get_n_unique_in_tree(index); } tuple = dtuple_create(heap, n_unique + 1); /* When searching in the tree for the node pointer, we must not do comparison on the last field, the page number field, as on upper levels in the tree there may be identical node pointers with a different page number; therefore, we set the n_fields_cmp to one less: */ dtuple_set_n_fields_cmp(tuple, n_unique); dict_index_copy_types(tuple, index, n_unique); buf = static_cast(mem_heap_alloc(heap, 4)); mach_write_to_4(buf, page_no); field = dtuple_get_nth_field(tuple, n_unique); dfield_set_data(field, buf, 4); dtype_set(dfield_get_type(field), DATA_SYS_CHILD, DATA_NOT_NULL, 4); rec_copy_prefix_to_dtuple(tuple, rec, index, n_unique, heap); dtuple_set_info_bits(tuple, dtuple_get_info_bits(tuple) | REC_STATUS_NODE_PTR); ut_ad(dtuple_check_typed(tuple)); return(tuple); } /**********************************************************************//** Copies an initial segment of a physical record, long enough to specify an index entry uniquely. @return pointer to the prefix record */ UNIV_INTERN rec_t* dict_index_copy_rec_order_prefix( /*=============================*/ const dict_index_t* index, /*!< in: index */ const rec_t* rec, /*!< in: record for which to copy prefix */ ulint* n_fields,/*!< out: number of fields copied */ byte** buf, /*!< in/out: memory buffer for the copied prefix, or NULL */ ulint* buf_size)/*!< in/out: buffer size */ { ulint n; UNIV_PREFETCH_R(rec); if (dict_index_is_univ(index)) { ut_a(!dict_table_is_comp(index->table)); n = rec_get_n_fields_old(rec); } else { n = dict_index_get_n_unique_in_tree(index); } *n_fields = n; return(rec_copy_prefix_to_buf(rec, index, n, buf, buf_size)); } /**********************************************************************//** Builds a typed data tuple out of a physical record. @return own: data tuple */ UNIV_INTERN dtuple_t* dict_index_build_data_tuple( /*========================*/ dict_index_t* index, /*!< in: index tree */ rec_t* rec, /*!< in: record for which to build data tuple */ ulint n_fields,/*!< in: number of data fields */ mem_heap_t* heap) /*!< in: memory heap where tuple created */ { dtuple_t* tuple; ut_ad(dict_table_is_comp(index->table) || n_fields <= rec_get_n_fields_old(rec)); tuple = dtuple_create(heap, n_fields); dict_index_copy_types(tuple, index, n_fields); rec_copy_prefix_to_dtuple(tuple, rec, index, n_fields, heap); ut_ad(dtuple_check_typed(tuple)); return(tuple); } /*********************************************************************//** Calculates the minimum record length in an index. */ UNIV_INTERN ulint dict_index_calc_min_rec_len( /*========================*/ const dict_index_t* index) /*!< in: index */ { ulint sum = 0; ulint i; ulint comp = dict_table_is_comp(index->table); if (comp) { ulint nullable = 0; sum = REC_N_NEW_EXTRA_BYTES; for (i = 0; i < dict_index_get_n_fields(index); i++) { const dict_col_t* col = dict_index_get_nth_col(index, i); ulint size = dict_col_get_fixed_size(col, comp); sum += size; if (!size) { size = col->len; sum += size < 128 ? 1 : 2; } if (!(col->prtype & DATA_NOT_NULL)) { nullable++; } } /* round the NULL flags up to full bytes */ sum += UT_BITS_IN_BYTES(nullable); return(sum); } for (i = 0; i < dict_index_get_n_fields(index); i++) { sum += dict_col_get_fixed_size( dict_index_get_nth_col(index, i), comp); } if (sum > 127) { sum += 2 * dict_index_get_n_fields(index); } else { sum += dict_index_get_n_fields(index); } sum += REC_N_OLD_EXTRA_BYTES; return(sum); } /**********************************************************************//** Prints info of a foreign key constraint. */ static void dict_foreign_print_low( /*===================*/ dict_foreign_t* foreign) /*!< in: foreign key constraint */ { ulint i; ut_ad(mutex_own(&(dict_sys->mutex))); fprintf(stderr, " FOREIGN KEY CONSTRAINT %s: %s (", foreign->id, foreign->foreign_table_name); for (i = 0; i < foreign->n_fields; i++) { fprintf(stderr, " %s", foreign->foreign_col_names[i]); } fprintf(stderr, " )\n" " REFERENCES %s (", foreign->referenced_table_name); for (i = 0; i < foreign->n_fields; i++) { fprintf(stderr, " %s", foreign->referenced_col_names[i]); } fputs(" )\n", stderr); } /**********************************************************************//** Prints a table data. */ UNIV_INTERN void dict_table_print( /*=============*/ dict_table_t* table) /*!< in: table */ { dict_index_t* index; ulint i; ut_ad(mutex_own(&(dict_sys->mutex))); dict_table_stats_lock(table, RW_X_LATCH); if (!table->stat_initialized) { dict_stats_update_transient(table); } fprintf(stderr, "--------------------------------------\n" "TABLE: name %s, id %llu, flags %lx, columns %lu," " indexes %lu, appr.rows " UINT64PF "\n" " COLUMNS: ", table->name, (ullint) table->id, (ulong) table->flags, (ulong) table->n_cols, (ulong) UT_LIST_GET_LEN(table->indexes), table->stat_n_rows); for (i = 0; i < (ulint) table->n_cols; i++) { dict_col_print_low(table, dict_table_get_nth_col(table, i)); fputs("; ", stderr); } putc('\n', stderr); index = UT_LIST_GET_FIRST(table->indexes); while (index != NULL) { dict_index_print_low(index); index = UT_LIST_GET_NEXT(indexes, index); } dict_table_stats_unlock(table, RW_X_LATCH); std::for_each(table->foreign_set.begin(), table->foreign_set.end(), dict_foreign_print_low); std::for_each(table->referenced_set.begin(), table->referenced_set.end(), dict_foreign_print_low); } /**********************************************************************//** Prints a column data. */ static void dict_col_print_low( /*===============*/ const dict_table_t* table, /*!