/*********************************************************************** Copyright (c) 1995, 2013, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2009, Percona Inc. Copyright (c) 2013, 2015, MariaDB Corporation. Portions of this file contain modifications contributed and copyrighted by Percona Inc.. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Percona Inc. are incorporated with their permission, and subject to the conditions contained in the file COPYING.Percona. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Suite 500, Boston, MA 02110-1335 USA ***********************************************************************/ /**************************************************//** @file os/os0file.cc The interface to the operating system file i/o primitives Created 10/21/1995 Heikki Tuuri *******************************************************/ #include "os0file.h" #ifdef UNIV_NONINL #include "os0file.ic" #endif #include "ha_prototypes.h" #include "ut0mem.h" #include "srv0srv.h" #include "srv0start.h" #include "fil0fil.h" #include "fsp0fsp.h" #include "fil0pagecompress.h" #include "fil0pageencryption.h" #include "buf0buf.h" #include "btr0types.h" #include "trx0trx.h" #include "srv0mon.h" #include "srv0srv.h" #ifdef HAVE_POSIX_FALLOCATE #include "unistd.h" #include "fcntl.h" #endif #ifndef UNIV_HOTBACKUP # include "os0sync.h" # include "os0thread.h" #else /* !UNIV_HOTBACKUP */ # ifdef __WIN__ /* Add includes for the _stat() call to compile on Windows */ # include # include # include # endif /* __WIN__ */ #endif /* !UNIV_HOTBACKUP */ #if defined(LINUX_NATIVE_AIO) #include #endif #ifdef _WIN32 #define IOCP_SHUTDOWN_KEY (ULONG_PTR)-1 #endif #if defined(UNIV_LINUX) && defined(HAVE_SYS_IOCTL_H) # include # ifndef DFS_IOCTL_ATOMIC_WRITE_SET # define DFS_IOCTL_ATOMIC_WRITE_SET _IOW(0x95, 2, uint) # endif #endif #if defined(UNIV_LINUX) && defined(HAVE_SYS_STATVFS_H) #include #endif #if defined(UNIV_LINUX) && defined(HAVE_LINUX_FALLOC_H) #include #endif #if defined(HAVE_FALLOCATE) #ifndef FALLOC_FL_KEEP_SIZE #define FALLOC_FL_KEEP_SIZE 0x01 #endif #ifndef FALLOC_FL_PUNCH_HOLE #define FALLOC_FL_PUNCH_HOLE 0x02 #endif #endif #ifdef HAVE_LZO #include "lzo/lzo1x.h" #endif #ifdef HAVE_SNAPPY #include "snappy-c.h" #endif /** Insert buffer segment id */ static const ulint IO_IBUF_SEGMENT = 0; /** Log segment id */ static const ulint IO_LOG_SEGMENT = 1; /* This specifies the file permissions InnoDB uses when it creates files in Unix; the value of os_innodb_umask is initialized in ha_innodb.cc to my_umask */ #ifndef __WIN__ /** Umask for creating files */ UNIV_INTERN ulint os_innodb_umask = S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP; #else /** Umask for creating files */ UNIV_INTERN ulint os_innodb_umask = 0; #endif /* __WIN__ */ #ifndef UNIV_HOTBACKUP /* We use these mutexes to protect lseek + file i/o operation, if the OS does not provide an atomic pread or pwrite, or similar */ #define OS_FILE_N_SEEK_MUTEXES 16 UNIV_INTERN os_ib_mutex_t os_file_seek_mutexes[OS_FILE_N_SEEK_MUTEXES]; /* In simulated aio, merge at most this many consecutive i/os */ #define OS_AIO_MERGE_N_CONSECUTIVE 64 #ifdef WITH_INNODB_DISALLOW_WRITES #define WAIT_ALLOW_WRITES() os_event_wait(srv_allow_writes_event) #else #define WAIT_ALLOW_WRITES() do { } while (0) #endif /* WITH_INNODB_DISALLOW_WRITES */ /********************************************************************** InnoDB AIO Implementation: ========================= We support native AIO for windows and linux. For rest of the platforms we simulate AIO by special io-threads servicing the IO-requests. Simulated AIO: ============== In platforms where we 'simulate' AIO following is a rough explanation of the high level design. There are four io-threads (for ibuf, log, read, write). All synchronous IO requests are serviced by the calling thread using os_file_write/os_file_read. The Asynchronous requests are queued up in an array (there are four such arrays) by the calling thread. Later these requests are picked up by the io-thread and are serviced synchronously. Windows native AIO: ================== If srv_use_native_aio is not set then windows follow the same code as simulated AIO. If the flag is set then native AIO interface is used. On windows, one of the limitation is that if a file is opened for AIO no synchronous IO can be done on it. Therefore we have an extra fifth array to queue up synchronous IO requests. There are innodb_file_io_threads helper threads. These threads work on the four arrays mentioned above in Simulated AIO. No thread is required for the sync array. If a synchronous IO request is made, it is first queued in the sync array. Then the calling thread itself waits on the request, thus making the call synchronous. If an AIO request is made the calling thread not only queues it in the array but also submits the requests. The helper thread then collects the completed IO request and calls completion routine on it. Linux native AIO: ================= If we have libaio installed on the system and innodb_use_native_aio is set to TRUE we follow the code path of native AIO, otherwise we do simulated AIO. There are innodb_file_io_threads helper threads. These threads work on the four arrays mentioned above in Simulated AIO. If a synchronous IO request is made, it is handled by calling os_file_write/os_file_read. If an AIO request is made the calling thread not only queues it in the array but also submits the requests. The helper thread then collects the completed IO request and calls completion routine on it. **********************************************************************/ /** Flag: enable debug printout for asynchronous i/o */ UNIV_INTERN ibool os_aio_print_debug = FALSE; #ifdef UNIV_PFS_IO /* Keys to register InnoDB I/O with performance schema */ UNIV_INTERN mysql_pfs_key_t innodb_file_data_key; UNIV_INTERN mysql_pfs_key_t innodb_file_log_key; UNIV_INTERN mysql_pfs_key_t innodb_file_temp_key; UNIV_INTERN mysql_pfs_key_t innodb_file_bmp_key; #endif /* UNIV_PFS_IO */ /** The asynchronous i/o array slot structure */ struct os_aio_slot_t{ #ifdef WIN_ASYNC_IO OVERLAPPED control; /*!< Windows control block for the aio request, MUST be first element in the structure*/ void *arr; /*!< Array this slot belongs to*/ #endif ibool is_read; /*!< TRUE if a read operation */ ulint pos; /*!< index of the slot in the aio array */ ibool reserved; /*!< TRUE if this slot is reserved */ time_t reservation_time;/*!< time when reserved */ ulint len; /*!< length of the block to read or write */ byte* buf; /*!< buffer used in i/o */ ulint type; /*!< OS_FILE_READ or OS_FILE_WRITE */ os_offset_t offset; /*!< file offset in bytes */ os_file_t file; /*!< file where to read or write */ const char* name; /*!< file name or path */ ibool io_already_done;/*!< used only in simulated aio: TRUE if the physical i/o already made and only the slot message needs to be passed to the caller of os_aio_simulated_handle */ ulint space_id; fil_node_t* message1; /*!< message which is given by the */ void* message2; /*!< the requester of an aio operation and which can be used to identify which pending aio operation was completed */ ulint bitmap; byte* page_compression_page; /*!< Memory allocated for page compressed page and freed after the write has been completed */ byte* page_encryption_page; /*!< Memory allocated for page encrypted page and freed after the write has been completed */ ibool page_compression; ulint page_compression_level; ibool page_encryption; ulint page_encryption_key; ulint* write_size; /*!< Actual write size initialized after fist successfull trim operation for this page and if initialized we do not trim again if actual page size does not decrease. */ byte* page_buf; /*!< Actual page buffer for page compressed pages, do not free this */ byte* page_buf2; /*!< Actual page buffer for page encrypted pages, do not free this */ byte* tmp_encryption_buf; /*!< a temporal buffer used by page encryption */ ibool page_compression_success; /*!< TRUE if page compression was successfull, false if not */ ibool page_encryption_success; /*!< TRUE if page encryption was successfull, false if not */ lsn_t lsn; /* lsn of the newest modification */ ulint file_block_size;/*!< file block size */ bool encrypt_later; /*!< should we encrypt the page */ #ifdef LINUX_NATIVE_AIO struct iocb control; /* Linux control block for aio */ int n_bytes; /* bytes written/read. */ int ret; /* AIO return code */ #endif /* WIN_ASYNC_IO */ byte *lzo_mem; /* Temporal memory used by LZO */ }; /** The asynchronous i/o array structure */ struct os_aio_array_t{ os_ib_mutex_t mutex; /*!< the mutex protecting the aio array */ os_event_t not_full; /*!< The event which is set to the signaled state when there is space in the aio outside the ibuf segment */ os_event_t is_empty; /*!< The event which is set to the signaled state when there are no pending i/os in this array */ ulint n_slots;/*!< Total number of slots in the aio array. This must be divisible by n_threads. */ ulint n_segments; /*!< Number of segments in the aio array of pending aio requests. A thread can wait separately for any one of the segments. */ ulint cur_seg;/*!< We reserve IO requests in round robin fashion to different segments. This points to the segment that is to be used to service next IO request. */ ulint n_reserved; /*!< Number of reserved slots in the aio array outside the ibuf segment */ os_aio_slot_t* slots; /*!< Pointer to the slots in the array */ #if defined(LINUX_NATIVE_AIO) io_context_t* aio_ctx; /* completion queue for IO. There is one such queue per segment. Each thread will work on one ctx exclusively. */ struct io_event* aio_events; /* The array to collect completed IOs. There is one such event for each possible pending IO. The size of the array is equal to n_slots. */ #endif /* LINUX_NATIV_AIO */ }; #if defined(LINUX_NATIVE_AIO) /** timeout for each io_getevents() call = 500ms. */ #define OS_AIO_REAP_TIMEOUT (500000000UL) /** time to sleep, in microseconds if io_setup() returns EAGAIN. */ #define OS_AIO_IO_SETUP_RETRY_SLEEP (500000UL) /** number of attempts before giving up on io_setup(). */ #define OS_AIO_IO_SETUP_RETRY_ATTEMPTS 5 #endif /** Array of events used in simulated aio */ static os_event_t* os_aio_segment_wait_events = NULL; /** The aio arrays for non-ibuf i/o and ibuf i/o, as well as sync aio. These are NULL when the module has not yet been initialized. @{ */ static os_aio_array_t* os_aio_read_array = NULL; /*!< Reads */ static os_aio_array_t* os_aio_write_array = NULL; /*!< Writes */ static os_aio_array_t* os_aio_ibuf_array = NULL; /*!< Insert buffer */ static os_aio_array_t* os_aio_log_array = NULL; /*!< Redo log */ static os_aio_array_t* os_aio_sync_array = NULL; /*!< Synchronous I/O */ /* @} */ /** Number of asynchronous I/O segments. Set by os_aio_init(). */ static ulint os_aio_n_segments = ULINT_UNDEFINED; /** If the following is TRUE, read i/o handler threads try to wait until a batch of new read requests have been posted */ static ibool os_aio_recommend_sleep_for_read_threads = FALSE; #endif /* !UNIV_HOTBACKUP */ UNIV_INTERN ulint os_n_file_reads = 0; UNIV_INTERN ulint os_bytes_read_since_printout = 0; UNIV_INTERN ulint os_n_file_writes = 0; UNIV_INTERN ulint os_n_fsyncs = 0; UNIV_INTERN ulint os_n_file_reads_old = 0; UNIV_INTERN ulint os_n_file_writes_old = 0; UNIV_INTERN ulint os_n_fsyncs_old = 0; UNIV_INTERN time_t os_last_printout; UNIV_INTERN ibool os_has_said_disk_full = FALSE; #if !defined(UNIV_HOTBACKUP) \ && (!defined(HAVE_ATOMIC_BUILTINS) || UNIV_WORD_SIZE < 8) /** The mutex protecting the following counts of pending I/O operations */ static os_ib_mutex_t os_file_count_mutex; #endif /* !UNIV_HOTBACKUP && (!HAVE_ATOMIC_BUILTINS || UNIV_WORD_SIZE < 8) */ /** Number of pending os_file_pread() operations */ UNIV_INTERN ulint os_file_n_pending_preads = 0; /** Number of pending os_file_pwrite() operations */ UNIV_INTERN ulint os_file_n_pending_pwrites = 0; /** Number of pending write operations */ UNIV_INTERN ulint os_n_pending_writes = 0; /** Number of pending read operations */ UNIV_INTERN ulint os_n_pending_reads = 0; /** After first fallocate failure we will disable os_file_trim */ UNIV_INTERN ibool os_fallocate_failed = FALSE; /**********************************************************************//** Directly manipulate the allocated disk space by deallocating for the file referred to by fd for the byte range starting at offset and continuing for len bytes. Within the specified range, partial file system blocks are zeroed, and whole file system blocks are removed from the file. After a successful call, subsequent reads from this range will return zeroes. @return true if success, false if error */ UNIV_INTERN ibool os_file_trim( /*=========*/ os_aio_slot_t* slot); /*!< in: slot structure */ /**********************************************************************//** Allocate memory for temporal buffer used for page compression. This buffer is freed later. */ UNIV_INTERN void os_slot_alloc_page_buf( /*===================*/ os_aio_slot_t* slot); /*!< in: slot structure */ #ifdef HAVE_LZO /**********************************************************************//** Allocate memory for temporal memory used for page compression when LZO compression method is used */ UNIV_INTERN void os_slot_alloc_lzo_mem( /*===================*/ os_aio_slot_t* slot); /*!< in: slot structure */ #endif /**********************************************************************//** Allocate memory for temporal buffer used for page encryption. This buffer is freed later. */ UNIV_INTERN void os_slot_alloc_page_buf2( os_aio_slot_t* slot); /*!< in: slot structure */ /**********************************************************************//** Allocate memory for temporal buffer used for page encryption. */ UNIV_INTERN void os_slot_alloc_tmp_encryption_buf( os_aio_slot_t* slot); /*!< in: slot structure */ /****************************************************************//** Does error handling when a file operation fails. @return TRUE if we should retry the operation */ ibool os_file_handle_error_no_exit( /*=========================*/ const char* name, /*!< in: name of a file or NULL */ const char* operation, /*!< in: operation */ ibool on_error_silent,/*!< in: if TRUE then don't print any message to the log. */ const char* file, /*!< in: file name */ const ulint line); /*!< in: line */ /****************************************************************//** Tries to enable the atomic write feature, if available, for the specified file handle. @return TRUE if success */ static __attribute__((warn_unused_result)) ibool os_file_set_atomic_writes( /*======================*/ const char* name, /*!< in: name of the file */ os_file_t file); /*!< in: handle to the file */ #ifdef UNIV_DEBUG # ifndef UNIV_HOTBACKUP /**********************************************************************//** Validates the consistency the aio system some of the time. @return TRUE if ok or the check was skipped */ UNIV_INTERN ibool os_aio_validate_skip(void) /*======================*/ { /** Try os_aio_validate() every this many times */ # define OS_AIO_VALIDATE_SKIP 13 /** The os_aio_validate() call skip counter. Use a signed type because of the race condition below. */ static int os_aio_validate_count = OS_AIO_VALIDATE_SKIP; /* There is a race condition below, but it does not matter, because this call is only for heuristic purposes. We want to reduce the call frequency of the costly os_aio_validate() check in debug builds. */ if (--os_aio_validate_count > 0) { return(TRUE); } os_aio_validate_count = OS_AIO_VALIDATE_SKIP; return(os_aio_validate()); } # endif /* !UNIV_HOTBACKUP */ #endif /* UNIV_DEBUG */ #ifdef _WIN32 /** IO completion port used by background io threads */ static HANDLE completion_port; /** IO completion port used by background io READ threads */ static HANDLE read_completion_port; /** Thread local storage index for the per-thread event used for synchronous IO */ static DWORD tls_sync_io = TLS_OUT_OF_INDEXES; #endif #ifdef __WIN__ /***********************************************************************//** Gets the operating system version. Currently works only on Windows. @return OS_WIN95, OS_WIN31, OS_WINNT, OS_WIN2000, OS_WINXP, OS_WINVISTA, OS_WIN7. */ UNIV_INTERN ulint os_get_os_version(void) /*===================*/ { OSVERSIONINFO os_info; os_info.dwOSVersionInfoSize = sizeof(OSVERSIONINFO); ut_a(GetVersionEx(&os_info)); if (os_info.dwPlatformId == VER_PLATFORM_WIN32s) { return(OS_WIN31); } else if (os_info.dwPlatformId == VER_PLATFORM_WIN32_WINDOWS) { return(OS_WIN95); } else if (os_info.dwPlatformId == VER_PLATFORM_WIN32_NT) { switch (os_info.dwMajorVersion) { case 3: case 4: return(OS_WINNT); case 5: return (os_info.dwMinorVersion == 0) ? OS_WIN2000 : OS_WINXP; case 6: return (os_info.dwMinorVersion == 0) ? OS_WINVISTA : OS_WIN7; default: return(OS_WIN7); } } else { ut_error; return(0); } } #endif /* __WIN__ */ #ifdef _WIN32 /* Windows : Handling synchronous IO on files opened asynchronously. If file is opened for asynchronous IO (FILE_FLAG_OVERLAPPED) and also bound to a completion port, then every IO on this file would normally be enqueued to the completion port. Sometimes however we would like to do a synchronous IO. This is possible if we initialitze have overlapped.hEvent with a valid event and set its lowest order bit to 1 (see MSDN ReadFile and WriteFile description for more info) We'll create this special event once for each thread and store in thread local storage. */ /***********************************************************************//** Initialize tls index.for event handle used for synchronized IO on files that might be opened with FILE_FLAG_OVERLAPPED. */ static void win_init_syncio_event() { tls_sync_io = TlsAlloc(); ut_a(tls_sync_io != TLS_OUT_OF_INDEXES); } /***********************************************************************//** Retrieve per-thread event for doing synchronous io on asyncronously opened files */ static HANDLE win_get_syncio_event() { HANDLE h; if(tls_sync_io == TLS_OUT_OF_INDEXES){ win_init_syncio_event(); } h = (HANDLE)TlsGetValue(tls_sync_io); if (h) return h; h = CreateEventA(NULL, FALSE, FALSE, NULL); ut_a(h); h = (HANDLE)((uintptr_t)h | 1); TlsSetValue(tls_sync_io, h); return h; } /* TLS destructor, inspired by Chromium code http://src.chromium.org/svn/trunk/src/base/threading/thread_local_storage_win.cc */ static void win_free_syncio_event() { HANDLE h = win_get_syncio_event(); if (h) { CloseHandle(h); } } static void NTAPI win_tls_thread_exit(PVOID module, DWORD reason, PVOID reserved) { if (DLL_THREAD_DETACH == reason || DLL_PROCESS_DETACH == reason) win_free_syncio_event(); } extern "C" { #ifdef _WIN64 #pragma comment(linker, "/INCLUDE:_tls_used") #pragma comment(linker, "/INCLUDE:p_thread_callback_base") #pragma const_seg(".CRT$XLB") extern const PIMAGE_TLS_CALLBACK p_thread_callback_base; const PIMAGE_TLS_CALLBACK p_thread_callback_base = win_tls_thread_exit; #pragma data_seg() #else #pragma comment(linker, "/INCLUDE:__tls_used") #pragma comment(linker, "/INCLUDE:_p_thread_callback_base") #pragma data_seg(".CRT$XLB") PIMAGE_TLS_CALLBACK p_thread_callback_base = win_tls_thread_exit; #pragma data_seg() #endif } #endif /*_WIN32 */ /***********************************************************************//** Retrieves the last error number if an error occurs in a file io function. The number should be retrieved before any other OS calls (because they may overwrite the error number). If the number is not known to this program, the OS error number + 100 is returned. @return error number, or OS error number + 100 */ static ulint os_file_get_last_error_low( /*=======================*/ bool report_all_errors, /*!< in: TRUE if we want an error message printed of all errors */ bool on_error_silent) /*!< in: TRUE then don't print any diagnostic to the log */ { #ifdef __WIN__ ulint err = (ulint) GetLastError(); if (err == ERROR_SUCCESS) { return(0); } if (report_all_errors || (!on_error_silent && err != ERROR_DISK_FULL && err != ERROR_FILE_EXISTS)) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Operating system error number %lu" " in a file operation.\n", (ulong) err); if (err == ERROR_PATH_NOT_FOUND) { fprintf(stderr, "InnoDB: The error means the system" " cannot find the path specified.\n"); if (srv_is_being_started) { fprintf(stderr, "InnoDB: If you are installing InnoDB," " remember that you must create\n" "InnoDB: directories yourself, InnoDB" " does not create them.\n"); } } else if (err == ERROR_ACCESS_DENIED) { fprintf(stderr, "InnoDB: The error means mysqld does not have" " the access rights to\n" "InnoDB: the directory. It may also be" " you have created a subdirectory\n" "InnoDB: of the same name as a data file.