/* Copyright (c) 2001, 2012, Oracle and/or its affiliates Copyright (c) 2012, Monty Program Ab This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; version 2 of the License. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */ /* Note that we can't have assertion on file descriptors; The reason for this is that during mysql shutdown, another thread can close a file we are working on. In this case we should just return read errors from the file descriptior. */ #ifdef __WIN__ #include #include #pragma comment(lib, "ws2_32.lib") #endif #include "vio_priv.h" #include "my_context.h" #include #ifdef FIONREAD_IN_SYS_FILIO # include #endif int vio_errno(Vio *vio __attribute__((unused))) { return socket_errno; /* On Win32 this mapped to WSAGetLastError() */ } size_t vio_read(Vio * vio, uchar* buf, size_t size) { size_t r; DBUG_ENTER("vio_read"); DBUG_PRINT("enter", ("sd: %d buf: 0x%lx size: %u", vio->sd, (long) buf, (uint) size)); /* Ensure nobody uses vio_read_buff and vio_read simultaneously */ DBUG_ASSERT(vio->read_end == vio->read_pos); if (vio->async_context && vio->async_context->active) r= my_recv_async(vio->async_context, vio->sd, buf, size, vio->read_timeout); else { if (vio->async_context) { /* If switching from non-blocking to blocking API usage, set the socket back to blocking mode. */ my_bool old_mode; vio_blocking(vio, TRUE, &old_mode); } #ifdef __WIN__ r = recv(vio->sd, buf, size,0); #else errno=0; /* For linux */ r = read(vio->sd, buf, size); #endif /* __WIN__ */ } #ifndef DBUG_OFF if (r == (size_t) -1) { DBUG_PRINT("vio_error", ("Got error %d during read",errno)); } #endif /* DBUG_OFF */ DBUG_PRINT("exit", ("%ld", (long) r)); DBUG_RETURN(r); } /* Buffered read: if average read size is small it may reduce number of syscalls. */ size_t vio_read_buff(Vio *vio, uchar* buf, size_t size) { size_t rc; #define VIO_UNBUFFERED_READ_MIN_SIZE 2048 DBUG_ENTER("vio_read_buff"); DBUG_PRINT("enter", ("sd: %d buf: 0x%lx size: %u", vio->sd, (long) buf, (uint) size)); if (vio->read_pos < vio->read_end) { rc= min((size_t) (vio->read_end - vio->read_pos), size); memcpy(buf, vio->read_pos, rc); vio->read_pos+= rc; /* Do not try to read from the socket now even if rc < size: vio_read can return -1 due to an error or non-blocking mode, and the safest way to handle it is to move to a separate branch. */ } else if (size < VIO_UNBUFFERED_READ_MIN_SIZE) { rc= vio_read(vio, (uchar*) vio->read_buffer, VIO_READ_BUFFER_SIZE); if (rc != 0 && rc != (size_t) -1) { if (rc > size) { vio->read_pos= vio->read_buffer + size; vio->read_end= vio->read_buffer + rc; rc= size; } memcpy(buf, vio->read_buffer, rc); } } else rc= vio_read(vio, buf, size); DBUG_RETURN(rc); #undef VIO_UNBUFFERED_READ_MIN_SIZE } my_bool vio_buff_has_data(Vio *vio) { return (vio->read_pos != vio->read_end); } size_t vio_write(Vio * vio, const uchar* buf, size_t size) { size_t r; DBUG_ENTER("vio_write"); DBUG_PRINT("enter", ("sd: %d buf: 0x%lx size: %u", vio->sd, (long) buf, (uint) size)); if (vio->async_context && vio->async_context->active) r= my_send_async(vio->async_context, vio->sd, buf, size, vio->write_timeout); else { if (vio->async_context) { /* If