/***************************************************************************** Copyright (c) 1995, 2011, Oracle and/or its affiliates. All Rights Reserved. Copyright (c) 2008, 2009 Google Inc. Copyright (c) 2009, Percona Inc. Portions of this file contain modifications contributed and copyrighted by Google, Inc. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Google are incorporated with their permission, and subject to the conditions contained in the file COPYING.Google. Portions of this file contain modifications contributed and copyrighted by Percona Inc.. Those modifications are gratefully acknowledged and are described briefly in the InnoDB documentation. The contributions by Percona Inc. are incorporated with their permission, and subject to the conditions contained in the file COPYING.Percona. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA *****************************************************************************/ /**************************************************//** @file srv/srv0srv.c The database server main program NOTE: SQL Server 7 uses something which the documentation calls user mode scheduled threads (UMS threads). One such thread is usually allocated per processor. Win32 documentation does not know any UMS threads, which suggests that the concept is internal to SQL Server 7. It may mean that SQL Server 7 does all the scheduling of threads itself, even in i/o waits. We should maybe modify InnoDB to use the same technique, because thread switches within NT may be too slow. SQL Server 7 also mentions fibers, which are cooperatively scheduled threads. They can boost performance by 5 %, according to the Delaney and Soukup's book. Windows 2000 will have something called thread pooling (see msdn website), which we could possibly use. Another possibility could be to use some very fast user space thread library. This might confuse NT though. Created 10/8/1995 Heikki Tuuri *******************************************************/ /* Dummy comment */ #include "srv0srv.h" #include "ut0mem.h" #include "ut0ut.h" #include "os0proc.h" #include "mem0mem.h" #include "mem0pool.h" #include "sync0sync.h" #include "que0que.h" #include "log0recv.h" #include "pars0pars.h" #include "usr0sess.h" #include "lock0lock.h" #include "trx0purge.h" #include "ibuf0ibuf.h" #include "buf0flu.h" #include "buf0lru.h" #include "btr0sea.h" #include "dict0load.h" #include "dict0boot.h" #include "srv0start.h" #include "row0mysql.h" #include "ha_prototypes.h" #include "trx0i_s.h" #include "os0sync.h" /* for HAVE_ATOMIC_BUILTINS */ #include "read0read.h" #include "mysql/plugin.h" #include "mysql/service_thd_wait.h" /* prototypes for new functions added to ha_innodb.cc */ ibool innobase_get_slow_log(); /* The following counter is incremented whenever there is some user activity in the server */ UNIV_INTERN ulint srv_activity_count = 0; /* The following is the maximum allowed duration of a lock wait. */ UNIV_INTERN ulint srv_fatal_semaphore_wait_threshold = 600; /* How much data manipulation language (DML) statements need to be delayed, in microseconds, in order to reduce the lagging of the purge thread. */ UNIV_INTERN ulint srv_dml_needed_delay = 0; UNIV_INTERN ibool srv_lock_timeout_active = FALSE; UNIV_INTERN ibool srv_monitor_active = FALSE; UNIV_INTERN ibool srv_error_monitor_active = FALSE; UNIV_INTERN const char* srv_main_thread_op_info = ""; /** Prefix used by MySQL to indicate pre-5.1 table name encoding */ UNIV_INTERN const char srv_mysql50_table_name_prefix[9] = "#mysql50#"; /* Server parameters which are read from the initfile */ /* The following three are dir paths which are catenated before file names, where the file name itself may also contain a path */ UNIV_INTERN char* srv_data_home = NULL; #ifdef UNIV_LOG_ARCHIVE UNIV_INTERN char* srv_arch_dir = NULL; #endif /* UNIV_LOG_ARCHIVE */ /** store to its own file each table created by an user; data dictionary tables are in the system tablespace 0 */ UNIV_INTERN my_bool srv_file_per_table; /** The file format to use on new *.ibd files. */ UNIV_INTERN ulint srv_file_format = 0; /** Whether to check file format during startup. A value of DICT_TF_FORMAT_MAX + 1 means no checking ie. FALSE. The default is to set it to the highest format we support. */ UNIV_INTERN ulint srv_max_file_format_at_startup = DICT_TF_FORMAT_MAX; #if DICT_TF_FORMAT_51 # error "DICT_TF_FORMAT_51 must be 0!" #endif /** Place locks to records only i.e. do not use next-key locking except on duplicate key checking and foreign key checking */ UNIV_INTERN ibool srv_locks_unsafe_for_binlog = FALSE; #ifdef __WIN__ /* Windows native condition variables. We use runtime loading / function pointers, because they are not available on Windows Server 2003 and Windows XP/2000. We use condition for events on Windows if possible, even if os_event resembles Windows kernel event object well API-wise. The reason is performance, kernel objects are heavyweights and WaitForSingleObject() is a performance killer causing calling thread to context switch. Besides, Innodb is preallocating large number (often millions) of os_events. With kernel event objects it takes a big chunk out of non-paged pool, which is better suited for tasks like IO than for storing idle event objects. */ UNIV_INTERN ibool srv_use_native_conditions = FALSE; #endif /* __WIN__ */ /* If this flag is TRUE, then we will use the native aio of the OS (provided we compiled Innobase with it in), otherwise we will use simulated aio we build below with threads. Currently we support native aio on windows and linux */ UNIV_INTERN my_bool srv_use_native_aio = TRUE; #ifdef __WIN__ /* Windows native condition variables. We use runtime loading / function pointers, because they are not available on Windows Server 2003 and Windows XP/2000. We use condition for events on Windows if possible, even if os_event resembles Windows kernel event object well API-wise. The reason is performance, kernel objects are heavyweights and WaitForSingleObject() is a performance killer causing calling thread to context switch. Besides, Innodb is preallocating large number (often millions) of os_events. With kernel event objects it takes a big chunk out of non-paged pool, which is better suited for tasks like IO than for storing idle event objects. */ UNIV_INTERN ibool srv_use_native_conditions = FALSE; #endif /* __WIN__ */ UNIV_INTERN ulint srv_n_data_files = 0; UNIV_INTERN char** srv_data_file_names = NULL; /* size in database pages */ UNIV_INTERN ulint* srv_data_file_sizes = NULL; UNIV_INTERN char* srv_doublewrite_file = NULL; UNIV_INTERN ibool srv_recovery_stats = FALSE; /* if TRUE, then we auto-extend the last data file */ UNIV_INTERN ibool srv_auto_extend_last_data_file = FALSE; /* if != 0, this tells the max size auto-extending may increase the last data file size */ UNIV_INTERN ulint srv_last_file_size_max = 0; /* If the last data file is auto-extended, we add this many pages to it at a time */ UNIV_INTERN ulong srv_auto_extend_increment = 8; UNIV_INTERN ulint* srv_data_file_is_raw_partition = NULL; /* If the following is TRUE we do not allow inserts etc. This protects the user from forgetting the 'newraw' keyword to my.cnf */ UNIV_INTERN ibool srv_created_new_raw = FALSE; UNIV_INTERN char** srv_log_group_home_dirs = NULL; UNIV_INTERN ulint srv_n_log_groups = ULINT_MAX; UNIV_INTERN ulint srv_n_log_files = ULINT_MAX; /* size in database pages */ UNIV_INTERN ulint srv_log_file_size = ULINT_MAX; /* size in database pages */ UNIV_INTERN ulint srv_log_buffer_size = ULINT_MAX; //UNIV_INTERN ulong srv_flush_log_at_trx_commit = 1; UNIV_INTERN char srv_use_global_flush_log_at_trx_commit = TRUE; /* Try to flush dirty pages so as to avoid IO bursts at the checkpoints. */ UNIV_INTERN char srv_adaptive_flushing = TRUE; UNIV_INTERN ulong srv_show_locks_held = 10; UNIV_INTERN ulong srv_show_verbose_locks = 0; /** Maximum number of times allowed to conditionally acquire mutex before switching to blocking wait on the mutex */ #define MAX_MUTEX_NOWAIT 20 /** Check whether the number of failed nonblocking mutex acquisition attempts exceeds maximum allowed value. If so, srv_printf_innodb_monitor() will request mutex acquisition with mutex_enter(), which will wait until it gets the mutex. */ #define MUTEX_NOWAIT(mutex_skipped) ((mutex_skipped) < MAX_MUTEX_NOWAIT) /** The sort order table of the MySQL latin1_swedish_ci character set collation */ UNIV_INTERN const byte* srv_latin1_ordering; /* use os/external memory allocator */ UNIV_INTERN my_bool srv_use_sys_malloc = TRUE; /* requested size in kilobytes */ UNIV_INTERN ulint srv_buf_pool_size = ULINT_MAX; /* requested number of buffer pool instances */ UNIV_INTERN ulint srv_buf_pool_instances = 1; /* previously requested size */ UNIV_INTERN ulint srv_buf_pool_old_size; /* current size in kilobytes */ UNIV_INTERN ulint srv_buf_pool_curr_size = 0; /* size in bytes */ UNIV_INTERN ulint srv_mem_pool_size = ULINT_MAX; UNIV_INTERN ulint srv_lock_table_size = ULINT_MAX; /* This parameter is deprecated. Use srv_n_io_[read|write]_threads instead. */ UNIV_INTERN ulint srv_n_file_io_threads = ULINT_MAX; UNIV_INTERN ulint srv_n_read_io_threads = ULINT_MAX; UNIV_INTERN ulint srv_n_write_io_threads = ULINT_MAX; /* The universal page size of the database */ UNIV_INTERN ulint srv_page_size_shift = 0; UNIV_INTERN ulint srv_page_size = 0; /* The log block size */ UNIV_INTERN ulint srv_log_block_size = 0; /* User settable value of the number of pages that must be present in the buffer cache and accessed sequentially for InnoDB to trigger a readahead request. */ UNIV_INTERN ulong srv_read_ahead_threshold = 56; #ifdef UNIV_LOG_ARCHIVE UNIV_INTERN ibool srv_log_archive_on = FALSE; UNIV_INTERN ibool srv_archive_recovery = 0; UNIV_INTERN ib_uint64_t srv_archive_recovery_limit_lsn; #endif /* UNIV_LOG_ARCHIVE */ /* This parameter is used to throttle the number of insert buffers that are merged in a batch. By increasing this parameter on a faster disk you can possibly reduce the number of I/O operations performed to complete the merge operation. The value of this parameter is used as is by the background loop when the system is idle (low load), on a busy system the parameter is scaled down by a factor of 4, this is to avoid putting a heavier load on the I/O sub system. */ UNIV_INTERN ulong srv_insert_buffer_batch_size = 20; UNIV_INTERN char* srv_file_flush_method_str = NULL; UNIV_INTERN ulint srv_unix_file_flush_method = SRV_UNIX_FSYNC; UNIV_INTERN ulint srv_win_file_flush_method = SRV_WIN_IO_UNBUFFERED; UNIV_INTERN ulint srv_max_n_open_files = 300; /* Number of IO operations per second the server can do */ UNIV_INTERN ulong srv_io_capacity = 200; /* The InnoDB main thread tries to keep the ratio of modified pages in the buffer pool to all database pages in the buffer pool smaller than the following number. But it is not guaranteed that the value stays below that during a time of heavy update/insert activity. */ UNIV_INTERN ulong srv_max_buf_pool_modified_pct = 75; /* the number of purge threads to use from the worker pool (currently 0 or 1).*/ UNIV_INTERN ulong srv_n_purge_threads = 0; /* the number of pages to purge in one batch */ UNIV_INTERN ulong srv_purge_batch_size = 20; /* the number of rollback segments to use */ UNIV_INTERN ulong srv_rollback_segments = TRX_SYS_N_RSEGS; /* variable counts amount of data read in total (in bytes) */ UNIV_INTERN ulint srv_data_read = 0; /* Internal setting for "innodb_stats_method". Decides how InnoDB treats NULL value when collecting statistics. By default, it is set to SRV_STATS_NULLS_EQUAL(0), ie. all NULL value are treated equal */ ulong srv_innodb_stats_method = SRV_STATS_NULLS_EQUAL; /* here we count the amount of data written in total (in bytes) */ UNIV_INTERN ulint srv_data_written = 0; /* the number of the log write requests done */ UNIV_INTERN ulint srv_log_write_requests = 0; /* the number of physical writes to the log performed */ UNIV_INTERN ulint srv_log_writes = 0; /* amount of data written to the log files in bytes */ UNIV_INTERN ulint srv_os_log_written = 0; /* amount of writes being done to the log files */ UNIV_INTERN ulint srv_os_log_pending_writes = 0; /* we increase this counter, when there we don't have enough space in the log buffer and have to flush it */ UNIV_INTERN ulint srv_log_waits = 0; /* this variable counts the amount of times, when the doublewrite buffer was flushed */ UNIV_INTERN ulint srv_dblwr_writes = 0; /* here we store the number of pages that have been flushed to the doublewrite buffer */ UNIV_INTERN ulint srv_dblwr_pages_written = 0; /* in this variable we store the number of write requests issued */ UNIV_INTERN ulint srv_buf_pool_write_requests = 0; /* here we store the number of times when we had to wait for a free page in the buffer pool. It happens when the buffer pool is full and we need to make a flush, in order to be able to read or create a page. */ UNIV_INTERN ulint srv_buf_pool_wait_free = 0; /* variable to count the number of pages that were written from buffer pool to the disk */ UNIV_INTERN ulint srv_buf_pool_flushed = 0; UNIV_INTERN ulint buf_lru_flush_page_count = 0; /** Number of buffer pool reads that led to the reading of a disk page */ UNIV_INTERN ulint srv_buf_pool_reads = 0; /** Time in seconds between automatic buffer pool dumps */ UNIV_INTERN uint srv_auto_lru_dump = 0; /* structure to pass status variables to MySQL */ UNIV_INTERN export_struc export_vars; /* If the following is != 0 we do not allow inserts etc. This protects the user from forgetting the innodb_force_recovery keyword to my.cnf */ UNIV_INTERN ulint srv_force_recovery = 0; /*-----------------------*/ /* We are prepared for a situation that we have this many threads waiting for a semaphore inside InnoDB. innobase_start_or_create_for_mysql() sets the value. */ UNIV_INTERN ulint srv_max_n_threads = 0; /* The following controls how many threads we let inside InnoDB concurrently: threads waiting for locks are not counted into the number because otherwise we could get a deadlock. MySQL creates a thread for each user session, and semaphore contention and convoy problems can occur withput this restriction. Value 10 should be good if there are less than 4 processors + 4 disks in the computer. Bigger computers need bigger values. Value 0 will disable the concurrency check. */ UNIV_INTERN ibool srv_thread_concurrency_timer_based = FALSE; UNIV_INTERN ulong srv_thread_concurrency = 0; /* this mutex protects srv_conc data structures */ UNIV_INTERN os_fast_mutex_t srv_conc_mutex; /* number of transactions that have declared_to_be_inside_innodb set. It used to be a non-error for this value to drop below zero temporarily. This is no longer true. We'll, however, keep the lint datatype to add assertions to catch any corner cases that we may have missed. */ UNIV_INTERN lint srv_conc_n_threads = 0; /* number of OS threads waiting in the FIFO for a permission to enter InnoDB */ UNIV_INTERN ulint srv_conc_n_waiting_threads = 0; typedef struct srv_conc_slot_struct srv_conc_slot_t; struct srv_conc_slot_struct{ os_event_t event; /*!