< in: table */ const dict_col_t* col) /*!< in: column */ { dtype_t type; ut_ad(mutex_own(&(dict_sys->mutex))); dict_col_copy_type(col, &type); fprintf(stderr, "%s: ", dict_table_get_col_name(table, dict_col_get_no(col))); dtype_print(&type); } /**********************************************************************//** Prints an index data. */ static void dict_index_print_low( /*=================*/ dict_index_t* index) /*!< in: index */ { ib_int64_t n_vals; ulint i; ut_a(index->table->stat_initialized); ut_ad(mutex_own(&(dict_sys->mutex))); if (index->n_user_defined_cols > 0) { n_vals = index->stat_n_diff_key_vals[ index->n_user_defined_cols - 1]; } else { n_vals = index->stat_n_diff_key_vals[0]; } fprintf(stderr, " INDEX: name %s, id %llu, fields %lu/%lu," " uniq %lu, type %lu\n" " root page %lu, appr.key vals %lu," " leaf pages %lu, size pages %lu\n" " FIELDS: ", index->name, (ullint) index->id, (ulong) index->n_user_defined_cols, (ulong) index->n_fields, (ulong) index->n_uniq, (ulong) index->type, (ulong) index->page, (ulong) n_vals, (ulong) index->stat_n_leaf_pages, (ulong) index->stat_index_size); for (i = 0; i < index->n_fields; i++) { dict_field_print_low(dict_index_get_nth_field(index, i)); } putc('\n', stderr); #ifdef UNIV_BTR_PRINT btr_print_size(index); btr_print_index(index, 7); #endif /* UNIV_BTR_PRINT */ } /**********************************************************************//** Prints a field data. */ static void dict_field_print_low( /*=================*/ const dict_field_t* field) /*!< in: field */ { ut_ad(mutex_own(&(dict_sys->mutex))); fprintf(stderr, " %s", field->name); if (field->prefix_len != 0) { fprintf(stderr, "(%lu)", (ulong) field->prefix_len); } } /**********************************************************************//** Outputs info on a foreign key of a table in a format suitable for CREATE TABLE. */ UNIV_INTERN std::string dict_print_info_on_foreign_key_in_create_format( /*============================================*/ trx_t* trx, /*!< in: transaction */ dict_foreign_t* foreign, /*!< in: foreign key constraint */ ibool add_newline) /*!< in: whether to add a newline */ { const char* stripped_id; ulint i; std::string str; if (strchr(foreign->id, '/')) { /* Strip the preceding database name from the constraint id */ stripped_id = foreign->id + 1 + dict_get_db_name_len(foreign->id); } else { stripped_id = foreign->id; } str.append(","); if (add_newline) { /* SHOW CREATE TABLE wants constraints each printed nicely on its own line, while error messages want no newlines inserted. */ str.append("\n "); } str.append(" CONSTRAINT "); str.append(ut_get_name(trx, FALSE, stripped_id)); str.append(" FOREIGN KEY ("); for (i = 0;;) { str.append(ut_get_name(trx, FALSE, foreign->foreign_col_names[i])); if (++i < foreign->n_fields) { str.append(", "); } else { break; } } str.append(") REFERENCES "); if (dict_tables_have_same_db(foreign->foreign_table_name_lookup, foreign->referenced_table_name_lookup)) { /* Do not print the database name of the referenced table */ str.append(ut_get_name(trx, TRUE, dict_remove_db_name( foreign->referenced_table_name))); } else { str.append(ut_get_name(trx, TRUE, foreign->referenced_table_name)); } str.append(" ("); for (i = 0;;) { str.append(ut_get_name(trx, FALSE, foreign->referenced_col_names[i])); if (++i < foreign->n_fields) { str.append(", "); } else { break; } } str.append(")"); if (foreign->type & DICT_FOREIGN_ON_DELETE_CASCADE) { str.append(" ON DELETE CASCADE"); } if (foreign->type & DICT_FOREIGN_ON_DELETE_SET_NULL) { str.append(" ON DELETE SET NULL"); } if (foreign->type & DICT_FOREIGN_ON_DELETE_NO_ACTION) { str.append(" ON DELETE NO ACTION"); } if (foreign->type & DICT_FOREIGN_ON_UPDATE_CASCADE) { str.append(" ON UPDATE CASCADE"); } if (foreign->type & DICT_FOREIGN_ON_UPDATE_SET_NULL) { str.append(" ON UPDATE SET NULL"); } if (foreign->type & DICT_FOREIGN_ON_UPDATE_NO_ACTION) { str.append(" ON UPDATE NO ACTION"); } return str; } /**********************************************************************//** Outputs info on foreign keys of a table. */ UNIV_INTERN std::string dict_print_info_on_foreign_keys( /*============================*/ ibool create_table_format, /*!< in: if TRUE then print in a format suitable to be inserted into a CREATE TABLE, otherwise in the format of SHOW TABLE STATUS */ trx_t* trx, /*!< in: transaction */ dict_table_t* table) /*!