switching from non-blocking to blocking API usage, set the socket back to blocking mode. */ my_bool old_mode; vio_blocking(vio, TRUE, &old_mode); } #ifdef __WIN__ r = send(vio->sd, buf, size,0); #else r = write(vio->sd, buf, size); #endif /* __WIN__ */ } #ifndef DBUG_OFF if (r == (size_t) -1) { DBUG_PRINT("vio_error", ("Got error on write: %d",socket_errno)); } #endif /* DBUG_OFF */ DBUG_PRINT("exit", ("%u", (uint) r)); DBUG_RETURN(r); } #ifdef _WIN32 static void CALLBACK cancel_io_apc(ULONG_PTR data) { CancelIo((HANDLE)data); } /* Cancel IO on Windows. On XP, issue CancelIo as asynchronous procedure call to the thread that started IO. On Vista+, simpler cancelation is done with CancelIoEx. */ int cancel_io(HANDLE handle, DWORD thread_id) { static BOOL (WINAPI *fp_CancelIoEx) (HANDLE, OVERLAPPED *); static volatile int first_time= 1; int rc; HANDLE thread_handle; if (first_time) { /* Try to load CancelIoEx using GetProcAddress */ InterlockedCompareExchangePointer((volatile void *)&fp_CancelIoEx, GetProcAddress(GetModuleHandle("kernel32"), "CancelIoEx"), NULL); first_time =0; } if (fp_CancelIoEx) { return fp_CancelIoEx(handle, NULL)? 0 :-1; } thread_handle= OpenThread(THREAD_SET_CONTEXT, FALSE, thread_id); if (thread_handle) { rc= QueueUserAPC(cancel_io_apc, thread_handle, (ULONG_PTR)handle); CloseHandle(thread_handle); } return rc; } #endif int vio_socket_shutdown(Vio *vio, int how) { int ret= shutdown(vio->sd, how); #ifdef _WIN32 /* Cancel possible IO in progress (shutdown does not do that on Windows). */ (void) cancel_io((HANDLE)vio->sd, vio->thread_id); #endif return ret; } int vio_blocking(Vio * vio __attribute__((unused)), my_bool set_blocking_mode, my_bool *old_mode) { int r=0; DBUG_ENTER("vio_blocking"); *old_mode= test(!(vio->fcntl_mode & O_NONBLOCK)); DBUG_PRINT("enter", ("set_blocking_mode: %d old_mode: %d", (int) set_blocking_mode, (int) *old_mode)); #if !defined(__WIN__) #if !defined(NO_FCNTL_NONBLOCK) if (vio->sd >= 0) { int old_fcntl=vio->fcntl_mode; if (set_blocking_mode) vio->fcntl_mode &= ~O_NONBLOCK; /* clear bit */ else vio->fcntl_mode |= O_NONBLOCK; /* set bit */ if (old_fcntl != vio->fcntl_mode) { r= fcntl(vio->sd, F_SETFL, vio->fcntl_mode); if (r == -1) { DBUG_PRINT("info", ("fcntl failed, errno %d", errno)); vio->fcntl_mode= old_fcntl; } } } #else r= set_blocking_mode ? 0 : 1; #endif /* !defined(NO_FCNTL_NONBLOCK) */ #else /* !defined(__WIN__) */ if (vio->type != VIO_TYPE_NAMEDPIPE && vio->type != VIO_TYPE_SHARED_MEMORY) { ulong arg; int old_fcntl=vio->fcntl_mode; if (set_blocking_mode) { arg = 0; vio->fcntl_mode &= ~O_NONBLOCK; /* clear bit */ } else { arg = 1; vio->fcntl_mode |= O_NONBLOCK; /* set bit */ } if (old_fcntl != vio->fcntl_mode) r = ioctlsocket(vio->sd,FIONBIO,(void*) &arg); } else r= test(!(vio->fcntl_mode & O_NONBLOCK)) != set_blocking_mode; #endif /* !defined(__WIN__) */ DBUG_PRINT("exit", ("%d", r)); DBUG_RETURN(r); } my_bool vio_is_blocking(Vio * vio) { my_bool r; DBUG_ENTER("vio_is_blocking"); r = !