< event to wait */ ibool reserved; /*!< TRUE if slot reserved */ ibool wait_ended; /*!< TRUE when another thread has already set the event and the thread in this slot is free to proceed; but reserved may still be TRUE at that point */ UT_LIST_NODE_T(srv_conc_slot_t) srv_conc_queue; /*!< queue node */ }; /* queue of threads waiting to get in */ UNIV_INTERN UT_LIST_BASE_NODE_T(srv_conc_slot_t) srv_conc_queue; /* array of wait slots */ UNIV_INTERN srv_conc_slot_t* srv_conc_slots; /* Number of times a thread is allowed to enter InnoDB within the same SQL query after it has once got the ticket at srv_conc_enter_innodb */ #define SRV_FREE_TICKETS_TO_ENTER srv_n_free_tickets_to_enter #define SRV_THREAD_SLEEP_DELAY srv_thread_sleep_delay /*-----------------------*/ /* If the following is set to 1 then we do not run purge and insert buffer merge to completion before shutdown. If it is set to 2, do not even flush the buffer pool to data files at the shutdown: we effectively 'crash' InnoDB (but lose no committed transactions). */ UNIV_INTERN ulint srv_fast_shutdown = 0; /* Generate a innodb_status. file */ UNIV_INTERN ibool srv_innodb_status = FALSE; /* When estimating number of different key values in an index, sample this many index pages */ UNIV_INTERN unsigned long long srv_stats_sample_pages = 8; UNIV_INTERN ulint srv_stats_auto_update = 1; UNIV_INTERN ulint srv_stats_update_need_lock = 1; UNIV_INTERN ibool srv_use_sys_stats_table = FALSE; UNIV_INTERN ibool srv_use_doublewrite_buf = TRUE; UNIV_INTERN ibool srv_use_checksums = TRUE; UNIV_INTERN ibool srv_fast_checksum = FALSE; UNIV_INTERN ulong srv_replication_delay = 0; UNIV_INTERN long long srv_ibuf_max_size = 0; UNIV_INTERN ulong srv_ibuf_active_contract = 0; /* 0:disable 1:enable */ UNIV_INTERN ulong srv_ibuf_accel_rate = 100; #define PCT_IBUF_IO(pct) ((ulint) (srv_io_capacity * srv_ibuf_accel_rate * ((double) pct / 10000.0))) UNIV_INTERN ulint srv_checkpoint_age_target = 0; UNIV_INTERN ulint srv_flush_neighbor_pages = 1; /* 0:disable 1:enable */ UNIV_INTERN ulint srv_deprecated_enable_unsafe_group_commit = 0; UNIV_INTERN ulint srv_read_ahead = 3; /* 1: random 2: linear 3: Both */ UNIV_INTERN ulint srv_adaptive_flushing_method = 0; /* 0: native 1: estimate 2: keep_average */ UNIV_INTERN ulint srv_expand_import = 0; /* 0:disable 1:enable */ UNIV_INTERN ulong srv_pass_corrupt_table = 0; /* 0:disable 1:enable */ UNIV_INTERN ulint srv_dict_size_limit = 0; UNIV_INTERN ulint srv_lazy_drop_table = 0; /*-------------------------------------------*/ UNIV_INTERN ulong srv_n_spin_wait_rounds = 30; UNIV_INTERN ulong srv_n_free_tickets_to_enter = 500; UNIV_INTERN ulong srv_thread_sleep_delay = 10000; UNIV_INTERN ulong srv_spin_wait_delay = 6; UNIV_INTERN ibool srv_priority_boost = TRUE; #ifdef UNIV_DEBUG UNIV_INTERN ibool srv_print_thread_releases = FALSE; UNIV_INTERN ibool srv_print_lock_waits = FALSE; UNIV_INTERN ibool srv_print_buf_io = FALSE; UNIV_INTERN ibool srv_print_log_io = FALSE; UNIV_INTERN ibool srv_print_latch_waits = FALSE; #endif /* UNIV_DEBUG */ UNIV_INTERN ulint srv_n_rows_inserted = 0; UNIV_INTERN ulint srv_n_rows_updated = 0; UNIV_INTERN ulint srv_n_rows_deleted = 0; UNIV_INTERN ulint srv_n_rows_read = 0; static ulint srv_n_rows_inserted_old = 0; static ulint srv_n_rows_updated_old = 0; static ulint srv_n_rows_deleted_old = 0; static ulint srv_n_rows_read_old = 0; UNIV_INTERN ulint srv_n_lock_deadlock_count = 0; UNIV_INTERN ulint srv_n_lock_wait_count = 0; UNIV_INTERN ulint srv_n_lock_wait_current_count = 0; UNIV_INTERN ib_int64_t srv_n_lock_wait_time = 0; UNIV_INTERN ulint srv_n_lock_max_wait_time = 0; UNIV_INTERN ulint srv_truncated_status_writes = 0; /* Set the following to 0 if you want InnoDB to write messages on stderr on startup/shutdown */ UNIV_INTERN ibool srv_print_verbose_log = TRUE; UNIV_INTERN ibool srv_print_innodb_monitor = FALSE; UNIV_INTERN ibool srv_print_innodb_lock_monitor = FALSE; UNIV_INTERN ibool srv_print_innodb_tablespace_monitor = FALSE; UNIV_INTERN ibool srv_print_innodb_table_monitor = FALSE; /* Array of English strings describing the current state of an i/o handler thread */ UNIV_INTERN const char* srv_io_thread_op_info[SRV_MAX_N_IO_THREADS]; UNIV_INTERN const char* srv_io_thread_function[SRV_MAX_N_IO_THREADS]; UNIV_INTERN time_t srv_last_monitor_time; UNIV_INTERN mutex_t srv_innodb_monitor_mutex; /* Mutex for locking srv_monitor_file */ UNIV_INTERN mutex_t srv_monitor_file_mutex; #ifdef UNIV_PFS_MUTEX /* Key to register kernel_mutex with performance schema */ UNIV_INTERN mysql_pfs_key_t kernel_mutex_key; /* Key to register srv_innodb_monitor_mutex with performance schema */ UNIV_INTERN mysql_pfs_key_t srv_innodb_monitor_mutex_key; /* Key to register srv_monitor_file_mutex with performance schema */ UNIV_INTERN mysql_pfs_key_t srv_monitor_file_mutex_key; /* Key to register srv_dict_tmpfile_mutex with performance schema */ UNIV_INTERN mysql_pfs_key_t srv_dict_tmpfile_mutex_key; /* Key to register the mutex with performance schema */ UNIV_INTERN mysql_pfs_key_t srv_misc_tmpfile_mutex_key; #endif /* UNIV_PFS_MUTEX */ /* Temporary file for innodb monitor output */ UNIV_INTERN FILE* srv_monitor_file; /* Mutex for locking srv_dict_tmpfile. This mutex has a very high rank; threads reserving it should not be holding any InnoDB latches. */ UNIV_INTERN mutex_t srv_dict_tmpfile_mutex; /* Temporary file for output from the data dictionary */ UNIV_INTERN FILE* srv_dict_tmpfile; /* Mutex for locking srv_misc_tmpfile. This mutex has a very low rank; threads reserving it should not acquire any further latches or sleep before releasing this one. */ UNIV_INTERN mutex_t srv_misc_tmpfile_mutex; /* Temporary file for miscellanous diagnostic output */ UNIV_INTERN FILE* srv_misc_tmpfile; UNIV_INTERN ulint srv_main_thread_process_no = 0; UNIV_INTERN ulint srv_main_thread_id = 0; /* The following count work done by srv_master_thread. */ /* Iterations by the 'once per second' loop. */ static ulint srv_main_1_second_loops = 0; /* Calls to sleep by the 'once per second' loop. */ static ulint srv_main_sleeps = 0; /* Iterations by the 'once per 10 seconds' loop. */ static ulint srv_main_10_second_loops = 0; /* Iterations of the loop bounded by the 'background_loop' label. */ static ulint srv_main_background_loops = 0; /* Iterations of the loop bounded by the 'flush_loop' label. */ static ulint srv_main_flush_loops = 0; /* Log writes involving flush. */ static ulint srv_log_writes_and_flush = 0; /* This is only ever touched by the master thread. It records the time when the last flush of log file has happened. The master thread ensures that we flush the log files at least once per second. */ static time_t srv_last_log_flush_time; /* The master thread performs various tasks based on the current state of IO activity and the level of IO utilization is past intervals. Following macros define thresholds for these conditions. */ #define SRV_PEND_IO_THRESHOLD (PCT_IO(3)) #define SRV_RECENT_IO_ACTIVITY (PCT_IO(5)) #define SRV_PAST_IO_ACTIVITY (PCT_IO(200)) /* IMPLEMENTATION OF THE SERVER MAIN PROGRAM ========================================= There is the following analogue between this database server and an operating system kernel: DB concept equivalent OS concept ---------- --------------------- transaction -- process; query thread -- thread; lock -- semaphore; transaction set to the rollback state -- kill signal delivered to a process; kernel -- kernel; query thread execution: (a) without kernel mutex reserved -- process executing in user mode; (b) with kernel mutex reserved -- process executing in kernel mode; The server is controlled by a master thread which runs at a priority higher than normal, that is, higher than user threads. It sleeps most of the time, and wakes up, say, every 300 milliseconds, to check whether there is anything happening in the server which requires intervention of the master thread. Such situations may be, for example, when flushing of dirty blocks is needed in the buffer pool or old version of database rows have to be cleaned away. The threads which we call user threads serve the queries of the clients and input from the console of the server. They run at normal priority. The server may have several communications endpoints. A dedicated set of user threads waits at each of these endpoints ready to receive a client request. Each request is taken by a single user thread, which then starts processing and, when the result is ready, sends it to the client and returns to wait at the same endpoint the thread started from. So, we do not have dedicated communication threads listening at the endpoints and dealing the jobs to dedicated worker threads. Our architecture saves one thread swithch per request, compared to the solution with dedicated communication threads which amounts to 15 microseconds on 100 MHz Pentium running NT. If the client is communicating over a network, this saving is negligible, but if the client resides in the same machine, maybe in an SMP machine on a different processor from the server thread, the saving can be important as the threads can communicate over shared memory with an overhead of a few microseconds. We may later implement a dedicated communication thread solution for those endpoints which communicate over a network. Our solution with user threads has two problems: for each endpoint there has to be a number of listening threads. If there are many communication endpoints, it may be difficult to set the right number of concurrent threads in the system, as many of the threads may always be waiting at less busy endpoints. Another problem is queuing of the messages, as the server internally does not offer any queue for jobs. Another group of user threads is intended for splitting the queries and processing them in parallel. Let us call these parallel communication threads. These threads are waiting for parallelized tasks, suspended on event semaphores. A single user thread waits for input from the console, like a command to shut the database. Utility threads are a different group of threads which takes care of the buffer pool flushing and other, mainly background operations, in the server. Some of these utility threads always run at a lower than normal priority, so that they are always in background. Some of them may dynamically boost their priority by the pri_adjust function, even to higher than normal priority, if their task becomes urgent. The running of utilities is controlled by high- and low-water marks of urgency. The urgency may be measured by the number of dirty blocks in the buffer pool, in the case of the flush thread, for example. When the high-water mark is exceeded, an utility starts running, until the urgency drops under the low-water mark. Then the utility thread suspend itself to wait for an event. The master thread is responsible of signaling this event when the utility thread is again needed. For each individual type of utility, some threads always remain at lower than normal priority. This is because pri_adjust is implemented so that the threads at normal or higher priority control their share of running time by calling sleep. Thus, if the load of the system sudenly drops, these threads cannot necessarily utilize the system fully. The background priority threads make up for this, starting to run when the load drops. When there is no activity in the system, also the master thread suspends itself to wait for an event making the server totally silent. The responsibility to signal this event is on the user thread which again receives a message from a client. There is still one complication in our server design. If a background utility thread obtains a resource (e.g., mutex) needed by a user thread, and there is also some other user activity in the system, the user thread may have to wait indefinitely long for the resource, as the OS does not schedule a background thread if there is some other runnable user thread. This problem is called priority inversion in real-time programming. One solution to the priority inversion problem would be to keep record of which thread owns which resource and in the above case boost the priority of the background thread so that it will be scheduled and it can release the resource. This solution is called priority inheritance in real-time programming. A drawback of this solution is that the overhead of acquiring