\n"); } else if (err == ERROR_SHARING_VIOLATION || err == ERROR_LOCK_VIOLATION) { fprintf(stderr, "InnoDB: The error means that another program" " is using InnoDB's files.\n" "InnoDB: This might be a backup or antivirus" " software or another instance\n" "InnoDB: of MySQL." " Please close it to get rid of this error.\n"); } else if (err == ERROR_WORKING_SET_QUOTA || err == ERROR_NO_SYSTEM_RESOURCES) { fprintf(stderr, "InnoDB: The error means that there are no" " sufficient system resources or quota to" " complete the operation.\n"); } else if (err == ERROR_OPERATION_ABORTED) { fprintf(stderr, "InnoDB: The error means that the I/O" " operation has been aborted\n" "InnoDB: because of either a thread exit" " or an application request.\n" "InnoDB: Retry attempt is made.\n"); } else if (err == ECANCELED || err == ENOTTY) { if (strerror(err) != NULL) { fprintf(stderr, "InnoDB: Error number %d" " means '%s'.\n", err, strerror(err)); } if(srv_use_atomic_writes) { fprintf(stderr, "InnoDB: Error trying to enable atomic writes on " "non-supported destination!\n"); } } else { fprintf(stderr, "InnoDB: Some operating system error numbers" " are described at\n" "InnoDB: " REFMAN "operating-system-error-codes.html\n"); } } fflush(stderr); if (err == ERROR_FILE_NOT_FOUND) { return(OS_FILE_NOT_FOUND); } else if (err == ERROR_DISK_FULL) { return(OS_FILE_DISK_FULL); } else if (err == ERROR_FILE_EXISTS) { return(OS_FILE_ALREADY_EXISTS); } else if (err == ERROR_SHARING_VIOLATION || err == ERROR_LOCK_VIOLATION) { return(OS_FILE_SHARING_VIOLATION); } else if (err == ERROR_WORKING_SET_QUOTA || err == ERROR_NO_SYSTEM_RESOURCES) { return(OS_FILE_INSUFFICIENT_RESOURCE); } else if (err == ERROR_OPERATION_ABORTED) { return(OS_FILE_OPERATION_ABORTED); } else if (err == ERROR_ACCESS_DENIED) { return(OS_FILE_ACCESS_VIOLATION); } else if (err == ERROR_BUFFER_OVERFLOW) { return(OS_FILE_NAME_TOO_LONG); } else { return(OS_FILE_ERROR_MAX + err); } #else int err = errno; if (err == 0) { return(0); } if (report_all_errors || (err != ENOSPC && err != EEXIST && !on_error_silent)) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Operating system error number %d" " in a file operation.\n", err); if (err == ENOENT) { fprintf(stderr, "InnoDB: The error means the system" " cannot find the path specified.\n"); if (srv_is_being_started) { fprintf(stderr, "InnoDB: If you are installing InnoDB," " remember that you must create\n" "InnoDB: directories yourself, InnoDB" " does not create them.\n"); } } else if (err == EACCES) { fprintf(stderr, "InnoDB: The error means mysqld does not have" " the access rights to\n" "InnoDB: the directory.\n"); } else if (err == ECANCELED || err == ENOTTY) { if (strerror(err) != NULL) { fprintf(stderr, "InnoDB: Error number %d" " means '%s'.\n", err, strerror(err)); } if(srv_use_atomic_writes) { fprintf(stderr, "InnoDB: Error trying to enable atomic writes on " "non-supported destination!\n"); } } else { if (strerror(err) != NULL) { fprintf(stderr, "InnoDB: Error number %d" " means '%s'.\n", err, strerror(err)); } fprintf(stderr, "InnoDB: Some operating system" " error numbers are described at\n" "InnoDB: " REFMAN "operating-system-error-codes.html\n"); } } fflush(stderr); switch (err) { case ENOSPC: return(OS_FILE_DISK_FULL); case ENOENT: return(OS_FILE_NOT_FOUND); case EEXIST: return(OS_FILE_ALREADY_EXISTS); case ENAMETOOLONG: return(OS_FILE_NAME_TOO_LONG); case EXDEV: case ENOTDIR: case EISDIR: return(OS_FILE_PATH_ERROR); case EAGAIN: if (srv_use_native_aio) { return(OS_FILE_AIO_RESOURCES_RESERVED); } break; case ECANCELED: case ENOTTY: return(OS_FILE_OPERATION_NOT_SUPPORTED); case EINTR: if (srv_use_native_aio) { return(OS_FILE_AIO_INTERRUPTED); } break; case EACCES: return(OS_FILE_ACCESS_VIOLATION); } return(OS_FILE_ERROR_MAX + err); #endif } /***********************************************************************//** Retrieves the last error number if an error occurs in a file io function. The number should be retrieved before any other OS calls (because they may overwrite the error number). If the number is not known to this program, the OS error number + 100 is returned. @return error number, or OS error number + 100 */ UNIV_INTERN ulint os_file_get_last_error( /*===================*/ bool report_all_errors) /*!< in: TRUE if we want an error message printed of all errors */ { return(os_file_get_last_error_low(report_all_errors, false)); } /****************************************************************//** Does error handling when a file operation fails. Conditionally exits (calling exit(3)) based on should_exit value and the error type, if should_exit is TRUE then on_error_silent is ignored. @return TRUE if we should retry the operation */ ibool os_file_handle_error_cond_exit( /*===========================*/ const char* name, /*!< in: name of a file or NULL */ const char* operation, /*!< in: operation */ ibool should_exit, /*!< in: call exit(3) if unknown error and this parameter is TRUE */ ibool on_error_silent,/*!< in: if TRUE then don't print any message to the log iff it is an unknown non-fatal error */ const char* file, /*!< in: file name */ const ulint line) /*!< in: line */ { ulint err; err = os_file_get_last_error_low(false, on_error_silent); switch (err) { case OS_FILE_DISK_FULL: /* We only print a warning about disk full once */ if (os_has_said_disk_full) { return(FALSE); } /* Disk full error is reported irrespective of the on_error_silent setting. */ if (name) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Encountered a problem with" " file %s\n", name); } ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Disk is full. Try to clean the disk" " to free space.\n"); os_has_said_disk_full = TRUE; fprintf(stderr, " InnoDB: at file %s and at line %ld\n", file, line); fflush(stderr); return(FALSE); case OS_FILE_AIO_RESOURCES_RESERVED: case OS_FILE_AIO_INTERRUPTED: return(TRUE); case OS_FILE_PATH_ERROR: case OS_FILE_ALREADY_EXISTS: case OS_FILE_ACCESS_VIOLATION: return(FALSE); case OS_FILE_SHARING_VIOLATION: os_thread_sleep(10000000); /* 10 sec */ return(TRUE); case OS_FILE_OPERATION_ABORTED: case OS_FILE_INSUFFICIENT_RESOURCE: os_thread_sleep(100000); /* 100 ms */ return(TRUE); default: /* If it is an operation that can crash on error then it is better to ignore on_error_silent and print an error message to the log. */ if (should_exit || !on_error_silent) { fprintf(stderr, " InnoDB: Operation %s to file %s and at line %ld\n", operation, file, line); } if (should_exit || !on_error_silent) { ib_logf(IB_LOG_LEVEL_ERROR, "File %s: '%s' returned OS " "error " ULINTPF ".%s", name ? name : "(unknown)", operation, err, should_exit ? " Cannot continue operation" : ""); } if (should_exit) { exit(1); } } return(FALSE); } /****************************************************************//** Does error handling when a file operation fails. @return TRUE if we should retry the operation */ static ibool os_file_handle_error( /*=================*/ const char* name, /*!< in: name of a file or NULL */ const char* operation, /*!< in: operation */ const char* file, /*!< in: file name */ const ulint line) /*!< in: line */ { /* exit in case of unknown error */ return(os_file_handle_error_cond_exit(name, operation, TRUE, FALSE, file, line)); } /****************************************************************//** Does error handling when a file operation fails. @return TRUE if we should retry the operation */ ibool os_file_handle_error_no_exit( /*=========================*/ const char* name, /*!< in: name of a file or NULL */ const char* operation, /*!< in: operation */ ibool on_error_silent,/*!< in: if TRUE then don't print any message to the log. */ const char* file, /*!< in: file name */ const ulint line) /*!< in: line */ { /* don't exit in case of unknown error */ return(os_file_handle_error_cond_exit( name, operation, FALSE, on_error_silent, file, line)); } #undef USE_FILE_LOCK #define USE_FILE_LOCK #if defined(UNIV_HOTBACKUP) || defined(__WIN__) /* InnoDB Hot Backup does not lock the data files. * On Windows, mandatory locking is used. */ # undef USE_FILE_LOCK #endif #ifdef USE_FILE_LOCK /****************************************************************//** Obtain an exclusive lock on a file. @return 0 on success */ static int os_file_lock( /*=========*/ int fd, /*!< in: file descriptor */ const char* name) /*!< in: file name */ { struct flock lk; ut_ad(!srv_read_only_mode); lk.l_type = F_WRLCK; lk.l_whence = SEEK_SET; lk.l_start = lk.l_len = 0; if (fcntl(fd, F_SETLK, &lk) == -1) { ib_logf(IB_LOG_LEVEL_ERROR, "Unable to lock %s, error: %d", name, errno); if (errno == EAGAIN || errno == EACCES) { ib_logf(IB_LOG_LEVEL_INFO, "Check that you do not already have " "another mysqld process using the " "same InnoDB data or log files."); } return(-1); } return(0); } #endif /* USE_FILE_LOCK */ #ifndef UNIV_HOTBACKUP /****************************************************************//** Creates the seek mutexes used in positioned reads and writes. */ UNIV_INTERN void os_io_init_simple(void) /*===================*/ { #if !defined(HAVE_ATOMIC_BUILTINS) || UNIV_WORD_SIZE < 8 os_file_count_mutex = os_mutex_create(); #endif /* !HAVE_ATOMIC_BUILTINS || UNIV_WORD_SIZE < 8 */ for (ulint i = 0; i < OS_FILE_N_SEEK_MUTEXES; i++) { os_file_seek_mutexes[i] = os_mutex_create(); } #ifdef _WIN32 win_init_syncio_event(); #endif } /***********************************************************************//** Creates a temporary file. This function is like tmpfile(3), but the temporary file is created in the MySQL temporary directory. @return temporary file handle, or NULL on error */ UNIV_INTERN FILE* os_file_create_tmpfile(void) /*========================*/ { FILE* file = NULL; int fd; WAIT_ALLOW_WRITES(); fd = innobase_mysql_tmpfile(); ut_ad(!srv_read_only_mode); if (fd >= 0) { file = fdopen(fd, "w+b"); } if (!file) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: unable to create temporary file;" " errno: %d\n", errno); if (fd >= 0) { close(fd); } } return(file); } #endif /* !UNIV_HOTBACKUP */ /***********************************************************************//** The os_file_opendir() function opens a directory stream corresponding to the directory named by the dirname argument. The directory stream is positioned at the first entry. In both Unix and Windows we automatically skip the '.' and '..' items at the start of the directory listing. @return directory stream, NULL if error */ UNIV_INTERN os_file_dir_t os_file_opendir( /*============*/ const char* dirname, /*!< in: directory name; it must not contain a trailing '\' or '/' */ ibool error_is_fatal) /*!< in: TRUE if we should treat an error as a fatal error; if we try to open symlinks then we do not wish a fatal error if it happens not to be a directory */ { os_file_dir_t dir; #ifdef __WIN__ LPWIN32_FIND_DATA lpFindFileData; char path[OS_FILE_MAX_PATH + 3]; ut_a(strlen(dirname) < OS_FILE_MAX_PATH); strcpy(path, dirname); strcpy(path + strlen(path), "\\*"); /* Note that in Windows opening the 'directory stream' also retrieves the first entry in the directory. Since it is '.', that is no problem, as we will skip over the '.' and '..' entries anyway. */ lpFindFileData = static_cast( ut_malloc(sizeof(WIN32_FIND_DATA))); dir = FindFirstFile((LPCTSTR) path, lpFindFileData); ut_free(lpFindFileData); if (dir == INVALID_HANDLE_VALUE) { if (error_is_fatal) { os_file_handle_error(dirname, "opendir", __FILE__, __LINE__); } return(NULL); } return(dir); #else dir = opendir(dirname); if (dir == NULL && error_is_fatal) { os_file_handle_error(dirname, "opendir", __FILE__, __LINE__); } return(dir); #endif /* __WIN__ */ } /***********************************************************************//** Closes a directory stream. @return 0 if success, -1 if failure */ UNIV_INTERN int os_file_closedir( /*=============*/ os_file_dir_t dir) /*!< in: directory stream */ { #ifdef __WIN__ BOOL ret; ret = FindClose(dir); if (!ret) { os_file_handle_error_no_exit(NULL, "closedir", FALSE, __FILE__, __LINE__); return(-1); } return(0); #else int ret; ret = closedir(dir); if (ret) { os_file_handle_error_no_exit(NULL, "closedir", FALSE, __FILE__, __LINE__); } return(ret); #endif /* __WIN__ */ } /***********************************************************************//** This function returns information of the next file in the directory. We jump over the '.' and '..' entries in the directory. @return 0 if ok, -1 if error, 1 if at the end of the directory */ UNIV_INTERN int os_file_readdir_next_file( /*======================*/ const char* dirname,/*!< in: directory name or path */ os_file_dir_t dir, /*!< in: directory stream */ os_file_stat_t* info) /*!< in/out: buffer where the info is returned */ { #ifdef __WIN__ LPWIN32_FIND_DATA lpFindFileData; BOOL ret; lpFindFileData = static_cast( ut_malloc(sizeof(WIN32_FIND_DATA))); next_file: ret = FindNextFile(dir, lpFindFileData); if (ret) { ut_a(strlen((char*) lpFindFileData->cFileName) < OS_FILE_MAX_PATH); if (strcmp((char*) lpFindFileData->cFileName, ".") == 0 || strcmp((char*) lpFindFileData->cFileName, "..") == 0) { goto next_file; } strcpy(info->name, (char*) lpFindFileData->cFileName); info->size = (ib_int64_t)(lpFindFileData->nFileSizeLow) + (((ib_int64_t)(lpFindFileData->nFileSizeHigh)) << 32); if (lpFindFileData->dwFileAttributes & FILE_ATTRIBUTE_REPARSE_POINT) { /* TODO: test Windows symlinks */ /* TODO: MySQL has apparently its own symlink implementation in Windows, dbname.sym can redirect a database directory: REFMAN "windows-symbolic-links.html" */ info->type = OS_FILE_TYPE_LINK; } else if (lpFindFileData->dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) { info->type = OS_FILE_TYPE_DIR; } else { /* It is probably safest to assume that all other file types are normal. Better to check them rather than blindly skip them. */ info->type = OS_FILE_TYPE_FILE; } } ut_free(lpFindFileData); if (ret) { return(0); } else if (GetLastError() == ERROR_NO_MORE_FILES) { return(1); } else { os_file_handle_error_no_exit(NULL, "readdir_next_file", FALSE, __FILE__, __LINE__); return(-1); } #else struct dirent* ent; char* full_path; int ret; struct stat statinfo; #ifdef HAVE_READDIR_R char dirent_buf[sizeof(struct dirent) + _POSIX_PATH_MAX + 100]; /* In /mysys/my_lib.c, _POSIX_PATH_MAX + 1 is used as the max file name len; but in most standards, the length is NAME_MAX; we add 100 to be even safer */ #endif next_file: #ifdef HAVE_READDIR_R ret = readdir_r(dir, (struct dirent*) dirent_buf, &ent); if (ret != 0 #ifdef UNIV_AIX /* On AIX, only if we got non-NULL 'ent' (result) value and a non-zero 'ret' (return) value, it indicates a failed readdir_r() call. An NULL 'ent' with an non-zero 'ret' would indicate the "end of the directory" is reached. */ && ent != NULL #endif ) { fprintf(stderr, "InnoDB: cannot read directory %s, error %lu\n", dirname, (ulong) ret); return(-1); } if (ent == NULL) { /* End of directory */ return(1); } ut_a(strlen(ent->d_name) < _POSIX_PATH_MAX + 100 - 1); #else ent = readdir(dir); if (ent == NULL) { return(1); } #endif ut_a(strlen(ent->d_name) < OS_FILE_MAX_PATH); if (strcmp(ent->d_name, ".") == 0 || strcmp(ent->d_name, "..") == 0) { goto next_file; } strcpy(info->name, ent->d_name); full_path = static_cast( ut_malloc(strlen(dirname) + strlen(ent->d_name) + 10)); sprintf(full_path, "%s/%s", dirname, ent->d_name); ret = stat(full_path, &statinfo); if (ret) { if (errno == ENOENT) { /* readdir() returned a file that does not exist, it must have been deleted in the meantime. Do what would have happened if the file was deleted before readdir() - ignore and go to the next entry. If this is the last entry then info->name will still contain the name of the deleted file when this function returns, but this is not an issue since the caller shouldn't be looking at info when end of directory is returned. */ ut_free(full_path); goto next_file; } os_file_handle_error_no_exit(full_path, "stat", FALSE, __FILE__, __LINE__); ut_free(full_path); return(-1); } info->size = (ib_int64_t) statinfo.st_size; if (S_ISDIR(statinfo.st_mode)) { info->type = OS_FILE_TYPE_DIR; } else if (S_ISLNK(statinfo.st_mode)) { info->type = OS_FILE_TYPE_LINK; } else if (S_ISREG(statinfo.st_mode)) { info->type = OS_FILE_TYPE_FILE; } else { info->type = OS_FILE_TYPE_UNKNOWN; } ut_free(full_path); return(0); #endif } /*****************************************************************//** This function attempts to create a directory named pathname. The new directory gets default permissions. On Unix the permissions are (0770 & ~umask). If the directory exists already, nothing is done and the call succeeds, unless the fail_if_exists arguments is true. If another error occurs, such as a permission error, this does not crash, but reports the error and returns FALSE. @return TRUE if call succeeds, FALSE on error */ UNIV_INTERN ibool os_file_create_directory( /*=====================*/ const char* pathname, /*!< in: directory name as null-terminated string */ ibool fail_if_exists) /*!< in: if TRUE, pre-existing directory is treated as an error. */ { #ifdef __WIN__ BOOL rcode; rcode = CreateDirectory((LPCTSTR) pathname, NULL); if (!(rcode != 0 || (GetLastError() == ERROR_ALREADY_EXISTS && !fail_if_exists))) { os_file_handle_error_no_exit( pathname, "CreateDirectory", FALSE, __FILE__, __LINE__); return(FALSE); } return(TRUE); #else int rcode; WAIT_ALLOW_WRITES(); rcode = mkdir(pathname, 0770); if (!(rcode == 0 || (errno == EEXIST && !fail_if_exists))) { /* failure */ os_file_handle_error_no_exit(pathname, "mkdir", FALSE, __FILE__, __LINE__); return(FALSE); } return (TRUE); #endif /* __WIN__ */ } /****************************************************************//** NOTE! Use the corresponding macro os_file_create_simple(), not directly this function! A simple function to open or create a file. @return own: handle to the file, not defined if error, error number can be retrieved with os_file_get_last_error */ UNIV_INTERN os_file_t os_file_create_simple_func( /*=======================*/ const char* name, /*!< in: name of the file or path as a null-terminated string */ ulint create_mode,/*!< in: create mode */ ulint access_type,/*!< in: OS_FILE_READ_ONLY or OS_FILE_READ_WRITE */ ibool* success)/*!< out: TRUE if succeed, FALSE if error */ { os_file_t file; ibool retry; *success = FALSE; #ifdef __WIN__ DWORD access; DWORD create_flag; DWORD attributes = 0; ut_a(!(create_mode & OS_FILE_ON_ERROR_SILENT)); ut_a(!(create_mode & OS_FILE_ON_ERROR_NO_EXIT)); if (create_mode == OS_FILE_OPEN) { create_flag = OPEN_EXISTING; } else if (srv_read_only_mode) { create_flag = OPEN_EXISTING; } else if (create_mode == OS_FILE_CREATE) { create_flag = CREATE_NEW; } else if (create_mode == OS_FILE_CREATE_PATH) { ut_a(!srv_read_only_mode); /* Create subdirs along the path if needed */ *success = os_file_create_subdirs_if_needed(name); if (!*success) { ib_logf(IB_LOG_LEVEL_ERROR, "Unable to create subdirectories '%s'", name); return((os_file_t) -1); } create_flag = CREATE_NEW; create_mode = OS_FILE_CREATE; } else { ib_logf(IB_LOG_LEVEL_ERROR, "Unknown file create mode (%lu) for file '%s'", create_mode, name); return((os_file_t) -1); } if (access_type == OS_FILE_READ_ONLY) { access = GENERIC_READ; } else if (srv_read_only_mode) { ib_logf(IB_LOG_LEVEL_INFO, "read only mode set. Unable to " "open file '%s' in RW mode, trying RO mode", name); access = GENERIC_READ; } else if (access_type == OS_FILE_READ_WRITE) { access = GENERIC_READ | GENERIC_WRITE; } else { ib_logf(IB_LOG_LEVEL_ERROR, "Unknown file access type (%lu) for file '%s'", access_type, name); return((os_file_t) -1); } do { /* Use default security attributes and no template file. */ file = CreateFile( (LPCTSTR) name, access, FILE_SHARE_READ, NULL, create_flag, attributes, NULL); if (file == INVALID_HANDLE_VALUE) { *success = FALSE; retry = os_file_handle_error( name, create_mode == OS_FILE_OPEN ? "open" : "create", __FILE__, __LINE__); } else { *success = TRUE; retry = false; } } while (retry); #else /* __WIN__ */ int create_flag; if (create_mode != OS_FILE_OPEN && create_mode != OS_FILE_OPEN_RAW) WAIT_ALLOW_WRITES(); ut_a(!(create_mode & OS_FILE_ON_ERROR_SILENT)); ut_a(!(create_mode & OS_FILE_ON_ERROR_NO_EXIT)); if (create_mode == OS_FILE_OPEN) { if (access_type == OS_FILE_READ_ONLY) { create_flag = O_RDONLY; } else if (srv_read_only_mode) { create_flag = O_RDONLY; } else { create_flag = O_RDWR; } } else if (srv_read_only_mode) { create_flag = O_RDONLY; } else if (create_mode == OS_FILE_CREATE) { create_flag = O_RDWR | O_CREAT | O_EXCL; } else if (create_mode == OS_FILE_CREATE_PATH) { /* Create subdirs along the path if needed */ *success = os_file_create_subdirs_if_needed(name); if (!