(vio->fcntl_mode & O_NONBLOCK); DBUG_PRINT("exit", ("%d", (int) r)); DBUG_RETURN(r); } int vio_fastsend(Vio * vio __attribute__((unused))) { int r=0; DBUG_ENTER("vio_fastsend"); if (vio->type == VIO_TYPE_NAMEDPIPE ||vio->type == VIO_TYPE_SHARED_MEMORY) { DBUG_RETURN(0); } #if defined(IPTOS_THROUGHPUT) { int tos = IPTOS_THROUGHPUT; r= setsockopt(vio->sd, IPPROTO_IP, IP_TOS, (void *) &tos, sizeof(tos)); } #endif /* IPTOS_THROUGHPUT */ if (!r) { #ifdef __WIN__ BOOL nodelay= 1; #else int nodelay = 1; #endif r= setsockopt(vio->sd, IPPROTO_TCP, TCP_NODELAY, IF_WIN((const char*), (void*)) &nodelay, sizeof(nodelay)); } if (r) { DBUG_PRINT("warning", ("Couldn't set socket option for fast send")); r= -1; } DBUG_PRINT("exit", ("%d", r)); DBUG_RETURN(r); } int vio_keepalive(Vio* vio, my_bool set_keep_alive) { int r=0; uint opt = 0; DBUG_ENTER("vio_keepalive"); DBUG_PRINT("enter", ("sd: %d set_keep_alive: %d", vio->sd, (int) set_keep_alive)); if (vio->type != VIO_TYPE_NAMEDPIPE && vio->type != VIO_TYPE_SHARED_MEMORY) { if (set_keep_alive) opt = 1; r = setsockopt(vio->sd, SOL_SOCKET, SO_KEEPALIVE, (char *) &opt, sizeof(opt)); } DBUG_RETURN(r); } my_bool vio_should_retry(Vio * vio) { int en = socket_errno; /* man 2 read write EAGAIN or EWOULDBLOCK when a socket is a non-blocking mode means that the read/write would block. man 7 socket EAGAIN or EWOULDBLOCK when a socket is in a blocking mode means that the corresponding receiving or sending timeout was reached. */ return en == SOCKET_EINTR || (!vio_is_blocking(vio) && (en == SOCKET_EAGAIN || en == SOCKET_EWOULDBLOCK)); } my_bool vio_was_interrupted(Vio *vio __attribute__((unused))) { int en= socket_errno; return (en == SOCKET_EAGAIN || en == SOCKET_EINTR || en == SOCKET_EWOULDBLOCK || en == SOCKET_ETIMEDOUT); } int mysql_socket_shutdown(my_socket mysql_socket, int how) { int result; #ifdef __WIN__ static LPFN_DISCONNECTEX DisconnectEx = NULL; if (DisconnectEx == NULL) { DWORD dwBytesReturned; GUID guidDisconnectEx = WSAID_DISCONNECTEX; WSAIoctl(mysql_socket, SIO_GET_EXTENSION_FUNCTION_POINTER, &guidDisconnectEx, sizeof(GUID), &DisconnectEx, sizeof(DisconnectEx), &dwBytesReturned, NULL, NULL); } #endif /* Non instrumented code */ #ifdef __WIN__ if (DisconnectEx) result= (DisconnectEx(mysql_socket, (LPOVERLAPPED) NULL, (DWORD) 0, (DWORD) 0) == TRUE) ? 0 : -1; else #endif result= shutdown(mysql_socket, how); return result; } int vio_close(Vio * vio) { int r=0; DBUG_ENTER("vio_close"); if (vio->type != VIO_CLOSED) { DBUG_ASSERT(vio->type == VIO_TYPE_TCPIP || vio->type == VIO_TYPE_SOCKET || vio->type == VIO_TYPE_SSL); DBUG_ASSERT(vio->sd >= 0); if (mysql_socket_shutdown(vio->sd, SHUT_RDWR)) r= -1; if (closesocket(vio->sd)) r= -1; } if (r) { DBUG_PRINT("vio_error", ("close() failed, error: %d",socket_errno)); /* FIXME: error handling (not critical for MySQL) */ } vio->type= VIO_CLOSED; vio->sd= -1; DBUG_RETURN(r); } const char *vio_description(Vio * vio) { return vio->desc; } enum enum_vio_type vio_type(Vio* vio) { return vio->type; } my_socket vio_fd(Vio* vio) { return vio->sd; } /** Convert a sock-address (AF_INET or AF_INET6) into the "normalized" form, which is the IPv4 form for IPv4-mapped or IPv4-compatible IPv6 addresses. @note Background: when IPv4 and IPv6 are used simultaneously, IPv4 addresses may be written in a form of IPv4-mapped or