a mutex increases slightly, maybe 0.2 microseconds on a 100 MHz Pentium, because the thread has to call os_thread_get_curr_id. This may be compared to 0.5 microsecond overhead for a mutex lock-unlock pair. Note that the thread cannot store the information in the resource, say mutex, itself, because competing threads could wipe out the information if it is stored before acquiring the mutex, and if it stored afterwards, the information is outdated for the time of one machine instruction, at least. (To be precise, the information could be stored to lock_word in mutex if the machine supports atomic swap.) The above solution with priority inheritance may become actual in the future, but at the moment we plan to implement a more coarse solution, which could be called a global priority inheritance. If a thread has to wait for a long time, say 300 milliseconds, for a resource, we just guess that it may be waiting for a resource owned by a background thread, and boost the priority of all runnable background threads to the normal level. The background threads then themselves adjust their fixed priority back to background after releasing all resources they had (or, at some fixed points in their program code). What is the performance of the global priority inheritance solution? We may weigh the length of the wait time 300 milliseconds, during which the system processes some other thread to the cost of boosting the priority of each runnable background thread, rescheduling it, and lowering the priority again. On 100 MHz Pentium + NT this overhead may be of the order 100 microseconds per thread. So, if the number of runnable background threads is not very big, say < 100, the cost is tolerable. Utility threads probably will access resources used by user threads not very often, so collisions of user threads to preempted utility threads should not happen very often. The thread table contains information of the current status of each thread existing in the system, and also the event semaphores used in suspending the master thread and utility and parallel communication threads when they have nothing to do. The thread table can be seen as an analogue to the process table in a traditional Unix implementation. The thread table is also used in the global priority inheritance scheme. This brings in one additional complication: threads accessing the thread table must have at least normal fixed priority, because the priority inheritance solution does not work if a background thread is preempted while possessing the mutex protecting the thread table. So, if a thread accesses the thread table, its priority has to be boosted at least to normal. This priority requirement can be seen similar to the privileged mode used when processing the kernel calls in traditional Unix.*/ /* Thread slot in the thread table */ struct srv_slot_struct{ unsigned type:1; /*!< thread type: user, utility etc. */ unsigned in_use:1; /*!< TRUE if this slot is in use */ unsigned suspended:1; /*!< TRUE if the thread is waiting for the event of this slot */ ib_time_t suspend_time; /*!< time when the thread was suspended */ os_event_t event; /*!< event used in suspending the thread when it has nothing to do */ que_thr_t* thr; /*!< suspended query thread (only used for MySQL threads) */ }; /* Table for MySQL threads where they will be suspended to wait for locks */ UNIV_INTERN srv_slot_t* srv_mysql_table = NULL; UNIV_INTERN os_event_t srv_timeout_event; UNIV_INTERN os_event_t srv_monitor_event; UNIV_INTERN os_event_t srv_error_event; UNIV_INTERN os_event_t srv_lock_timeout_thread_event; UNIV_INTERN os_event_t srv_shutdown_event; UNIV_INTERN srv_sys_t* srv_sys = NULL; /* padding to prevent other memory update hotspots from residing on the same memory cache line */ UNIV_INTERN byte srv_pad1[64]; /* mutex protecting the server, trx structs, query threads, and lock table */ UNIV_INTERN mutex_t* kernel_mutex_temp; /* padding to prevent other memory update hotspots from residing on the same memory cache line */ UNIV_INTERN byte srv_pad2[64]; #if 0 /* The following three values measure the urgency of the jobs of buffer, version, and insert threads. They may vary from 0 - 1000. The server mutex protects all these variables. The low-water values tell that the server can acquiesce the utility when the value drops below this low-water mark. */ static ulint srv_meter[SRV_MASTER + 1]; static ulint srv_meter_low_water[SRV_MASTER + 1]; static ulint srv_meter_high_water[SRV_MASTER + 1]; static ulint srv_meter_high_water2[SRV_MASTER + 1]; static ulint srv_meter_foreground[SRV_MASTER + 1]; #endif /* The following values give info about the activity going on in the database. They are protected by the server mutex. The arrays are indexed by the type of the thread. */ UNIV_INTERN ulint srv_n_threads_active[SRV_MASTER + 1]; UNIV_INTERN ulint srv_n_threads[SRV_MASTER + 1]; /*********************************************************************//** Asynchronous purge thread. @return a dummy parameter */ UNIV_INTERN os_thread_ret_t srv_purge_thread( /*=============*/ void* arg __attribute__((unused))); /*!< in: a dummy parameter required by os_thread_create */ /*********************************************************************** Prints counters for work done by srv_master_thread. */ static void srv_print_master_thread_info( /*=========================*/ FILE *file) /* in: output stream */ { fprintf(file, "srv_master_thread loops: %lu 1_second, %lu sleeps, " "%lu 10_second, %lu background, %lu flush\n", srv_main_1_second_loops, srv_main_sleeps, srv_main_10_second_loops, srv_main_background_loops, srv_main_flush_loops); fprintf(file, "srv_master_thread log flush and writes: %lu\n", srv_log_writes_and_flush); } /*********************************************************************//** Sets the info describing an i/o thread current state. */ UNIV_INTERN void srv_set_io_thread_op_info( /*======================*/ ulint i, /*!< in: the 'segment' of the i/o thread */ const char* str) /*!< in: constant char string describing the state */ { ut_a(i < SRV_MAX_N_IO_THREADS); srv_io_thread_op_info[i] = str; } /*********************************************************************//** Accessor function to get pointer to n'th slot in the server thread table. @return pointer to the slot */ static srv_slot_t* srv_table_get_nth_slot( /*===================*/ ulint index) /*!< in: index of the slot */ { ut_ad(mutex_own(&kernel_mutex)); ut_a(index < OS_THREAD_MAX_N); return(srv_sys->threads + index); } /*********************************************************************//** Gets the number of threads in the system. @return sum of srv_n_threads[] */ UNIV_INTERN ulint srv_get_n_threads(void) /*===================*/ { ulint i; ulint n_threads = 0; mutex_enter(&kernel_mutex); for (i = 0; i < SRV_MASTER + 1; i++) { n_threads += srv_n_threads[i]; } mutex_exit(&kernel_mutex); return(n_threads); } #ifdef UNIV_DEBUG /*********************************************************************//** Validates the type of a thread table slot. @return TRUE if ok */ static ibool srv_thread_type_validate( /*=====================*/ enum srv_thread_type type) /*!< in: thread type */ { switch (type) { case SRV_WORKER: case SRV_MASTER: return(TRUE); } ut_error; return(FALSE); } #endif /* UNIV_DEBUG */ /*********************************************************************//** Gets the type of a thread table slot. @return thread type */ static enum srv_thread_type srv_slot_get_type( /*==============*/ const srv_slot_t* slot) /*!< in: thread slot */ { enum srv_thread_type type = (enum srv_thread_type) slot->type; ut_ad(srv_thread_type_validate(type)); return(type); } /*********************************************************************//** Reserves a slot in the thread table for the current thread. NOTE! The server mutex has to be reserved by the caller! @return reserved slot */ static srv_slot_t* srv_table_reserve_slot( /*===================*/ enum srv_thread_type type) /*!< in: type of the thread */ { srv_slot_t* slot; ulint i; ut_ad(srv_thread_type_validate(type)); ut_ad(mutex_own(&kernel_mutex)); i = 0; slot = srv_table_get_nth_slot(i); while (slot->in_use) { i++; slot = srv_table_get_nth_slot(i); } slot->in_use = TRUE; slot->suspended = FALSE; slot->type = type; ut_ad(srv_slot_get_type(slot) == type); return(slot); } /*********************************************************************//** Suspends the calling thread to wait for the event in its thread slot. NOTE! The server mutex has to be reserved by the caller! */ static void srv_suspend_thread( /*===============*/ srv_slot_t* slot) /*!< in/out: thread slot */ { enum srv_thread_type type; ut_ad(mutex_own(&kernel_mutex)); ut_ad(slot->in_use); ut_ad(!slot->suspended); if (srv_print_thread_releases) { fprintf(stderr, "Suspending thread %lu to slot %lu\n", (ulong) os_thread_get_curr_id(), (ulong) (slot - srv_sys->threads)); } type = srv_slot_get_type(slot); slot->suspended = TRUE; ut_ad(srv_n_threads_active[type] > 0); srv_n_threads_active[type]--; os_event_reset(slot->event); } /*********************************************************************//** Releases threads of the type given from suspension in the thread table. NOTE! The server mutex has to be reserved by the caller! @return number of threads released: this may be less than n if not enough threads were suspended at the moment */ UNIV_INTERN ulint srv_release_threads( /*================*/ enum srv_thread_type type, /*!< in: thread type */ ulint n) /*!< in: number of threads to release */ { srv_slot_t* slot; ulint i; ulint count = 0; ut_ad(srv_thread_type_validate(type)); ut_ad(n > 0); ut_ad(mutex_own(&kernel_mutex)); for (i = 0; i < OS_THREAD_MAX_N; i++) { slot = srv_table_get_nth_slot(i); if (slot->in_use && slot->suspended && srv_slot_get_type(slot) == type) { slot->suspended = FALSE; srv_n_threads_active[type]++; os_event_set(slot->event); if (srv_print_thread_releases) { fprintf(stderr, "Releasing thread type %lu" " from slot %lu\n", (ulong) type, (ulong) i); } count++; if (count == n) { break; } } } return(count); } /*********************************************************************//** Check whether thread type has reserved a slot. Return the first slot that is found. This works because we currently have only 1 thread of each type. @return slot number or ULINT_UNDEFINED if not found*/ UNIV_INTERN ulint srv_thread_has_reserved_slot( /*=========================*/ enum srv_thread_type type) /*!< in: thread type to check */ { ulint i; ulint slot_no = ULINT_UNDEFINED; ut_ad(srv_thread_type_validate(type)); mutex_enter(&kernel_mutex); for (i = 0; i < OS_THREAD_MAX_N; i++) { srv_slot_t* slot; slot = srv_table_get_nth_slot(i); if (slot->in_use && slot->type == type) { slot_no = i; break; } } mutex_exit(&kernel_mutex); return(slot_no); } /*********************************************************************//** Initializes the server. */ UNIV_INTERN void srv_init(void) /*==========*/ { srv_conc_slot_t* conc_slot; srv_slot_t* slot; ulint i; srv_sys = mem_alloc(sizeof(srv_sys_t)); kernel_mutex_temp = mem_alloc(sizeof(mutex_t)); mutex_create(kernel_mutex_key, &kernel_mutex, SYNC_KERNEL); mutex_create(srv_innodb_monitor_mutex_key, &srv_innodb_monitor_mutex, SYNC_NO_ORDER_CHECK); srv_sys->threads = mem_zalloc(OS_THREAD_MAX_N * sizeof(srv_slot_t)); for (i = 0; i < OS_THREAD_MAX_N; i++) { slot = srv_sys->threads + i; slot->event = os_event_create(NULL); ut_a(slot->event); } srv_mysql_table = mem_zalloc(OS_THREAD_MAX_N * sizeof(srv_slot_t)); for (i = 0; i < OS_THREAD_MAX_N; i++) { slot = srv_mysql_table + i; slot->event = os_event_create(NULL); ut_a(slot->event); } srv_error_event = os_event_create(NULL); srv_timeout_event = os_event_create(NULL); srv_monitor_event = os_event_create(NULL); srv_lock_timeout_thread_event = os_event_create(NULL); srv_shutdown_event = os_event_create(NULL); for (i = 0; i < SRV_MASTER + 1; i++) { srv_n_threads_active[i] = 0; srv_n_threads[i] = 0; #if 0 srv_meter[i] = 30; srv_meter_low_water[i] = 50; srv_meter_high_water[i] = 100; srv_meter_high_water2[i] = 200; srv_meter_foreground[i] = 250; #endif } UT_LIST_INIT(srv_sys->tasks); /* Create dummy indexes for infimum and supremum records */ dict_ind_init(); /* Init the server concurrency restriction data structures */ os_fast_mutex_init(&srv_conc_mutex); UT_LIST_INIT(srv_conc_queue); srv_conc_slots = mem_alloc(OS_THREAD_MAX_N * sizeof(srv_conc_slot_t)); for (i = 0; i < OS_THREAD_MAX_N; i++) { conc_slot = srv_conc_slots + i; conc_slot->reserved = FALSE; conc_slot->event = os_event_create(NULL); ut_a(conc_slot->event); } /* Initialize some INFORMATION SCHEMA internal structures */ trx_i_s_cache_init(trx_i_s_cache); } /*********************************************************************//** Frees the data structures created in srv_init(). */ UNIV_INTERN void srv_free(void) /*==========*/ { os_fast_mutex_free(&srv_conc_mutex); mem_free(srv_conc_slots); srv_conc_slots = NULL; mem_free(srv_sys->threads); mem_free(srv_sys); srv_sys = NULL; mem_free(kernel_mutex_temp); kernel_mutex_temp = NULL; mem_free(srv_mysql_table); srv_mysql_table = NULL; trx_i_s_cache_free(trx_i_s_cache); } /*********************************************************************//** Initializes the synchronization primitives, memory system, and the thread local storage. */ UNIV_INTERN void srv_general_init(void) /*==================*/ { ut_mem_init(); /* Reset the system variables in the recovery module. */ recv_sys_var_init(); os_sync_init(); sync_init(); mem_init(srv_mem_pool_size); } /*======================= InnoDB Server FIFO queue =======================*/ /* Maximum allowable purge history length. <=0 means 'infinite'. */ UNIV_INTERN ulong srv_max_purge_lag = 0; /*********************************************************************//** Puts an OS thread to wait if there are too many concurrent threads (>= srv_thread_concurrency) inside InnoDB. The threads wait in a FIFO queue. */ #ifdef HAVE_ATOMIC_BUILTINS static void enter_innodb_with_tickets(trx_t* trx) { trx->declared_to_be_inside_innodb = TRUE; trx->n_tickets_to_enter_innodb = SRV_FREE_TICKETS_TO_ENTER; return; } static void srv_conc_enter_innodb_timer_based(trx_t* trx) { lint conc_n_threads; ibool has_yielded = FALSE; ulint has_slept = 0; if (trx->declared_to_be_inside_innodb) { ut_print_timestamp(stderr); fputs( " InnoDB: Error: trying to declare trx to enter InnoDB, but\n" "InnoDB: it already is declared.