*success) { ib_logf(IB_LOG_LEVEL_ERROR, "Unable to create subdirectories '%s'", name); return((os_file_t) -1); } create_flag = O_RDWR | O_CREAT | O_EXCL; create_mode = OS_FILE_CREATE; } else { ib_logf(IB_LOG_LEVEL_ERROR, "Unknown file create mode (%lu) for file '%s'", create_mode, name); return((os_file_t) -1); } do { file = ::open(name, create_flag, os_innodb_umask); if (file == -1) { *success = FALSE; retry = os_file_handle_error( name, create_mode == OS_FILE_OPEN ? "open" : "create", __FILE__, __LINE__); } else { *success = TRUE; retry = false; } } while (retry); #ifdef USE_FILE_LOCK if (!srv_read_only_mode && *success && access_type == OS_FILE_READ_WRITE && os_file_lock(file, name)) { *success = FALSE; close(file); file = -1; } #endif /* USE_FILE_LOCK */ #endif /* __WIN__ */ return(file); } /****************************************************************//** NOTE! Use the corresponding macro os_file_create_simple_no_error_handling(), not directly this function! A simple function to open or create a file. @return own: handle to the file, not defined if error, error number can be retrieved with os_file_get_last_error */ UNIV_INTERN os_file_t os_file_create_simple_no_error_handling_func( /*=========================================*/ const char* name, /*!< in: name of the file or path as a null-terminated string */ ulint create_mode,/*!< in: create mode */ ulint access_type,/*!< in: OS_FILE_READ_ONLY, OS_FILE_READ_WRITE, or OS_FILE_READ_ALLOW_DELETE; the last option is used by a backup program reading the file */ ibool* success,/*!< out: TRUE if succeed, FALSE if error */ ulint atomic_writes) /*! in: atomic writes table option value */ { os_file_t file; atomic_writes_t awrites = (atomic_writes_t) atomic_writes; *success = FALSE; #ifdef __WIN__ DWORD access; DWORD create_flag; DWORD attributes = 0; DWORD share_mode = FILE_SHARE_READ; ut_a(name); ut_a(!(create_mode & OS_FILE_ON_ERROR_SILENT)); ut_a(!(create_mode & OS_FILE_ON_ERROR_NO_EXIT)); if (create_mode == OS_FILE_OPEN) { create_flag = OPEN_EXISTING; } else if (srv_read_only_mode) { create_flag = OPEN_EXISTING; } else if (create_mode == OS_FILE_CREATE) { create_flag = CREATE_NEW; } else { ib_logf(IB_LOG_LEVEL_ERROR, "Unknown file create mode (%lu) for file '%s'", create_mode, name); return((os_file_t) -1); } if (access_type == OS_FILE_READ_ONLY) { access = GENERIC_READ; } else if (srv_read_only_mode) { access = GENERIC_READ; } else if (access_type == OS_FILE_READ_WRITE) { access = GENERIC_READ | GENERIC_WRITE; } else if (access_type == OS_FILE_READ_ALLOW_DELETE) { ut_a(!srv_read_only_mode); access = GENERIC_READ; /*!< A backup program has to give mysqld the maximum freedom to do what it likes with the file */ share_mode |= FILE_SHARE_DELETE | FILE_SHARE_WRITE; } else { ib_logf(IB_LOG_LEVEL_ERROR, "Unknown file access type (%lu) for file '%s'", access_type, name); return((os_file_t) -1); } file = CreateFile((LPCTSTR) name, access, share_mode, NULL, // Security attributes create_flag, attributes, NULL); // No template file /* If we have proper file handle and atomic writes should be used, try to set atomic writes and if that fails when creating a new table, produce a error. If atomic writes are used on existing file, ignore error and use traditional writes for that file */ if (file != INVALID_HANDLE_VALUE && (awrites == ATOMIC_WRITES_ON || (srv_use_atomic_writes && awrites == ATOMIC_WRITES_DEFAULT)) && !os_file_set_atomic_writes(name, file)) { if (create_mode == OS_FILE_CREATE) { fprintf(stderr, "InnoDB: Error: Can't create file using atomic writes\n"); CloseHandle(file); os_file_delete_if_exists_func(name); *success = FALSE; file = INVALID_HANDLE_VALUE; } } *success = (file != INVALID_HANDLE_VALUE); #else /* __WIN__ */ int create_flag; ut_a(name); if (create_mode != OS_FILE_OPEN && create_mode != OS_FILE_OPEN_RAW) WAIT_ALLOW_WRITES(); ut_a(!(create_mode & OS_FILE_ON_ERROR_SILENT)); ut_a(!(create_mode & OS_FILE_ON_ERROR_NO_EXIT)); if (create_mode == OS_FILE_OPEN) { if (access_type == OS_FILE_READ_ONLY) { create_flag = O_RDONLY; } else if (srv_read_only_mode) { create_flag = O_RDONLY; } else { ut_a(access_type == OS_FILE_READ_WRITE || access_type == OS_FILE_READ_ALLOW_DELETE); create_flag = O_RDWR; } } else if (srv_read_only_mode) { create_flag = O_RDONLY; } else if (create_mode == OS_FILE_CREATE) { create_flag = O_RDWR | O_CREAT | O_EXCL; } else { ib_logf(IB_LOG_LEVEL_ERROR, "Unknown file create mode (%lu) for file '%s'", create_mode, name); return((os_file_t) -1); } file = ::open(name, create_flag, os_innodb_umask); *success = file == -1 ? FALSE : TRUE; #ifdef USE_FILE_LOCK if (!srv_read_only_mode && *success && access_type == OS_FILE_READ_WRITE && os_file_lock(file, name)) { *success = FALSE; close(file); file = -1; } #endif /* USE_FILE_LOCK */ /* If we have proper file handle and atomic writes should be used, try to set atomic writes and if that fails when creating a new table, produce a error. If atomic writes are used on existing file, ignore error and use traditional writes for that file */ if (file != -1 && (awrites == ATOMIC_WRITES_ON || (srv_use_atomic_writes && awrites == ATOMIC_WRITES_DEFAULT)) && !os_file_set_atomic_writes(name, file)) { if (create_mode == OS_FILE_CREATE) { fprintf(stderr, "InnoDB: Error: Can't create file using atomic writes\n"); close(file); os_file_delete_if_exists_func(name); *success = FALSE; file = -1; } } #endif /* __WIN__ */ return(file); } /****************************************************************//** Tries to disable OS caching on an opened file descriptor. */ UNIV_INTERN void os_file_set_nocache( /*================*/ int fd /*!< in: file descriptor to alter */ __attribute__((unused)), const char* file_name /*!< in: used in the diagnostic message */ __attribute__((unused)), const char* operation_name __attribute__((unused))) /*!< in: "open" or "create"; used in the diagnostic message */ { /* some versions of Solaris may not have DIRECTIO_ON */ #if defined(UNIV_SOLARIS) && defined(DIRECTIO_ON) if (directio(fd, DIRECTIO_ON) == -1) { int errno_save = errno; ib_logf(IB_LOG_LEVEL_ERROR, "Failed to set DIRECTIO_ON on file %s: %s: %s, " "continuing anyway.", file_name, operation_name, strerror(errno_save)); } #elif defined(O_DIRECT) if (fcntl(fd, F_SETFL, O_DIRECT) == -1) { int errno_save = errno; static bool warning_message_printed = false; if (errno_save == EINVAL) { if (!warning_message_printed) { warning_message_printed = true; # ifdef UNIV_LINUX ib_logf(IB_LOG_LEVEL_WARN, "Failed to set O_DIRECT on file " "%s: %s: %s, continuing anyway. " "O_DIRECT is known to result " "in 'Invalid argument' on Linux on " "tmpfs, see MySQL Bug#26662.", file_name, operation_name, strerror(errno_save)); # else /* UNIV_LINUX */ goto short_warning; # endif /* UNIV_LINUX */ } } else { # ifndef UNIV_LINUX short_warning: # endif ib_logf(IB_LOG_LEVEL_WARN, "Failed to set O_DIRECT on file %s: %s: %s, " "continuing anyway.", file_name, operation_name, strerror(errno_save)); } } #endif /* defined(UNIV_SOLARIS) && defined(DIRECTIO_ON) */ } /****************************************************************//** Tries to enable the atomic write feature, if available, for the specified file handle. @return TRUE if success */ static __attribute__((warn_unused_result)) ibool os_file_set_atomic_writes( /*======================*/ const char* name /*!< in: name of the file */ __attribute__((unused)), os_file_t file /*!< in: handle to the file */ __attribute__((unused))) { #ifdef DFS_IOCTL_ATOMIC_WRITE_SET int atomic_option = 1; if (ioctl(file, DFS_IOCTL_ATOMIC_WRITE_SET, &atomic_option)) { fprintf(stderr, "InnoDB: Warning:Trying to enable atomic writes on " "file %s on non-supported platform!\n", name); os_file_handle_error_no_exit(name, "ioctl(DFS_IOCTL_ATOMIC_WRITE_SET)", FALSE, __FILE__, __LINE__); return(FALSE); } return(TRUE); #else fprintf(stderr, "InnoDB: Error: trying to enable atomic writes on " "file %s on non-supported platform!\n", name); return(FALSE); #endif } /****************************************************************//** NOTE! Use the corresponding macro os_file_create(), not directly this function! Opens an existing file or creates a new. @return own: handle to the file, not defined if error, error number can be retrieved with os_file_get_last_error */ UNIV_INTERN os_file_t os_file_create_func( /*================*/ const char* name, /*!< in: name of the file or path as a null-terminated string */ ulint create_mode,/*!< in: create mode */ ulint purpose,/*!< in: OS_FILE_AIO, if asynchronous, non-buffered i/o is desired, OS_FILE_NORMAL, if any normal file; NOTE that it also depends on type, os_aio_.. and srv_.. variables whether we really use async i/o or unbuffered i/o: look in the function source code for the exact rules */ ulint type, /*!< in: OS_DATA_FILE or OS_LOG_FILE */ ibool* success,/*!< out: TRUE if succeed, FALSE if error */ ulint atomic_writes) /*! in: atomic writes table option value */ { os_file_t file; ibool retry; ibool on_error_no_exit; ibool on_error_silent; atomic_writes_t awrites = (atomic_writes_t) atomic_writes; #ifdef __WIN__ DBUG_EXECUTE_IF( "ib_create_table_fail_disk_full", *success = FALSE; SetLastError(ERROR_DISK_FULL); return((os_file_t) -1); ); #else /* __WIN__ */ DBUG_EXECUTE_IF( "ib_create_table_fail_disk_full", *success = FALSE; errno = ENOSPC; return((os_file_t) -1); ); #endif /* __WIN__ */ #ifdef __WIN__ DWORD create_flag; DWORD share_mode = FILE_SHARE_READ; on_error_no_exit = create_mode & OS_FILE_ON_ERROR_NO_EXIT ? TRUE : FALSE; on_error_silent = create_mode & OS_FILE_ON_ERROR_SILENT ? TRUE : FALSE; create_mode &= ~OS_FILE_ON_ERROR_NO_EXIT; create_mode &= ~OS_FILE_ON_ERROR_SILENT; if (create_mode == OS_FILE_OPEN_RAW) { ut_a(!srv_read_only_mode); create_flag = OPEN_EXISTING; /* On Windows Physical devices require admin privileges and have to have the write-share mode set. See the remarks section for the CreateFile() function documentation in MSDN. */ share_mode |= FILE_SHARE_WRITE; } else if (create_mode == OS_FILE_OPEN || create_mode == OS_FILE_OPEN_RETRY) { create_flag = OPEN_EXISTING; } else if (srv_read_only_mode) { create_flag = OPEN_EXISTING; } else if (create_mode == OS_FILE_CREATE) { create_flag = CREATE_NEW; } else if (create_mode == OS_FILE_OVERWRITE) { create_flag = CREATE_ALWAYS; } else { ib_logf(IB_LOG_LEVEL_ERROR, "Unknown file create mode (%lu) for file '%s'", create_mode, name); return((os_file_t) -1); } DWORD attributes = 0; #ifdef UNIV_HOTBACKUP attributes |= FILE_FLAG_NO_BUFFERING; #else if (purpose == OS_FILE_AIO) { bool encrypt_later; /*!< should the page be encrypted before write */ #ifdef WIN_ASYNC_IO /* If specified, use asynchronous (overlapped) io and no buffering of writes in the OS */ if (srv_use_native_aio) { attributes |= FILE_FLAG_OVERLAPPED; } #endif /* WIN_ASYNC_IO */ } else if (purpose == OS_FILE_NORMAL) { /* Use default setting. */ } else { ib_logf(IB_LOG_LEVEL_ERROR, "Unknown purpose flag (%lu) while opening file '%s'", purpose, name); return((os_file_t)(-1)); } #ifdef UNIV_NON_BUFFERED_IO // TODO: Create a bug, this looks wrong. The flush log // parameter is dynamic. if (type == OS_LOG_FILE && thd_flush_log_at_trx_commit(NULL) == 2) { /* Do not use unbuffered i/o for the log files because value 2 denotes that we do not flush the log at every commit, but only once per second */ } else if (srv_win_file_flush_method == SRV_WIN_IO_UNBUFFERED) { attributes |= FILE_FLAG_NO_BUFFERING; } #endif /* UNIV_NON_BUFFERED_IO */ #endif /* UNIV_HOTBACKUP */ DWORD access = GENERIC_READ; if (!srv_read_only_mode) { access |= GENERIC_WRITE; } if (type == OS_LOG_FILE) { if (srv_unix_file_flush_method == SRV_UNIX_O_DSYNC) { /* Map O_DSYNC to WRITE_THROUGH */ attributes |= FILE_FLAG_WRITE_THROUGH; } else if (srv_unix_file_flush_method == SRV_UNIX_ALL_O_DIRECT) { /* Open log file without buffering */ attributes |= FILE_FLAG_NO_BUFFERING; } } do { /* Use default security attributes and no template file. */ file = CreateFile( (LPCTSTR) name, access, share_mode, NULL, create_flag, attributes, NULL); if (file == INVALID_HANDLE_VALUE) { const char* operation; operation = (create_mode == OS_FILE_CREATE && !srv_read_only_mode) ? "create" : "open"; *success = FALSE; if (on_error_no_exit) { retry = os_file_handle_error_no_exit( name, operation, on_error_silent, __FILE__, __LINE__); } else { retry = os_file_handle_error(name, operation, __FILE__, __LINE__); } } else { *success = TRUE; retry = FALSE; if (srv_use_native_aio && ((attributes & FILE_FLAG_OVERLAPPED) != 0)) { ut_a(CreateIoCompletionPort(file, completion_port, 0, 0)); } } } while (retry); /* If we have proper file handle and atomic writes should be used, try to set atomic writes and if that fails when creating a new table, produce a error. If atomic writes are used on existing file, ignore error and use traditional writes for that file */ if (file != INVALID_HANDLE_VALUE && type == OS_DATA_FILE && (awrites == ATOMIC_WRITES_ON || (srv_use_atomic_writes && awrites == ATOMIC_WRITES_DEFAULT)) && !os_file_set_atomic_writes(name, file)) { if (create_mode == OS_FILE_CREATE) { fprintf(stderr, "InnoDB: Error: Can't create file using atomic writes\n"); CloseHandle(file); os_file_delete_if_exists_func(name); *success = FALSE; file = INVALID_HANDLE_VALUE; } } #else /* __WIN__ */ int create_flag; const char* mode_str = NULL; if (create_mode != OS_FILE_OPEN && create_mode != OS_FILE_OPEN_RAW) WAIT_ALLOW_WRITES(); on_error_no_exit = create_mode & OS_FILE_ON_ERROR_NO_EXIT ? TRUE : FALSE; on_error_silent = create_mode & OS_FILE_ON_ERROR_SILENT ? TRUE : FALSE; create_mode &= ~OS_FILE_ON_ERROR_NO_EXIT; create_mode &= ~OS_FILE_ON_ERROR_SILENT; if (create_mode == OS_FILE_OPEN || create_mode == OS_FILE_OPEN_RAW || create_mode == OS_FILE_OPEN_RETRY) { mode_str = "OPEN"; create_flag = srv_read_only_mode ? O_RDONLY : O_RDWR; } else if (srv_read_only_mode) { mode_str = "OPEN"; create_flag = O_RDONLY; } else if (create_mode == OS_FILE_CREATE) { mode_str = "CREATE"; create_flag = O_RDWR | O_CREAT | O_EXCL; } else if (create_mode == OS_FILE_OVERWRITE) { mode_str = "OVERWRITE"; create_flag = O_RDWR | O_CREAT | O_TRUNC; } else { ib_logf(IB_LOG_LEVEL_ERROR, "Unknown file create mode (%lu) for file '%s'", create_mode, name); return((os_file_t) -1); } ut_a(type == OS_LOG_FILE || type == OS_DATA_FILE); ut_a(purpose == OS_FILE_AIO || purpose == OS_FILE_NORMAL); #ifdef O_SYNC /* We let O_SYNC only affect log files; note that we map O_DSYNC to O_SYNC because the datasync options seemed to corrupt files in 2001 in both Linux and Solaris */ if (!srv_read_only_mode && type == OS_LOG_FILE && srv_unix_file_flush_method == SRV_UNIX_O_DSYNC) { create_flag |= O_SYNC; } #endif /* O_SYNC */ do { file = ::open(name, create_flag, os_innodb_umask); if (file == -1) { const char* operation; operation = (create_mode == OS_FILE_CREATE && !srv_read_only_mode) ? "create" : "open"; *success = FALSE; if (on_error_no_exit) { retry = os_file_handle_error_no_exit( name, operation, on_error_silent, __FILE__, __LINE__); } else { retry = os_file_handle_error(name, operation, __FILE__, __LINE__); } } else { *success = TRUE; retry = false; } } while (retry); if (!srv_read_only_mode && *success && type != OS_LOG_FILE && (srv_unix_file_flush_method == SRV_UNIX_O_DIRECT || srv_unix_file_flush_method == SRV_UNIX_O_DIRECT_NO_FSYNC)) { os_file_set_nocache(file, name, mode_str); } else if (!srv_read_only_mode && *success && srv_unix_file_flush_method == SRV_UNIX_ALL_O_DIRECT) { os_file_set_nocache(file, name, mode_str); } #ifdef USE_FILE_LOCK if (!srv_read_only_mode && *success && create_mode != OS_FILE_OPEN_RAW && os_file_lock(file, name)) { if (create_mode == OS_FILE_OPEN_RETRY) { ut_a(!srv_read_only_mode); ib_logf(IB_LOG_LEVEL_INFO, "Retrying to lock the first data file"); for (int i = 0; i < 100; i++) { os_thread_sleep(1000000); if (!os_file_lock(file, name)) { *success = TRUE; return(file); } } ib_logf(IB_LOG_LEVEL_INFO, "Unable to open the first data file"); } *success = FALSE; close(file); file = -1; } #endif /* USE_FILE_LOCK */ /* If we have proper file handle and atomic writes should be used, try to set atomic writes and if that fails when creating a new table, produce a error. If atomic writes are used on existing file, ignore error and use traditional writes for that file */ if (file != -1 && type == OS_DATA_FILE && (awrites == ATOMIC_WRITES_ON || (srv_use_atomic_writes && awrites == ATOMIC_WRITES_DEFAULT)) && !os_file_set_atomic_writes(name, file)) { if (create_mode == OS_FILE_CREATE) { fprintf(stderr, "InnoDB: Error: Can't create file using atomic writes\n"); close(file); os_file_delete_if_exists_func(name); *success = FALSE; file = -1; } } #endif /* __WIN__ */ return(file); } /***********************************************************************//** Deletes a file if it exists. The file has to be closed before calling this. @return TRUE if success */ UNIV_INTERN bool os_file_delete_if_exists_func( /*==========================*/ const char* name) /*!< in: file path as a null-terminated string */ { #ifdef __WIN__ bool ret; ulint count = 0; loop: /* In Windows, deleting an .ibd file may fail if mysqlbackup is copying it */ ret = DeleteFile((LPCTSTR) name); if (ret) { return(true); } DWORD lasterr = GetLastError(); if (lasterr == ERROR_FILE_NOT_FOUND || lasterr == ERROR_PATH_NOT_FOUND) { /* the file does not exist, this not an error */ return(true); } count++; if (count > 100 && 0 == (count % 10)) { os_file_get_last_error(true); /* print error information */ ib_logf(IB_LOG_LEVEL_WARN, "Delete of file %s failed.", name); } os_thread_sleep(500000); /* sleep for 0.5 second */ if (count > 2000) { return(false); } goto loop; #else int ret; WAIT_ALLOW_WRITES(); ret = unlink(name); if (ret != 0 && errno != ENOENT) { os_file_handle_error_no_exit(name, "delete", FALSE, __FILE__, __LINE__); return(false); } return(true); #endif /* __WIN__ */ } /***********************************************************************//** Deletes a file. The file has to be closed before calling this. @return TRUE if success */ UNIV_INTERN bool os_file_delete_func( /*================*/ const char* name) /*!< in: file path as a null-terminated string */ { #ifdef __WIN__ BOOL ret; ulint count = 0; loop: /* In Windows, deleting an .ibd file may fail if mysqlbackup is copying it */ ret = DeleteFile((LPCTSTR) name); if (ret) { return(true); } if (GetLastError() == ERROR_FILE_NOT_FOUND) { /* If the file does not exist, we classify this as a 'mild' error and return */ return(false); } count++; if (count > 100 && 0 == (count % 10)) { os_file_get_last_error(true); /* print error information */ fprintf(stderr, "InnoDB: Warning: cannot delete file %s\n" "InnoDB: Are you running mysqlbackup" " to back up the file?\n", name); } os_thread_sleep(1000000); /* sleep for a second */ if (count > 2000) { return(false); } goto loop; #else int ret; WAIT_ALLOW_WRITES(); ret = unlink(name); if (ret != 0) { os_file_handle_error_no_exit(name, "delete", FALSE, __FILE__, __LINE__); return(false); } return(true); #endif } /***********************************************************************//** NOTE! Use the corresponding macro os_file_rename(), not directly this function! Renames a file (can also move it to another directory). It is safest that the file is closed before calling this function. @return TRUE if success */ UNIV_INTERN ibool os_file_rename_func( /*================*/ const char* oldpath,/*!< in: old file path as a null-terminated string */ const char* newpath)/*!< in: new file path */ { #ifdef UNIV_DEBUG os_file_type_t type; ibool exists; /* New path must not exist. */ ut_ad(os_file_status(newpath, &exists, &type)); ut_ad(!exists); /* Old path must exist. */ ut_ad(os_file_status(oldpath, &exists, &type)); ut_ad(exists); #endif /* UNIV_DEBUG */ #ifdef __WIN__ BOOL ret; ret = MoveFileEx((LPCTSTR)oldpath, (LPCTSTR)newpath, MOVEFILE_REPLACE_EXISTING); if (ret) { return(TRUE); } os_file_handle_error_no_exit(oldpath, "rename", FALSE, __FILE__, __LINE__); return(FALSE); #else int ret; WAIT_ALLOW_WRITES(); ret = rename(oldpath, newpath); if (ret != 0) { os_file_handle_error_no_exit(oldpath, "rename", FALSE, __FILE__, __LINE__); return(FALSE); } return(TRUE); #endif /* __WIN__ */ } /***********************************************************************//** NOTE! Use the corresponding macro os_file_close(), not directly this function! Closes a file handle. In case of error, error number can be retrieved with os_file_get_last_error. @return TRUE if success */ UNIV_INTERN ibool os_file_close_func( /*===============*/ os_file_t file) /*!< in, own: handle to a file */ { #ifdef __WIN__ BOOL ret; ret = CloseHandle(file); if (ret) { return(TRUE); } os_file_handle_error(NULL, "close", __FILE__, __LINE__); return(FALSE); #else int ret; ret = close(file); if (ret == -1) { os_file_handle_error(NULL, "close", __FILE__, __LINE__); return(FALSE); } return(TRUE); #endif /* __WIN__ */ } /***********************************************************************//** Closes a file handle. @return TRUE if success */ UNIV_INTERN ibool os_file_close_no_error_handling( /*============================*/ os_file_t file) /*!