< in: table */ { dict_foreign_t* foreign; std::string str; mutex_enter(&(dict_sys->mutex)); for (dict_foreign_set::iterator it = table->foreign_set.begin(); it != table->foreign_set.end(); ++it) { foreign = *it; if (create_table_format) { str.append( dict_print_info_on_foreign_key_in_create_format( trx, foreign, TRUE)); } else { ulint i; str.append("; ("); for (i = 0; i < foreign->n_fields; i++) { if (i) { str.append(" "); } str.append(ut_get_name(trx, FALSE, foreign->foreign_col_names[i])); } str.append(") REFER "); str.append(ut_get_name(trx, TRUE, foreign->referenced_table_name)); str.append(")"); for (i = 0; i < foreign->n_fields; i++) { if (i) { str.append(" "); } str.append(ut_get_name( trx, FALSE, foreign->referenced_col_names[i])); } str.append(")"); if (foreign->type == DICT_FOREIGN_ON_DELETE_CASCADE) { str.append(" ON DELETE CASCADE"); } if (foreign->type == DICT_FOREIGN_ON_DELETE_SET_NULL) { str.append(" ON DELETE SET NULL"); } if (foreign->type & DICT_FOREIGN_ON_DELETE_NO_ACTION) { str.append(" ON DELETE NO ACTION"); } if (foreign->type & DICT_FOREIGN_ON_UPDATE_CASCADE) { str.append(" ON UPDATE CASCADE"); } if (foreign->type & DICT_FOREIGN_ON_UPDATE_SET_NULL) { str.append(" ON UPDATE SET NULL"); } if (foreign->type & DICT_FOREIGN_ON_UPDATE_NO_ACTION) { str.append(" ON UPDATE NO ACTION"); } } } mutex_exit(&(dict_sys->mutex)); return str; } /********************************************************************//** Displays the names of the index and the table. */ UNIV_INTERN void dict_index_name_print( /*==================*/ FILE* file, /*!< in: output stream */ const trx_t* trx, /*!< in: transaction */ const dict_index_t* index) /*!< in: index to print */ { fputs("index ", file); ut_print_name(file, trx, FALSE, index->name); fputs(" of table ", file); ut_print_name(file, trx, TRUE, index->table_name); } /**********************************************************************//** Find a table in dict_sys->table_LRU list with specified space id @return table if found, NULL if not */ static dict_table_t* dict_find_table_by_space( /*=====================*/ ulint space_id) /*!< in: space ID */ { dict_table_t* table; ulint num_item; ulint count = 0; ut_ad(space_id > 0); if (dict_sys == NULL) { /* This could happen when it's in redo processing. */ return(NULL); } table = UT_LIST_GET_FIRST(dict_sys->table_LRU); num_item = UT_LIST_GET_LEN(dict_sys->table_LRU); /* This function intentionally does not acquire mutex as it is used by error handling code in deep call stack as last means to avoid killing the server, so it worth to risk some consequencies for the action. */ while (table && count < num_item) { if (table->space == space_id) { return(table); } table = UT_LIST_GET_NEXT(table_LRU, table); count++; } return(NULL); } /**********************************************************************//** Flags a table with specified space_id corrupted in the data dictionary cache @return TRUE if successful */ UNIV_INTERN ibool dict_set_corrupted_by_space( /*========================*/ ulint space_id) /*!< in: space ID */ { dict_table_t* table; table = dict_find_table_by_space(space_id); if (!table) { return(FALSE); } /* mark the table->corrupted bit only, since the caller could be too deep in the stack for SYS_INDEXES update */ table->corrupted = true; table->file_unreadable = true; return(TRUE); } /** Flags a table with specified space_id encrypted in the data dictionary cache @param[in] space_id Tablespace id */ UNIV_INTERN void dict_set_encrypted_by_space(ulint space_id) { dict_table_t* table; table = dict_find_table_by_space(space_id); if (table) { table->file_unreadable = true; } } /**********************************************************************//** Flags an index corrupted both in the data dictionary cache and in the SYS_INDEXES */ UNIV_INTERN void dict_set_corrupted( /*===============*/ dict_index_t* index, /*!< in/out: index */ trx_t* trx, /*!< in/out: transaction */ const char* ctx) /*!< in: context */ { mem_heap_t* heap; mtr_t mtr; dict_index_t* sys_index; dtuple_t* tuple; dfield_t* dfield; byte* buf; char* table_name; const char* status; btr_cur_t cursor; bool locked = RW_X_LATCH == trx->dict_operation_lock_mode; if (!locked) { row_mysql_lock_data_dictionary(trx); } ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(!dict_table_is_comp(dict_sys->sys_tables)); ut_ad(!dict_table_is_comp(dict_sys->sys_indexes)); #ifdef UNIV_SYNC_DEBUG ut_ad(sync_thread_levels_empty_except_dict()); #endif /* Mark the table as corrupted only if the clustered index is corrupted */ if (dict_index_is_clust(index)) { index->table->corrupted = TRUE; } if (index->type & DICT_CORRUPT) { /* The index was already flagged corrupted. */ ut_ad(!dict_index_is_clust(index) || index->table->corrupted); goto func_exit; } heap = mem_heap_create(sizeof(dtuple_t) + 2 * (sizeof(dfield_t) + sizeof(que_fork_t) + sizeof(upd_node_t) + sizeof(upd_t) + 12)); mtr_start(&mtr); index->type |= DICT_CORRUPT; sys_index = UT_LIST_GET_FIRST(dict_sys->sys_indexes->indexes); /* Find the index row in SYS_INDEXES */ tuple = dtuple_create(heap, 2); dfield = dtuple_get_nth_field(tuple, 0); buf = static_cast(mem_heap_alloc(heap, 8)); mach_write_to_8(buf, index->table->id); dfield_set_data(dfield, buf, 8); dfield = dtuple_get_nth_field(tuple, 1); buf = static_cast(mem_heap_alloc(heap, 8)); mach_write_to_8(buf, index->id); dfield_set_data(dfield, buf, 8); dict_index_copy_types(tuple, sys_index, 2); btr_cur_search_to_nth_level(sys_index, 0, tuple, PAGE_CUR_LE, BTR_MODIFY_LEAF, &cursor, 0, __FILE__, __LINE__, &mtr); if (cursor.low_match == dtuple_get_n_fields(tuple)) { /* UPDATE SYS_INDEXES SET TYPE=index->type WHERE TABLE_ID=index->table->id AND INDEX_ID=index->id */ ulint len; byte* field = rec_get_nth_field_old( btr_cur_get_rec(&cursor), DICT_FLD__SYS_INDEXES__TYPE, &len); if (len != 4) { goto fail; } mlog_write_ulint(field, index->type, MLOG_4BYTES, &mtr); status = "Flagged"; } else { fail: status = "Unable to flag"; } mtr_commit(&mtr); mem_heap_empty(heap); table_name = static_cast(mem_heap_alloc(heap, FN_REFLEN + 1)); *innobase_convert_name( table_name, FN_REFLEN, index->table_name, strlen(index->table_name), NULL, TRUE) = 0; ib_logf(IB_LOG_LEVEL_ERROR, "%s corruption of %s in table %s in %s", status, index->name, table_name, ctx); mem_heap_free(heap); func_exit: if (!locked) { row_mysql_unlock_data_dictionary(trx); } } /**********************************************************************//** Flags an index corrupted in the data dictionary cache only. This is used mostly to mark a corrupted index when index's own dictionary is corrupted, and we force to load such index for repair purpose */ UNIV_INTERN void dict_set_corrupted_index_cache_only( /*================================*/ dict_index_t* index, /*!< in/out: index */ dict_table_t* table) /*!< in/out: table */ { ut_ad(index != NULL); ut_ad(mutex_own(&dict_sys->mutex)); ut_ad(!dict_table_is_comp(dict_sys->sys_tables)); ut_ad(!dict_table_is_comp(dict_sys->sys_indexes)); /* Mark the table as corrupted only if the clustered index is corrupted */ if (dict_index_is_clust(index)) { ut_ad((index->table != NULL) || (table != NULL) || index->table == table); table->corrupted = TRUE; } index->type |= DICT_CORRUPT; } #endif /* !UNIV_HOTBACKUP */ /**********************************************************************//** Inits dict_ind_redundant and dict_ind_compact. */ UNIV_INTERN void dict_ind_init(void) /*===============*/ { dict_table_t* table; /* create dummy table and index for REDUNDANT infimum and supremum */ table = dict_mem_table_create("SYS_DUMMY1", DICT_HDR_SPACE, 1, 0, 0); dict_mem_table_add_col(table, NULL, NULL, DATA_CHAR, DATA_ENGLISH | DATA_NOT_NULL, 8); dict_ind_redundant = dict_mem_index_create("SYS_DUMMY1", "SYS_DUMMY1", DICT_HDR_SPACE, 0, 1); dict_index_add_col(dict_ind_redundant, table, dict_table_get_nth_col(table, 0), 0); dict_ind_redundant->table = table; /* create dummy table and index for COMPACT infimum and supremum */ table = dict_mem_table_create("SYS_DUMMY2", DICT_HDR_SPACE, 1, DICT_TF_COMPACT, 0); dict_mem_table_add_col(table, NULL, NULL, DATA_CHAR, DATA_ENGLISH | DATA_NOT_NULL, 8); dict_ind_compact = dict_mem_index_create("SYS_DUMMY2", "SYS_DUMMY2", DICT_HDR_SPACE, 0, 1); dict_index_add_col(dict_ind_compact, table, dict_table_get_nth_col(table, 0), 0); dict_ind_compact->table = table; /* avoid ut_ad(index->cached) in dict_index_get_n_unique_in_tree */ dict_ind_redundant->cached = dict_ind_compact->cached = TRUE; } #ifndef UNIV_HOTBACKUP /**********************************************************************//** Frees dict_ind_redundant and dict_ind_compact. */ static void dict_ind_free(void) /*===============*/ { dict_table_t* table; table = dict_ind_compact->table; dict_mem_index_free(dict_ind_compact); dict_ind_compact = NULL; dict_mem_table_free(table); table = dict_ind_redundant->table; dict_mem_index_free(dict_ind_redundant); dict_ind_redundant = NULL; dict_mem_table_free(table); } /**********************************************************************//** Get index by name @return index, NULL if does not exist */ UNIV_INTERN dict_index_t* dict_table_get_index_on_name( /*=========================*/ dict_table_t* table, /*!< in: table */ const char* name) /*!< in: name of the index to find */ { dict_index_t* index; index = dict_table_get_first_index(table); while (index != NULL) { if (innobase_strcasecmp(index->name, name) == 0) { return(index); } index = dict_table_get_next_index(index); } return(NULL); } /**********************************************************************//** Replace the index passed in with another equivalent index in the foreign key lists of the table. @return whether all replacements were found */ UNIV_INTERN bool dict_foreign_replace_index( /*=======================*/ dict_table_t* table, /*!< in/out: table */ const char** col_names, /*!< in: column names, or NULL to use table->col_names */ const dict_index_t* index) /*!< in: index to be replaced */ { bool found = true; dict_foreign_t* foreign; ut_ad(index->to_be_dropped); ut_ad(index->table == table); for (dict_foreign_set::iterator it = table->foreign_set.begin(); it != table->foreign_set.end(); ++it) { foreign = *it; if (foreign->foreign_index == index) { ut_ad(foreign->foreign_table == index->table); dict_index_t* new_index = dict_foreign_find_index( foreign->foreign_table, col_names, foreign->foreign_col_names, foreign->n_fields, index, /*check_charsets=*/TRUE, /*check_null=*/FALSE, NULL, NULL, NULL); if (new_index) { ut_ad(new_index->table == index->table); ut_ad(!new_index->to_be_dropped); } else { found = false; } foreign->foreign_index = new_index; } } for (dict_foreign_set::iterator it = table->referenced_set.begin(); it != table->referenced_set.end(); ++it) { foreign = *it; if (foreign->referenced_index == index) { ut_ad(foreign->referenced_table == index->table); dict_index_t* new_index = dict_foreign_find_index( foreign->referenced_table, NULL, foreign->referenced_col_names, foreign->n_fields, index, /*check_charsets=*/TRUE, /*check_null=*/FALSE, NULL, NULL, NULL); /* There must exist an alternative index, since this must have been checked earlier. */ if (new_index) { ut_ad(new_index->table == index->table); ut_ad(!new_index->to_be_dropped); } else { found = false; } foreign->referenced_index = new_index; } } return(found); } /**********************************************************************//** In case there is more than one index with the same name return the index with the min(id). @return index, NULL if does not exist */ UNIV_INTERN dict_index_t* dict_table_get_index_on_name_and_min_id( /*=====================================*/ dict_table_t* table, /*!