\n", stderr); trx_print(stderr, trx, 0); putc('\n', stderr); } retry: if (srv_conc_n_threads < (lint) srv_thread_concurrency) { conc_n_threads = os_atomic_increment_lint(&srv_conc_n_threads, 1); if (conc_n_threads <= (lint) srv_thread_concurrency) { enter_innodb_with_tickets(trx); return; } (void) os_atomic_increment_lint(&srv_conc_n_threads, -1); } if (!has_yielded) { has_yielded = TRUE; os_thread_yield(); goto retry; } if (trx->has_search_latch || NULL != UT_LIST_GET_FIRST(trx->trx_locks)) { conc_n_threads = os_atomic_increment_lint(&srv_conc_n_threads, 1); enter_innodb_with_tickets(trx); return; } if (has_slept < 2) { trx->op_info = "sleeping before entering InnoDB"; os_thread_sleep(10000); trx->op_info = ""; has_slept++; } conc_n_threads = os_atomic_increment_lint(&srv_conc_n_threads, 1); enter_innodb_with_tickets(trx); return; } static void srv_conc_exit_innodb_timer_based(trx_t* trx) { (void) os_atomic_increment_lint(&srv_conc_n_threads, -1); trx->declared_to_be_inside_innodb = FALSE; trx->n_tickets_to_enter_innodb = 0; return; } #endif UNIV_INTERN void srv_conc_enter_innodb( /*==================*/ trx_t* trx) /*!< in: transaction object associated with the thread */ { ibool has_slept = FALSE; srv_conc_slot_t* slot = NULL; ulint i; ib_uint64_t start_time = 0L; ib_uint64_t finish_time = 0L; ulint sec; ulint ms; #ifdef UNIV_SYNC_DEBUG ut_ad(!sync_thread_levels_nonempty_trx(trx->has_search_latch)); #endif /* UNIV_SYNC_DEBUG */ if (trx->mysql_thd != NULL && thd_is_replication_slave_thread(trx->mysql_thd)) { UT_WAIT_FOR(srv_conc_n_threads < (lint)srv_thread_concurrency, srv_replication_delay * 1000); return; } /* If trx has 'free tickets' to enter the engine left, then use one such ticket */ if (trx->n_tickets_to_enter_innodb > 0) { trx->n_tickets_to_enter_innodb--; return; } #ifdef HAVE_ATOMIC_BUILTINS if (srv_thread_concurrency_timer_based) { srv_conc_enter_innodb_timer_based(trx); return; } #endif os_fast_mutex_lock(&srv_conc_mutex); retry: if (trx->declared_to_be_inside_innodb) { ut_print_timestamp(stderr); fputs(" InnoDB: Error: trying to declare trx" " to enter InnoDB, but\n" "InnoDB: it already is declared.\n", stderr); trx_print(stderr, trx, 0); putc('\n', stderr); os_fast_mutex_unlock(&srv_conc_mutex); return; } ut_ad(srv_conc_n_threads >= 0); if (srv_conc_n_threads < (lint)srv_thread_concurrency) { srv_conc_n_threads++; trx->declared_to_be_inside_innodb = TRUE; trx->n_tickets_to_enter_innodb = SRV_FREE_TICKETS_TO_ENTER; os_fast_mutex_unlock(&srv_conc_mutex); return; } /* If the transaction is not holding resources, let it sleep for SRV_THREAD_SLEEP_DELAY microseconds, and try again then */ if (!has_slept && !trx->has_search_latch && NULL == UT_LIST_GET_FIRST(trx->trx_locks)) { has_slept = TRUE; /* We let it sleep only once to avoid starvation */ srv_conc_n_waiting_threads++; os_fast_mutex_unlock(&srv_conc_mutex); trx->op_info = "sleeping before joining InnoDB queue"; /* Peter Zaitsev suggested that we take the sleep away altogether. But the sleep may be good in pathological situations of lots of thread switches. Simply put some threads aside for a while to reduce the number of thread switches. */ if (SRV_THREAD_SLEEP_DELAY > 0) { os_thread_sleep(SRV_THREAD_SLEEP_DELAY); trx->innodb_que_wait_timer += SRV_THREAD_SLEEP_DELAY; } trx->op_info = ""; os_fast_mutex_lock(&srv_conc_mutex); srv_conc_n_waiting_threads--; goto retry; } /* Too many threads inside: put the current thread to a queue */ for (i = 0; i < OS_THREAD_MAX_N; i++) { slot = srv_conc_slots + i; if (!slot->reserved) { break; } } if (i == OS_THREAD_MAX_N) { /* Could not find a free wait slot, we must let the thread enter */ srv_conc_n_threads++; trx->declared_to_be_inside_innodb = TRUE; trx->n_tickets_to_enter_innodb = 0; os_fast_mutex_unlock(&srv_conc_mutex); return; } /* Release possible search system latch this thread has */ if (trx->has_search_latch) { trx_search_latch_release_if_reserved(trx); } /* Add to the queue */ slot->reserved = TRUE; slot->wait_ended = FALSE; UT_LIST_ADD_LAST(srv_conc_queue, srv_conc_queue, slot); os_event_reset(slot->event); srv_conc_n_waiting_threads++; os_fast_mutex_unlock(&srv_conc_mutex); /* Go to wait for the event; when a thread leaves InnoDB it will release this thread */ ut_ad(!trx->has_search_latch); #ifdef UNIV_SYNC_DEBUG ut_ad(!sync_thread_levels_nonempty_trx(trx->has_search_latch)); #endif /* UNIV_SYNC_DEBUG */ if (innobase_get_slow_log() && trx->take_stats) { ut_usectime(&sec, &ms); start_time = (ib_uint64_t)sec * 1000000 + ms; } else { start_time = 0; } trx->op_info = "waiting in InnoDB queue"; thd_wait_begin(trx->mysql_thd, THD_WAIT_USER_LOCK); os_event_wait(slot->event); thd_wait_end(trx->mysql_thd); trx->op_info = ""; if (innobase_get_slow_log() && trx->take_stats && start_time) { ut_usectime(&sec, &ms); finish_time = (ib_uint64_t)sec * 1000000 + ms; trx->innodb_que_wait_timer += (ulint)(finish_time - start_time); } os_fast_mutex_lock(&srv_conc_mutex); srv_conc_n_waiting_threads--; /* NOTE that the thread which released this thread already incremented the thread counter on behalf of this thread */ slot->reserved = FALSE; UT_LIST_REMOVE(srv_conc_queue, srv_conc_queue, slot); trx->declared_to_be_inside_innodb = TRUE; trx->n_tickets_to_enter_innodb = SRV_FREE_TICKETS_TO_ENTER; os_fast_mutex_unlock(&srv_conc_mutex); } /*********************************************************************//** This lets a thread enter InnoDB regardless of the number of threads inside InnoDB. This must be called when a thread ends a lock wait. */ UNIV_INTERN void srv_conc_force_enter_innodb( /*========================*/ trx_t* trx) /*!< in: transaction object associated with the thread */ { #ifdef UNIV_SYNC_DEBUG ut_ad(!sync_thread_levels_nonempty_trx(trx->has_search_latch)); #endif /* UNIV_SYNC_DEBUG */ if (UNIV_LIKELY(!srv_thread_concurrency)) { return; } ut_ad(srv_conc_n_threads >= 0); #ifdef HAVE_ATOMIC_BUILTINS if (srv_thread_concurrency_timer_based) { (void) os_atomic_increment_lint(&srv_conc_n_threads, 1); trx->declared_to_be_inside_innodb = TRUE; trx->n_tickets_to_enter_innodb = 1; return; } #endif os_fast_mutex_lock(&srv_conc_mutex); srv_conc_n_threads++; trx->declared_to_be_inside_innodb = TRUE; trx->n_tickets_to_enter_innodb = 1; os_fast_mutex_unlock(&srv_conc_mutex); } /*********************************************************************//** This must be called when a thread exits InnoDB in a lock wait or at the end of an SQL statement. */ UNIV_INTERN void srv_conc_force_exit_innodb( /*=======================*/ trx_t* trx) /*!< in: transaction object associated with the thread */ { srv_conc_slot_t* slot = NULL; if (trx->mysql_thd != NULL && thd_is_replication_slave_thread(trx->mysql_thd)) { return; } if (trx->declared_to_be_inside_innodb == FALSE) { return; } #ifdef HAVE_ATOMIC_BUILTINS if (srv_thread_concurrency_timer_based) { srv_conc_exit_innodb_timer_based(trx); return; } #endif os_fast_mutex_lock(&srv_conc_mutex); ut_ad(srv_conc_n_threads > 0); srv_conc_n_threads--; trx->declared_to_be_inside_innodb = FALSE; trx->n_tickets_to_enter_innodb = 0; if (srv_conc_n_threads < (lint)srv_thread_concurrency) { /* Look for a slot where a thread is waiting and no other thread has yet released the thread */ slot = UT_LIST_GET_FIRST(srv_conc_queue); while (slot && slot->wait_ended == TRUE) { slot = UT_LIST_GET_NEXT(srv_conc_queue, slot); } if (slot != NULL) { slot->wait_ended = TRUE; /* We increment the count on behalf of the released thread */ srv_conc_n_threads++; } } os_fast_mutex_unlock(&srv_conc_mutex); if (slot != NULL) { os_event_set(slot->event); } #ifdef UNIV_SYNC_DEBUG ut_ad(!sync_thread_levels_nonempty_trx(trx->has_search_latch)); #endif /* UNIV_SYNC_DEBUG */ } /*********************************************************************//** This must be called when a thread exits InnoDB. */ UNIV_INTERN void srv_conc_exit_innodb( /*=================*/ trx_t* trx) /*!< in: transaction object associated with the thread */ { #ifdef UNIV_SYNC_DEBUG ut_ad(!sync_thread_levels_nonempty_trx(trx->has_search_latch)); #endif /* UNIV_SYNC_DEBUG */ if (trx->n_tickets_to_enter_innodb > 0) { /* We will pretend the thread is still inside InnoDB though it now leaves the InnoDB engine. In this way we save a lot of semaphore operations. srv_conc_force_exit_innodb is used to declare the thread definitely outside InnoDB. It should be called when there is a lock wait or an SQL statement ends. */ return; } srv_conc_force_exit_innodb(trx); } /*========================================================================*/ /*********************************************************************//** Normalizes init parameter values to use units we use inside InnoDB. @return DB_SUCCESS or error code */ static ulint srv_normalize_init_values(void) /*===========================*/ { ulint n; ulint i; n = srv_n_data_files; for (i = 0; i < n; i++) { srv_data_file_sizes[i] = srv_data_file_sizes[i] * ((1024 * 1024) / UNIV_PAGE_SIZE); } srv_last_file_size_max = srv_last_file_size_max * ((1024 * 1024) / UNIV_PAGE_SIZE); srv_log_file_size = srv_log_file_size / UNIV_PAGE_SIZE; srv_log_buffer_size = srv_log_buffer_size / UNIV_PAGE_SIZE; srv_lock_table_size = 5 * (srv_buf_pool_size / UNIV_PAGE_SIZE); return(DB_SUCCESS); } /*********************************************************************//** Boots the InnoDB server. @return DB_SUCCESS or error code */ UNIV_INTERN ulint srv_boot(void) /*==========*/ { ulint err; /* Transform the init parameter values given by MySQL to use units we use inside InnoDB: */ err = srv_normalize_init_values(); if (err != DB_SUCCESS) { return(err); } /* Initialize synchronization primitives, memory management, and thread local storage */ srv_general_init(); /* Initialize this module */ srv_init(); return(DB_SUCCESS); } /*********************************************************************//** Reserves a slot in the thread table for the current MySQL OS thread. NOTE! The kernel mutex has to be reserved by the caller! @return reserved slot */ static srv_slot_t* srv_table_reserve_slot_for_mysql(void) /*==================================*/ { srv_slot_t* slot; ulint i; ut_ad(mutex_own(&kernel_mutex)); i = 0; slot = srv_mysql_table + i; while (slot->in_use) { i++; if (UNIV_UNLIKELY(i >= OS_THREAD_MAX_N)) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: There appear to be %lu MySQL" " threads currently waiting\n" "InnoDB: inside InnoDB, which is the" " upper limit. Cannot continue operation.\n" "InnoDB: We intentionally generate" " a seg fault to print a stack trace\n" "InnoDB: on Linux. But first we print" " a list of waiting threads.\n", (ulong) i); for (i = 0; i < OS_THREAD_MAX_N; i++) { slot = srv_mysql_table + i; fprintf(stderr, "Slot %lu: thread type %lu," " in use %lu, susp %lu, time %lu\n", (ulong) i, (ulong) slot->type, (ulong) slot->in_use, (ulong) slot->suspended, (ulong) difftime(ut_time(), slot->suspend_time)); } ut_error; } slot = srv_mysql_table + i; } ut_a(slot->in_use == FALSE); slot->in_use = TRUE; return(slot); } /***************************************************************//** Puts a MySQL OS thread to wait for a lock to be released. If an error occurs during the wait trx->error_state associated with thr is != DB_SUCCESS when we return. DB_LOCK_WAIT_TIMEOUT and DB_DEADLOCK are possible errors. DB_DEADLOCK is returned if selective deadlock resolution chose this transaction as a victim. */ UNIV_INTERN void srv_suspend_mysql_thread( /*=====================*/ que_thr_t* thr) /*!