< in, own: handle to a file */ { #ifdef __WIN__ BOOL ret; ret = CloseHandle(file); if (ret) { return(TRUE); } return(FALSE); #else int ret; ret = close(file); if (ret == -1) { return(FALSE); } return(TRUE); #endif /* __WIN__ */ } /***********************************************************************//** Gets a file size. @return file size, or (os_offset_t) -1 on failure */ UNIV_INTERN os_offset_t os_file_get_size( /*=============*/ os_file_t file) /*!< in: handle to a file */ { #ifdef __WIN__ os_offset_t offset; DWORD high; DWORD low; low = GetFileSize(file, &high); if ((low == 0xFFFFFFFF) && (GetLastError() != NO_ERROR)) { return((os_offset_t) -1); } offset = (os_offset_t) low | ((os_offset_t) high << 32); return(offset); #else return((os_offset_t) lseek(file, 0, SEEK_END)); #endif /* __WIN__ */ } /***********************************************************************//** Write the specified number of zeros to a newly created file. @return TRUE if success */ UNIV_INTERN ibool os_file_set_size( /*=============*/ const char* name, /*!< in: name of the file or path as a null-terminated string */ os_file_t file, /*!< in: handle to a file */ os_offset_t size) /*!< in: file size */ { os_offset_t current_size; ibool ret; byte* buf; byte* buf2; ulint buf_size; current_size = 0; #ifdef HAVE_POSIX_FALLOCATE if (srv_use_posix_fallocate) { if (posix_fallocate(file, current_size, size) == -1) { ib_logf(IB_LOG_LEVEL_ERROR, "preallocating file " "space for file \'%s\' failed. Current size " INT64PF ", desired size " INT64PF "\n", name, current_size, size); os_file_handle_error_no_exit (name, "posix_fallocate", FALSE, __FILE__, __LINE__); return(FALSE); } return(TRUE); } #endif /* Write up to 1 megabyte at a time. */ buf_size = ut_min(64, (ulint) (size / UNIV_PAGE_SIZE)) * UNIV_PAGE_SIZE; buf2 = static_cast(ut_malloc(buf_size + UNIV_PAGE_SIZE)); /* Align the buffer for possible raw i/o */ buf = static_cast(ut_align(buf2, UNIV_PAGE_SIZE)); /* Write buffer full of zeros */ memset(buf, 0, buf_size); if (size >= (os_offset_t) 100 << 20) { fprintf(stderr, "InnoDB: Progress in MB:"); } while (current_size < size) { ulint n_bytes; if (size - current_size < (os_offset_t) buf_size) { n_bytes = (ulint) (size - current_size); } else { n_bytes = buf_size; } ret = os_file_write(name, file, buf, current_size, n_bytes); if (!ret) { ut_free(buf2); goto error_handling; } /* Print about progress for each 100 MB written */ if ((current_size + n_bytes) / (100 << 20) != current_size / (100 << 20)) { fprintf(stderr, " %lu00", (ulong) ((current_size + n_bytes) / (100 << 20))); } current_size += n_bytes; } if (size >= (os_offset_t) 100 << 20) { fprintf(stderr, "\n"); } ut_free(buf2); ret = os_file_flush(file); if (ret) { return(TRUE); } error_handling: return(FALSE); } /***********************************************************************//** Truncates a file at its current position. @return TRUE if success */ UNIV_INTERN ibool os_file_set_eof( /*============*/ FILE* file) /*!< in: file to be truncated */ { #ifdef __WIN__ HANDLE h = (HANDLE) _get_osfhandle(fileno(file)); return(SetEndOfFile(h)); #else /* __WIN__ */ WAIT_ALLOW_WRITES(); return(!ftruncate(fileno(file), ftell(file))); #endif /* __WIN__ */ } /***********************************************************************//** Truncates a file at the specified position. @return TRUE if success */ UNIV_INTERN ibool os_file_set_eof_at( os_file_t file, /*!< in: handle to a file */ ib_uint64_t new_len)/*!< in: new file length */ { #ifdef __WIN__ LARGE_INTEGER li, li2; li.QuadPart = new_len; return(SetFilePointerEx(file, li, &li2,FILE_BEGIN) && SetEndOfFile(file)); #else WAIT_ALLOW_WRITES(); /* TODO: works only with -D_FILE_OFFSET_BITS=64 ? */ return(!ftruncate(file, new_len)); #endif } #ifndef __WIN__ /***********************************************************************//** Wrapper to fsync(2) that retries the call on some errors. Returns the value 0 if successful; otherwise the value -1 is returned and the global variable errno is set to indicate the error. @return 0 if success, -1 otherwise */ static int os_file_fsync( /*==========*/ os_file_t file) /*!< in: handle to a file */ { int ret; int failures; ibool retry; failures = 0; do { ret = fsync(file); os_n_fsyncs++; if (ret == -1 && errno == ENOLCK) { if (failures % 100 == 0) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: fsync(): " "No locks available; retrying\n"); } os_thread_sleep(200000 /* 0.2 sec */); failures++; retry = TRUE; } else if (ret == -1 && errno == EINTR) { /* Handle signal interruptions correctly */ retry = TRUE; } else { retry = FALSE; } } while (retry); return(ret); } #endif /* !__WIN__ */ /***********************************************************************//** NOTE! Use the corresponding macro os_file_flush(), not directly this function! Flushes the write buffers of a given file to the disk. @return TRUE if success */ UNIV_INTERN ibool os_file_flush_func( /*===============*/ os_file_t file) /*!< in, own: handle to a file */ { #ifdef __WIN__ BOOL ret; os_n_fsyncs++; ret = FlushFileBuffers(file); if (ret) { return(TRUE); } /* Since Windows returns ERROR_INVALID_FUNCTION if the 'file' is actually a raw device, we choose to ignore that error if we are using raw disks */ if (srv_start_raw_disk_in_use && GetLastError() == ERROR_INVALID_FUNCTION) { return(TRUE); } os_file_handle_error(NULL, "flush", __FILE__, __LINE__); /* It is a fatal error if a file flush does not succeed, because then the database can get corrupt on disk */ ut_error; return(FALSE); #else int ret; WAIT_ALLOW_WRITES(); #if defined(HAVE_DARWIN_THREADS) # ifndef F_FULLFSYNC /* The following definition is from the Mac OS X 10.3 */ # define F_FULLFSYNC 51 /* fsync + ask the drive to flush to the media */ # elif F_FULLFSYNC != 51 # error "F_FULLFSYNC != 51: ABI incompatibility with Mac OS X 10.3" # endif /* Apple has disabled fsync() for internal disk drives in OS X. That caused corruption for a user when he tested a power outage. Let us in OS X use a nonstandard flush method recommended by an Apple engineer. */ if (!srv_have_fullfsync) { /* If we are not on an operating system that supports this, then fall back to a plain fsync. */ ret = os_file_fsync(file); } else { ret = fcntl(file, F_FULLFSYNC, NULL); if (ret) { /* If we are not on a file system that supports this, then fall back to a plain fsync. */ ret = os_file_fsync(file); } } #else ret = os_file_fsync(file); #endif if (ret == 0) { return(TRUE); } /* Since Linux returns EINVAL if the 'file' is actually a raw device, we choose to ignore that error if we are using raw disks */ if (srv_start_raw_disk_in_use && errno == EINVAL) { return(TRUE); } ib_logf(IB_LOG_LEVEL_ERROR, "The OS said file flush did not succeed"); os_file_handle_error(NULL, "flush", __FILE__, __LINE__); /* It is a fatal error if a file flush does not succeed, because then the database can get corrupt on disk */ ut_error; return(FALSE); #endif } #ifndef __WIN__ /*******************************************************************//** Does a synchronous read operation in Posix. @return number of bytes read, -1 if error */ static __attribute__((nonnull(2), warn_unused_result)) ssize_t os_file_pread( /*==========*/ os_file_t file, /*!< in: handle to a file */ void* buf, /*!< in: buffer where to read */ ulint n, /*!< in: number of bytes to read */ os_offset_t offset, /*!< in: file offset from where to read */ trx_t* trx) { off_t offs; #if defined(HAVE_PREAD) && !defined(HAVE_BROKEN_PREAD) ssize_t n_bytes; ssize_t n_read; #endif /* HAVE_PREAD && !HAVE_BROKEN_PREAD */ ulint sec; ulint ms; ib_uint64_t start_time; ib_uint64_t finish_time; ut_ad(n); /* If off_t is > 4 bytes in size, then we assume we can pass a 64-bit address */ offs = (off_t) offset; if (sizeof(off_t) <= 4) { if (offset != (os_offset_t) offs) { ib_logf(IB_LOG_LEVEL_ERROR, "File read at offset > 4 GB"); } } os_n_file_reads++; if (UNIV_UNLIKELY(trx && trx->take_stats)) { trx->io_reads++; trx->io_read += n; ut_usectime(&sec, &ms); start_time = (ib_uint64_t)sec * 1000000 + ms; } else { start_time = 0; } #if defined(HAVE_PREAD) && !defined(HAVE_BROKEN_PREAD) #if defined(HAVE_ATOMIC_BUILTINS) && UNIV_WORD_SIZE == 8 (void) os_atomic_increment_ulint(&os_n_pending_reads, 1); (void) os_atomic_increment_ulint(&os_file_n_pending_preads, 1); MONITOR_ATOMIC_INC(MONITOR_OS_PENDING_READS); #else os_mutex_enter(os_file_count_mutex); os_file_n_pending_preads++; os_n_pending_reads++; MONITOR_INC(MONITOR_OS_PENDING_READS); os_mutex_exit(os_file_count_mutex); #endif /* HAVE_ATOMIC_BUILTINS && UNIV_WORD == 8 */ /* Handle partial reads and signal interruptions correctly */ for (n_bytes = 0; n_bytes < (ssize_t) n; ) { n_read = pread(file, buf, (ssize_t)n - n_bytes, offs); if (n_read > 0) { n_bytes += n_read; offs += n_read; buf = (char *)buf + n_read; } else if (n_read == -1 && errno == EINTR) { continue; } else { break; } } #if defined(HAVE_ATOMIC_BUILTINS) && UNIV_WORD_SIZE == 8 (void) os_atomic_decrement_ulint(&os_n_pending_reads, 1); (void) os_atomic_decrement_ulint(&os_file_n_pending_preads, 1); MONITOR_ATOMIC_DEC(MONITOR_OS_PENDING_READS); #else os_mutex_enter(os_file_count_mutex); os_file_n_pending_preads--; os_n_pending_reads--; MONITOR_DEC(MONITOR_OS_PENDING_READS); os_mutex_exit(os_file_count_mutex); #endif /* !HAVE_ATOMIC_BUILTINS || UNIV_WORD == 8 */ if (UNIV_UNLIKELY(start_time != 0)) { ut_usectime(&sec, &ms); finish_time = (ib_uint64_t)sec * 1000000 + ms; trx->io_reads_wait_timer += (ulint)(finish_time - start_time); } return(n_bytes); #else { off_t ret_offset; ssize_t ret; ssize_t n_read; #ifndef UNIV_HOTBACKUP ulint i; #endif /* !UNIV_HOTBACKUP */ #if defined(HAVE_ATOMIC_BUILTINS) && UNIV_WORD_SIZE == 8 (void) os_atomic_increment_ulint(&os_n_pending_reads, 1); MONITOR_ATOMIC_INC(MONITOR_OS_PENDING_READS); #else os_mutex_enter(os_file_count_mutex); os_n_pending_reads++; MONITOR_INC(MONITOR_OS_PENDING_READS); os_mutex_exit(os_file_count_mutex); #endif /* HAVE_ATOMIC_BUILTINS && UNIV_WORD == 8 */ #ifndef UNIV_HOTBACKUP /* Protect the seek / read operation with a mutex */ i = ((ulint) file) % OS_FILE_N_SEEK_MUTEXES; os_mutex_enter(os_file_seek_mutexes[i]); #endif /* !UNIV_HOTBACKUP */ ret_offset = lseek(file, offs, SEEK_SET); if (ret_offset < 0) { ret = -1; } else { /* Handle signal interruptions correctly */ for (ret = 0; ret < (ssize_t) n; ) { n_read = read(file, buf, (ssize_t)n); if (n_read > 0) { ret += n_read; } else if (n_read == -1 && errno == EINTR) { continue; } else { break; } } } #ifndef UNIV_HOTBACKUP os_mutex_exit(os_file_seek_mutexes[i]); #endif /* !UNIV_HOTBACKUP */ #if defined(HAVE_ATOMIC_BUILTINS) && UNIV_WORD_SIZE == 8 (void) os_atomic_decrement_ulint(&os_n_pending_reads, 1); MONITOR_ATOIC_DEC(MONITOR_OS_PENDING_READS); #else os_mutex_enter(os_file_count_mutex); os_n_pending_reads--; MONITOR_DEC(MONITOR_OS_PENDING_READS); os_mutex_exit(os_file_count_mutex); #endif /* HAVE_ATOMIC_BUILTINS && UNIV_WORD_SIZE == 8 */ if (UNIV_UNLIKELY(start_time != 0) { ut_usectime(&sec, &ms); finish_time = (ib_uint64_t)sec * 1000000 + ms; trx->io_reads_wait_timer += (ulint)(finish_time - start_time); } return(ret); } #endif } /*******************************************************************//** Does a synchronous write operation in Posix. @return number of bytes written, -1 if error */ static __attribute__((nonnull, warn_unused_result)) ssize_t os_file_pwrite( /*===========*/ os_file_t file, /*!< in: handle to a file */ const void* buf, /*!< in: buffer from where to write */ ulint n, /*!< in: number of bytes to write */ os_offset_t offset) /*!< in: file offset where to write */ { ssize_t ret; ssize_t n_written; off_t offs; ut_ad(n); ut_ad(!srv_read_only_mode); /* If off_t is > 4 bytes in size, then we assume we can pass a 64-bit address */ offs = (off_t) offset; if (sizeof(off_t) <= 4) { if (offset != (os_offset_t) offs) { ib_logf(IB_LOG_LEVEL_ERROR, "File write at offset > 4 GB."); } } os_n_file_writes++; #if defined(HAVE_PWRITE) && !defined(HAVE_BROKEN_PREAD) #if !defined(HAVE_ATOMIC_BUILTINS) || UNIV_WORD_SIZE < 8 os_mutex_enter(os_file_count_mutex); os_file_n_pending_pwrites++; os_n_pending_writes++; MONITOR_INC(MONITOR_OS_PENDING_WRITES); os_mutex_exit(os_file_count_mutex); #else (void) os_atomic_increment_ulint(&os_n_pending_writes, 1); (void) os_atomic_increment_ulint(&os_file_n_pending_pwrites, 1); MONITOR_ATOMIC_INC(MONITOR_OS_PENDING_WRITES); #endif /* !HAVE_ATOMIC_BUILTINS || UNIV_WORD < 8 */ /* Handle partial writes and signal interruptions correctly */ for (ret = 0; ret < (ssize_t) n; ) { n_written = pwrite(file, buf, (ssize_t)n - ret, offs); if (n_written >= 0) { ret += n_written; offs += n_written; buf = (char *)buf + n_written; } else if (n_written == -1 && errno == EINTR) { continue; } else { break; } } #if !defined(HAVE_ATOMIC_BUILTINS) || UNIV_WORD_SIZE < 8 os_mutex_enter(os_file_count_mutex); os_file_n_pending_pwrites--; os_n_pending_writes--; MONITOR_DEC(MONITOR_OS_PENDING_WRITES); os_mutex_exit(os_file_count_mutex); #else (void) os_atomic_decrement_ulint(&os_n_pending_writes, 1); (void) os_atomic_decrement_ulint(&os_file_n_pending_pwrites, 1); MONITOR_ATOMIC_DEC(MONITOR_OS_PENDING_WRITES); #endif /* !HAVE_ATOMIC_BUILTINS || UNIV_WORD < 8 */ return(ret); #else { off_t ret_offset; # ifndef UNIV_HOTBACKUP ulint i; # endif /* !UNIV_HOTBACKUP */ os_mutex_enter(os_file_count_mutex); os_n_pending_writes++; MONITOR_INC(MONITOR_OS_PENDING_WRITES); os_mutex_exit(os_file_count_mutex); # ifndef UNIV_HOTBACKUP /* Protect the seek / write operation with a mutex */ i = ((ulint) file) % OS_FILE_N_SEEK_MUTEXES; os_mutex_enter(os_file_seek_mutexes[i]); # endif /* UNIV_HOTBACKUP */ ret_offset = lseek(file, offs, SEEK_SET); if (ret_offset < 0) { ret = -1; goto func_exit; } /* Handle signal interruptions correctly */ for (ret = 0; ret < (ssize_t) n; ) { n_written = write(file, buf, (ssize_t)n); if (n_written > 0) { ret += n_written; } else if (n_written == -1 && errno == EINTR) { continue; } else { break; } } func_exit: # ifndef UNIV_HOTBACKUP os_mutex_exit(os_file_seek_mutexes[i]); # endif /* !UNIV_HOTBACKUP */ os_mutex_enter(os_file_count_mutex); os_n_pending_writes--; MONITOR_DEC(MONITOR_OS_PENDING_WRITES); os_mutex_exit(os_file_count_mutex); return(ret); } #endif /* !UNIV_HOTBACKUP */ } #endif /*******************************************************************//** NOTE! Use the corresponding macro os_file_read(), not directly this function! Requests a synchronous positioned read operation. @return TRUE if request was successful, FALSE if fail */ UNIV_INTERN ibool os_file_read_func( /*==============*/ os_file_t file, /*!< in: handle to a file */ void* buf, /*!< in: buffer where to read */ os_offset_t offset, /*!< in: file offset where to read */ ulint n, /*!< in: number of bytes to read */ trx_t* trx, ibool compressed) /*!< in: is this file space compressed ? */ { #ifdef __WIN__ BOOL ret; DWORD len; ibool retry; OVERLAPPED overlapped; /* On 64-bit Windows, ulint is 64 bits. But offset and n should be no more than 32 bits. */ ut_a((n & 0xFFFFFFFFUL) == n); os_n_file_reads++; os_bytes_read_since_printout += n; try_again: ut_ad(buf); ut_ad(n > 0); os_mutex_enter(os_file_count_mutex); os_n_pending_reads++; MONITOR_INC(MONITOR_OS_PENDING_READS); os_mutex_exit(os_file_count_mutex); memset (&overlapped, 0, sizeof (overlapped)); overlapped.Offset = (DWORD)(offset & 0xFFFFFFFF); overlapped.OffsetHigh = (DWORD)(offset >> 32); overlapped.hEvent = win_get_syncio_event(); ret = ReadFile(file, buf, n, NULL, &overlapped); if (ret) { ret = GetOverlappedResult(file, &overlapped, (DWORD *)&len, FALSE); } else if(GetLastError() == ERROR_IO_PENDING) { ret = GetOverlappedResult(file, &overlapped, (DWORD *)&len, TRUE); } os_mutex_enter(os_file_count_mutex); os_n_pending_reads--; MONITOR_DEC(MONITOR_OS_PENDING_READS); os_mutex_exit(os_file_count_mutex); if (ret && len == n) { return(TRUE); } #else /* __WIN__ */ ibool retry; ssize_t ret; os_bytes_read_since_printout += n; try_again: ret = os_file_pread(file, buf, n, offset, trx); if ((ulint) ret == n) { return(TRUE); } ib_logf(IB_LOG_LEVEL_ERROR, "Tried to read " ULINTPF " bytes at offset " UINT64PF ". " "Was only able to read %ld.", n, offset, (lint) ret); #endif /* __WIN__ */ retry = os_file_handle_error(NULL, "read", __FILE__, __LINE__); if (retry) { goto try_again; } fprintf(stderr, "InnoDB: Fatal error: cannot read from file." " OS error number %lu.\n", #ifdef __WIN__ (ulong) GetLastError() #else (ulong) errno #endif /* __WIN__ */ ); fflush(stderr); ut_error; return(FALSE); } /*******************************************************************//** NOTE! Use the corresponding macro os_file_read_no_error_handling(), not directly this function! Requests a synchronous positioned read operation. This function does not do any error handling. In case of error it returns FALSE. @return TRUE if request was successful, FALSE if fail */ UNIV_INTERN ibool os_file_read_no_error_handling_func( /*================================*/ os_file_t file, /*!< in: handle to a file */ void* buf, /*!< in: buffer where to read */ os_offset_t offset, /*!< in: file offset where to read */ ulint n, /*!< in: number of bytes to read */ ibool compressed) /*!< in: is this file space compressed ? */ { #ifdef __WIN__ BOOL ret; DWORD len; ibool retry; OVERLAPPED overlapped; overlapped.Offset = (DWORD)(offset & 0xFFFFFFFF); overlapped.OffsetHigh = (DWORD)(offset >> 32); /* On 64-bit Windows, ulint is 64 bits. But offset and n should be no more than 32 bits. */ ut_a((n & 0xFFFFFFFFUL) == n); os_n_file_reads++; os_bytes_read_since_printout += n; try_again: ut_ad(buf); ut_ad(n > 0); os_mutex_enter(os_file_count_mutex); os_n_pending_reads++; MONITOR_INC(MONITOR_OS_PENDING_READS); os_mutex_exit(os_file_count_mutex); memset (&overlapped, 0, sizeof (overlapped)); overlapped.Offset = (DWORD)(offset & 0xFFFFFFFF); overlapped.OffsetHigh = (DWORD)(offset >> 32); overlapped.hEvent = win_get_syncio_event(); ret = ReadFile(file, buf, n, NULL, &overlapped); if (ret) { ret = GetOverlappedResult(file, &overlapped, (DWORD *)&len, FALSE); } else if(GetLastError() == ERROR_IO_PENDING) { ret = GetOverlappedResult(file, &overlapped, (DWORD *)&len, TRUE); } os_mutex_enter(os_file_count_mutex); os_n_pending_reads--; MONITOR_DEC(MONITOR_OS_PENDING_READS); os_mutex_exit(os_file_count_mutex); if (ret && len == n) { return(TRUE); } #else /* __WIN__ */ ibool retry; ssize_t ret; os_bytes_read_since_printout += n; try_again: ret = os_file_pread(file, buf, n, offset, NULL); if ((ulint) ret == n) { return(TRUE); } #endif /* __WIN__ */ retry = os_file_handle_error_no_exit(NULL, "read", FALSE, __FILE__, __LINE__); if (retry) { goto try_again; } return(FALSE); } /*******************************************************************//** Rewind file to its start, read at most size - 1 bytes from it to str, and NUL-terminate str. All errors are silently ignored. This function is mostly meant to be used with temporary files. */ UNIV_INTERN void os_file_read_string( /*================*/ FILE* file, /*!< in: file to read from */ char* str, /*!< in: buffer where to read */ ulint size) /*!< in: size of buffer */ { size_t flen; if (size == 0) { return; } rewind(file); flen = fread(str, 1, size - 1, file); str[flen] = '\0'; } /*******************************************************************//** NOTE! Use the corresponding macro os_file_write(), not directly this function! Requests a synchronous write operation. @return TRUE if request was successful, FALSE if fail */ UNIV_INTERN ibool os_file_write_func( /*===============*/ const char* name, /*!< in: name of the file or path as a null-terminated string */ os_file_t file, /*!< in: handle to a file */ const void* buf, /*!< in: buffer from which to write */ os_offset_t offset, /*!< in: file offset where to write */ ulint n) /*!< in: number of bytes to write */ { ut_ad(!srv_read_only_mode); #ifdef __WIN__ BOOL ret; DWORD len; ulint n_retries = 0; ulint err; OVERLAPPED overlapped; DWORD saved_error = 0; /* On 64-bit Windows, ulint is 64 bits. But offset and n should be no more than 32 bits. */ ut_a((n & 0xFFFFFFFFUL) == n); os_n_file_writes++; ut_ad(buf); ut_ad(n > 0); retry: os_mutex_enter(os_file_count_mutex); os_n_pending_writes++; MONITOR_INC(MONITOR_OS_PENDING_WRITES); os_mutex_exit(os_file_count_mutex); memset (&overlapped, 0, sizeof (overlapped)); overlapped.Offset = (DWORD)(offset & 0xFFFFFFFF); overlapped.OffsetHigh = (DWORD)(offset >> 32); overlapped.hEvent = win_get_syncio_event(); ret = WriteFile(file, buf, n, NULL, &overlapped); if (ret) { ret = GetOverlappedResult(file, &overlapped, (DWORD *)&len, FALSE); } else if ( GetLastError() == ERROR_IO_PENDING) { ret = GetOverlappedResult(file, &overlapped, (DWORD *)&len, TRUE); } os_mutex_enter(os_file_count_mutex); os_n_pending_writes--; MONITOR_DEC(MONITOR_OS_PENDING_WRITES); os_mutex_exit(os_file_count_mutex); if (ret && len == n) { return(TRUE); } /* If some background file system backup tool is running, then, at least in Windows 2000, we may get here a specific error. Let us retry the operation 100 times, with 1 second waits. */ if (GetLastError() == ERROR_LOCK_VIOLATION && n_retries < 100) { os_thread_sleep(1000000); n_retries++; goto retry; } if (!os_has_said_disk_full) { char *winmsg = NULL; saved_error = GetLastError(); err = (ulint) saved_error; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: Write to file %s failed" " at offset %llu.