IPv4-compatible IPv6 addresses. That means, one address (a.b.c.d) can be written in three forms: - IPv4: a.b.c.d; - IPv4-compatible IPv6: ::a.b.c.d; - IPv4-mapped IPv4: ::ffff:a.b.c.d; Having three forms of one address makes it a little difficult to compare addresses with each other (the IPv4-compatible IPv6-address of foo.bar will be different from the IPv4-mapped IPv6-address of foo.bar). @note This function can be made public when it's needed. @param src [in] source IP address (AF_INET or AF_INET6). @param src_length [in] length of the src. @param dst [out] a buffer to store normalized IP address (sockaddr_storage). @param dst_length [out] actual length of the normalized IP address. */ static void vio_get_normalized_ip(const struct sockaddr *src, int src_length, struct sockaddr *dst, int *dst_length) { switch (src->sa_family) { case AF_INET: memcpy(dst, src, src_length); *dst_length= src_length; break; #ifdef HAVE_IPV6 case AF_INET6: { const struct sockaddr_in6 *src_addr6= (const struct sockaddr_in6 *) src; const struct in6_addr *src_ip6= &(src_addr6->sin6_addr); const uint32 *src_ip6_int32= (uint32 *) src_ip6->s6_addr; if (IN6_IS_ADDR_V4MAPPED(src_ip6) || IN6_IS_ADDR_V4COMPAT(src_ip6)) { struct sockaddr_in *dst_ip4= (struct sockaddr_in *) dst; /* This is an IPv4-mapped or IPv4-compatible IPv6 address. It should be converted to the IPv4 form. */ *dst_length= sizeof (struct sockaddr_in); memset(dst_ip4, 0, *dst_length); dst_ip4->sin_family= AF_INET; dst_ip4->sin_port= src_addr6->sin6_port; /* In an IPv4 mapped or compatible address, the last 32 bits represent the IPv4 address. The byte orders for IPv6 and IPv4 addresses are the same, so a simple copy is possible. */ dst_ip4->sin_addr.s_addr= src_ip6_int32[3]; } else { /* This is a "native" IPv6 address. */ memcpy(dst, src, src_length); *dst_length= src_length; } break; } #endif /* HAVE_IPV6 */ } } /** Return the normalized IP address string for a sock-address. The idea is to return an IPv4-address for an IPv4-mapped and IPv4-compatible IPv6 address. The function writes the normalized IP address to the given buffer. The buffer should have enough space, otherwise error flag is returned. The system constant INET6_ADDRSTRLEN can be used to reserve buffers of the right size. @param addr [in] sockaddr object (AF_INET or AF_INET6). @param addr_length [in] length of the addr. @param ip_string [out] buffer to write normalized IP address. @param ip_string_size [in] size of the ip_string. @return Error status. @retval TRUE in case of error (the ip_string buffer is not enough). @retval FALSE on success. */ my_bool vio_get_normalized_ip_string(const struct sockaddr *addr, int addr_length, char *ip_string, size_t ip_string_size) { struct sockaddr_storage norm_addr_storage; struct sockaddr *norm_addr= (struct sockaddr *) &norm_addr_storage; int norm_addr_length; int err_code; vio_get_normalized_ip(addr, addr_length, norm_addr, &norm_addr_length); err_code= vio_getnameinfo(norm_addr, ip_string, ip_string_size, NULL, 0, NI_NUMERICHOST); if (!err_code) return FALSE; DBUG_PRINT("error", ("getnameinfo() failed with %d (%s).", (int) err_code, (const char *) gai_strerror(err_code))); return