< in: query thread associated with the MySQL OS thread */ { srv_slot_t* slot; os_event_t event; double wait_time; trx_t* trx; ulint had_dict_lock; ibool was_declared_inside_innodb = FALSE; ib_int64_t start_time = 0; ib_int64_t finish_time; ulint diff_time; ulint sec; ulint ms; ulong lock_wait_timeout; ut_ad(!mutex_own(&kernel_mutex)); trx = thr_get_trx(thr); os_event_set(srv_lock_timeout_thread_event); mutex_enter(&kernel_mutex); trx->error_state = DB_SUCCESS; if (thr->state == QUE_THR_RUNNING) { ut_ad(thr->is_active == TRUE); /* The lock has already been released or this transaction was chosen as a deadlock victim: no need to suspend */ if (trx->was_chosen_as_deadlock_victim) { trx->error_state = DB_DEADLOCK; trx->was_chosen_as_deadlock_victim = FALSE; } mutex_exit(&kernel_mutex); return; } ut_ad(thr->is_active == FALSE); slot = srv_table_reserve_slot_for_mysql(); event = slot->event; slot->thr = thr; os_event_reset(event); slot->suspend_time = ut_time(); if (thr->lock_state == QUE_THR_LOCK_ROW) { srv_n_lock_wait_count++; srv_n_lock_wait_current_count++; if (ut_usectime(&sec, &ms) == -1) { start_time = -1; } else { start_time = (ib_int64_t) sec * 1000000 + ms; } } /* Wake the lock timeout monitor thread, if it is suspended */ os_event_set(srv_lock_timeout_thread_event); mutex_exit(&kernel_mutex); had_dict_lock = trx->dict_operation_lock_mode; switch (had_dict_lock) { case RW_S_LATCH: /* Release foreign key check latch */ row_mysql_unfreeze_data_dictionary(trx); break; case RW_X_LATCH: /* There should never be a lock wait when the dictionary latch is reserved in X mode. Dictionary transactions should only acquire locks on dictionary tables, not other tables. All access to dictionary tables should be covered by dictionary transactions. */ ut_print_timestamp(stderr); fputs(" InnoDB: Error: dict X latch held in " "srv_suspend_mysql_thread\n", stderr); /* This should never occur. This incorrect handling was added in the early development of ha_innobase::add_index() in InnoDB Plugin 1.0. */ /* Release fast index creation latch */ row_mysql_unlock_data_dictionary(trx); break; } ut_a(trx->dict_operation_lock_mode == 0); if (trx->declared_to_be_inside_innodb) { was_declared_inside_innodb = TRUE; /* We must declare this OS thread to exit InnoDB, since a possible other thread holding a lock which this thread waits for must be allowed to enter, sooner or later */ srv_conc_force_exit_innodb(trx); } /* Suspend this thread and wait for the event. */ thd_wait_begin(trx->mysql_thd, THD_WAIT_ROW_LOCK); os_event_wait(event); thd_wait_end(trx->mysql_thd); #ifdef UNIV_SYNC_DEBUG ut_ad(!sync_thread_levels_nonempty_trx(trx->has_search_latch)); #endif /* UNIV_SYNC_DEBUG */ if (was_declared_inside_innodb) { /* Return back inside InnoDB */ srv_conc_force_enter_innodb(trx); } /* After resuming, reacquire the data dictionary latch if necessary. */ switch (had_dict_lock) { case RW_S_LATCH: row_mysql_freeze_data_dictionary(trx); break; case RW_X_LATCH: /* This should never occur. This incorrect handling was added in the early development of ha_innobase::add_index() in InnoDB Plugin 1.0. */ row_mysql_lock_data_dictionary(trx); break; } mutex_enter(&kernel_mutex); /* Release the slot for others to use */ slot->in_use = FALSE; wait_time = ut_difftime(ut_time(), slot->suspend_time); if (thr->lock_state == QUE_THR_LOCK_ROW) { if (ut_usectime(&sec, &ms) == -1) { finish_time = -1; } else { finish_time = (ib_int64_t) sec * 1000000 + ms; } diff_time = (ulint) (finish_time - start_time); srv_n_lock_wait_current_count--; srv_n_lock_wait_time = srv_n_lock_wait_time + diff_time; if (diff_time > srv_n_lock_max_wait_time && /* only update the variable if we successfully retrieved the start and finish times. See Bug#36819. */ start_time != -1 && finish_time != -1) { srv_n_lock_max_wait_time = diff_time; } /* Record the lock wait time for this thread */ thd_set_lock_wait_time(trx->mysql_thd, diff_time); } if (trx->was_chosen_as_deadlock_victim) { trx->error_state = DB_DEADLOCK; trx->was_chosen_as_deadlock_victim = FALSE; } mutex_exit(&kernel_mutex); /* InnoDB system transactions (such as the purge, and incomplete transactions that are being rolled back after crash recovery) will use the global value of innodb_lock_wait_timeout, because trx->mysql_thd == NULL. */ lock_wait_timeout = thd_lock_wait_timeout(trx->mysql_thd); if (lock_wait_timeout < 100000000 && wait_time > (double) lock_wait_timeout) { trx->error_state = DB_LOCK_WAIT_TIMEOUT; } if (trx_is_interrupted(trx)) { trx->error_state = DB_INTERRUPTED; } } /********************************************************************//** Releases a MySQL OS thread waiting for a lock to be released, if the thread is already suspended. */ UNIV_INTERN void srv_release_mysql_thread_if_suspended( /*==================================*/ que_thr_t* thr) /*!< in: query thread associated with the MySQL OS thread */ { srv_slot_t* slot; ulint i; ut_ad(mutex_own(&kernel_mutex)); for (i = 0; i < OS_THREAD_MAX_N; i++) { slot = srv_mysql_table + i; if (slot->in_use && slot->thr == thr) { /* Found */ os_event_set(slot->event); return; } } /* not found */ } /******************************************************************//** Refreshes the values used to calculate per-second averages. */ static void srv_refresh_innodb_monitor_stats(void) /*==================================*/ { mutex_enter(&srv_innodb_monitor_mutex); srv_last_monitor_time = time(NULL); os_aio_refresh_stats(); btr_cur_n_sea_old = btr_cur_n_sea; btr_cur_n_non_sea_old = btr_cur_n_non_sea; log_refresh_stats(); buf_refresh_io_stats_all(); srv_n_rows_inserted_old = srv_n_rows_inserted; srv_n_rows_updated_old = srv_n_rows_updated; srv_n_rows_deleted_old = srv_n_rows_deleted; srv_n_rows_read_old = srv_n_rows_read; mutex_exit(&srv_innodb_monitor_mutex); } /******************************************************************//** Outputs to a file the output of the InnoDB Monitor. @return FALSE if not all information printed due to failure to obtain necessary mutex */ UNIV_INTERN ibool srv_printf_innodb_monitor( /*======================*/ FILE* file, /*!< in: output stream */ ibool nowait, /*!< in: whether to wait for kernel mutex */ ulint* trx_start, /*!< out: file position of the start of the list of active transactions */ ulint* trx_end) /*!< out: file position of the end of the list of active transactions */ { double time_elapsed; time_t current_time; ulint n_reserved; ibool ret; ulint btr_search_sys_subtotal; ulint lock_sys_subtotal; ulint recv_sys_subtotal; ulint i; trx_t* trx; mutex_enter(&srv_innodb_monitor_mutex); current_time = time(NULL); /* We add 0.001 seconds to time_elapsed to prevent division by zero if two users happen to call SHOW INNODB STATUS at the same time */ time_elapsed = difftime(current_time, srv_last_monitor_time) + 0.001; srv_last_monitor_time = time(NULL); fputs("\n=====================================\n", file); ut_print_timestamp(file); fprintf(file, " INNODB MONITOR OUTPUT\n" "=====================================\n" "Per second averages calculated from the last %lu seconds\n", (ulong)time_elapsed); fputs("-----------------\n" "BACKGROUND THREAD\n" "-----------------\n", file); srv_print_master_thread_info(file); fputs("----------\n" "SEMAPHORES\n" "----------\n", file); sync_print(file); /* Conceptually, srv_innodb_monitor_mutex has a very high latching order level in sync0sync.h, while dict_foreign_err_mutex has a very low level 135. Therefore we can reserve the latter mutex here without a danger of a deadlock of threads. */ mutex_enter(&dict_foreign_err_mutex); if (ftell(dict_foreign_err_file) != 0L) { fputs("------------------------\n" "LATEST FOREIGN KEY ERROR\n" "------------------------\n", file); ut_copy_file(file, dict_foreign_err_file); } mutex_exit(&dict_foreign_err_mutex); fputs("--------\n" "FILE I/O\n" "--------\n", file); os_aio_print(file); fputs("-------------------------------------\n" "INSERT BUFFER AND ADAPTIVE HASH INDEX\n" "-------------------------------------\n", file); ibuf_print(file); for (i = 0; i < btr_search_index_num; i++) { ha_print_info(file, btr_search_get_hash_index((index_id_t)i)); } fprintf(file, "%.2f hash searches/s, %.2f non-hash searches/s\n", (btr_cur_n_sea - btr_cur_n_sea_old) / time_elapsed, (btr_cur_n_non_sea - btr_cur_n_non_sea_old) / time_elapsed); btr_cur_n_sea_old = btr_cur_n_sea; btr_cur_n_non_sea_old = btr_cur_n_non_sea; fputs("---\n" "LOG\n" "---\n", file); log_print(file); fputs("----------------------\n" "BUFFER POOL AND MEMORY\n" "----------------------\n", file); fprintf(file, "Total memory allocated " ULINTPF "; in additional pool allocated " ULINTPF "\n", ut_total_allocated_memory, mem_pool_get_reserved(mem_comm_pool)); /* Calcurate reserved memories */ if (btr_search_sys && btr_search_sys->hash_index[0]->heap) { btr_search_sys_subtotal = mem_heap_get_size(btr_search_sys->hash_index[0]->heap); } else { btr_search_sys_subtotal = 0; for (i=0; i < btr_search_sys->hash_index[0]->n_mutexes; i++) { btr_search_sys_subtotal += mem_heap_get_size(btr_search_sys->hash_index[0]->heaps[i]); } } btr_search_sys_subtotal *= btr_search_index_num; lock_sys_subtotal = 0; if (trx_sys) { mutex_enter(&kernel_mutex); trx = UT_LIST_GET_FIRST(trx_sys->mysql_trx_list); while (trx) { lock_sys_subtotal += ((trx->lock_heap) ? mem_heap_get_size(trx->lock_heap) : 0); trx = UT_LIST_GET_NEXT(mysql_trx_list, trx); } mutex_exit(&kernel_mutex); } recv_sys_subtotal = ((recv_sys && recv_sys->addr_hash) ? mem_heap_get_size(recv_sys->heap) : 0); fprintf(file, "Internal hash tables (constant factor + variable factor)\n" " Adaptive hash index %lu \t(%lu + %lu)\n" " Page hash %lu (buffer pool 0 only)\n" " Dictionary cache %lu \t(%lu + %lu)\n" " File system %lu \t(%lu + %lu)\n" " Lock system %lu \t(%lu + %lu)\n" " Recovery system %lu \t(%lu + %lu)\n", (ulong) (btr_search_sys ? (btr_search_sys->hash_index[0]->n_cells * btr_search_index_num * sizeof(hash_cell_t)) : 0) + btr_search_sys_subtotal, (ulong) (btr_search_sys ? (btr_search_sys->hash_index[0]->n_cells * btr_search_index_num * sizeof(hash_cell_t)) : 0), (ulong) btr_search_sys_subtotal, (ulong) (buf_pool_from_array(0)->page_hash->n_cells * sizeof(hash_cell_t)), (ulong) (dict_sys ? ((dict_sys->table_hash->n_cells + dict_sys->table_id_hash->n_cells ) * sizeof(hash_cell_t) + dict_sys->size) : 0), (ulong) (dict_sys ? ((dict_sys->table_hash->n_cells + dict_sys->table_id_hash->n_cells ) * sizeof(hash_cell_t)) : 0), (ulong) (dict_sys ? (dict_sys->size) : 0), (ulong) (fil_system_hash_cells() * sizeof(hash_cell_t) + fil_system_hash_nodes()), (ulong) (fil_system_hash_cells() * sizeof(hash_cell_t)), (ulong) fil_system_hash_nodes(), (ulong) ((lock_sys ? (lock_sys->rec_hash->n_cells * sizeof(hash_cell_t)) : 0) + lock_sys_subtotal), (ulong) (lock_sys ? (lock_sys->rec_hash->n_cells * sizeof(hash_cell_t)) : 0), (ulong) lock_sys_subtotal, (ulong) (((recv_sys && recv_sys->addr_hash) ? (recv_sys->addr_hash->n_cells * sizeof(hash_cell_t)) : 0) + recv_sys_subtotal), (ulong) ((recv_sys && recv_sys->addr_hash) ? (recv_sys->addr_hash->n_cells * sizeof(hash_cell_t)) : 0), (ulong) recv_sys_subtotal); fprintf(file, "Dictionary memory allocated " ULINTPF "\n", dict_sys->size); buf_print_io(file); fputs("--------------\n" "ROW OPERATIONS\n" "--------------\n", file); fprintf(file, "%ld queries inside InnoDB, %lu queries in queue\n", (long) srv_conc_n_threads, (ulong) srv_conc_n_waiting_threads); fprintf(file, "%lu read views open inside InnoDB\n", UT_LIST_GET_LEN(trx_sys->view_list)); if (UT_LIST_GET_LEN(trx_sys->view_list)) { read_view_t* view = UT_LIST_GET_LAST(trx_sys->view_list); if (view) { fprintf(file, "---OLDEST VIEW---\n"); read_view_print(file, view); fprintf(file, "-----------------\n"); } } n_reserved = fil_space_get_n_reserved_extents(0); if (n_reserved > 0) { fprintf(file, "%lu tablespace extents now reserved for" " B-tree split operations\n", (ulong) n_reserved); } #ifdef UNIV_LINUX fprintf(file, "Main thread process no. %lu, id %lu, state: %s\n", (ulong) srv_main_thread_process_no, (ulong) srv_main_thread_id, srv_main_thread_op_info); #else fprintf(file, "Main thread id %lu, state: %s\n", (ulong) srv_main_thread_id, srv_main_thread_op_info); #endif fprintf(file, "Number of rows inserted " ULINTPF ", updated " ULINTPF ", deleted " ULINTPF ", read " ULINTPF "\n", srv_n_rows_inserted, srv_n_rows_updated, srv_n_rows_deleted, srv_n_rows_read); fprintf(file, "%.2f inserts/s, %.2f updates/s," " %.2f deletes/s, %.2f reads/s\n", (srv_n_rows_inserted - srv_n_rows_inserted_old) / time_elapsed, (srv_n_rows_updated - srv_n_rows_updated_old) / time_elapsed, (srv_n_rows_deleted - srv_n_rows_deleted_old) / time_elapsed, (srv_n_rows_read - srv_n_rows_read_old) / time_elapsed); srv_n_rows_inserted_old = srv_n_rows_inserted; srv_n_rows_updated_old = srv_n_rows_updated; srv_n_rows_deleted_old = srv_n_rows_deleted; srv_n_rows_read_old = srv_n_rows_read; /* Only if lock_print_info_summary proceeds correctly, before we call the lock_print_info_all_transactions to print all the lock information. */ ret = lock_print_info_summary(file, nowait); if (ret) { if (trx_start) { long t = ftell(file); if (t < 0) { *trx_start = ULINT_UNDEFINED; } else { *trx_start = (ulint) t; } } lock_print_info_all_transactions(file); if (trx_end) { long t = ftell(file); if (t < 0) { *trx_end = ULINT_UNDEFINED; } else { *trx_end = (ulint) t; } } } fputs("----------------------------\n" "END OF INNODB MONITOR OUTPUT\n" "============================\n", file); mutex_exit(&srv_innodb_monitor_mutex); fflush(file); return(ret); } /******************************************************************//** Function to pass InnoDB status variables to MySQL */ UNIV_INTERN void srv_export_innodb_status(void) /*==========================*/ { buf_pool_stat_t stat; ulint LRU_len; ulint free_len; ulint flush_list_len; ulint mem_adaptive_hash, mem_dictionary; read_view_t* oldest_view; ulint i; buf_get_total_stat(&stat); buf_get_total_list_len(&LRU_len, &free_len, &flush_list_len); if (btr_search_sys && btr_search_sys->hash_index[0]->heap) { mem_adaptive_hash = mem_heap_get_size(btr_search_sys->hash_index[0]->heap); } else { mem_adaptive_hash = 0; for (i=0; i < btr_search_sys->hash_index[0]->n_mutexes; i++) { mem_adaptive_hash += mem_heap_get_size(btr_search_sys->hash_index[0]->heaps[i]); } } mem_adaptive_hash *= btr_search_index_num; if (btr_search_sys) { mem_adaptive_hash += (btr_search_sys->hash_index[0]->n_cells * btr_search_index_num * sizeof(hash_cell_t)); } mem_dictionary = (dict_sys ? ((dict_sys->table_hash->n_cells + dict_sys->table_id_hash->n_cells ) * sizeof(hash_cell_t) + dict_sys->size) : 0); mutex_enter(&srv_innodb_monitor_mutex); export_vars.innodb_adaptive_hash_cells = 0; export_vars.innodb_adaptive_hash_heap_buffers = 0; for (i = 0; i < btr_search_index_num; i++) { hash_table_t* table = btr_search_get_hash_index((index_id_t)i); export_vars.innodb_adaptive_hash_cells += hash_get_n_cells(table); export_vars.innodb_adaptive_hash_heap_buffers += (UT_LIST_GET_LEN(table->heap->base) - 1); } export_vars.innodb_adaptive_hash_hash_searches = btr_cur_n_sea; export_vars.innodb_adaptive_hash_non_hash_searches = btr_cur_n_non_sea; export_vars.innodb_background_log_sync = srv_log_writes_and_flush; export_vars.innodb_data_pending_reads = os_n_pending_reads; export_vars.innodb_data_pending_writes = os_n_pending_writes; export_vars.innodb_data_pending_fsyncs = fil_n_pending_log_flushes + fil_n_pending_tablespace_flushes; export_vars.innodb_data_fsyncs = os_n_fsyncs; export_vars.innodb_data_read = srv_data_read; export_vars.innodb_data_reads = os_n_file_reads; export_vars.innodb_data_writes = os_n_file_writes; export_vars.innodb_data_written = srv_data_written; export_vars.innodb_dict_tables= (dict_sys ? UT_LIST_GET_LEN(dict_sys->table_LRU) : 0); export_vars.innodb_buffer_pool_read_requests = stat.n_page_gets; export_vars.innodb_buffer_pool_write_requests = srv_buf_pool_write_requests; export_vars.innodb_buffer_pool_wait_free = srv_buf_pool_wait_free; export_vars.innodb_buffer_pool_pages_flushed = srv_buf_pool_flushed; export_vars.innodb_buffer_pool_pages_LRU_flushed = buf_lru_flush_page_count; export_vars.innodb_buffer_pool_reads = srv_buf_pool_reads; export_vars.innodb_buffer_pool_read_ahead = stat.n_ra_pages_read; export_vars.innodb_buffer_pool_read_ahead_evicted = stat.n_ra_pages_evicted; export_vars.innodb_buffer_pool_pages_data = LRU_len; export_vars.innodb_buffer_pool_pages_dirty = flush_list_len; export_vars.innodb_buffer_pool_pages_free = free_len; export_vars.innodb_deadlocks = srv_n_lock_deadlock_count; #ifdef UNIV_DEBUG export_vars.innodb_buffer_pool_pages_latched = buf_get_latched_pages_number(); #endif /* UNIV_DEBUG */ export_vars.innodb_buffer_pool_pages_total = buf_pool_get_n_pages(); export_vars.innodb_buffer_pool_pages_misc = buf_pool_get_n_pages() - LRU_len - free_len; export_vars.innodb_buffer_pool_pages_made_young = stat.n_pages_made_young; export_vars.innodb_buffer_pool_pages_made_not_young = stat.n_pages_not_made_young; export_vars.innodb_buffer_pool_pages_old = 0; for (i = 0; i < srv_buf_pool_instances; i++) { buf_pool_t* buf_pool = buf_pool_from_array(i); export_vars.innodb_buffer_pool_pages_old += buf_pool->LRU_old_len; } export_vars.innodb_checkpoint_age = (log_sys->lsn - log_sys->last_checkpoint_lsn); export_vars.innodb_checkpoint_max_age = log_sys->max_checkpoint_age; export_vars.innodb_checkpoint_target_age = srv_checkpoint_age_target ? ut_min(log_sys->max_checkpoint_age_async, srv_checkpoint_age_target) : log_sys->max_checkpoint_age_async; export_vars.innodb_history_list_length = trx_sys->rseg_history_len; ibuf_export_ibuf_status( &export_vars.innodb_ibuf_size, &export_vars.innodb_ibuf_free_list, &export_vars.innodb_ibuf_segment_size, &export_vars.innodb_ibuf_merges, &export_vars.innodb_ibuf_merged_inserts, &export_vars.innodb_ibuf_merged_delete_marks, &export_vars.innodb_ibuf_merged_deletes, &export_vars.innodb_ibuf_discarded_inserts, &export_vars.innodb_ibuf_discarded_delete_marks, &export_vars.innodb_ibuf_discarded_deletes); export_vars.innodb_lsn_current = log_sys->lsn; export_vars.innodb_lsn_flushed = log_sys->flushed_to_disk_lsn; export_vars.innodb_lsn_last_checkpoint = log_sys->last_checkpoint_lsn; export_vars.innodb_master_thread_1_second_loops = srv_main_1_second_loops; export_vars.innodb_master_thread_10_second_loops = srv_main_10_second_loops; export_vars.innodb_master_thread_background_loops = srv_main_background_loops; export_vars.innodb_master_thread_main_flush_loops = srv_main_flush_loops; export_vars.innodb_master_thread_sleeps = srv_main_sleeps; export_vars.innodb_max_trx_id = trx_sys->max_trx_id; export_vars.innodb_mem_adaptive_hash = mem_adaptive_hash; export_vars.innodb_mem_dictionary = mem_dictionary; export_vars.innodb_mem_total = ut_total_allocated_memory; export_vars.innodb_mutex_os_waits = mutex_os_wait_count; export_vars.innodb_mutex_spin_rounds = mutex_spin_round_count; export_vars.innodb_mutex_spin_waits = mutex_spin_wait_count; export_vars.innodb_s_lock_os_waits = rw_s_os_wait_count; export_vars.innodb_s_lock_spin_rounds = rw_s_spin_round_count; export_vars.innodb_s_lock_spin_waits = rw_s_spin_wait_count; export_vars.innodb_x_lock_os_waits = rw_x_os_wait_count; export_vars.innodb_x_lock_spin_rounds = rw_x_spin_round_count; export_vars.innodb_x_lock_spin_waits = rw_x_spin_wait_count; oldest_view = UT_LIST_GET_LAST(trx_sys->view_list); export_vars.innodb_oldest_view_low_limit_trx_id = oldest_view ? oldest_view->low_limit_id : 0; export_vars.innodb_purge_trx_id = purge_sys->purge_trx_no; export_vars.innodb_purge_undo_no = purge_sys->purge_undo_no; export_vars.innodb_current_row_locks = lock_sys->rec_num; #ifdef HAVE_ATOMIC_BUILTINS export_vars.innodb_have_atomic_builtins = 1; #else export_vars.innodb_have_atomic_builtins = 0; #endif export_vars.innodb_page_size = UNIV_PAGE_SIZE; export_vars.innodb_log_waits = srv_log_waits; export_vars.innodb_os_log_written = srv_os_log_written; export_vars.innodb_os_log_fsyncs = fil_n_log_flushes; export_vars.innodb_os_log_pending_fsyncs = fil_n_pending_log_flushes; export_vars.innodb_os_log_pending_writes = srv_os_log_pending_writes; export_vars.innodb_log_write_requests = srv_log_write_requests; export_vars.innodb_log_writes = srv_log_writes; export_vars.innodb_dblwr_pages_written = srv_dblwr_pages_written; export_vars.innodb_dblwr_writes = srv_dblwr_writes; export_vars.innodb_pages_created = stat.n_pages_created; export_vars.innodb_pages_read = stat.n_pages_read; export_vars.innodb_pages_written = stat.n_pages_written; export_vars.innodb_row_lock_waits = srv_n_lock_wait_count; export_vars.innodb_row_lock_current_waits = srv_n_lock_wait_current_count; export_vars.innodb_row_lock_time = srv_n_lock_wait_time / 1000; if (srv_n_lock_wait_count > 0) { export_vars.innodb_row_lock_time_avg = (ulint) (srv_n_lock_wait_time / 1000 / srv_n_lock_wait_count); } else { export_vars.innodb_row_lock_time_avg = 0; } export_vars.innodb_row_lock_time_max = srv_n_lock_max_wait_time / 1000; export_vars.innodb_rows_read = srv_n_rows_read; export_vars.innodb_rows_inserted = srv_n_rows_inserted; export_vars.innodb_rows_updated = srv_n_rows_updated; export_vars.innodb_rows_deleted = srv_n_rows_deleted; export_vars.innodb_truncated_status_writes = srv_truncated_status_writes; mutex_exit(&srv_innodb_monitor_mutex); } /*********************************************************************//** A thread which prints the info output by various InnoDB monitors. @return a dummy parameter */ UNIV_INTERN os_thread_ret_t srv_monitor_thread( /*===============*/ void* arg __attribute__((unused))) /*!< in: a dummy parameter required by os_thread_create */ { ib_int64_t sig_count; double time_elapsed; time_t current_time; time_t last_table_monitor_time; time_t last_tablespace_monitor_time; time_t last_monitor_time; ulint mutex_skipped; ibool last_srv_print_monitor; #ifdef UNIV_DEBUG_THREAD_CREATION fprintf(stderr, "Lock timeout thread starts, id %lu\n", os_thread_pf(os_thread_get_curr_id())); #endif #ifdef UNIV_PFS_THREAD pfs_register_thread(srv_monitor_thread_key); #endif UT_NOT_USED(arg); srv_last_monitor_time = ut_time(); last_table_monitor_time = ut_time(); last_tablespace_monitor_time = ut_time(); last_monitor_time = ut_time(); mutex_skipped = 0; last_srv_print_monitor = srv_print_innodb_monitor; loop: srv_monitor_active = TRUE; /* Wake up every 5 seconds to see if we need to print monitor information or if signalled at shutdown. */ sig_count = os_event_reset(srv_monitor_event); os_event_wait_time_low(srv_monitor_event, 5000000, sig_count); current_time = ut_time(); time_elapsed = difftime(current_time, last_monitor_time); if (time_elapsed > 15) { last_monitor_time = ut_time(); if (srv_print_innodb_monitor) { /* Reset mutex_skipped counter everytime srv_print_innodb_monitor changes. This is to ensure we will not be blocked by kernel_mutex for short duration information printing, such as requested by sync_array_print_long_waits() */ if (!last_srv_print_monitor) { mutex_skipped = 0; last_srv_print_monitor = TRUE; } if (!srv_printf_innodb_monitor(stderr, MUTEX_NOWAIT(mutex_skipped), NULL, NULL)) { mutex_skipped++; } else { /* Reset the counter */ mutex_skipped = 0; } } else { last_srv_print_monitor = FALSE; } if (srv_innodb_status) { mutex_enter(&srv_monitor_file_mutex); rewind(srv_monitor_file); if (!srv_printf_innodb_monitor(srv_monitor_file, MUTEX_NOWAIT(mutex_skipped), NULL, NULL)) { mutex_skipped++; } else { mutex_skipped = 0; } os_file_set_eof(srv_monitor_file); mutex_exit(&srv_monitor_file_mutex); } if (srv_print_innodb_tablespace_monitor && difftime(current_time, last_tablespace_monitor_time) > 60) { last_tablespace_monitor_time = ut_time(); fputs("========================" "========================\n", stderr); ut_print_timestamp(stderr); fputs(" INNODB TABLESPACE MONITOR OUTPUT\n" "========================" "========================\n", stderr); fsp_print(0); fputs("Validating tablespace\n", stderr); fsp_validate(0); fputs("Validation ok\n" "---------------------------------------\n" "END OF INNODB TABLESPACE MONITOR OUTPUT\n" "=======================================\n", stderr); } if (srv_print_innodb_table_monitor && difftime(current_time, last_table_monitor_time) > 60) { last_table_monitor_time = ut_time(); fputs("===========================================\n", stderr); ut_print_timestamp(stderr); fputs(" INNODB TABLE MONITOR OUTPUT\n" "===========================================\n", stderr); dict_print(); fputs("-----------------------------------\n" "END OF INNODB TABLE MONITOR OUTPUT\n" "==================================\n", stderr); } } if (srv_shutdown_state >= SRV_SHUTDOWN_CLEANUP) { goto exit_func; } if (srv_print_innodb_monitor || srv_print_innodb_lock_monitor || srv_print_innodb_tablespace_monitor || srv_print_innodb_table_monitor) { goto loop; } srv_monitor_active = FALSE; goto loop; exit_func: srv_monitor_active = FALSE; /* We count the number of threads in os_thread_exit(). A created thread should always use that to exit and not use return() to exit. */ os_thread_exit(NULL); OS_THREAD_DUMMY_RETURN; } /*********************************************************************//** A thread which wakes up threads whose lock wait may have lasted too long. @return a dummy parameter */ UNIV_INTERN os_thread_ret_t srv_lock_timeout_thread( /*====================*/ void* arg __attribute__((unused))) /* in: a dummy parameter required by os_thread_create */ { srv_slot_t* slot; ibool some_waits; double wait_time; ulint i; ib_int64_t sig_count; #ifdef UNIV_PFS_THREAD pfs_register_thread(srv_lock_timeout_thread_key); #endif loop: /* When someone is waiting for a lock, we wake up every second and check if a timeout has passed for a lock wait */ sig_count = os_event_reset(srv_timeout_event); os_event_wait_time_low(srv_timeout_event, 1000000, sig_count); srv_lock_timeout_active = TRUE; mutex_enter(&kernel_mutex); some_waits = FALSE; /* Check of all slots if a thread is waiting there, and if it has exceeded the time limit */ for (i = 0; i < OS_THREAD_MAX_N; i++) { slot = srv_mysql_table + i; if (slot->in_use) { trx_t* trx; ulong lock_wait_timeout; some_waits = TRUE; wait_time = ut_difftime(ut_time(), slot->suspend_time); trx = thr_get_trx(slot->thr); lock_wait_timeout = thd_lock_wait_timeout( trx->mysql_thd); if (trx_is_interrupted(trx) || (lock_wait_timeout < 100000000 && (wait_time > (double) lock_wait_timeout || wait_time < 0))) { /* Timeout exceeded or a wrap-around in system time counter: cancel the lock request queued by the transaction and release possible other transactions waiting behind; it is possible that the lock has already been granted: in that case do nothing */ if (trx->wait_lock) { lock_cancel_waiting_and_release( trx->wait_lock); } } } } os_event_reset(srv_lock_timeout_thread_event); mutex_exit(&kernel_mutex); if (srv_shutdown_state >= SRV_SHUTDOWN_CLEANUP) { goto exit_func; } if (some_waits) { goto loop; } srv_lock_timeout_active = FALSE; #if 0 /* The following synchronisation is disabled, since the InnoDB monitor output is to be updated every 15 seconds. */ os_event_wait(srv_lock_timeout_thread_event); #endif goto loop; exit_func: srv_lock_timeout_active = FALSE; /* We count the number of threads in os_thread_exit(). A created thread should always use that to exit and not use return() to exit. */ os_thread_exit(NULL); OS_THREAD_DUMMY_RETURN; } /*********************************************************************//** A thread which prints warnings about semaphore waits which have lasted too long. These can be used to track bugs which cause hangs. @return a dummy parameter */ UNIV_INTERN os_thread_ret_t srv_error_monitor_thread( /*=====================*/ void* arg __attribute__((unused))) /*!< in: a dummy parameter required by os_thread_create */ { /* number of successive fatal timeouts observed */ ulint fatal_cnt = 0; ib_uint64_t old_lsn; ib_uint64_t new_lsn; ib_int64_t sig_count; /* longest waiting thread for a semaphore */ os_thread_id_t waiter = os_thread_get_curr_id(); os_thread_id_t old_waiter = waiter; /* the semaphore that is being waited for */ const void* sema = NULL; const void* old_sema = NULL; old_lsn = srv_start_lsn; #ifdef UNIV_DEBUG_THREAD_CREATION fprintf(stderr, "Error monitor thread starts, id %lu\n", os_thread_pf(os_thread_get_curr_id())); #endif #ifdef UNIV_PFS_THREAD pfs_register_thread(srv_error_monitor_thread_key); #endif loop: srv_error_monitor_active = TRUE; /* Try to track a strange bug reported by Harald Fuchs and others, where the lsn seems to decrease at times */ new_lsn = log_get_lsn(); if (new_lsn < old_lsn) { ut_print_timestamp(stderr); fprintf(stderr, " InnoDB: Error: old log sequence number %llu" " was greater\n" "InnoDB: than the new log sequence number %llu!