\n" "InnoDB: %lu bytes should have been written," " only %lu were written.\n" "InnoDB: Operating system error number %lu.\n" "InnoDB: Check that your OS and file system" " support files of this size.\n" "InnoDB: Check also that the disk is not full" " or a disk quota exceeded.\n", name, offset, (ulong) n, (ulong) len, (ulong) err); /* Ask Windows to prepare a standard message for a GetLastError() */ FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, saved_error, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&winmsg, 0, NULL); if (winmsg) { fprintf(stderr, "InnoDB: FormatMessage: Error number %lu means '%s'.\n", (ulong) saved_error, winmsg); LocalFree(winmsg); } if (strerror((int) err) != NULL) { fprintf(stderr, "InnoDB: Error number %lu means '%s'.\n", (ulong) err, strerror((int) err)); } fprintf(stderr, "InnoDB: Some operating system error numbers" " are described at\n" "InnoDB: " REFMAN "operating-system-error-codes.html\n"); os_has_said_disk_full = TRUE; } return(FALSE); #else ssize_t ret; WAIT_ALLOW_WRITES(); ret = os_file_pwrite(file, buf, n, offset); if ((ulint) ret == n) { return(TRUE); } if (!os_has_said_disk_full) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: Write to file %s failed" " at offset " UINT64PF ".\n" "InnoDB: %lu bytes should have been written," " only %ld were written.\n" "InnoDB: Operating system error number %lu.\n" "InnoDB: Check that your OS and file system" " support files of this size.\n" "InnoDB: Check also that the disk is not full" " or a disk quota exceeded.\n", name, offset, n, (lint) ret, (ulint) errno); if (strerror(errno) != NULL) { fprintf(stderr, "InnoDB: Error number %d means '%s'.\n", errno, strerror(errno)); } fprintf(stderr, "InnoDB: Some operating system error numbers" " are described at\n" "InnoDB: " REFMAN "operating-system-error-codes.html\n"); os_has_said_disk_full = TRUE; } return(FALSE); #endif } /*******************************************************************//** Check the existence and type of the given file. @return TRUE if call succeeded */ UNIV_INTERN ibool os_file_status( /*===========*/ const char* path, /*!< in: pathname of the file */ ibool* exists, /*!< out: TRUE if file exists */ os_file_type_t* type) /*!< out: type of the file (if it exists) */ { #ifdef __WIN__ int ret; struct _stat64 statinfo; ret = _stat64(path, &statinfo); if (ret && (errno == ENOENT || errno == ENOTDIR || errno == ENAMETOOLONG)) { /* file does not exist */ *exists = FALSE; return(TRUE); } else if (ret) { /* file exists, but stat call failed */ os_file_handle_error_no_exit(path, "stat", FALSE, __FILE__, __LINE__); return(FALSE); } if (_S_IFDIR & statinfo.st_mode) { *type = OS_FILE_TYPE_DIR; } else if (_S_IFREG & statinfo.st_mode) { *type = OS_FILE_TYPE_FILE; } else { *type = OS_FILE_TYPE_UNKNOWN; } *exists = TRUE; return(TRUE); #else int ret; struct stat statinfo; ret = stat(path, &statinfo); if (ret && (errno == ENOENT || errno == ENOTDIR || errno == ENAMETOOLONG)) { /* file does not exist */ *exists = FALSE; return(TRUE); } else if (ret) { /* file exists, but stat call failed */ os_file_handle_error_no_exit(path, "stat", FALSE, __FILE__, __LINE__); return(FALSE); } if (S_ISDIR(statinfo.st_mode)) { *type = OS_FILE_TYPE_DIR; } else if (S_ISLNK(statinfo.st_mode)) { *type = OS_FILE_TYPE_LINK; } else if (S_ISREG(statinfo.st_mode)) { *type = OS_FILE_TYPE_FILE; } else { *type = OS_FILE_TYPE_UNKNOWN; } *exists = TRUE; return(TRUE); #endif } /*******************************************************************//** This function returns information about the specified file @return DB_SUCCESS if all OK */ UNIV_INTERN dberr_t os_file_get_status( /*===============*/ const char* path, /*!< in: pathname of the file */ os_file_stat_t* stat_info, /*!< information of a file in a directory */ bool check_rw_perm) /*!< in: for testing whether the file can be opened in RW mode */ { int ret; #ifdef __WIN__ struct _stat64 statinfo; ret = _stat64(path, &statinfo); if (ret && (errno == ENOENT || errno == ENOTDIR)) { /* file does not exist */ return(DB_NOT_FOUND); } else if (ret) { /* file exists, but stat call failed */ os_file_handle_error_no_exit(path, "stat", FALSE, __FILE__, __LINE__); return(DB_FAIL); } else if (_S_IFDIR & statinfo.st_mode) { stat_info->type = OS_FILE_TYPE_DIR; } else if (_S_IFREG & statinfo.st_mode) { DWORD access = GENERIC_READ; if (!srv_read_only_mode) { access |= GENERIC_WRITE; } stat_info->type = OS_FILE_TYPE_FILE; /* Check if we can open it in read-only mode. */ if (check_rw_perm) { HANDLE fh; fh = CreateFile( (LPCTSTR) path, // File to open access, 0, // No sharing NULL, // Default security OPEN_EXISTING, // Existing file only FILE_ATTRIBUTE_NORMAL, // Normal file NULL); // No attr. template if (fh == INVALID_HANDLE_VALUE) { stat_info->rw_perm = false; } else { stat_info->rw_perm = true; CloseHandle(fh); } } } else { stat_info->type = OS_FILE_TYPE_UNKNOWN; } #else struct stat statinfo; ret = stat(path, &statinfo); if (ret && (errno == ENOENT || errno == ENOTDIR)) { /* file does not exist */ return(DB_NOT_FOUND); } else if (ret) { /* file exists, but stat call failed */ os_file_handle_error_no_exit(path, "stat", FALSE, __FILE__, __LINE__); return(DB_FAIL); } switch (statinfo.st_mode & S_IFMT) { case S_IFDIR: stat_info->type = OS_FILE_TYPE_DIR; break; case S_IFLNK: stat_info->type = OS_FILE_TYPE_LINK; break; case S_IFBLK: stat_info->type = OS_FILE_TYPE_BLOCK; break; case S_IFREG: stat_info->type = OS_FILE_TYPE_FILE; break; default: stat_info->type = OS_FILE_TYPE_UNKNOWN; } if (check_rw_perm && (stat_info->type == OS_FILE_TYPE_FILE || stat_info->type == OS_FILE_TYPE_BLOCK)) { int fh; int access; access = !srv_read_only_mode ? O_RDWR : O_RDONLY; fh = ::open(path, access, os_innodb_umask); if (fh == -1) { stat_info->rw_perm = false; } else { stat_info->rw_perm = true; close(fh); } } #endif /* _WIN_ */ stat_info->ctime = statinfo.st_ctime; stat_info->atime = statinfo.st_atime; stat_info->mtime = statinfo.st_mtime; stat_info->size = statinfo.st_size; return(DB_SUCCESS); } /* path name separator character */ #ifdef __WIN__ # define OS_FILE_PATH_SEPARATOR '\\' #else # define OS_FILE_PATH_SEPARATOR '/' #endif /****************************************************************//** This function returns a new path name after replacing the basename in an old path with a new basename. The old_path is a full path name including the extension. The tablename is in the normal form "databasename/tablename". The new base name is found after the forward slash. Both input strings are null terminated. This function allocates memory to be returned. It is the callers responsibility to free the return value after it is no longer needed. @return own: new full pathname */ UNIV_INTERN char* os_file_make_new_pathname( /*======================*/ const char* old_path, /*!< in: pathname */ const char* tablename) /*!< in: contains new base name */ { ulint dir_len; char* last_slash; char* base_name; char* new_path; ulint new_path_len; /* Split the tablename into its database and table name components. They are separated by a '/'. */ last_slash = strrchr((char*) tablename, '/'); base_name = last_slash ? last_slash + 1 : (char*) tablename; /* Find the offset of the last slash. We will strip off the old basename.ibd which starts after that slash. */ last_slash = strrchr((char*) old_path, OS_FILE_PATH_SEPARATOR); dir_len = last_slash ? last_slash - old_path : strlen(old_path); /* allocate a new path and move the old directory path to it. */ new_path_len = dir_len + strlen(base_name) + sizeof "/.ibd"; new_path = static_cast(mem_alloc(new_path_len)); memcpy(new_path, old_path, dir_len); ut_snprintf(new_path + dir_len, new_path_len - dir_len, "%c%s.ibd", OS_FILE_PATH_SEPARATOR, base_name); return(new_path); } /****************************************************************//** This function returns a remote path name by combining a data directory path provided in a DATA DIRECTORY clause with the tablename which is in the form 'database/tablename'. It strips the file basename (which is the tablename) found after the last directory in the path provided. The full filepath created will include the database name as a directory under the path provided. The filename is the tablename with the '.ibd' extension. All input and output strings are null-terminated. This function allocates memory to be returned. It is the callers responsibility to free the return value after it is no longer needed. @return own: A full pathname; data_dir_path/databasename/tablename.ibd */ UNIV_INTERN char* os_file_make_remote_pathname( /*=========================*/ const char* data_dir_path, /*!< in: pathname */ const char* tablename, /*!< in: tablename */ const char* extention) /*!< in: file extention; ibd,cfg */ { ulint data_dir_len; char* last_slash; char* new_path; ulint new_path_len; ut_ad(extention && strlen(extention) == 3); /* Find the offset of the last slash. We will strip off the old basename or tablename which starts after that slash. */ last_slash = strrchr((char*) data_dir_path, OS_FILE_PATH_SEPARATOR); data_dir_len = last_slash ? last_slash - data_dir_path : strlen(data_dir_path); /* allocate a new path and move the old directory path to it. */ new_path_len = data_dir_len + strlen(tablename) + sizeof "/." + strlen(extention); new_path = static_cast(mem_alloc(new_path_len)); memcpy(new_path, data_dir_path, data_dir_len); ut_snprintf(new_path + data_dir_len, new_path_len - data_dir_len, "%c%s.%s", OS_FILE_PATH_SEPARATOR, tablename, extention); srv_normalize_path_for_win(new_path); return(new_path); } /****************************************************************//** This function reduces a null-terminated full remote path name into the path that is sent by MySQL for DATA DIRECTORY clause. It replaces the 'databasename/tablename.ibd' found at the end of the path with just 'tablename'. Since the result is always smaller than the path sent in, no new memory is allocated. The caller should allocate memory for the path sent in. This function manipulates that path in place. If the path format is not as expected, just return. The result is used to inform a SHOW CREATE TABLE command. */ UNIV_INTERN void os_file_make_data_dir_path( /*========================*/ char* data_dir_path) /*!< in/out: full path/data_dir_path */ { char* ptr; char* tablename; ulint tablename_len; /* Replace the period before the extension with a null byte. */ ptr = strrchr((char*) data_dir_path, '.'); if (!ptr) { return; } ptr[0] = '\0'; /* The tablename starts after the last slash. */ ptr = strrchr((char*) data_dir_path, OS_FILE_PATH_SEPARATOR); if (!ptr) { return; } ptr[0] = '\0'; tablename = ptr + 1; /* The databasename starts after the next to last slash. */ ptr = strrchr((char*) data_dir_path, OS_FILE_PATH_SEPARATOR); if (!ptr) { return; } tablename_len = ut_strlen(tablename); ut_memmove(++ptr, tablename, tablename_len); ptr[tablename_len] = '\0'; } /****************************************************************//** The function os_file_dirname returns a directory component of a null-terminated pathname string. In the usual case, dirname returns the string up to, but not including, the final '/', and basename is the component following the final '/'. Trailing '/' characters are not counted as part of the pathname. If path does not contain a slash, dirname returns the string ".". Concatenating the string returned by dirname, a "/", and the basename yields a complete pathname. The return value is a copy of the directory component of the pathname. The copy is allocated from heap. It is the caller responsibility to free it after it is no longer needed. The following list of examples (taken from SUSv2) shows the strings returned by dirname and basename for different paths: path dirname basename "/usr/lib" "/usr" "lib" "/usr/" "/" "usr" "usr" "." "usr" "/" "/" "/" "." "." "." ".." "." ".." @return own: directory component of the pathname */ UNIV_INTERN char* os_file_dirname( /*============*/ const char* path) /*!< in: pathname */ { /* Find the offset of the last slash */ const char* last_slash = strrchr(path, OS_FILE_PATH_SEPARATOR); if (!last_slash) { /* No slash in the path, return "." */ return(mem_strdup(".")); } /* Ok, there is a slash */ if (last_slash == path) { /* last slash is the first char of the path */ return(mem_strdup("/")); } /* Non-trivial directory component */ return(mem_strdupl(path, last_slash - path)); } /****************************************************************//** Creates all missing subdirectories along the given path. @return TRUE if call succeeded FALSE otherwise */ UNIV_INTERN ibool os_file_create_subdirs_if_needed( /*=============================*/ const char* path) /*!< in: path name */ { if (srv_read_only_mode) { ib_logf(IB_LOG_LEVEL_ERROR, "read only mode set. Can't create subdirectories '%s'", path); return(FALSE); } char* subdir = os_file_dirname(path); if (strlen(subdir) == 1 && (*subdir == OS_FILE_PATH_SEPARATOR || *subdir == '.')) { /* subdir is root or cwd, nothing to do */ mem_free(subdir); return(TRUE); } /* Test if subdir exists */ os_file_type_t type; ibool subdir_exists; ibool success = os_file_status(subdir, &subdir_exists, &type); if (success && !subdir_exists) { /* subdir does not exist, create it */ success = os_file_create_subdirs_if_needed(subdir); if (!success) { mem_free(subdir); return(FALSE); } success = os_file_create_directory(subdir, FALSE); } mem_free(subdir); return(success); } #ifndef UNIV_HOTBACKUP /****************************************************************//** Returns a pointer to the nth slot in the aio array. @return pointer to slot */ static os_aio_slot_t* os_aio_array_get_nth_slot( /*======================*/ os_aio_array_t* array, /*!< in: aio array */ ulint index) /*!< in: index of the slot */ { ut_a(index < array->n_slots); return(&array->slots[index]); } #if defined(LINUX_NATIVE_AIO) /******************************************************************//** Creates an io_context for native linux AIO. @return TRUE on success. */ static ibool os_aio_linux_create_io_ctx( /*=======================*/ ulint max_events, /*!< in: number of events. */ io_context_t* io_ctx) /*!< out: io_ctx to initialize. */ { int ret; ulint retries = 0; retry: memset(io_ctx, 0x0, sizeof(*io_ctx)); /* Initialize the io_ctx. Tell it how many pending IO requests this context will handle. */ ret = io_setup(max_events, io_ctx); if (ret == 0) { #if defined(UNIV_AIO_DEBUG) fprintf(stderr, "InnoDB: Linux native AIO:" " initialized io_ctx for segment\n"); #endif /* Success. Return now. */ return(TRUE); } /* If we hit EAGAIN we'll make a few attempts before failing. */ switch (ret) { case -EAGAIN: if (retries == 0) { /* First time around. */ ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Warning: io_setup() failed" " with EAGAIN. Will make %d attempts" " before giving up.\n", OS_AIO_IO_SETUP_RETRY_ATTEMPTS); } if (retries < OS_AIO_IO_SETUP_RETRY_ATTEMPTS) { ++retries; fprintf(stderr, "InnoDB: Warning: io_setup() attempt" " %lu failed.\n", retries); os_thread_sleep(OS_AIO_IO_SETUP_RETRY_SLEEP); goto retry; } /* Have tried enough. Better call it a day. */ ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: io_setup() failed" " with EAGAIN after %d attempts.\n", OS_AIO_IO_SETUP_RETRY_ATTEMPTS); break; case -ENOSYS: ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: Linux Native AIO interface" " is not supported on this platform. Please" " check your OS documentation and install" " appropriate binary of InnoDB.\n"); break; default: ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: Linux Native AIO setup" " returned following error[%d]\n", -ret); break; } fprintf(stderr, "InnoDB: You can disable Linux Native AIO by" " setting innodb_use_native_aio = 0 in my.cnf\n"); return(FALSE); } /******************************************************************//** Checks if the system supports native linux aio. On some kernel versions where native aio is supported it won't work on tmpfs. In such cases we can't use native aio as it is not possible to mix simulated and native aio. @return: TRUE if supported, FALSE otherwise. */ static ibool os_aio_native_aio_supported(void) /*=============================*/ { int fd; io_context_t io_ctx; char name[1000]; if (!os_aio_linux_create_io_ctx(1, &io_ctx)) { /* The platform does not support native aio. */ return(FALSE); } else if (!srv_read_only_mode) { /* Now check if tmpdir supports native aio ops. */ fd = innobase_mysql_tmpfile(); if (fd < 0) { ib_logf(IB_LOG_LEVEL_WARN, "Unable to create temp file to check " "native AIO support."); return(FALSE); } } else { srv_normalize_path_for_win(srv_log_group_home_dir); ulint dirnamelen = strlen(srv_log_group_home_dir); ut_a(dirnamelen < (sizeof name) - 10 - sizeof "ib_logfile"); memcpy(name, srv_log_group_home_dir, dirnamelen); /* Add a path separator if needed. */ if (dirnamelen && name[dirnamelen - 1] != SRV_PATH_SEPARATOR) { name[dirnamelen++] = SRV_PATH_SEPARATOR; } strcpy(name + dirnamelen, "ib_logfile0"); fd = ::open(name, O_RDONLY); if (fd == -1) { ib_logf(IB_LOG_LEVEL_WARN, "Unable to open \"%s\" to check " "native AIO read support.", name); return(FALSE); } } struct io_event io_event; memset(&io_event, 0x0, sizeof(io_event)); byte* buf = static_cast(ut_malloc(UNIV_PAGE_SIZE * 2)); byte* ptr = static_cast(ut_align(buf, UNIV_PAGE_SIZE)); struct iocb iocb; /* Suppress valgrind warning. */ memset(buf, 0x00, UNIV_PAGE_SIZE * 2); memset(&iocb, 0x0, sizeof(iocb)); struct iocb* p_iocb = &iocb; if (!srv_read_only_mode) { io_prep_pwrite(p_iocb, fd, ptr, UNIV_PAGE_SIZE, 0); } else { ut_a(UNIV_PAGE_SIZE >= 512); io_prep_pread(p_iocb, fd, ptr, 512, 0); } int err = io_submit(io_ctx, 1, &p_iocb); if (err >= 1) { /* Now collect the submitted IO request. */ err = io_getevents(io_ctx, 1, 1, &io_event, NULL); } ut_free(buf); close(fd); switch (err) { case 1: return(TRUE); case -EINVAL: case -ENOSYS: ib_logf(IB_LOG_LEVEL_ERROR, "Linux Native AIO not supported. You can either " "move %s to a file system that supports native " "AIO or you can set innodb_use_native_aio to " "FALSE to avoid this message.", srv_read_only_mode ? name : "tmpdir"); /* fall through. */ default: ib_logf(IB_LOG_LEVEL_ERROR, "Linux Native AIO check on %s returned error[%d]", srv_read_only_mode ? name : "tmpdir", -err); } return(FALSE); } #endif /* LINUX_NATIVE_AIO */ /******************************************************************//** Creates an aio wait array. Note that we return NULL in case of failure. We don't care about freeing memory here because we assume that a failure will result in server refusing to start up. @return own: aio array, NULL on failure */ static os_aio_array_t* os_aio_array_create( /*================*/ ulint n, /*!< in: maximum number of pending aio operations allowed; n must be divisible by n_segments */ ulint n_segments) /*!< in: number of segments in the aio array */ { os_aio_array_t* array; #ifdef LINUX_NATIVE_AIO struct io_event* io_event = NULL; #endif ut_a(n > 0); ut_a(n_segments > 0); array = static_cast(ut_malloc(sizeof(*array))); memset(array, 0x0, sizeof(*array)); array->mutex = os_mutex_create(); array->not_full = os_event_create(); array->is_empty = os_event_create(); os_event_set(array->is_empty); array->n_slots = n; array->n_segments = n_segments; array->slots = static_cast( ut_malloc(n * sizeof(*array->slots))); memset(array->slots, 0x0, n * sizeof(*array->slots)); #if defined(LINUX_NATIVE_AIO) array->aio_ctx = NULL; array->aio_events = NULL; /* If we are not using native aio interface then skip this part of initialization. */ if (!srv_use_native_aio) { goto skip_native_aio; } /* Initialize the io_context array. One io_context per segment in the array. */ array->aio_ctx = static_cast( ut_malloc(n_segments * sizeof(*array->aio_ctx))); for (ulint i = 0; i < n_segments; ++i) { if (!os_aio_linux_create_io_ctx(n/n_segments, &array->aio_ctx[i])) { /* If something bad happened during aio setup we disable linux native aio. The disadvantage will be a small memory leak at shutdown but that's ok compared to a crash or a not working server. This frequently happens when running the test suite with many threads on a system with low fs.aio-max-nr! */ fprintf(stderr, " InnoDB: Warning: Linux Native AIO disabled " "because os_aio_linux_create_io_ctx() " "failed. To get rid of this warning you can " "try increasing system " "fs.aio-max-nr to 1048576 or larger or " "setting innodb_use_native_aio = 0 in my.cnf\n"); srv_use_native_aio = FALSE; goto skip_native_aio; } } /* Initialize the event array. One event per slot. */ io_event = static_cast( ut_malloc(n * sizeof(*io_event))); memset(io_event, 0x0, sizeof(*io_event) * n); array->aio_events = io_event; skip_native_aio: #endif /* LINUX_NATIVE_AIO */ for (ulint i = 0; i < n; i++) { os_aio_slot_t* slot; slot = os_aio_array_get_nth_slot(array, i); slot->pos = i; slot->reserved = FALSE; #ifdef LINUX_NATIVE_AIO memset(&slot->control, 0x0, sizeof(slot->control)); slot->n_bytes = 0; slot->ret = 0; #endif /* WIN_ASYNC_IO */ } return(array); } /************************************************************************//** Frees an aio wait array. */ static void os_aio_array_free( /*==============*/ os_aio_array_t*& array) /*!