TRUE; } /** Return IP address and port of a VIO client socket. The function returns an IPv4 address if IPv6 support is disabled. The function returns an IPv4 address if the client socket is associated with an IPv4-compatible or IPv4-mapped IPv6 address. Otherwise, the native IPv6 address is returned. */ my_bool vio_peer_addr(Vio *vio, char *ip_buffer, uint16 *port, size_t ip_buffer_size) { DBUG_ENTER("vio_peer_addr"); DBUG_PRINT("enter", ("Client socked fd: %d", (int) vio->sd)); if (vio->localhost) { /* Initialize vio->remote and vio->addLen. Set vio->remote to IPv4 loopback address. */ struct in_addr *ip4= &((struct sockaddr_in *) &(vio->remote))->sin_addr; vio->remote.ss_family= AF_INET; vio->addrLen= sizeof (struct sockaddr_in); ip4->s_addr= htonl(INADDR_LOOPBACK); /* Initialize ip_buffer and port. */ strmov(ip_buffer, "127.0.0.1"); *port= 0; } else { int err_code; char port_buffer[NI_MAXSERV]; struct sockaddr_storage addr_storage; struct sockaddr *addr= (struct sockaddr *) &addr_storage; size_socket addr_length= sizeof (addr_storage); /* Get sockaddr by socked fd. */ err_code= getpeername(vio->sd, addr, &addr_length); if (err_code) { DBUG_PRINT("exit", ("getpeername() gave error: %d", socket_errno)); DBUG_RETURN(TRUE); } /* Normalize IP address. */ vio_get_normalized_ip(addr, addr_length, (struct sockaddr *) &vio->remote, &vio->addrLen); /* Get IP address & port number. */ err_code= vio_getnameinfo((struct sockaddr *) &vio->remote, ip_buffer, ip_buffer_size, port_buffer, NI_MAXSERV, NI_NUMERICHOST | NI_NUMERICSERV); if (err_code) { DBUG_PRINT("exit", ("getnameinfo() gave error: %s", gai_strerror(err_code))); DBUG_RETURN(TRUE); } *port= (uint16) strtol(port_buffer, NULL, 10); } DBUG_PRINT("exit", ("Client IP address: %s; port: %d", (const char *) ip_buffer, (int) *port)); DBUG_RETURN(FALSE); } /** Indicate whether there is data to read on a given socket. @note An exceptional condition event and/or errors are interpreted as if there is data to read. @param sd A connected socket. @param timeout Maximum time in seconds to poll. @retval FALSE There is data to read. @retval TRUE There is no data to read. */ static my_bool socket_poll_read(my_socket sd, uint timeout) { #ifdef __WIN__ int res; my_socket fd= sd; fd_set readfds, errorfds; struct timeval tm; DBUG_ENTER("socket_poll_read"); tm.tv_sec= timeout; tm.tv_usec= 0; FD_ZERO(&readfds); FD_ZERO(&errorfds); FD_SET(fd, &readfds); FD_SET(fd, &errorfds); /* The first argument is ignored on Windows, so a conversion to int is OK */ if ((res= select((int) fd, &readfds, NULL, &errorfds, &tm) <= 0)) { DBUG_RETURN(res < 0 ? 0 : 1); } res= FD_ISSET(fd, &readfds) || FD_ISSET(fd, &errorfds); DBUG_RETURN(!res); #elif defined(HAVE_POLL) struct pollfd fds; int res; DBUG_ENTER("socket_poll_read"); fds.fd=sd; fds.events=POLLIN; fds.revents=0; if ((res=poll(&fds,1,(int) timeout*1000)) <= 0) { DBUG_RETURN(res < 0 ? 0 : 1); /* Don't return 1 on errors */ } DBUG_RETURN(fds.revents & (POLLIN | POLLERR | POLLHUP) ? 