< in: table */ const char* name) /*!< in: name of the index to find */ { dict_index_t* index; dict_index_t* min_index; /* Index with matching name and min(id) */ min_index = NULL; index = dict_table_get_first_index(table); while (index != NULL) { if (ut_strcmp(index->name, name) == 0) { if (!min_index || index->id < min_index->id) { min_index = index; } } index = dict_table_get_next_index(index); } return(min_index); } #ifdef UNIV_DEBUG /**********************************************************************//** Check for duplicate index entries in a table [using the index name] */ UNIV_INTERN void dict_table_check_for_dup_indexes( /*=============================*/ const dict_table_t* table, /*!< in: Check for dup indexes in this table */ enum check_name check) /*!< in: whether and when to allow temporary index names */ { /* Check for duplicates, ignoring indexes that are marked as to be dropped */ const dict_index_t* index1; const dict_index_t* index2; ut_ad(mutex_own(&dict_sys->mutex)); /* The primary index _must_ exist */ ut_a(UT_LIST_GET_LEN(table->indexes) > 0); index1 = UT_LIST_GET_FIRST(table->indexes); do { if (*index1->name == TEMP_INDEX_PREFIX) { ut_a(!dict_index_is_clust(index1)); switch (check) { case CHECK_ALL_COMPLETE: ut_error; case CHECK_ABORTED_OK: switch (dict_index_get_online_status(index1)) { case ONLINE_INDEX_COMPLETE: case ONLINE_INDEX_CREATION: ut_error; break; case ONLINE_INDEX_ABORTED: case ONLINE_INDEX_ABORTED_DROPPED: break; } /* fall through */ case CHECK_PARTIAL_OK: break; } } for (index2 = UT_LIST_GET_NEXT(indexes, index1); index2 != NULL; index2 = UT_LIST_GET_NEXT(indexes, index2)) { ut_ad(ut_strcmp(index1->name, index2->name)); } index1 = UT_LIST_GET_NEXT(indexes, index1); } while (index1); } #endif /* UNIV_DEBUG */ /** Auxiliary macro used inside dict_table_schema_check(). */ #define CREATE_TYPES_NAMES() \ dtype_sql_name((unsigned) req_schema->columns[i].mtype, \ (unsigned) req_schema->columns[i].prtype_mask, \ (unsigned) req_schema->columns[i].len, \ req_type, sizeof(req_type)); \ dtype_sql_name(table->cols[j].mtype, \ table->cols[j].prtype, \ table->cols[j].len, \ actual_type, sizeof(actual_type)) /*********************************************************************//** Checks whether a table exists and whether it has the given structure. The table must have the same number of columns with the same names and types. The order of the columns does not matter. The caller must own the dictionary mutex. dict_table_schema_check() @{ @return DB_SUCCESS if the table exists and contains the necessary columns */ UNIV_INTERN dberr_t dict_table_schema_check( /*====================*/ dict_table_schema_t* req_schema, /*!< in/out: required table schema */ char* errstr, /*!< out: human readable error message if != DB_SUCCESS is returned */ size_t errstr_sz) /*!< in: errstr size */ { char buf[MAX_FULL_NAME_LEN]; char req_type[64]; char actual_type[64]; dict_table_t* table; ulint i; ut_ad(mutex_own(&dict_sys->mutex)); table = dict_table_get_low(req_schema->table_name); if (table == NULL) { bool should_print=true; /* no such table */ if (innobase_strcasecmp(req_schema->table_name, "mysql/innodb_table_stats") == 0) { if (innodb_table_stats_not_found_reported == false) { innodb_table_stats_not_found = true; innodb_table_stats_not_found_reported = true; } else { should_print = false; } } else if (innobase_strcasecmp(req_schema->table_name, "mysql/innodb_index_stats") == 0 ) { if (innodb_index_stats_not_found_reported == false) { innodb_index_stats_not_found = true; innodb_index_stats_not_found_reported = true; } else { should_print = false; } } if (should_print) { ut_snprintf(errstr, errstr_sz, "Table %s not found.", ut_format_name(req_schema->table_name, TRUE, buf, sizeof(buf))); return(DB_TABLE_NOT_FOUND); } else { return(DB_STATS_DO_NOT_EXIST); } } if (!table->is_readable() && fil_space_get(table->space) == NULL) { /* missing tablespace */ ut_snprintf(errstr, errstr_sz, "Tablespace for table %s is missing.", ut_format_name(req_schema->table_name, TRUE, buf, sizeof(buf))); return(DB_TABLE_NOT_FOUND); } if ((ulint) table->n_def - DATA_N_SYS_COLS != req_schema->n_cols) { /* the table has a different number of columns than required */ ut_snprintf(errstr, errstr_sz, "%s has %d columns but should have %lu.", ut_format_name(req_schema->table_name, TRUE, buf, sizeof(buf)), table->n_def - DATA_N_SYS_COLS, req_schema->n_cols); return(DB_ERROR); } /* For each column from req_schema->columns[] search