< in, own: array to free */ { ulint i; os_mutex_free(array->mutex); os_event_free(array->not_full); os_event_free(array->is_empty); #if defined(LINUX_NATIVE_AIO) if (srv_use_native_aio) { ut_free(array->aio_events); ut_free(array->aio_ctx); } #endif /* LINUX_NATIVE_AIO */ for (i = 0; i < array->n_slots; i++) { os_aio_slot_t* slot = os_aio_array_get_nth_slot(array, i); if (slot->page_compression_page) { ut_free(slot->page_compression_page); slot->page_compression_page = NULL; } if (slot->lzo_mem) { ut_free(slot->lzo_mem); slot->lzo_mem = NULL; } if (slot->page_encryption_page) { ut_free(slot->page_encryption_page); slot->page_encryption_page = NULL; } if (slot->tmp_encryption_buf) { ut_free(slot->tmp_encryption_buf); slot->tmp_encryption_buf = NULL; } } ut_free(array->slots); ut_free(array); array = 0; } /*********************************************************************** Initializes the asynchronous io system. Creates one array each for ibuf and log i/o. Also creates one array each for read and write where each array is divided logically into n_read_segs and n_write_segs respectively. The caller must create an i/o handler thread for each segment in these arrays. This function also creates the sync array. No i/o handler thread needs to be created for that */ UNIV_INTERN ibool os_aio_init( /*========*/ ulint n_per_seg, /*= 4); } else { ut_ad(n_segments > 0); } os_aio_sync_array = os_aio_array_create(n_slots_sync, 1); if (os_aio_sync_array == NULL) { return(FALSE); } os_aio_n_segments = n_segments; os_aio_validate(); os_aio_segment_wait_events = static_cast( ut_malloc(n_segments * sizeof *os_aio_segment_wait_events)); for (ulint i = 0; i < n_segments; ++i) { os_aio_segment_wait_events[i] = os_event_create(); } os_last_printout = ut_time(); #ifdef _WIN32 ut_a(completion_port == 0 && read_completion_port == 0); completion_port = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 0); read_completion_port = CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, 0, 0); ut_a(completion_port && read_completion_port); #endif return(TRUE); } /*********************************************************************** Frees the asynchronous io system. */ UNIV_INTERN void os_aio_free(void) /*=============*/ { if (os_aio_ibuf_array != 0) { os_aio_array_free(os_aio_ibuf_array); } if (os_aio_log_array != 0) { os_aio_array_free(os_aio_log_array); } if (os_aio_write_array != 0) { os_aio_array_free(os_aio_write_array); } if (os_aio_sync_array != 0) { os_aio_array_free(os_aio_sync_array); } os_aio_array_free(os_aio_read_array); for (ulint i = 0; i < os_aio_n_segments; i++) { os_event_free(os_aio_segment_wait_events[i]); } ut_free(os_aio_segment_wait_events); os_aio_segment_wait_events = 0; os_aio_n_segments = 0; #ifdef _WIN32 completion_port = 0; read_completion_port = 0; #endif } #ifdef WIN_ASYNC_IO /************************************************************************//** Wakes up all async i/o threads in the array in Windows async i/o at shutdown. */ static void os_aio_array_wake_win_aio_at_shutdown( /*==================================*/ os_aio_array_t* array) /*!< in: aio array */ { if(completion_port) { PostQueuedCompletionStatus(completion_port, 0, IOCP_SHUTDOWN_KEY, NULL); PostQueuedCompletionStatus(read_completion_port, 0, IOCP_SHUTDOWN_KEY, NULL); } } #endif /************************************************************************//** Wakes up all async i/o threads so that they know to exit themselves in shutdown. */ UNIV_INTERN void os_aio_wake_all_threads_at_shutdown(void) /*=====================================*/ { #ifdef WIN_ASYNC_IO /* This code wakes up all ai/o threads in Windows native aio */ os_aio_array_wake_win_aio_at_shutdown(os_aio_read_array); if (os_aio_write_array != 0) { os_aio_array_wake_win_aio_at_shutdown(os_aio_write_array); } if (os_aio_ibuf_array != 0) { os_aio_array_wake_win_aio_at_shutdown(os_aio_ibuf_array); } if (os_aio_log_array != 0) { os_aio_array_wake_win_aio_at_shutdown(os_aio_log_array); } #elif defined(LINUX_NATIVE_AIO) /* When using native AIO interface the io helper threads wait on io_getevents with a timeout value of 500ms. At each wake up these threads check the server status. No need to do anything to wake them up. */ if (srv_use_native_aio) { return; } /* Fall through to simulated AIO handler wakeup if we are not using native AIO. */ #endif /* !WIN_ASYNC_AIO */ /* This loop wakes up all simulated ai/o threads */ for (ulint i = 0; i < os_aio_n_segments; i++) { os_event_set(os_aio_segment_wait_events[i]); } } /************************************************************************//** Waits until there are no pending writes in os_aio_write_array. There can be other, synchronous, pending writes. */ UNIV_INTERN void os_aio_wait_until_no_pending_writes(void) /*=====================================*/ { ut_ad(!srv_read_only_mode); os_event_wait(os_aio_write_array->is_empty); } /**********************************************************************//** Calculates segment number for a slot. @return segment number (which is the number used by, for example, i/o-handler threads) */ static ulint os_aio_get_segment_no_from_slot( /*============================*/ os_aio_array_t* array, /*!< in: aio wait array */ os_aio_slot_t* slot) /*!< in: slot in this array */ { ulint segment; ulint seg_len; if (array == os_aio_ibuf_array) { ut_ad(!srv_read_only_mode); segment = IO_IBUF_SEGMENT; } else if (array == os_aio_log_array) { ut_ad(!srv_read_only_mode); segment = IO_LOG_SEGMENT; } else if (array == os_aio_read_array) { seg_len = os_aio_read_array->n_slots / os_aio_read_array->n_segments; segment = (srv_read_only_mode ? 0 : 2) + slot->pos / seg_len; } else { ut_ad(!srv_read_only_mode); ut_a(array == os_aio_write_array); seg_len = os_aio_write_array->n_slots / os_aio_write_array->n_segments; segment = os_aio_read_array->n_segments + 2 + slot->pos / seg_len; } return(segment); } /**********************************************************************//** Calculates local segment number and aio array from global segment number. @return local segment number within the aio array */ static ulint os_aio_get_array_and_local_segment( /*===============================*/ os_aio_array_t** array, /*!< out: aio wait array */ ulint global_segment)/*!< in: global segment number */ { ulint segment; ut_a(global_segment < os_aio_n_segments); if (srv_read_only_mode) { *array = os_aio_read_array; return(global_segment); } else if (global_segment == IO_IBUF_SEGMENT) { *array = os_aio_ibuf_array; segment = 0; } else if (global_segment == IO_LOG_SEGMENT) { *array = os_aio_log_array; segment = 0; } else if (global_segment < os_aio_read_array->n_segments + 2) { *array = os_aio_read_array; segment = global_segment - 2; } else { *array = os_aio_write_array; segment = global_segment - (os_aio_read_array->n_segments + 2); } return(segment); } /*******************************************************************//** Requests for a slot in the aio array. If no slot is available, waits until not_full-event becomes signaled. @return pointer to slot */ static os_aio_slot_t* os_aio_array_reserve_slot( /*======================*/ ulint type, /*!< in: OS_FILE_READ or OS_FILE_WRITE */ os_aio_array_t* array, /*!< in: aio array */ fil_node_t* message1,/*!< in: message to be passed along with the aio operation */ void* message2,/*!< in: message to be passed along with the aio operation */ os_file_t file, /*!< in: file handle */ const char* name, /*!< in: name of the file or path as a null-terminated string */ void* buf, /*!< in: buffer where to read or from which to write */ os_offset_t offset, /*!< in: file offset */ ulint len, /*!< in: length of the block to read or write */ ulint space_id, ibool page_compression, /*!< in: is page compression used on this file space */ ulint page_compression_level, /*!< page compression level to be used */ ibool page_encryption, /*!< in: is page encryption used on this file space */ ulint page_encryption_key, /*!< page encryption key to be used */ ulint* write_size,/*!< in/out: Actual write size initialized after first successfull trim operation for this page and if initialized we do not trim again if actual page size does not decrease. */ lsn_t lsn, /*!< in: lsn of the newest modification */ bool encrypt_later) /*!< in: should we encrypt the page */ { os_aio_slot_t* slot = NULL; #ifdef WIN_ASYNC_IO OVERLAPPED* control; #elif defined(LINUX_NATIVE_AIO) struct iocb* iocb; off_t aio_offset; #endif /* WIN_ASYNC_IO */ ulint i; ulint counter; ulint slots_per_seg; ulint local_seg; #ifdef WIN_ASYNC_IO ut_a((len & 0xFFFFFFFFUL) == len); #endif /* WIN_ASYNC_IO */ /* No need of a mutex. Only reading constant fields */ slots_per_seg = array->n_slots / array->n_segments; /* We attempt to keep adjacent blocks in the same local segment. This can help in merging IO requests when we are doing simulated AIO */ local_seg = (offset >> (UNIV_PAGE_SIZE_SHIFT + 6)) % array->n_segments; loop: os_mutex_enter(array->mutex); if (array->n_reserved == array->n_slots) { os_mutex_exit(array->mutex); if (!srv_use_native_aio) { /* If the handler threads are suspended, wake them so that we get more slots */ os_aio_simulated_wake_handler_threads(); } os_event_wait(array->not_full); goto loop; } /* We start our search for an available slot from our preferred local segment and do a full scan of the array. We are guaranteed to find a slot in full scan. */ for (i = local_seg * slots_per_seg, counter = 0; counter < array->n_slots; i++, counter++) { i %= array->n_slots; slot = os_aio_array_get_nth_slot(array, i); if (slot->reserved == FALSE) { goto found; } } /* We MUST always be able to get hold of a reserved slot. */ ut_error; found: ut_a(slot->reserved == FALSE); array->n_reserved++; if (array->n_reserved == 1) { os_event_reset(array->is_empty); } if (array->n_reserved == array->n_slots) { os_event_reset(array->not_full); } slot->reserved = TRUE; slot->reservation_time = ut_time(); slot->message1 = message1; slot->message2 = message2; slot->file = file; slot->name = name; slot->len = len; slot->type = type; slot->buf = static_cast(buf); slot->offset = offset; slot->lsn = lsn; slot->io_already_done = FALSE; slot->space_id = space_id; slot->page_compression_success = FALSE; slot->page_encryption_success = FALSE; slot->write_size = write_size; slot->page_compression_level = page_compression_level; slot->page_compression = page_compression; slot->page_encryption_key = page_encryption_key; slot->page_encryption = page_encryption; slot->encrypt_later = encrypt_later; if (message1) { slot->file_block_size = fil_node_get_block_size(message1); } /* If the space is page compressed and this is write operation then we encrypt the page */ if (message1 && type == OS_FILE_WRITE && page_compression) { ulint real_len = len; byte* tmp = NULL; /* Release the array mutex while encrypting */ os_mutex_exit(array->mutex); // We allocate memory for page compressed buffer if and only // if it is not yet allocated. os_slot_alloc_page_buf(slot); #ifdef HAVE_LZO if (innodb_compression_algorithm == 3) { os_slot_alloc_lzo_mem(slot); } #endif /* Call page compression */ tmp = fil_compress_page( fil_node_get_space_id(slot->message1), (byte *)buf, slot->page_buf, len, page_compression_level, fil_node_get_block_size(slot->message1), &real_len, slot->lzo_mem ); /* If compression succeeded, set up the length and buffer */ if (tmp != buf) { len = real_len; buf = slot->page_buf; slot->len = real_len; slot->page_compression_success = TRUE; } else { slot->page_compression_success = FALSE; } /* Take array mutex back, not sure if this is really needed below */ os_mutex_enter(array->mutex); } /* If the space is page encryption and this is write operation then we encrypt the page */ if (message1 && type == OS_FILE_WRITE && (page_encryption || encrypt_later)) { /* Release the array mutex while encrypting */ os_mutex_exit(array->mutex); // We allocate memory for page encrypted buffer if and only // if it is not yet allocated. os_slot_alloc_page_buf2(slot); fil_space_encrypt( fil_node_get_space_id(slot->message1), slot->offset, slot->lsn, (byte *)buf, slot->len, slot->page_buf2, slot->page_encryption_key); slot->page_encryption_success = TRUE; buf = slot->page_buf2; /* Take array mutex back */ os_mutex_enter(array->mutex); } slot->buf = (byte *)buf; #ifdef WIN_ASYNC_IO control = &slot->control; control->Offset = (DWORD) offset & 0xFFFFFFFF; control->OffsetHigh = (DWORD) (offset >> 32); control->hEvent = 0; slot->arr = array; #elif defined(LINUX_NATIVE_AIO) /* If we are not using native AIO skip this part. */ if (!srv_use_native_aio) { goto skip_native_aio; } /* Check if we are dealing with 64 bit arch. If not then make sure that offset fits in 32 bits. */ aio_offset = (off_t) offset; ut_a(sizeof(aio_offset) >= sizeof(offset) || ((os_offset_t) aio_offset) == offset); iocb = &slot->control; if (type == OS_FILE_READ) { io_prep_pread(iocb, file, buf, len, aio_offset); } else { ut_a(type == OS_FILE_WRITE); io_prep_pwrite(iocb, file, buf, len, aio_offset); } iocb->data = (void*) slot; slot->n_bytes = 0; slot->ret = 0; skip_native_aio: #endif /* LINUX_NATIVE_AIO */ os_mutex_exit(array->mutex); return(slot); } /*******************************************************************//** Frees a slot in the aio array. */ static void os_aio_array_free_slot( /*===================*/ os_aio_array_t* array, /*!< in: aio array */ os_aio_slot_t* slot) /*!< in: pointer to slot */ { os_mutex_enter(array->mutex); ut_ad(slot->reserved); slot->reserved = FALSE; array->n_reserved--; if (array->n_reserved == array->n_slots - 1) { os_event_set(array->not_full); } if (array->n_reserved == 0) { os_event_set(array->is_empty); } #ifdef LINUX_NATIVE_AIO if (srv_use_native_aio) { memset(&slot->control, 0x0, sizeof(slot->control)); slot->n_bytes = 0; slot->ret = 0; /*fprintf(stderr, "Freed up Linux native slot.\n");*/ } else { /* These fields should not be used if we are not using native AIO. */ ut_ad(slot->n_bytes == 0); ut_ad(slot->ret == 0); } #endif os_mutex_exit(array->mutex); } /**********************************************************************//** Wakes up a simulated aio i/o-handler thread if it has something to do. */ static void os_aio_simulated_wake_handler_thread( /*=================================*/ ulint global_segment) /*!< in: the number of the segment in the aio arrays */ { os_aio_array_t* array; ulint segment; ut_ad(!srv_use_native_aio); segment = os_aio_get_array_and_local_segment(&array, global_segment); ulint n = array->n_slots / array->n_segments; segment *= n; /* Look through n slots after the segment * n'th slot */ os_mutex_enter(array->mutex); for (ulint i = 0; i < n; ++i) { const os_aio_slot_t* slot; slot = os_aio_array_get_nth_slot(array, segment + i); if (slot->reserved) { /* Found an i/o request */ os_mutex_exit(array->mutex); os_event_t event; event = os_aio_segment_wait_events[global_segment]; os_event_set(event); return; } } os_mutex_exit(array->mutex); } /**********************************************************************//** Wakes up simulated aio i/o-handler threads if they have something to do. */ UNIV_INTERN void os_aio_simulated_wake_handler_threads(void) /*=======================================*/ { if (srv_use_native_aio) { /* We do not use simulated aio: do nothing */ return; } os_aio_recommend_sleep_for_read_threads = FALSE; for (ulint i = 0; i < os_aio_n_segments; i++) { os_aio_simulated_wake_handler_thread(i); } } /**********************************************************************//** This function can be called if one wants to post a batch of reads and prefers an i/o-handler thread to handle them all at once later. You must call os_aio_simulated_wake_handler_threads later to ensure the threads are not left sleeping! */ UNIV_INTERN void os_aio_simulated_put_read_threads_to_sleep(void) /*============================================*/ { /* The idea of putting background IO threads to sleep is only for Windows when using simulated AIO. Windows XP seems to schedule background threads too eagerly to allow for coalescing during readahead requests. */ #ifdef __WIN__ os_aio_array_t* array; if (srv_use_native_aio) { /* We do not use simulated aio: do nothing */ return; } os_aio_recommend_sleep_for_read_threads = TRUE; for (ulint i = 0; i < os_aio_n_segments; i++) { os_aio_get_array_and_local_segment(&array, i); if (array == os_aio_read_array) { os_event_reset(os_aio_segment_wait_events[i]); } } #endif /* __WIN__ */ } #if defined(LINUX_NATIVE_AIO) /*******************************************************************//** Dispatch an AIO request to the kernel. @return TRUE on success. */ static ibool os_aio_linux_dispatch( /*==================*/ os_aio_array_t* array, /*!< in: io request array. */ os_aio_slot_t* slot) /*!< in: an already reserved slot. */ { int ret; ulint io_ctx_index; struct iocb* iocb; ut_ad(slot != NULL); ut_ad(array); ut_a(slot->reserved); /* Find out what we are going to work with. The iocb struct is directly in the slot. The io_context is one per segment. */ iocb = &slot->control; io_ctx_index = (slot->pos * array->n_segments) / array->n_slots; ret = io_submit(array->aio_ctx[io_ctx_index], 1, &iocb); #if defined(UNIV_AIO_DEBUG) fprintf(stderr, "io_submit[%c] ret[%d]: slot[%p] ctx[%p] seg[%lu]\n", (slot->type == OS_FILE_WRITE) ? 'w' : 'r', ret, slot, array->aio_ctx[io_ctx_index], (ulong) io_ctx_index); #endif /* io_submit returns number of successfully queued requests or -errno. */ if (UNIV_UNLIKELY(ret != 1)) { errno = -ret; return(FALSE); } return(TRUE); } #endif /* LINUX_NATIVE_AIO */ /*******************************************************************//** NOTE! Use the corresponding macro os_aio(), not directly this function! Requests an asynchronous i/o operation. @return TRUE if request was queued successfully, FALSE if fail */ UNIV_INTERN ibool os_aio_func( /*========*/ ulint type, /*!< in: OS_FILE_READ or OS_FILE_WRITE */ ulint mode, /*!< in: OS_AIO_NORMAL, ..., possibly ORed to OS_AIO_SIMULATED_WAKE_LATER: the last flag advises this function not to wake i/o-handler threads, but the caller will do the waking explicitly later, in this way the caller can post several requests in a batch; NOTE that the batch must not be so big that it exhausts the slots in aio arrays! NOTE that a simulated batch may introduce hidden chances of deadlocks, because i/os are not actually handled until all have been posted: use with great caution! */ const char* name, /*!< in: name of the file or path as a null-terminated string */ os_file_t file, /*!< in: handle to a file */ void* buf, /*!< in: buffer where to read or from which to write */ os_offset_t offset, /*!< in: file offset where to read or write */ ulint n, /*!< in: number of bytes to read or write */ fil_node_t* message1,/*!< in: message for the aio handler (can be used to identify a completed aio operation); ignored if mode is OS_AIO_SYNC */ void* message2,/*!< in: message for the aio handler (can be used to identify a completed aio operation); ignored if mode is OS_AIO_SYNC */ ulint space_id, trx_t* trx, ibool page_compression, /*!< in: is page compression used on this file space */ ulint page_compression_level, /*!< page compression level to be used */ ulint* write_size,/*!< in/out: Actual write size initialized after fist successfull trim operation for this page and if initialized we do not trim again if actual page size does not decrease. */ ibool page_encryption, /*!< in: is page encryption used on this file space */ ulint page_encryption_key, /*!< in: page encryption key to be used */ lsn_t lsn, /*!< in: lsn of the newest modification */ bool encrypt_later) /*!