\n" "InnoDB: Please submit a bug report" " to http://bugs.mysql.com\n", old_lsn, new_lsn); } old_lsn = new_lsn; if (difftime(time(NULL), srv_last_monitor_time) > 60) { /* We referesh InnoDB Monitor values so that averages are printed from at most 60 last seconds */ srv_refresh_innodb_monitor_stats(); } /* Update the statistics collected for deciding LRU eviction policy. */ buf_LRU_stat_update(); /* Update the statistics collected for flush rate policy. */ buf_flush_stat_update(); /* In case mutex_exit is not a memory barrier, it is theoretically possible some threads are left waiting though the semaphore is already released. Wake up those threads: */ sync_arr_wake_threads_if_sema_free(); if (sync_array_print_long_waits(&waiter, &sema) && sema == old_sema && os_thread_eq(waiter, old_waiter)) { fatal_cnt++; if (fatal_cnt > 10) { fprintf(stderr, "InnoDB: Error: semaphore wait has lasted" " > %lu seconds\n" "InnoDB: We intentionally crash the server," " because it appears to be hung.\n", (ulong) srv_fatal_semaphore_wait_threshold); ut_error; } } else { fatal_cnt = 0; old_waiter = waiter; old_sema = sema; } /* Flush stderr so that a database user gets the output to possible MySQL error file */ fflush(stderr); sig_count = os_event_reset(srv_error_event); os_event_wait_time_low(srv_error_event, 1000000, sig_count); if (srv_shutdown_state < SRV_SHUTDOWN_CLEANUP) { goto loop; } srv_error_monitor_active = FALSE; /* We count the number of threads in os_thread_exit(). A created thread should always use that to exit and not use return() to exit. */ os_thread_exit(NULL); OS_THREAD_DUMMY_RETURN; } /*********************************************************************//** A thread which restores the buffer pool from a dump file on startup and does periodic buffer pool dumps. @return a dummy parameter */ UNIV_INTERN os_thread_ret_t srv_LRU_dump_restore_thread( /*====================*/ void* arg __attribute__((unused))) /*!< in: a dummy parameter required by os_thread_create */ { uint auto_lru_dump; time_t last_dump_time; time_t time_elapsed; #ifdef UNIV_DEBUG_THREAD_CREATION fprintf(stderr, "The LRU dump/restore thread has started, id %lu\n", os_thread_pf(os_thread_get_curr_id())); #endif if (srv_auto_lru_dump) buf_LRU_file_restore(); last_dump_time = time(NULL); loop: os_thread_sleep(5000000); if (srv_shutdown_state >= SRV_SHUTDOWN_CLEANUP) { goto exit_func; } time_elapsed = time(NULL) - last_dump_time; auto_lru_dump = srv_auto_lru_dump; if (auto_lru_dump > 0 && (time_t) auto_lru_dump < time_elapsed) { last_dump_time = time(NULL); buf_LRU_file_dump(); } goto loop; exit_func: /* We count the number of threads in os_thread_exit(). A created thread should always use that to exit and not use return() to exit. */ os_thread_exit(NULL); OS_THREAD_DUMMY_RETURN; } /**********************************************************************//** Check whether any background thread is active. @return FALSE if all are are suspended or have exited. */ UNIV_INTERN ibool srv_is_any_background_thread_active(void) /*=====================================*/ { ulint i; ibool ret = FALSE; mutex_enter(&kernel_mutex); for (i = 0; i <= SRV_MASTER; ++i) { if (srv_n_threads_active[i] != 0) { ret = TRUE; break; } } mutex_exit(&kernel_mutex); return(ret); } /*******************************************************************//** Tells the InnoDB server that there has been activity in the database and wakes up the master thread if it is suspended (not sleeping). Used in the MySQL interface. Note that there is a small chance that the master thread stays suspended (we do not protect our operation with the srv_sys_t->mutex, for performance reasons). */ UNIV_INTERN void srv_active_wake_master_thread(void) /*===============================*/ { srv_activity_count++; if (srv_n_threads_active[SRV_MASTER] == 0) { mutex_enter(&kernel_mutex); srv_release_threads(SRV_MASTER, 1); mutex_exit(&kernel_mutex); } } /*******************************************************************//** Tells the purge thread that there has been activity in the database and wakes up the purge thread if it is suspended (not sleeping). Note that there is a small chance that the purge thread stays suspended (we do not protect our operation with the kernel mutex, for performace reasons). */ UNIV_INTERN void srv_wake_purge_thread_if_not_active(void) /*=====================================*/ { ut_ad(!mutex_own(&kernel_mutex)); if (srv_n_purge_threads > 0 && srv_n_threads_active[SRV_WORKER] == 0) { mutex_enter(&kernel_mutex); srv_release_threads(SRV_WORKER, 1); mutex_exit(&kernel_mutex); } } /*******************************************************************//** Wakes up the master thread if it is suspended or being suspended. */ UNIV_INTERN void srv_wake_master_thread(void) /*========================*/ { srv_activity_count++; mutex_enter(&kernel_mutex); srv_release_threads(SRV_MASTER, 1); mutex_exit(&kernel_mutex); } /*******************************************************************//** Wakes up the purge thread if it's not already awake. */ UNIV_INTERN void srv_wake_purge_thread(void) /*=======================*/ { ut_ad(!mutex_own(&kernel_mutex)); if (srv_n_purge_threads > 0) { mutex_enter(&kernel_mutex); srv_release_threads(SRV_WORKER, 1); mutex_exit(&kernel_mutex); } } /********************************************************************** The master thread is tasked to ensure that flush of log file happens once every second in the background. This is to ensure that not more than one second of trxs are lost in case of crash when innodb_flush_logs_at_trx_commit != 1 */ static void srv_sync_log_buffer_in_background(void) /*===================================*/ { time_t current_time = time(NULL); srv_main_thread_op_info = "flushing log"; if (difftime(current_time, srv_last_log_flush_time) >= 1) { log_buffer_sync_in_background(TRUE); srv_last_log_flush_time = current_time; srv_log_writes_and_flush++; } } /********************************************************************//** Do a full purge, reconfigure the purge sub-system if a dynamic change is detected. */ static void srv_master_do_purge(void) /*=====================*/ { ulint n_pages_purged; ut_ad(!mutex_own(&kernel_mutex)); ut_a(srv_n_purge_threads == 0); do { /* Check for shutdown and change in purge config. */ if (srv_fast_shutdown && srv_shutdown_state > 0) { /* Nothing to purge. */ n_pages_purged = 0; } else { n_pages_purged = trx_purge(srv_purge_batch_size); } srv_sync_log_buffer_in_background(); } while (n_pages_purged > 0); } /*********************************************************************//** The master thread controlling the server. @return a dummy parameter */ UNIV_INTERN os_thread_ret_t srv_master_thread( /*==============*/ void* arg __attribute__((unused))) /*!< in: a dummy parameter required by os_thread_create */ { buf_pool_stat_t buf_stat; srv_slot_t* slot; ulint old_activity_count; ulint n_pages_purged = 0; ulint n_bytes_merged; ulint n_pages_flushed; ulint n_pages_flushed_prev = 0; ulint n_bytes_archived; ulint n_tables_to_drop; ulint n_ios; ulint n_ios_old; ulint n_ios_very_old; ulint n_pend_ios; ulint next_itr_time; ulint prev_adaptive_flushing_method = ULINT_UNDEFINED; ulint inner_loop = 0; ibool skip_sleep = FALSE; ulint i; struct t_prev_flush_info_struct { ulint count; unsigned space:32; unsigned offset:32; ib_uint64_t oldest_modification; } prev_flush_info[MAX_BUFFER_POOLS]; ib_uint64_t lsn_old; ib_uint64_t oldest_lsn; #ifdef UNIV_DEBUG_THREAD_CREATION fprintf(stderr, "Master thread starts, id %lu\n", os_thread_pf(os_thread_get_curr_id())); #endif #ifdef UNIV_PFS_THREAD pfs_register_thread(srv_master_thread_key); #endif srv_main_thread_process_no = os_proc_get_number(); srv_main_thread_id = os_thread_pf(os_thread_get_curr_id()); memset(&prev_flush_info, 0, sizeof(prev_flush_info)); mutex_enter(&kernel_mutex); slot = srv_table_reserve_slot(SRV_MASTER); srv_n_threads_active[SRV_MASTER]++; mutex_exit(&kernel_mutex); mutex_enter(&(log_sys->mutex)); lsn_old = log_sys->lsn; mutex_exit(&(log_sys->mutex)); loop: /*****************************************************************/ /* ---- When there is database activity by users, we cycle in this loop */ srv_main_thread_op_info = "reserving kernel mutex"; buf_get_total_stat(&buf_stat); n_ios_very_old = log_sys->n_log_ios + buf_stat.n_pages_read + buf_stat.n_pages_written; n_pages_flushed= 0; mutex_enter(&kernel_mutex); /* Store the user activity counter at the start of this loop */ old_activity_count = srv_activity_count; mutex_exit(&kernel_mutex); if (srv_force_recovery >= SRV_FORCE_NO_BACKGROUND) { goto suspend_thread; } /* ---- We run the following loop approximately once per second when there is database activity */ srv_last_log_flush_time = time(NULL); /* Sleep for 1 second on entrying the for loop below the first time. */ next_itr_time = ut_time_ms() + 1000; skip_sleep = FALSE; for (i = 0; i < 10; i++) { ulint cur_time = ut_time_ms(); n_pages_flushed = 0; /* initialize */ /* ALTER TABLE in MySQL requires on Unix that the table handler can drop tables lazily after there no longer are SELECT queries to them. */ srv_main_thread_op_info = "doing background drop tables"; row_drop_tables_for_mysql_in_background(); srv_main_thread_op_info = ""; if (srv_fast_shutdown && srv_shutdown_state > 0) { goto background_loop; } buf_get_total_stat(&buf_stat); n_ios_old = log_sys->n_log_ios + buf_stat.n_pages_read + buf_stat.n_pages_written; srv_main_thread_op_info = "sleeping"; srv_main_1_second_loops++; if (!skip_sleep) { if (next_itr_time > cur_time && srv_shutdown_state == SRV_SHUTDOWN_NONE) { /* Get sleep interval in micro seconds. We use ut_min() to avoid long sleep in case of wrap around. */ os_thread_sleep(ut_min(1000000, (next_itr_time - cur_time) * 1000)); srv_main_sleeps++; /* mutex_enter(&(log_sys->mutex)); oldest_lsn = buf_pool_get_oldest_modification(); ib_uint64_t lsn = log_sys->lsn; mutex_exit(&(log_sys->mutex)); if(oldest_lsn) fprintf(stderr, "InnoDB flush: age pct: %lu, lsn progress: %lu\n", (lsn - oldest_lsn) * 100 / log_sys->max_checkpoint_age, lsn - lsn_old); */ } /* Each iteration should happen at 1 second interval. */ next_itr_time = ut_time_ms() + 1000; } /* if (!skip_sleep) */ skip_sleep = FALSE; /* Flush logs if needed */ srv_sync_log_buffer_in_background(); srv_main_thread_op_info = "making checkpoint"; log_free_check(); /* If i/os during one second sleep were less than 5% of capacity, we assume that there is free disk i/o capacity available, and it makes sense to do an insert buffer merge. */ buf_get_total_stat(&buf_stat); n_pend_ios = buf_get_n_pending_ios() + log_sys->n_pending_writes; n_ios = log_sys->n_log_ios + buf_stat.n_pages_read + buf_stat.n_pages_written; if (n_pend_ios < SRV_PEND_IO_THRESHOLD && (n_ios - n_ios_old < SRV_RECENT_IO_ACTIVITY)) { srv_main_thread_op_info = "doing insert buffer merge"; ibuf_contract_for_n_pages(FALSE, PCT_IBUF_IO(5)); /* Flush logs if needed */ srv_sync_log_buffer_in_background(); } if (UNIV_UNLIKELY(buf_get_modified_ratio_pct() > srv_max_buf_pool_modified_pct)) { /* Try to keep the number of modified pages in the buffer pool under the limit wished by the user */ srv_main_thread_op_info = "flushing buffer pool pages"; n_pages_flushed = buf_flush_list( PCT_IO(100), IB_ULONGLONG_MAX); mutex_enter(&(log_sys->mutex)); lsn_old = log_sys->lsn; mutex_exit(&(log_sys->mutex)); prev_adaptive_flushing_method = ULINT_UNDEFINED; } else if (srv_adaptive_flushing && srv_adaptive_flushing_method == 0) { /* Try to keep the rate of flushing of dirty pages such that redo log generation does not produce bursts of IO at checkpoint time. */ ulint n_flush = buf_flush_get_desired_flush_rate(); if (n_flush) { srv_main_thread_op_info = "flushing buffer pool pages"; n_flush = ut_min(PCT_IO(100), n_flush); n_pages_flushed = buf_flush_list( n_flush, IB_ULONGLONG_MAX); } mutex_enter(&(log_sys->mutex)); lsn_old = log_sys->lsn; mutex_exit(&(log_sys->mutex)); prev_adaptive_flushing_method = ULINT_UNDEFINED; } else if (srv_adaptive_flushing && srv_adaptive_flushing_method == 1) { /* Try to keep modified age not to exceed max_checkpoint_age * 7/8 line */ mutex_enter(&(log_sys->mutex)); oldest_lsn = buf_pool_get_oldest_modification(); if (oldest_lsn == 0) { lsn_old = log_sys->lsn; mutex_exit(&(log_sys->mutex)); } else { if ((log_sys->lsn - oldest_lsn) > (log_sys->max_checkpoint_age) - ((log_sys->max_checkpoint_age) / 8)) { /* LOG_POOL_PREFLUSH_RATIO_ASYNC is exceeded. */ /* We should not flush from here. */ lsn_old = log_sys->lsn; mutex_exit(&(log_sys->mutex)); } else if ((log_sys->lsn - oldest_lsn) > (log_sys->max_checkpoint_age)/4 ) { /* defence line (max_checkpoint_age * 1/2) */ ib_uint64_t lsn = log_sys->lsn; ib_uint64_t level, bpl; buf_page_t* bpage; ulint j; mutex_exit(&(log_sys->mutex)); bpl = 0; for (j = 0; j < srv_buf_pool_instances; j++) { buf_pool_t* buf_pool; ulint n_blocks; buf_pool = buf_pool_from_array(j); /* The scanning flush_list is optimistic here */ level = 0; n_blocks = 0; bpage = UT_LIST_GET_FIRST(buf_pool->flush_list); while (bpage != NULL) { ib_uint64_t oldest_modification = bpage->oldest_modification; if (oldest_modification != 0) { level += log_sys->max_checkpoint_age - (lsn - oldest_modification); } bpage = UT_LIST_GET_NEXT(flush_list, bpage); n_blocks++; } if (level) { bpl += ((ib_uint64_t) n_blocks * n_blocks * (lsn - lsn_old)) / level; } } if (!srv_use_doublewrite_buf) { /* flush is faster than when doublewrite */ bpl = (bpl * 7) / 8; } if (bpl) { retry_flush_batch: n_pages_flushed = buf_flush_list(bpl, oldest_lsn + (lsn - lsn_old)); if (n_pages_flushed == ULINT_UNDEFINED) { os_thread_sleep(5000); goto retry_flush_batch; } } lsn_old = lsn; /* fprintf(stderr, "InnoDB flush: age pct: %lu, lsn progress: %lu, blocks to flush:%llu\n", (lsn - oldest_lsn) * 100 / log_sys->max_checkpoint_age, lsn - lsn_old, bpl); */ } else { lsn_old = log_sys->lsn; mutex_exit(&(log_sys->mutex)); } } prev_adaptive_flushing_method = 