whether it is present in table->cols[]. The following algorithm is O(n_cols^2), but is optimized to be O(n_cols) if the columns are in the same order in both arrays. */ for (i = 0; i < req_schema->n_cols; i++) { ulint j; /* check if i'th column is the same in both arrays */ if (innobase_strcasecmp(req_schema->columns[i].name, dict_table_get_col_name(table, i)) == 0) { /* we found the column in table->cols[] quickly */ j = i; } else { /* columns in both arrays are not in the same order, do a full scan of the second array */ for (j = 0; j < table->n_def; j++) { const char* name; name = dict_table_get_col_name(table, j); if (innobase_strcasecmp(name, req_schema->columns[i].name) == 0) { /* found the column on j'th position */ break; } } if (j == table->n_def) { ut_snprintf(errstr, errstr_sz, "required column %s " "not found in table %s.", req_schema->columns[i].name, ut_format_name( req_schema->table_name, TRUE, buf, sizeof(buf))); return(DB_ERROR); } } /* we found a column with the same name on j'th position, compare column types and flags */ /* check length for exact match */ if (req_schema->columns[i].len != table->cols[j].len) { CREATE_TYPES_NAMES(); ut_snprintf(errstr, errstr_sz, "Column %s in table %s is %s " "but should be %s (length mismatch).", req_schema->columns[i].name, ut_format_name(req_schema->table_name, TRUE, buf, sizeof(buf)), actual_type, req_type); return(DB_ERROR); } /* check mtype for exact match */ if (req_schema->columns[i].mtype != table->cols[j].mtype) { CREATE_TYPES_NAMES(); ut_snprintf(errstr, errstr_sz, "Column %s in table %s is %s " "but should be %s (type mismatch).", req_schema->columns[i].name, ut_format_name(req_schema->table_name, TRUE, buf, sizeof(buf)), actual_type, req_type); return(DB_ERROR); } /* check whether required prtype mask is set */ if (req_schema->columns[i].prtype_mask != 0 && (table->cols[j].prtype & req_schema->columns[i].prtype_mask) != req_schema->columns[i].prtype_mask) { CREATE_TYPES_NAMES(); ut_snprintf(errstr, errstr_sz, "Column %s in table %s is %s " "but should be %s (flags mismatch).", req_schema->columns[i].name, ut_format_name(req_schema->table_name, TRUE, buf, sizeof(buf)), actual_type, req_type); return(DB_ERROR); } } if (req_schema->n_foreign != table->foreign_set.size()) { ut_snprintf( errstr, errstr_sz, "Table %s has " ULINTPF " foreign key(s) pointing" " to other tables, but it must have %lu.", ut_format_name(req_schema->table_name, TRUE, buf, sizeof(buf)), static_cast(table->foreign_set.size()), req_schema->n_foreign); return(DB_ERROR); } if (req_schema->n_referenced != table->referenced_set.size()) { ut_snprintf( errstr, errstr_sz, "There are " ULINTPF " foreign key(s) pointing to %s, " "but there must be %lu.", static_cast(table->referenced_set.size()), ut_format_name(req_schema->table_name, TRUE, buf, sizeof(buf)), req_schema->n_referenced); return(DB_ERROR); } return(DB_SUCCESS); } /* @} */ /*********************************************************************//** Converts a database and table name from filesystem encoding (e.g. d@i1b/a@q1b@1Kc, same format as used in dict_table_t::name) in two strings in UTF8 encoding (e.g. dцb and aюbØc). The output buffers must be at least MAX_DB_UTF8_LEN and MAX_TABLE_UTF8_LEN bytes. */ UNIV_INTERN void dict_fs2utf8( /*=========*/ const char* db_and_table, /*!< in: database and table names, e.g. d@i1b/a@q1b@1Kc */ char* db_utf8, /*!< out: database name, e.g. dцb */ size_t db_utf8_size, /*!< in: dbname_utf8 size */ char* table_utf8, /*!< out: table name, e.g. aюbØc */ size_t table_utf8_size)/*!< in: table_utf8 size */ { char db[MAX_DATABASE_NAME_LEN + 1]; ulint db_len; uint errors; db_len = dict_get_db_name_len(db_and_table); ut_a(db_len <= sizeof(db)); memcpy(db, db_and_table, db_len); db[db_len] = '\0'; strconvert( &my_charset_filename, db, db_len, system_charset_info, db_utf8, static_cast(db_utf8_size), &errors); /* convert each # to @0023 in table name and store the result in buf */ const char* table = dict_remove_db_name(db_and_table); const char* table_p; char buf[MAX_TABLE_NAME_LEN * 5 + 1]; char* buf_p; for (table_p = table, buf_p = buf; table_p[0] != '\0'; table_p++) { if (table_p[0] != '#') { buf_p[0] = table_p[0]; buf_p++; } else { buf_p[0] = '@'; buf_p[1] = '0'; buf_p[2] = '0'; buf_p[3] = '2'; buf_p[4] = '3'; buf_p += 5; } ut_a((size_t) (buf_p - buf) < sizeof(buf)); } buf_p[0] = '\0'; errors = 0; strconvert( &my_charset_filename, buf, buf_p - buf, system_charset_info, table_utf8, static_cast(table_utf8_size), &errors); if (errors != 0) { ut_snprintf(table_utf8, table_utf8_size, "%s%s", srv_mysql50_table_name_prefix, table); } } /**********************************************************************//** Closes the data dictionary module. */ UNIV_INTERN void dict_close(void) /*============*/ { ulint i; /* Free the hash elements. We don't remove them from the table because we are going to destroy the table anyway. */ for (i = 0; i < hash_get_n_cells(dict_sys->table_hash); i++) { dict_table_t* table; table = static_cast( HASH_GET_FIRST(dict_sys->table_hash, i)); while (table) { dict_table_t* prev_table = table; table = static_cast( HASH_GET_NEXT(name_hash, prev_table)); #ifdef UNIV_DEBUG ut_a(prev_table->magic_n == DICT_TABLE_MAGIC_N); #endif /* Acquire only because it's a pre-condition. */ mutex_enter(&dict_sys->mutex); dict_table_remove_from_cache(prev_table); mutex_exit(&dict_sys->mutex); } } hash_table_free(dict_sys->table_hash); /* The elements are the same instance as in dict_sys->table_hash, therefore we don't delete the individual elements. */ hash_table_free(dict_sys->table_id_hash); dict_ind_free(); mutex_free(&dict_sys->mutex); rw_lock_free(&dict_operation_lock); memset(&dict_operation_lock, 0x0, sizeof(dict_operation_lock)); if (!srv_read_only_mode) { mutex_free(&dict_foreign_err_mutex); } delete dict_sys->autoinc_map; mem_free(dict_sys); dict_sys = NULL; } #ifdef UNIV_DEBUG /**********************************************************************//** Validate the dictionary table LRU list. @return TRUE if valid */ static ibool dict_lru_validate(void) /*===================*/ { dict_table_t* table; ut_ad(mutex_own(&dict_sys->mutex)); for (table = UT_LIST_GET_FIRST(dict_sys->table_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { ut_a(table->can_be_evicted); } for (table = UT_LIST_GET_FIRST(dict_sys->table_non_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { ut_a(!table->can_be_evicted); } return(TRUE); } /**********************************************************************//** Check if a table exists in the dict table LRU list. @return TRUE if table found in LRU list */ static ibool dict_lru_find_table( /*================*/ const dict_table_t* find_table) /*!< in: table to find */ { dict_table_t* table; ut_ad(find_table != NULL); ut_ad(mutex_own(&dict_sys->mutex)); for (table = UT_LIST_GET_FIRST(dict_sys->table_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { ut_a(table->can_be_evicted); if (table == find_table) { return(TRUE); } } return(FALSE); } /**********************************************************************//** Check if a table exists in the dict table non-LRU list. @return TRUE if table found in non-LRU list */ static ibool dict_non_lru_find_table( /*====================*/ const dict_table_t* find_table) /*!< in: table to find */ { dict_table_t* table; ut_ad(find_table != NULL); ut_ad(mutex_own(&dict_sys->mutex)); for (table = UT_LIST_GET_FIRST(dict_sys->table_non_LRU); table != NULL; table = UT_LIST_GET_NEXT(table_LRU, table)) { ut_a(!table->can_be_evicted); if (table == find_table) { return(TRUE); } } return(FALSE); } #endif /* UNIV_DEBUG */ /*********************************************************************//** Check an index to see whether its first fields are the columns in the array, in the same order and is not marked for deletion and is not the same as types_idx. @return true if the index qualifies, otherwise false */ UNIV_INTERN bool dict_foreign_qualify_index( /*=======================*/ const dict_table_t* table, /*!< in: table */ const char** col_names, /*!< in: column names, or NULL to use table->col_names */ const char** columns,/*!< in: array of column names */ ulint n_cols, /*!< in: number of columns */ const dict_index_t* index, /*!< in: index to check */ const dict_index_t* types_idx, /*!< in: NULL or an index whose types the column types must match */ bool check_charsets, /*!< in: whether to check charsets. only has an effect if types_idx != NULL */ ulint check_null, /*!< in: nonzero if none of the columns must be declared NOT NULL */ ulint* error, /*!< out: error code */ ulint* err_col_no, /*!< out: column number where error happened */ dict_index_t** err_index) /*!< out: index where error happened */ { if (dict_index_get_n_fields(index) < n_cols) { return(false); } for (ulint i = 0; i < n_cols; i++) { dict_field_t* field; const char* col_name; ulint col_no; field = dict_index_get_nth_field(index, i); col_no = dict_col_get_no(field->col); if (field->prefix_len != 0) { /* We do not accept column prefix indexes here */ if (error && err_col_no && err_index) { *error = DB_FOREIGN_KEY_IS_PREFIX_INDEX; *err_col_no = i; *err_index = (dict_index_t*)index; } return(false); } if (check_null && (field->col->prtype & DATA_NOT_NULL)) { if (error && err_col_no && err_index) { *error = DB_FOREIGN_KEY_COL_NOT_NULL; *err_col_no = i; *err_index = (dict_index_t*)index; } return(false); } col_name = col_names ? col_names[col_no] : dict_table_get_col_name(table, col_no); if (0 != innobase_strcasecmp(columns[i], col_name)) { return(false); } if (types_idx && !cmp_cols_are_equal( dict_index_get_nth_col(index, i), dict_index_get_nth_col(types_idx, i), check_charsets)) { if (error && err_col_no && err_index) { *error = DB_FOREIGN_KEY_COLS_NOT_EQUAL; *err_col_no = i; *err_index = (dict_index_t*)index; } return(false); } } return(true); } /*********************************************************************//** Update the state of compression failure padding heuristics. This is called whenever a compression operation succeeds or fails. The caller must be holding info->mutex */ static void dict_index_zip_pad_update( /*======================*/ zip_pad_info_t* info, /*success + info->failure; ut_ad(total > 0); if(zip_threshold == 0) { /* User has just disabled the padding. */ return; } if (total < ZIP_PAD_ROUND_LEN) { /* We are in middle of a round. Do nothing. */ return; } /* We are at a 