< in: should we encrypt before writing the page */ { os_aio_array_t* array; os_aio_slot_t* slot; #ifdef WIN_ASYNC_IO void* buffer = NULL; DWORD len = (DWORD) n; BOOL ret; #endif ulint wake_later; ut_ad(buf); ut_ad(n > 0); ut_ad(n % OS_MIN_LOG_BLOCK_SIZE == 0); ut_ad(offset % OS_MIN_LOG_BLOCK_SIZE == 0); ut_ad(os_aio_validate_skip()); #ifdef WIN_ASYNC_IO ut_ad((n & 0xFFFFFFFFUL) == n); #endif wake_later = mode & OS_AIO_SIMULATED_WAKE_LATER; mode = mode & (~OS_AIO_SIMULATED_WAKE_LATER); DBUG_EXECUTE_IF("ib_os_aio_func_io_failure_28", mode = OS_AIO_SYNC;); if (mode == OS_AIO_SYNC) { ibool ret; /* This is actually an ordinary synchronous read or write: no need to use an i/o-handler thread */ if (type == OS_FILE_READ) { ret = os_file_read_func(file, buf, offset, n, trx, page_compression); } else { ut_ad(!srv_read_only_mode); ut_a(type == OS_FILE_WRITE); ret = os_file_write(name, file, buf, offset, n); } if (type == OS_FILE_WRITE) { DBUG_EXECUTE_IF("ib_os_aio_func_io_failure_28", os_has_said_disk_full = FALSE; ret = 0; errno = 28;); } if (!ret) { fprintf(stderr, "FAIL"); } return ret; } try_again: switch (mode) { case OS_AIO_NORMAL: if (type == OS_FILE_READ) { array = os_aio_read_array; } else { ut_ad(!srv_read_only_mode); array = os_aio_write_array; } break; case OS_AIO_IBUF: ut_ad(type == OS_FILE_READ); /* Reduce probability of deadlock bugs in connection with ibuf: do not let the ibuf i/o handler sleep */ wake_later = FALSE; if (srv_read_only_mode) { array = os_aio_read_array; } else { array = os_aio_ibuf_array; } break; case OS_AIO_LOG: if (srv_read_only_mode) { array = os_aio_read_array; } else { array = os_aio_log_array; } break; case OS_AIO_SYNC: array = os_aio_sync_array; #if defined(LINUX_NATIVE_AIO) /* In Linux native AIO we don't use sync IO array. */ ut_a(!srv_use_native_aio); #endif /* LINUX_NATIVE_AIO */ break; default: ut_error; array = NULL; /* Eliminate compiler warning */ } if (trx && type == OS_FILE_READ) { trx->io_reads++; trx->io_read += n; } slot = os_aio_array_reserve_slot(type, array, message1, message2, file, name, buf, offset, n, space_id, page_compression, page_compression_level, page_encryption, page_encryption_key, write_size, lsn, encrypt_later); if (type == OS_FILE_READ) { if (srv_use_native_aio) { os_n_file_reads++; os_bytes_read_since_printout += n; #ifdef WIN_ASYNC_IO ret = ReadFile(file, buf, (DWORD) n, &len, &(slot->control)); if(!ret && GetLastError() != ERROR_IO_PENDING) goto err_exit; #elif defined(LINUX_NATIVE_AIO) if (!os_aio_linux_dispatch(array, slot)) { goto err_exit; } #endif /* WIN_ASYNC_IO */ } else { if (!wake_later) { os_aio_simulated_wake_handler_thread( os_aio_get_segment_no_from_slot( array, slot)); } } } else if (type == OS_FILE_WRITE) { ut_ad(!srv_read_only_mode); if (srv_use_native_aio) { os_n_file_writes++; #ifdef WIN_ASYNC_IO if (page_encryption && slot->page_encryption_success) { buffer = slot->page_buf2; n = slot->len; } else if (page_compression && slot->page_compression_success) { buffer = slot->page_buf; n = slot->len; } else { buffer = buf; } ret = WriteFile(file, buffer, (DWORD) n, &len, &(slot->control)); if(!ret && GetLastError() != ERROR_IO_PENDING) goto err_exit; #elif defined(LINUX_NATIVE_AIO) if (!os_aio_linux_dispatch(array, slot)) { goto err_exit; } #endif /* WIN_ASYNC_IO */ } else { if (!wake_later) { os_aio_simulated_wake_handler_thread( os_aio_get_segment_no_from_slot( array, slot)); } } } else { ut_error; } /* aio was queued successfully! */ return(TRUE); #if defined LINUX_NATIVE_AIO || defined WIN_ASYNC_IO err_exit: #endif /* LINUX_NATIVE_AIO || WIN_ASYNC_IO */ os_aio_array_free_slot(array, slot); if (os_file_handle_error( name,type == OS_FILE_READ ? "aio read" : "aio write", __FILE__, __LINE__)) { goto try_again; } return(FALSE); } #ifdef WIN_ASYNC_IO #define READ_SEGMENT(x) (x < srv_n_read_io_threads) #define WRITE_SEGMENT(x) !READ_SEGMENT(x) /**********************************************************************//** This function is only used in Windows asynchronous i/o. Waits for an aio operation to complete. This function is used to wait the for completed requests. The aio array of pending requests is divided into segments. The thread specifies which segment or slot it wants to wait for. NOTE: this function will also take care of freeing the aio slot, therefore no other thread is allowed to do the freeing! @return TRUE if the aio operation succeeded */ UNIV_INTERN ibool os_aio_windows_handle( /*==================*/ ulint segment, /*!< in: the number of the segment in the aio arrays to wait for; segment 0 is the ibuf i/o thread, segment 1 the log i/o thread, then follow the non-ibuf read threads, and as the last are the non-ibuf write threads; if this is ULINT_UNDEFINED, then it means that sync aio is used, and this parameter is ignored */ ulint pos, /*!< this parameter is used only in sync aio: wait for the aio slot at this position */ fil_node_t**message1, /*!< out: the messages passed with the aio request; note that also in the case where the aio operation failed, these output parameters are valid and can be used to restart the operation, for example */ void** message2, ulint* type, /*!< out: OS_FILE_WRITE or ..._READ */ ulint* space_id) { ulint orig_seg = segment; os_aio_slot_t* slot; ibool ret_val; BOOL ret; DWORD len; BOOL retry = FALSE; ULONG_PTR key; HANDLE port = READ_SEGMENT(segment)? read_completion_port : completion_port; for(;;) { ret = GetQueuedCompletionStatus(port, &len, &key, (OVERLAPPED **)&slot, INFINITE); /* If shutdown key was received, repost the shutdown message and exit */ if (ret && (key == IOCP_SHUTDOWN_KEY)) { PostQueuedCompletionStatus(port, 0, key, NULL); os_thread_exit(NULL); } if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) { os_thread_exit(NULL); } if(WRITE_SEGMENT(segment)&& slot->type == OS_FILE_READ) { /* Redirect read completions to the dedicated completion port and thread. We need to split read and write threads. If we do not do that, and just allow all io threads process all IO, it is possible to get stuck in a deadlock in buffer pool code, Currently, the problem is solved this way - "write io" threads always get all completion notifications, from both async reads and writes. Write completion is handled in the same thread that gets it. Read completion is forwarded via PostQueueCompletionStatus()) to the second completion port dedicated solely to reads. One of the "read io" threads waiting on this port will finally handle the IO. Forwarding IO completion this way costs a context switch , and this seems tolerable since asynchronous reads are by far less frequent. */ ut_a(PostQueuedCompletionStatus(read_completion_port, len, key, &slot->control)); } else { break; } } *message1 = slot->message1; *message2 = slot->message2; *type = slot->type; *space_id = slot->space_id; if (ret && len == slot->len) { ret_val = TRUE; } else if (os_file_handle_error(slot->name, "Windows aio", __FILE__, __LINE__)) { retry = TRUE; } else { ret_val = FALSE; } if (retry) { /* retry failed read/write operation synchronously. No need to hold array->mutex. */ #ifdef UNIV_PFS_IO /* This read/write does not go through os_file_read and os_file_write APIs, need to register with performance schema explicitly here. */ struct PSI_file_locker* locker = NULL; register_pfs_file_io_begin(locker, slot->file, slot->len, (slot->type == OS_FILE_WRITE) ? PSI_FILE_WRITE : PSI_FILE_READ, __FILE__, __LINE__); #endif ut_a((slot->len & 0xFFFFFFFFUL) == slot->len); switch (slot->type) { case OS_FILE_WRITE: if (slot->message1 && slot->page_encryption && slot->page_encryption_success) { ret_val = os_file_write(slot->name, slot->file, slot->page_buf2, slot->offset, slot->len); } else { if (slot->message1 && slot->page_compression && slot->page_compression_success) { ret_val = os_file_write(slot->name, slot->file, slot->page_buf, slot->offset, slot->len); } else { ret_val = os_file_write(slot->name, slot->file, slot->buf, slot->offset, slot->len); } } break; case OS_FILE_READ: ret_val = os_file_read(slot->file, slot->buf, slot->offset, slot->len, slot->page_compression); break; default: ut_error; } #ifdef UNIV_PFS_IO register_pfs_file_io_end(locker, len); #endif if (!ret && GetLastError() == ERROR_IO_PENDING) { /* aio was queued successfully! We want a synchronous i/o operation on a file where we also use async i/o: in Windows we must use the same wait mechanism as for async i/o */ ret = GetOverlappedResult(slot->file, &(slot->control), &len, TRUE); } ret_val = ret && len == slot->len; } if (slot->type == OS_FILE_READ) { if (fil_page_is_compressed_encrypted(slot->buf) || fil_page_is_encrypted(slot->buf)) { ut_ad(slot->message1 != NULL); os_slot_alloc_page_buf2(slot); os_slot_alloc_tmp_encryption_buf(slot); // Decrypt the data fil_space_decrypt( fil_node_get_space_id(slot->message1), slot->buf, slot->len, slot->page_buf2); // Copy decrypted buffer back to buf memcpy(slot->buf, slot->page_buf2, slot->len); } if (fil_page_is_compressed(slot->buf)) { /* We allocate memory for page compressed buffer if and only if it is not yet allocated. */ os_slot_alloc_page_buf(slot); #ifdef HAVE_LZO if (fil_page_is_lzo_compressed(slot->buf)) { os_slot_alloc_lzo_mem(slot); } #endif fil_decompress_page(slot->page_buf, slot->buf, slot->len, slot->write_size); } } else { /* OS_FILE_WRITE */ if (slot->page_compression_success && (fil_page_is_compressed(slot->page_buf) || fil_page_is_compressed_encrypted(slot->buf))) { if (srv_use_trim && os_fallocate_failed == FALSE) { // Deallocate unused blocks from file system os_file_trim(slot); } } } os_aio_array_free_slot((os_aio_array_t *)slot->arr, slot); return(ret_val); } #endif #if defined(LINUX_NATIVE_AIO) /******************************************************************//** This function is only used in Linux native asynchronous i/o. This is called from within the io-thread. If there are no completed IO requests in the slot array, the thread calls this function to collect more requests from the kernel. The io-thread waits on io_getevents(), which is a blocking call, with a timeout value. Unless the system is very heavy loaded, keeping the io-thread very busy, the io-thread will spend most of its time waiting in this function. The io-thread also exits in this function. It checks server status at each wakeup and that is why we use timed wait in io_getevents(). */ static void os_aio_linux_collect( /*=================*/ os_aio_array_t* array, /*!< in/out: slot array. */ ulint segment, /*!< in: local segment no. */ ulint seg_size) /*!< in: segment size. */ { int i; int ret; ulint start_pos; ulint end_pos; struct timespec timeout; struct io_event* events; struct io_context* io_ctx; /* sanity checks. */ ut_ad(array != NULL); ut_ad(seg_size > 0); ut_ad(segment < array->n_segments); /* Which part of event array we are going to work on. */ events = &array->aio_events[segment * seg_size]; /* Which io_context we are going to use. */ io_ctx = array->aio_ctx[segment]; /* Starting point of the segment we will be working on. */ start_pos = segment * seg_size; /* End point. */ end_pos = start_pos + seg_size; retry: /* Initialize the events. The timeout value is arbitrary. We probably need to experiment with it a little. */ memset(events, 0, sizeof(*events) * seg_size); timeout.tv_sec = 0; timeout.tv_nsec = OS_AIO_REAP_TIMEOUT; ret = io_getevents(io_ctx, 1, seg_size, events, &timeout); if (ret > 0) { for (i = 0; i < ret; i++) { os_aio_slot_t* slot; struct iocb* control; control = (struct iocb*) events[i].obj; ut_a(control != NULL); slot = (os_aio_slot_t*) control->data; /* Some sanity checks. */ ut_a(slot != NULL); ut_a(slot->reserved); #if defined(UNIV_AIO_DEBUG) fprintf(stderr, "io_getevents[%c]: slot[%p] ctx[%p]" " seg[%lu]\n", (slot->type == OS_FILE_WRITE) ? 'w' : 'r', slot, io_ctx, segment); #endif /* We are not scribbling previous segment. */ ut_a(slot->pos >= start_pos); /* We have not overstepped to next segment. */ ut_a(slot->pos < end_pos); if (slot->type == OS_FILE_READ) { /* If the page is page encrypted we decrypt */ if (fil_page_is_compressed_encrypted(slot->buf) || fil_page_is_encrypted(slot->buf)) { os_slot_alloc_page_buf2(slot); os_slot_alloc_tmp_encryption_buf(slot); ut_ad(slot->message1 != NULL); // Decrypt the data fil_space_decrypt(fil_node_get_space_id(slot->message1), slot->buf, slot->len, slot->page_buf2); // Copy decrypted buffer back to buf memcpy(slot->buf, slot->page_buf2, slot->len); } /* If the table is page compressed and this is read, we decompress before we announce the read is complete. For writes, we free the compressed page. */ if (fil_page_is_compressed(slot->buf)) { // We allocate memory for page compressed buffer if and only // if it is not yet allocated. os_slot_alloc_page_buf(slot); #ifdef HAVE_LZO if (fil_page_is_lzo_compressed(slot->buf)) { os_slot_alloc_lzo_mem(slot); } #endif fil_decompress_page(slot->page_buf, slot->buf, slot->len, slot->write_size); } } else { /* OS_FILE_WRITE */ if (slot->page_compression_success && (fil_page_is_compressed(slot->page_buf) || fil_page_is_compressed_encrypted(slot->buf))) { ut_ad(slot->page_compression_page); if (srv_use_trim && os_fallocate_failed == FALSE) { // Deallocate unused blocks from file system os_file_trim(slot); } } } /* Mark this request as completed. The error handling will be done in the calling function. */ os_mutex_enter(array->mutex); slot->n_bytes = events[i].res; slot->ret = events[i].res2; slot->io_already_done = TRUE; os_mutex_exit(array->mutex); } return; } if (UNIV_UNLIKELY(srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS)) { return; } /* This error handling is for any error in collecting the IO requests. The errors, if any, for any particular IO request are simply passed on to the calling routine. */ switch (ret) { case -EAGAIN: /* Not enough resources! Try again. */ case -EINTR: /* Interrupted! I have tested the behaviour in case of an interrupt. If we have some completed IOs available then the return code will be the number of IOs. We get EINTR only if there are no completed IOs and we have been interrupted. */ case 0: /* No pending request! Go back and check again. */ goto retry; } /* All other errors should cause a trap for now. */ ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: unexpected ret_code[%d] from io_getevents()!\n", ret); ut_error; } /**********************************************************************//** This function is only used in Linux native asynchronous i/o. Waits for an aio operation to complete. This function is used to wait for the completed requests. The aio array of pending requests is divided into segments. The thread specifies which segment or slot it wants to wait for. NOTE: this function will also take care of freeing the aio slot, therefore no other thread is allowed to do the freeing! @return TRUE if the IO was successful */ UNIV_INTERN ibool os_aio_linux_handle( /*================*/ ulint global_seg, /*!< in: segment number in the aio array to wait for; segment 0 is the ibuf i/o thread, segment 1 is log i/o thread, then follow the non-ibuf read threads, and the last are the non-ibuf write threads. */ fil_node_t**message1, /*!< out: the messages passed with the */ void** message2, /*!< aio request; note that in case the aio operation failed, these output parameters are valid and can be used to restart the operation. */ ulint* type, /*!< out: OS_FILE_WRITE or ..._READ */ ulint* space_id) { ulint segment; os_aio_array_t* array; os_aio_slot_t* slot; ulint n; ulint i; ibool ret = FALSE; /* Should never be doing Sync IO here. */ ut_a(global_seg != ULINT_UNDEFINED); /* Find the array and the local segment. */ segment = os_aio_get_array_and_local_segment(&array, global_seg); n = array->n_slots / array->n_segments; wait_for_event: /* Loop until we have found a completed request. */ for (;;) { ibool any_reserved = FALSE; os_mutex_enter(array->mutex); for (i = 0; i < n; ++i) { slot = os_aio_array_get_nth_slot( array, i + segment * n); if (!slot->reserved) { continue; } else if (slot->io_already_done) { /* Something for us to work on. */ goto found; } else { any_reserved = TRUE; } } os_mutex_exit(array->mutex); /* There is no completed request. If there is no pending request at all, and the system is being shut down, exit. */ if (UNIV_UNLIKELY (!any_reserved && srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS)) { *message1 = NULL; *message2 = NULL; return(TRUE); } /* Wait for some request. Note that we return from wait iff we have found a request. */ srv_set_io_thread_op_info(global_seg, "waiting for completed aio requests"); os_aio_linux_collect(array, segment, n); } found: /* Note that it may be that there are more then one completed IO requests. We process them one at a time. We may have a case here to improve the performance slightly by dealing with all requests in one sweep. */ srv_set_io_thread_op_info(global_seg, "processing completed aio requests"); /* Ensure that we are scribbling only our segment. */ ut_a(i < n); ut_ad(slot != NULL); ut_ad(slot->reserved); ut_ad(slot->io_already_done); *message1 = slot->message1; *message2 = slot->message2; *type = slot->type; *space_id = slot->space_id; if (slot->ret == 0 && slot->n_bytes == (long) slot->len) { ret = TRUE; } else if ((slot->ret == 0) && (slot->n_bytes > 0) && (slot->n_bytes < (long) slot->len)) { /* Partial read or write scenario */ int submit_ret; struct iocb* iocb; slot->buf = (byte*)slot->buf + slot->n_bytes; slot->offset = slot->offset + slot->n_bytes; slot->len = slot->len - slot->n_bytes; /* Resetting the bytes read/written */ slot->n_bytes = 0; slot->io_already_done = FALSE; iocb = &(slot->control); if (slot->type == OS_FILE_READ) { io_prep_pread(&slot->control, slot->file, slot->buf, slot->len, (off_t) slot->offset); } else { ut_a(slot->type == OS_FILE_WRITE); io_prep_pwrite(&slot->control, slot->file, slot->buf, slot->len, (off_t) slot->offset); } /* Resubmit an I/O request */ submit_ret = io_submit(array->aio_ctx[segment], 1, &iocb); if (submit_ret < 0 ) { /* Aborting in case of submit failure */ ib_logf(IB_LOG_LEVEL_FATAL, "Native Linux AIO interface. io_submit()" " call failed when resubmitting a partial" " I/O request on the file %s.", slot->name); } else { ret = FALSE; os_mutex_exit(array->mutex); goto wait_for_event; } } else { errno = -slot->ret; if (slot->ret == 0) { fprintf(stderr, "InnoDB: Number of bytes after aio %d requested %lu\n" "InnoDB: from file %s\n", slot->n_bytes, slot->len, slot->name); } /* os_file_handle_error does tell us if we should retry this IO. As it stands now, we don't do this retry when reaping requests from a different context than the dispatcher. This non-retry logic is the same for windows and linux native AIO. We should probably look into this to transparently re-submit the IO. */ os_file_handle_error(slot->name, "Linux aio", __FILE__, __LINE__); ret = FALSE; } os_mutex_exit(array->mutex); os_aio_array_free_slot(array, slot); return(ret); } #endif /* LINUX_NATIVE_AIO */ /**********************************************************************//** Does simulated aio. This function should be called by an i/o-handler thread. @return TRUE if the aio operation succeeded */ UNIV_INTERN ibool os_aio_simulated_handle( /*====================*/ ulint global_segment, /*!< in: the number of the segment in the aio arrays to wait for; segment 0 is the ibuf i/o thread, segment 1 the log i/o thread, then follow the non-ibuf read threads, and as the last are the non-ibuf write threads */ fil_node_t**message1, /*!< out: the messages passed with the aio request; note that also in the case where the aio operation failed, these output parameters are valid and can be used to restart the operation, for example */ void** message2, ulint* type, /*!