1; } else if (srv_adaptive_flushing && srv_adaptive_flushing_method == 2) { buf_pool_t* buf_pool; buf_page_t* bpage; ib_uint64_t lsn; ulint j; mutex_enter(&(log_sys->mutex)); oldest_lsn = buf_pool_get_oldest_modification(); lsn = log_sys->lsn; mutex_exit(&(log_sys->mutex)); /* upper loop/sec. (x10) */ next_itr_time -= 900; /* 1000 - 900 == 100 */ inner_loop++; if (inner_loop < 10) { i--; } else { inner_loop = 0; } if (prev_adaptive_flushing_method == 2) { lint n_flush; lint blocks_sum; ulint new_blocks_sum, flushed_blocks_sum; blocks_sum = new_blocks_sum = flushed_blocks_sum = 0; /* prev_flush_info[j] should be the previous loop's */ for (j = 0; j < srv_buf_pool_instances; j++) { lint blocks_num, new_blocks_num, flushed_blocks_num; ibool found; buf_pool = buf_pool_from_array(j); blocks_num = UT_LIST_GET_LEN(buf_pool->flush_list); bpage = UT_LIST_GET_FIRST(buf_pool->flush_list); new_blocks_num = 0; found = FALSE; while (bpage != NULL) { if (prev_flush_info[j].space == bpage->space && prev_flush_info[j].offset == bpage->offset && prev_flush_info[j].oldest_modification == bpage->oldest_modification) { found = TRUE; break; } bpage = UT_LIST_GET_NEXT(flush_list, bpage); new_blocks_num++; } if (!found) { new_blocks_num = blocks_num; } flushed_blocks_num = new_blocks_num + prev_flush_info[j].count - blocks_num; if (flushed_blocks_num < 0) { flushed_blocks_num = 0; } bpage = UT_LIST_GET_FIRST(buf_pool->flush_list); prev_flush_info[j].count = UT_LIST_GET_LEN(buf_pool->flush_list); if (bpage) { prev_flush_info[j].space = bpage->space; prev_flush_info[j].offset = bpage->offset; prev_flush_info[j].oldest_modification = bpage->oldest_modification; } else { prev_flush_info[j].space = 0; prev_flush_info[j].offset = 0; prev_flush_info[j].oldest_modification = 0; } new_blocks_sum += new_blocks_num; flushed_blocks_sum += flushed_blocks_num; blocks_sum += blocks_num; } n_flush = (lint) (blocks_sum * (lsn - lsn_old) / log_sys->max_modified_age_async); if ((ulint) flushed_blocks_sum > n_pages_flushed_prev) { n_flush -= (flushed_blocks_sum - n_pages_flushed_prev); } if (n_flush > 0) { n_flush++; n_pages_flushed = buf_flush_list(n_flush, oldest_lsn + (lsn - lsn_old)); } else { n_pages_flushed = 0; } } else { /* store previous first pages of the flush_list */ for (j = 0; j < srv_buf_pool_instances; j++) { buf_pool = buf_pool_from_array(j); bpage = UT_LIST_GET_FIRST(buf_pool->flush_list); prev_flush_info[j].count = UT_LIST_GET_LEN(buf_pool->flush_list); if (bpage) { prev_flush_info[j].space = bpage->space; prev_flush_info[j].offset = bpage->offset; prev_flush_info[j].oldest_modification = bpage->oldest_modification; } else { prev_flush_info[j].space = 0; prev_flush_info[j].offset = 0; prev_flush_info[j].oldest_modification = 0; } } n_pages_flushed = 0; } lsn_old = lsn; prev_adaptive_flushing_method = 2; } else { mutex_enter(&(log_sys->mutex)); lsn_old = log_sys->lsn; mutex_exit(&(log_sys->mutex)); prev_adaptive_flushing_method = ULINT_UNDEFINED; } if (n_pages_flushed == ULINT_UNDEFINED) { n_pages_flushed_prev = 0; } else { n_pages_flushed_prev = n_pages_flushed; } if (srv_activity_count == old_activity_count) { /* There is no user activity at the moment, go to the background loop */ goto background_loop; } } /* ---- We perform the following code approximately once per 10 seconds when there is database activity */ #ifdef MEM_PERIODIC_CHECK /* Check magic numbers of every allocated mem block once in 10 seconds */ mem_validate_all_blocks(); #endif /* If i/os during the 10 second period were less than 200% of capacity, we assume that there is free disk i/o capacity available, and it makes sense to flush srv_io_capacity pages. Note that this is done regardless of the fraction of dirty pages relative to the max requested by the user. The one second loop above requests writes for that case. The writes done here are not required, and may be disabled. */ buf_get_total_stat(&buf_stat); n_pend_ios = buf_get_n_pending_ios() + log_sys->n_pending_writes; n_ios = log_sys->n_log_ios + buf_stat.n_pages_read + buf_stat.n_pages_written; srv_main_10_second_loops++; if (n_pend_ios < SRV_PEND_IO_THRESHOLD && (n_ios - n_ios_very_old < SRV_PAST_IO_ACTIVITY)) { srv_main_thread_op_info = "flushing buffer pool pages"; buf_flush_list(PCT_IO(100), IB_ULONGLONG_MAX); /* Flush logs if needed */ srv_sync_log_buffer_in_background(); } /* We run a batch of insert buffer merge every 10 seconds, even if the server were active */ srv_main_thread_op_info = "doing insert buffer merge"; ibuf_contract_for_n_pages(FALSE, PCT_IBUF_IO(5)); /* Flush logs if needed */ srv_sync_log_buffer_in_background(); if (srv_n_purge_threads == 0) { srv_main_thread_op_info = "master purging"; srv_master_do_purge(); if (srv_fast_shutdown && srv_shutdown_state > 0) { goto background_loop; } } srv_main_thread_op_info = "flushing buffer pool pages"; /* Flush a few oldest pages to make a new checkpoint younger */ if (buf_get_modified_ratio_pct() > 70) { /* If there are lots of modified pages in the buffer pool (> 70 %), we assume we can afford reserving the disk(s) for the time it requires to flush 100 pages */ n_pages_flushed = buf_flush_list( PCT_IO(100), IB_ULONGLONG_MAX); } else { /* Otherwise, we only flush a small number of pages so that we do not unnecessarily use much disk i/o capacity from other work */ n_pages_flushed = buf_flush_list( PCT_IO(10), IB_ULONGLONG_MAX); } srv_main_thread_op_info = "making checkpoint"; /* Make a new checkpoint about once in 10 seconds */ log_checkpoint(TRUE, FALSE, TRUE); srv_main_thread_op_info = "reserving kernel mutex"; mutex_enter(&kernel_mutex); /* ---- When there is database activity, we jump from here back to the start of loop */ if (srv_activity_count != old_activity_count) { mutex_exit(&kernel_mutex); goto loop; } mutex_exit(&kernel_mutex); /* If the database is quiet, we enter the background loop */ /*****************************************************************/ background_loop: /* ---- In this loop we run background operations when the server is quiet from user activity. Also in the case of a shutdown, we loop here, flushing the buffer pool to the data files. */ /* The server has been quiet for a while: start running background operations */ srv_main_background_loops++; srv_main_thread_op_info = "doing background drop tables"; n_tables_to_drop = row_drop_tables_for_mysql_in_background(); if (n_tables_to_drop > 0) { /* Do not monopolize the CPU even if there are tables waiting in the background drop queue. (It is essentially a bug if MySQL tries to drop a table while there are still open handles to it and we had to put it to the background drop queue.) */ if (srv_shutdown_state == SRV_SHUTDOWN_NONE) { os_thread_sleep(100000); } } if (srv_n_purge_threads == 0) { srv_main_thread_op_info = "master purging"; srv_master_do_purge(); } srv_main_thread_op_info = "reserving kernel mutex"; mutex_enter(&kernel_mutex); if (srv_activity_count != old_activity_count) { mutex_exit(&kernel_mutex); goto loop; } mutex_exit(&kernel_mutex); srv_main_thread_op_info = "doing insert buffer merge"; if (srv_fast_shutdown && srv_shutdown_state > 0) { n_bytes_merged = 0; } else { /* This should do an amount of IO similar to the number of dirty pages that will be flushed in the call to buf_flush_list below. Otherwise, the system favors clean pages over cleanup throughput. */ n_bytes_merged = ibuf_contract_for_n_pages(FALSE, PCT_IBUF_IO(100)); } srv_main_thread_op_info = "reserving kernel mutex"; mutex_enter(&kernel_mutex); if (srv_activity_count != old_activity_count) { mutex_exit(&kernel_mutex); goto loop; } mutex_exit(&kernel_mutex); flush_loop: srv_main_thread_op_info = "flushing buffer pool pages"; srv_main_flush_loops++; if (srv_fast_shutdown < 2) { n_pages_flushed = buf_flush_list( PCT_IO(100), IB_ULONGLONG_MAX); } else { /* In the fastest shutdown we do not flush the buffer pool to data files: we set n_pages_flushed to 0 artificially. */ n_pages_flushed = 0; } srv_main_thread_op_info = "reserving kernel mutex"; mutex_enter(&kernel_mutex); if (srv_activity_count != old_activity_count) { mutex_exit(&kernel_mutex); goto loop; } mutex_exit(&kernel_mutex); srv_main_thread_op_info = "waiting for buffer pool flush to end"; buf_flush_wait_batch_end(NULL, BUF_FLUSH_LIST); /* Flush logs if needed */ srv_sync_log_buffer_in_background(); srv_main_thread_op_info = "making checkpoint"; log_checkpoint(TRUE, FALSE, TRUE); if (buf_get_modified_ratio_pct() > srv_max_buf_pool_modified_pct) { /* Try to keep the number of modified pages in the buffer pool under the limit wished by the user */ goto flush_loop; } srv_main_thread_op_info = "reserving kernel mutex"; mutex_enter(&kernel_mutex); if (srv_activity_count != old_activity_count) { mutex_exit(&kernel_mutex); goto loop; } mutex_exit(&kernel_mutex); /* srv_main_thread_op_info = "archiving log (if log archive is on)"; log_archive_do(FALSE, &n_bytes_archived); */ n_bytes_archived = 0; /* Keep looping in the background loop if still work to do */ if (srv_fast_shutdown && srv_shutdown_state > 0) { if (n_tables_to_drop + n_pages_flushed + n_bytes_archived != 0) { /* If we are doing a fast shutdown (= the default) we do not do purge or insert buffer merge. But we flush the buffer pool completely to disk. In a 'very fast' shutdown we do not flush the buffer pool to data files: we have set n_pages_flushed to 0 artificially. */ goto background_loop; } } else if (n_tables_to_drop + n_pages_purged + n_bytes_merged + n_pages_flushed + n_bytes_archived != 0) { /* In a 'slow' shutdown we run purge and the insert buffer merge to completion */ goto background_loop; } /* There is no work for background operations either: suspend master thread to wait for more server activity */ suspend_thread: srv_main_thread_op_info = "suspending"; mutex_enter(&kernel_mutex); if (row_get_background_drop_list_len_low() > 0) { mutex_exit(&kernel_mutex); goto loop; } srv_suspend_thread(slot); mutex_exit(&kernel_mutex); /* DO NOT CHANGE THIS STRING. innobase_start_or_create_for_mysql() waits for database activity to die down when converting < 4.1.x databases, and relies on this string being exactly as it is. InnoDB manual also mentions this string in several places. */ srv_main_thread_op_info = "waiting for server activity"; os_event_wait(slot->event); if (srv_shutdown_state == SRV_SHUTDOWN_EXIT_THREADS) { os_thread_exit(NULL); } /* When there is user activity, InnoDB will set the event and the main thread goes back to loop. */ goto loop; } /*********************************************************************//** Asynchronous purge thread. @return a dummy parameter */ UNIV_INTERN os_thread_ret_t srv_purge_thread( /*=============*/ void* arg __attribute__((unused))) /*!< in: a dummy parameter required by os_thread_create */ { srv_slot_t* slot; ulint retries = 0; ulint n_total_purged = ULINT_UNDEFINED; ulint next_itr_time; ut_a(srv_n_purge_threads == 1); #ifdef UNIV_PFS_THREAD pfs_register_thread(srv_purge_thread_key); #endif /* UNIV_PFS_THREAD */ #ifdef UNIV_DEBUG_THREAD_CREATION fprintf(stderr, "InnoDB: Purge thread running, id %lu\n", os_thread_pf(os_thread_get_curr_id())); #endif /* UNIV_DEBUG_THREAD_CREATION */ mutex_enter(&kernel_mutex); slot = srv_table_reserve_slot(SRV_WORKER); ++srv_n_threads_active[SRV_WORKER]; mutex_exit(&kernel_mutex); next_itr_time = ut_time_ms(); while (srv_shutdown_state != SRV_SHUTDOWN_EXIT_THREADS) { ulint n_pages_purged = 0; ulint cur_time; /* If there are very few records to purge or the last purge didn't purge any records then wait for activity. We peek at the history len without holding any mutex because in the worst case we will end up waiting for the next purge event. */ if (trx_sys->rseg_history_len < srv_purge_batch_size || (n_total_purged == 0 && retries >= TRX_SYS_N_RSEGS)) { mutex_enter(&kernel_mutex); srv_suspend_thread(slot); mutex_exit(&kernel_mutex); os_event_wait(slot->event); retries = 0; } /* Check for shutdown and whether we should do purge at all. */ if (srv_force_recovery >= SRV_FORCE_NO_BACKGROUND || srv_shutdown_state != 0 || srv_fast_shutdown) { break; } if (n_total_purged == 0 && retries <= TRX_SYS_N_RSEGS) { ++retries; } else if (n_total_purged > 0) { retries = 0; n_total_purged = 0; } /* Purge until there are no more records to purge and there is no change in configuration or server state. */ do { n_pages_purged = trx_purge(srv_purge_batch_size); n_total_purged += n_pages_purged; } while (n_pages_purged > 0 && !srv_fast_shutdown); srv_sync_log_buffer_in_background(); cur_time = ut_time_ms(); os_event_reset(srv_shutdown_event); if (next_itr_time > cur_time) { os_event_wait_time(srv_shutdown_event, ut_min(1000000, (next_itr_time - cur_time) * 1000)); next_itr_time = ut_time_ms() + 1000; } else { next_itr_time = cur_time + 1000; } } mutex_enter(&kernel_mutex); /* Decrement the active count. */ srv_suspend_thread(slot); slot->in_use = FALSE; mutex_exit(&kernel_mutex); #ifdef UNIV_DEBUG_THREAD_CREATION fprintf(stderr, "InnoDB: Purge thread exiting, id %lu\n", os_thread_pf(os_thread_get_curr_id())); #endif /* UNIV_DEBUG_THREAD_CREATION */ /* We count the number of threads in os_thread_exit(). A created thread should always use that to exit and not use return() to exit. */ os_thread_exit(NULL); OS_THREAD_DUMMY_RETURN; /* Not reached, avoid compiler warning */ } /**********************************************************************//** Enqueues a task to server task queue and releases a worker thread, if there is a suspended one. */ UNIV_INTERN void srv_que_task_enqueue_low( /*=====================*/ que_thr_t* thr) /*!< in: query thread */ { ut_ad(thr); mutex_enter(&kernel_mutex); UT_LIST_ADD_LAST(queue, srv_sys->tasks, thr); srv_release_threads(SRV_WORKER, 1); mutex_exit(&kernel_mutex); }