'round' boundary. Reset the values but first calculate fail rate for our heuristic. */ fail_pct = (info->failure * 100) / total; info->failure = 0; info->success = 0; if (fail_pct > zip_threshold) { /* Compression failures are more then user defined threshold. Increase the pad size to reduce chances of compression failures. */ ut_ad(info->pad % ZIP_PAD_INCR == 0); /* Only do increment if it won't increase padding beyond max pad size. */ if (info->pad + ZIP_PAD_INCR < (UNIV_PAGE_SIZE * zip_pad_max) / 100) { #ifdef HAVE_ATOMIC_BUILTINS /* Use atomics even though we have the mutex. This is to ensure that we are able to read info->pad atomically where atomics are supported. */ os_atomic_increment_ulint(&info->pad, ZIP_PAD_INCR); #else /* HAVE_ATOMIC_BUILTINS */ info->pad += ZIP_PAD_INCR; #endif /* HAVE_ATOMIC_BUILTINS */ MONITOR_INC(MONITOR_PAD_INCREMENTS); } info->n_rounds = 0; } else { /* Failure rate was OK. Another successful round completed. */ ++info->n_rounds; /* If enough successful rounds are completed with compression failure rate in control, decrease the padding. */ if (info->n_rounds >= ZIP_PAD_SUCCESSFUL_ROUND_LIMIT && info->pad > 0) { ut_ad(info->pad % ZIP_PAD_INCR == 0); #ifdef HAVE_ATOMIC_BUILTINS /* Use atomics even though we have the mutex. This is to ensure that we are able to read info->pad atomically where atomics are supported. */ os_atomic_decrement_ulint(&info->pad, ZIP_PAD_INCR); #else /* HAVE_ATOMIC_BUILTINS */ info->pad -= ZIP_PAD_INCR; #endif /* HAVE_ATOMIC_BUILTINS */ info->n_rounds = 0; MONITOR_INC(MONITOR_PAD_DECREMENTS); } } } /*********************************************************************//** This function should be called whenever a page is successfully compressed. Updates the compression padding information. */ UNIV_INTERN void dict_index_zip_success( /*===================*/ dict_index_t* index) /*!< in/out: index to be updated. */ { ut_ad(index); ulint zip_threshold = zip_failure_threshold_pct; if (!zip_threshold) { /* Disabled by user. */ return; } dict_index_zip_pad_lock(index); ++index->zip_pad.success; dict_index_zip_pad_update(&index->zip_pad, zip_threshold); dict_index_zip_pad_unlock(index); } /*********************************************************************//** This function should be called whenever a page compression attempt fails. Updates the compression padding information. */ UNIV_INTERN void dict_index_zip_failure( /*===================*/ dict_index_t* index) /*!< in/out: index to be updated. */ { ut_ad(index); ulint zip_threshold = zip_failure_threshold_pct; if (!zip_threshold) { /* Disabled by user. */ return; } dict_index_zip_pad_lock(index); ++index->zip_pad.failure; dict_index_zip_pad_update(&index->zip_pad, zip_threshold); dict_index_zip_pad_unlock(index); } /*********************************************************************//** Return the optimal page size, for which page will likely compress. @return page size beyond which page might not compress */ UNIV_INTERN ulint dict_index_zip_pad_optimal_page_size( /*=================================*/ dict_index_t* index) /*!< in: index for which page size is requested */ { ulint pad; ulint min_sz; ulint sz; ut_ad(index); if (!zip_failure_threshold_pct) { /* Disabled by user. */ return(UNIV_PAGE_SIZE); } /* We use atomics to read index->zip_pad.pad. Here we use zero as increment as are not changing the value of the 'pad'. On platforms where atomics are not available we grab the mutex. */ #ifdef HAVE_ATOMIC_BUILTINS pad = os_atomic_increment_ulint(&index->zip_pad.pad, 0); #else /* HAVE_ATOMIC_BUILTINS */ dict_index_zip_pad_lock(index); pad = index->zip_pad.pad; dict_index_zip_pad_unlock(index); #endif /* HAVE_ATOMIC_BUILTINS */ ut_ad(pad < UNIV_PAGE_SIZE); sz = UNIV_PAGE_SIZE - pad; /* Min size allowed by user. */ ut_ad(zip_pad_max < 100); min_sz = (UNIV_PAGE_SIZE * (100 - zip_pad_max)) / 100; return(ut_max(sz, min_sz)); } /*************************************************************//** Convert table flag to row format string. @return row format name. */ UNIV_INTERN const char* dict_tf_to_row_format_string( /*=========================*/ ulint table_flag) /*!< in: row format setting */ { switch (dict_tf_get_rec_format(table_flag)) { case REC_FORMAT_REDUNDANT: return("ROW_TYPE_REDUNDANT"); case REC_FORMAT_COMPACT: return("ROW_TYPE_COMPACT"); case REC_FORMAT_COMPRESSED: return("ROW_TYPE_COMPRESSED"); case REC_FORMAT_DYNAMIC: return("ROW_TYPE_DYNAMIC"); } ut_error; return(0); } #endif /* !UNIV_HOTBACKUP */ /** Calculate the used memory occupied by the data dictionary table and index objects. @return number of bytes occupied. */ UNIV_INTERN ulint dict_sys_get_size() { ulint size = 0; ut_ad(dict_sys); mutex_enter(&dict_sys->mutex); for(ulint i = 0; i < hash_get_n_cells(dict_sys->table_hash); i++) { dict_table_t* table; for (table = static_cast(HASH_GET_FIRST(dict_sys->table_hash,i)); table != NULL; table = static_cast(HASH_GET_NEXT(name_hash, table))) { dict_index_t* index; size += mem_heap_get_size(table->heap) + strlen(table->name) +1; for(index = dict_table_get_first_index(table); index != NULL; index = dict_table_get_next_index(index)) { size += mem_heap_get_size(index->heap); } } } mutex_exit(&dict_sys->mutex); return (size); }