< out: OS_FILE_WRITE or ..._READ */ ulint* space_id) { os_aio_array_t* array; ulint segment; os_aio_slot_t* consecutive_ios[OS_AIO_MERGE_N_CONSECUTIVE]; ulint n_consecutive; ulint total_len; ulint offs; os_offset_t lowest_offset; ulint biggest_age; ulint age; byte* combined_buf; byte* combined_buf2; ibool ret; ibool any_reserved; ulint n; os_aio_slot_t* aio_slot; /* Fix compiler warning */ *consecutive_ios = NULL; segment = os_aio_get_array_and_local_segment(&array, global_segment); restart: /* NOTE! We only access constant fields in os_aio_array. Therefore we do not have to acquire the protecting mutex yet */ srv_set_io_thread_op_info(global_segment, "looking for i/o requests (a)"); ut_ad(os_aio_validate_skip()); ut_ad(segment < array->n_segments); n = array->n_slots / array->n_segments; /* Look through n slots after the segment * n'th slot */ if (array == os_aio_read_array && os_aio_recommend_sleep_for_read_threads) { /* Give other threads chance to add several i/os to the array at once. */ goto recommended_sleep; } srv_set_io_thread_op_info(global_segment, "looking for i/o requests (b)"); /* Check if there is a slot for which the i/o has already been done */ any_reserved = FALSE; os_mutex_enter(array->mutex); for (ulint i = 0; i < n; i++) { os_aio_slot_t* slot; slot = os_aio_array_get_nth_slot(array, i + segment * n); if (!slot->reserved) { continue; } else if (slot->io_already_done) { if (os_aio_print_debug) { fprintf(stderr, "InnoDB: i/o for slot %lu" " already done, returning\n", (ulong) i); } aio_slot = slot; ret = TRUE; goto slot_io_done; } else { any_reserved = TRUE; } } /* There is no completed request. If there is no pending request at all, and the system is being shut down, exit. */ if (!any_reserved && srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) { os_mutex_exit(array->mutex); *message1 = NULL; *message2 = NULL; return(TRUE); } n_consecutive = 0; /* If there are at least 2 seconds old requests, then pick the oldest one to prevent starvation. If several requests have the same age, then pick the one at the lowest offset. */ biggest_age = 0; lowest_offset = IB_UINT64_MAX; for (ulint i = 0; i < n; i++) { os_aio_slot_t* slot; slot = os_aio_array_get_nth_slot(array, i + segment * n); if (slot->reserved) { age = (ulint) difftime( ut_time(), slot->reservation_time); if ((age >= 2 && age > biggest_age) || (age >= 2 && age == biggest_age && slot->offset < lowest_offset)) { /* Found an i/o request */ consecutive_ios[0] = slot; n_consecutive = 1; biggest_age = age; lowest_offset = slot->offset; } } } if (n_consecutive == 0) { /* There were no old requests. Look for an i/o request at the lowest offset in the array (we ignore the high 32 bits of the offset in these heuristics) */ lowest_offset = IB_UINT64_MAX; for (ulint i = 0; i < n; i++) { os_aio_slot_t* slot; slot = os_aio_array_get_nth_slot( array, i + segment * n); if (slot->reserved && slot->offset < lowest_offset) { /* Found an i/o request */ consecutive_ios[0] = slot; n_consecutive = 1; lowest_offset = slot->offset; } } } if (n_consecutive == 0) { /* No i/o requested at the moment */ goto wait_for_io; } /* if n_consecutive != 0, then we have assigned something valid to consecutive_ios[0] */ ut_ad(n_consecutive != 0); ut_ad(consecutive_ios[0] != NULL); aio_slot = consecutive_ios[0]; /* Check if there are several consecutive blocks to read or write */ consecutive_loop: for (ulint i = 0; i < n; i++) { os_aio_slot_t* slot; slot = os_aio_array_get_nth_slot(array, i + segment * n); if (slot->reserved && slot != aio_slot && slot->offset == aio_slot->offset + aio_slot->len && slot->type == aio_slot->type && slot->file == aio_slot->file) { /* Found a consecutive i/o request */ consecutive_ios[n_consecutive] = slot; n_consecutive++; aio_slot = slot; if (n_consecutive < OS_AIO_MERGE_N_CONSECUTIVE) { goto consecutive_loop; } else { break; } } } srv_set_io_thread_op_info(global_segment, "consecutive i/o requests"); /* We have now collected n_consecutive i/o requests in the array; allocate a single buffer which can hold all data, and perform the i/o */ total_len = 0; aio_slot = consecutive_ios[0]; for (ulint i = 0; i < n_consecutive; i++) { total_len += consecutive_ios[i]->len; } if (n_consecutive == 1) { /* We can use the buffer of the i/o request */ combined_buf = aio_slot->buf; combined_buf2 = NULL; } else { combined_buf2 = static_cast( ut_malloc(total_len + UNIV_PAGE_SIZE)); ut_a(combined_buf2); combined_buf = static_cast( ut_align(combined_buf2, UNIV_PAGE_SIZE)); } /* We release the array mutex for the time of the i/o: NOTE that this assumes that there is just one i/o-handler thread serving a single segment of slots! */ os_mutex_exit(array->mutex); if (aio_slot->type == OS_FILE_WRITE && n_consecutive > 1) { /* Copy the buffers to the combined buffer */ offs = 0; for (ulint i = 0; i < n_consecutive; i++) { ut_memcpy(combined_buf + offs, consecutive_ios[i]->buf, consecutive_ios[i]->len); offs += consecutive_ios[i]->len; } } srv_set_io_thread_op_info(global_segment, "doing file i/o"); /* Do the i/o with ordinary, synchronous i/o functions: */ if (aio_slot->type == OS_FILE_WRITE) { ut_ad(!srv_read_only_mode); ret = os_file_write( aio_slot->name, aio_slot->file, combined_buf, aio_slot->offset, total_len); } else { ret = os_file_read( aio_slot->file, combined_buf, aio_slot->offset, total_len, aio_slot->page_compression); } if (aio_slot->type == OS_FILE_WRITE) { DBUG_EXECUTE_IF("ib_os_aio_func_io_failure_28_2", os_has_said_disk_full = FALSE; ret = 0; errno = 28;); } srv_set_io_thread_op_info(global_segment, "file i/o done"); if (aio_slot->type == OS_FILE_READ && n_consecutive > 1) { /* Copy the combined buffer to individual buffers */ offs = 0; for (ulint i = 0; i < n_consecutive; i++) { ut_memcpy(consecutive_ios[i]->buf, combined_buf + offs, consecutive_ios[i]->len); offs += consecutive_ios[i]->len; } } if (combined_buf2) { ut_free(combined_buf2); } os_mutex_enter(array->mutex); /* Mark the i/os done in slots */ for (ulint i = 0; i < n_consecutive; i++) { consecutive_ios[i]->io_already_done = TRUE; } /* We return the messages for the first slot now, and if there were several slots, the messages will be returned with subsequent calls of this function */ slot_io_done: ut_a(aio_slot->reserved); *message1 = aio_slot->message1; *message2 = aio_slot->message2; *type = aio_slot->type; *space_id = aio_slot->space_id; os_mutex_exit(array->mutex); os_aio_array_free_slot(array, aio_slot); return(ret); wait_for_io: srv_set_io_thread_op_info(global_segment, "resetting wait event"); /* We wait here until there again can be i/os in the segment of this thread */ os_event_reset(os_aio_segment_wait_events[global_segment]); os_mutex_exit(array->mutex); recommended_sleep: srv_set_io_thread_op_info(global_segment, "waiting for i/o request"); os_event_wait(os_aio_segment_wait_events[global_segment]); goto restart; } /**********************************************************************//** Validates the consistency of an aio array. @return true if ok */ static bool os_aio_array_validate( /*==================*/ os_aio_array_t* array) /*!< in: aio wait array */ { ulint i; ulint n_reserved = 0; os_mutex_enter(array->mutex); ut_a(array->n_slots > 0); ut_a(array->n_segments > 0); for (i = 0; i < array->n_slots; i++) { os_aio_slot_t* slot; slot = os_aio_array_get_nth_slot(array, i); if (slot->reserved) { n_reserved++; ut_a(slot->len > 0); } } ut_a(array->n_reserved == n_reserved); os_mutex_exit(array->mutex); return(true); } /**********************************************************************//** Validates the consistency the aio system. @return TRUE if ok */ UNIV_INTERN ibool os_aio_validate(void) /*=================*/ { os_aio_array_validate(os_aio_read_array); if (os_aio_write_array != 0) { os_aio_array_validate(os_aio_write_array); } if (os_aio_ibuf_array != 0) { os_aio_array_validate(os_aio_ibuf_array); } if (os_aio_log_array != 0) { os_aio_array_validate(os_aio_log_array); } if (os_aio_sync_array != 0) { os_aio_array_validate(os_aio_sync_array); } return(TRUE); } /**********************************************************************//** Prints pending IO requests per segment of an aio array. We probably don't need per segment statistics but they can help us during development phase to see if the IO requests are being distributed as expected. */ static void os_aio_print_segment_info( /*======================*/ FILE* file, /*!< in: file where to print */ ulint* n_seg, /*!< in: pending IO array */ os_aio_array_t* array) /*!< in: array to process */ { ulint i; ut_ad(array); ut_ad(n_seg); ut_ad(array->n_segments > 0); if (array->n_segments == 1) { return; } fprintf(file, " ["); for (i = 0; i < array->n_segments; i++) { if (i != 0) { fprintf(file, ", "); } fprintf(file, "%lu", n_seg[i]); } fprintf(file, "] "); } /**********************************************************************//** Prints info about the aio array. */ UNIV_INTERN void os_aio_print_array( /*==============*/ FILE* file, /*!< in: file where to print */ os_aio_array_t* array) /*!< in: aio array to print */ { ulint n_reserved = 0; ulint n_res_seg[SRV_MAX_N_IO_THREADS]; os_mutex_enter(array->mutex); ut_a(array->n_slots > 0); ut_a(array->n_segments > 0); memset(n_res_seg, 0x0, sizeof(n_res_seg)); for (ulint i = 0; i < array->n_slots; ++i) { os_aio_slot_t* slot; ulint seg_no; slot = os_aio_array_get_nth_slot(array, i); seg_no = (i * array->n_segments) / array->n_slots; if (slot->reserved) { ++n_reserved; ++n_res_seg[seg_no]; ut_a(slot->len > 0); } } ut_a(array->n_reserved == n_reserved); fprintf(file, " %lu", (ulong) n_reserved); os_aio_print_segment_info(file, n_res_seg, array); os_mutex_exit(array->mutex); } /**********************************************************************//** Prints info of the aio arrays. */ UNIV_INTERN void os_aio_print( /*=========*/ FILE* file) /*!< in: file where to print */ { time_t current_time; double time_elapsed; double avg_bytes_read; for (ulint i = 0; i < srv_n_file_io_threads; ++i) { fprintf(file, "I/O thread %lu state: %s (%s)", (ulong) i, srv_io_thread_op_info[i], srv_io_thread_function[i]); #ifndef __WIN__ if (os_aio_segment_wait_events[i]->is_set) { fprintf(file, " ev set"); } #endif /* __WIN__ */ fprintf(file, "\n"); } fputs("Pending normal aio reads:", file); os_aio_print_array(file, os_aio_read_array); if (os_aio_write_array != 0) { fputs(", aio writes:", file); os_aio_print_array(file, os_aio_write_array); } if (os_aio_ibuf_array != 0) { fputs(",\n ibuf aio reads:", file); os_aio_print_array(file, os_aio_ibuf_array); } if (os_aio_log_array != 0) { fputs(", log i/o's:", file); os_aio_print_array(file, os_aio_log_array); } if (os_aio_sync_array != 0) { fputs(", sync i/o's:", file); os_aio_print_array(file, os_aio_sync_array); } putc('\n', file); current_time = ut_time(); time_elapsed = 0.001 + difftime(current_time, os_last_printout); fprintf(file, "Pending flushes (fsync) log: %lu; buffer pool: %lu\n" "%lu OS file reads, %lu OS file writes, %lu OS fsyncs\n", (ulong) fil_n_pending_log_flushes, (ulong) fil_n_pending_tablespace_flushes, (ulong) os_n_file_reads, (ulong) os_n_file_writes, (ulong) os_n_fsyncs); if (os_file_n_pending_preads != 0 || os_file_n_pending_pwrites != 0) { fprintf(file, "%lu pending preads, %lu pending pwrites\n", (ulong) os_file_n_pending_preads, (ulong) os_file_n_pending_pwrites); } if (os_n_file_reads == os_n_file_reads_old) { avg_bytes_read = 0.0; } else { avg_bytes_read = (double) os_bytes_read_since_printout / (os_n_file_reads - os_n_file_reads_old); } fprintf(file, "%.2f reads/s, %lu avg bytes/read," " %.2f writes/s, %.2f fsyncs/s\n", (os_n_file_reads - os_n_file_reads_old) / time_elapsed, (ulong) avg_bytes_read, (os_n_file_writes - os_n_file_writes_old) / time_elapsed, (os_n_fsyncs - os_n_fsyncs_old) / time_elapsed); os_n_file_reads_old = os_n_file_reads; os_n_file_writes_old = os_n_file_writes; os_n_fsyncs_old = os_n_fsyncs; os_bytes_read_since_printout = 0; os_last_printout = current_time; } /**********************************************************************//** Refreshes the statistics used to print per-second averages. */ UNIV_INTERN void os_aio_refresh_stats(void) /*======================*/ { os_n_file_reads_old = os_n_file_reads; os_n_file_writes_old = os_n_file_writes; os_n_fsyncs_old = os_n_fsyncs; os_bytes_read_since_printout = 0; os_last_printout = time(NULL); } #ifdef UNIV_DEBUG /**********************************************************************//** Checks that all slots in the system have been freed, that is, there are no pending io operations. @return TRUE if all free */ UNIV_INTERN ibool os_aio_all_slots_free(void) /*=======================*/ { os_aio_array_t* array; ulint n_res = 0; array = os_aio_read_array; os_mutex_enter(array->mutex); n_res += array->n_reserved; os_mutex_exit(array->mutex); if (!srv_read_only_mode) { ut_a(os_aio_write_array == 0); array = os_aio_write_array; os_mutex_enter(array->mutex); n_res += array->n_reserved; os_mutex_exit(array->mutex); ut_a(os_aio_ibuf_array == 0); array = os_aio_ibuf_array; os_mutex_enter(array->mutex); n_res += array->n_reserved; os_mutex_exit(array->mutex); } ut_a(os_aio_log_array == 0); array = os_aio_log_array; os_mutex_enter(array->mutex); n_res += array->n_reserved; os_mutex_exit(array->mutex); array = os_aio_sync_array; os_mutex_enter(array->mutex); n_res += array->n_reserved; os_mutex_exit(array->mutex); if (n_res == 0) { return(TRUE); } return(FALSE); } #endif /* UNIV_DEBUG */ #endif /* !UNIV_HOTBACKUP */ #ifdef _WIN32 #include #ifndef FSCTL_FILE_LEVEL_TRIM #define FSCTL_FILE_LEVEL_TRIM CTL_CODE(FILE_DEVICE_FILE_SYSTEM, 130, METHOD_BUFFERED, FILE_WRITE_DATA) typedef struct _FILE_LEVEL_TRIM_RANGE { DWORDLONG Offset; DWORDLONG Length; } FILE_LEVEL_TRIM_RANGE, *PFILE_LEVEL_TRIM_RANGE; typedef struct _FILE_LEVEL_TRIM { DWORD Key; DWORD NumRanges; FILE_LEVEL_TRIM_RANGE Ranges[1]; } FILE_LEVEL_TRIM, *PFILE_LEVEL_TRIM; #endif #endif /**********************************************************************//** Directly manipulate the allocated disk space by deallocating for the file referred to by fd for the byte range starting at offset and continuing for len bytes. Within the specified range, partial file system blocks are zeroed, and whole file system blocks are removed from the file. After a successful call, subsequent reads from this range will return zeroes. @return true if success, false if error */ UNIV_INTERN ibool os_file_trim( /*=========*/ os_aio_slot_t* slot) /*!< in: slot structure */ { size_t len = slot->len; size_t trim_len = UNIV_PAGE_SIZE - slot->len; os_offset_t off __attribute__((unused)) = slot->offset + len; size_t bsize = slot->file_block_size; // len here should be alligned to sector size ut_ad((trim_len % bsize) == 0); ut_ad((len % bsize) == 0); ut_ad(bsize != 0); ut_ad((off % bsize) == 0); #ifdef UNIV_TRIM_DEBUG fprintf(stderr, "Note: TRIM: write_size %lu trim_len %lu len %lu off %lu bz %lu\n", *slot->write_size, trim_len, len, off, bsize); #endif // Nothing to do if trim length is zero or if actual write // size is initialized and it is smaller than current write size. // In first write if we trim we set write_size to actual bytes // written and rest of the page is trimmed. In following writes // there is no need to trim again if write_size only increases // because rest of the page is already trimmed. If actual write // size decreases we need to trim again. if (trim_len == 0 || (slot->write_size && *slot->write_size > 0 && len >= *slot->write_size)) { #ifdef UNIV_PAGECOMPRESS_DEBUG fprintf(stderr, "Note: TRIM: write_size %lu trim_len %lu len %lu\n", *slot->write_size, trim_len, len); #endif if (*slot->write_size > 0 && len >= *slot->write_size) { srv_stats.page_compressed_trim_op_saved.inc(); } *slot->write_size = len; return (TRUE); } #ifdef __linux__ #if defined(HAVE_FALLOCATE) int ret = fallocate(slot->file, FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE, off, trim_len); if (ret) { /* After first failure do not try to trim again */ os_fallocate_failed = TRUE; srv_use_trim = FALSE; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Warning: fallocate call failed with error code %d.\n" " InnoDB: start: %lu len: %lu payload: %lu\n" " InnoDB: Disabling fallocate for now.\n", errno, off, trim_len, len); os_file_handle_error_no_exit(slot->name, " fallocate(FALLOC_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE) ", FALSE, __FILE__, __LINE__); if (slot->write_size) { *slot->write_size = 0; } return (FALSE); } else { if (slot->write_size) { *slot->write_size = len; } } #else ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Warning: fallocate not supported on this installation." " InnoDB: Disabling fallocate for now."); os_fallocate_failed = TRUE; srv_use_trim = FALSE; if (slot->write_size) { *slot->write_size = 0; } #endif /* HAVE_FALLOCATE ... */ #elif defined(_WIN32) FILE_LEVEL_TRIM flt; flt.Key = 0; flt.NumRanges = 1; flt.Ranges[0].Offset = off; flt.Ranges[0].Length = trim_len; BOOL ret = DeviceIoControl(slot->file, FSCTL_FILE_LEVEL_TRIM, &flt, sizeof(flt), NULL, NULL, NULL, NULL); if (!ret) { /* After first failure do not try to trim again */ os_fallocate_failed = TRUE; srv_use_trim = FALSE; ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Warning: fallocate call failed with error.\n" " InnoDB: start: %lu len: %lu payload: %lu\n" " InnoDB: Disabling fallocate for now.\n", off, trim_len, len); os_file_handle_error_no_exit(slot->name, " DeviceIOControl(FSCTL_FILE_LEVEL_TRIM) ", FALSE, __FILE__, __LINE__); if (slot->write_size) { *slot->write_size = 0; } return (FALSE); } else { if (slot->write_size) { *slot->write_size = len; } } #endif switch(bsize) { case 512: srv_stats.page_compression_trim_sect512.add((trim_len / bsize)); break; case 1024: srv_stats.page_compression_trim_sect1024.add((trim_len / bsize)); break; case 2948: srv_stats.page_compression_trim_sect2048.add((trim_len / bsize)); break; case 4096: srv_stats.page_compression_trim_sect4096.add((trim_len / bsize)); break; case 8192: srv_stats.page_compression_trim_sect8192.add((trim_len / bsize)); break; case 16384: srv_stats.page_compression_trim_sect16384.add((trim_len / bsize)); break; case 32768: srv_stats.page_compression_trim_sect32768.add((trim_len / bsize)); break; default: break; } srv_stats.page_compressed_trim_op.inc(); return (TRUE); } /**********************************************************************//** Allocate memory for temporal buffer used for page encryption. This buffer is freed later. */ UNIV_INTERN void os_slot_alloc_page_buf2( /*===================*/ os_aio_slot_t* slot) /*!< in: slot structure */ { ut_a(slot != NULL); if(slot->page_buf2 == NULL) { byte* cbuf2; byte* cbuf; cbuf2 = static_cast(ut_malloc(UNIV_PAGE_SIZE*2)); cbuf = static_cast(ut_align(cbuf2, UNIV_PAGE_SIZE)); slot->page_encryption_page = static_cast(cbuf2); slot->page_buf2 = static_cast(cbuf); memset(slot->page_encryption_page, 0, UNIV_PAGE_SIZE*2); } } /**********************************************************************//** Allocate memory for temporal buffer used for page compression. This buffer is freed later. */ UNIV_INTERN void os_slot_alloc_page_buf( /*===================*/ os_aio_slot_t* slot) /*!< in: slot structure */ { ut_a(slot != NULL); if (slot->page_buf == NULL) { byte* cbuf2; byte* cbuf; ulint asize = UNIV_PAGE_SIZE; #ifdef HAVE_SNAPPY asize += snappy_max_compressed_length(asize) - UNIV_PAGE_SIZE; #endif /* We allocate extra to avoid memory overwrite on compression */ cbuf2 = static_cast(ut_malloc(asize*2)); cbuf = static_cast(ut_align(cbuf2, UNIV_PAGE_SIZE)); slot->page_compression_page = static_cast(cbuf2); slot->page_buf = static_cast(cbuf); ut_a(slot->page_buf != NULL); memset(slot->page_compression_page, 0, asize*2); } } #ifdef HAVE_LZO /**********************************************************************//** Allocate memory for temporal memory used for page compression when LZO compression method is used */ UNIV_INTERN void os_slot_alloc_lzo_mem( /*===================*/ os_aio_slot_t* slot) /*!< in: slot structure */ { ut_a(slot != NULL); if(slot->lzo_mem == NULL) { slot->lzo_mem = static_cast(ut_malloc(LZO1X_1_15_MEM_COMPRESS)); ut_a(slot->lzo_mem != NULL); memset(slot->lzo_mem, 0, LZO1X_1_15_MEM_COMPRESS); } } #endif /**********************************************************************//** Allocate memory for temporal buffer used for page encryption. */ UNIV_INTERN void os_slot_alloc_tmp_encryption_buf( /*=============================*/ os_aio_slot_t* slot) /*!< in: slot structure */ { ut_a(slot != NULL); if (slot->tmp_encryption_buf == NULL) { slot->tmp_encryption_buf = static_cast(ut_malloc(64)); memset(slot->tmp_encryption_buf, 0, 64); } } /***********************************************************************//** Try to get number of bytes per sector from file system. @return file block size */ UNIV_INTERN ulint os_file_get_block_size( /*===================*/ os_file_t file, /*!< in: handle to a file */ const char* name) /*!< in: file name */ { ulint fblock_size = 512; #if defined(UNIV_LINUX) && defined(HAVE_SYS_STATVFS_H) struct statvfs fstat; int err; err = fstatvfs(file, &fstat); if (err != 0) { fprintf(stderr, "InnoDB: Warning: fstatvfs() failed on file %s\n", name); os_file_handle_error_no_exit(name, "fstatvfs()", FALSE, __FILE__, __LINE__); } else { fblock_size = fstat.f_bsize; } #endif /* UNIV_LINUX */ #ifdef __WIN__ { DWORD SectorsPerCluster = 0; DWORD BytesPerSector = 0; DWORD NumberOfFreeClusters = 0; DWORD TotalNumberOfClusters = 0; /* if (GetFreeSpace((LPCTSTR)name, &SectorsPerCluster, &BytesPerSector, &NumberOfFreeClusters, &TotalNumberOfClusters)) { fblock_size = BytesPerSector; } else { fprintf(stderr, "InnoDB: Warning: GetFreeSpace() failed on file %s\n", name); os_file_handle_error_no_exit(name, "GetFreeSpace()", FALSE, __FILE__, __LINE__); } */ } #endif /* __WIN__*/ if (fblock_size > UNIV_PAGE_SIZE/2 || fblock_size < 512) { fprintf(stderr, "InnoDB: Note: File system for file %s has " "file block size %lu not supported for page_size %lu\n", name, fblock_size, UNIV_PAGE_SIZE); if (fblock_size < 512) { fblock_size = 512; } else { fblock_size = UNIV_PAGE_SIZE/2; } fprintf(stderr, "InnoDB: Note: Using file block size %ld for file %s\n", fblock_size, name); } return fblock_size; }