0 : 1); #else return 0; #endif } /** Retrieve the amount of data that can be read from a socket. @param vio A VIO object. @param bytes[out] The amount of bytes available. @retval FALSE Success. @retval TRUE Failure. */ static my_bool socket_peek_read(Vio *vio, uint *bytes) { #if defined(_WIN32) int len; if (ioctlsocket(vio->sd, FIONREAD, &len)) return TRUE; *bytes= len; return FALSE; #elif defined(FIONREAD_IN_SYS_IOCTL) || defined(FIONREAD_IN_SYS_FILIO) int len; if (ioctl(vio->sd, FIONREAD, &len) < 0) return TRUE; *bytes= len; return FALSE; #else char buf[1024]; ssize_t res= recv(vio->sd, &buf, sizeof(buf), MSG_PEEK); if (res < 0) return TRUE; *bytes= res; return FALSE; #endif } /** Indicate whether there is data to read on a given socket. @remark Errors are interpreted as if there is data to read. @param sd A connected socket. @param timeout Maximum time in seconds to wait. @retval FALSE There is data (or EOF) to read. Also FALSE if error. @retval TRUE There is _NO_ data to read or timed out. */ my_bool vio_poll_read(Vio *vio, uint timeout) { my_socket sd= vio->sd; DBUG_ENTER("vio_poll_read"); if (vio->async_context && vio->async_context->active) DBUG_RETURN(my_poll_read_async(vio->async_context, timeout)); #ifdef HAVE_OPENSSL if (vio->type == VIO_TYPE_SSL) sd= SSL_get_fd((SSL*) vio->ssl_arg); #endif DBUG_RETURN(socket_poll_read(sd, timeout)); } /** Determine if the endpoint of a connection is still available. @remark The socket is assumed to be disconnected if an EOF condition is encountered. @param vio The VIO object. @retval TRUE EOF condition not found. @retval FALSE EOF condition is signaled. */ my_bool vio_is_connected(Vio *vio) { uint bytes= 0; DBUG_ENTER("vio_is_connected"); /* In the presence of errors the socket is assumed to be connected. */ /* The first step of detecting a EOF condition is veryfing whether there is data to read. Data in this case would be the EOF. */ if (vio_poll_read(vio, 0)) DBUG_RETURN(TRUE); /* The second step is read() or recv() from the socket returning 0 (EOF). Unfortunelly, it's not possible to call read directly as we could inadvertently read meaningful connection data. Simulate a read by retrieving the number of bytes available to read -- 0 meaning EOF. */ if (socket_peek_read(vio, &bytes)) DBUG_RETURN(TRUE); #ifdef HAVE_OPENSSL /* There might be buffered data at the SSL layer. */ if (!bytes && vio->type == VIO_TYPE_SSL) bytes= SSL_pending((SSL*) vio->ssl_arg); #endif DBUG_RETURN(bytes ? TRUE : FALSE); } void vio_timeout(Vio *vio, uint which, uint timeout) { #if defined(SO_SNDTIMEO) && defined(SO_RCVTIMEO) int r; DBUG_ENTER("vio_timeout"); { #ifdef __WIN__ /* Windows expects time in milliseconds as int */ int wait_timeout= (int) timeout * 1000; #else /* POSIX specifies time as struct timeval. */ struct timeval wait_timeout; wait_timeout.tv_sec= timeout; wait_timeout.tv_usec= 0; #endif r= setsockopt(vio->sd, SOL_SOCKET, which ? SO_SNDTIMEO : SO_RCVTIMEO, IF_WIN((const char*), (const void*))&wait_timeout, sizeof(wait_timeout)); } if (r != 0) DBUG_PRINT("error", ("setsockopt failed: %d, errno: %d", r, socket_errno)); DBUG_VOID_RETURN; #else /* Platforms not suporting setting of socket timeout should either use thr_alarm or just run without read/write timeout(s) */ #endif /* Make timeout values available for async operations. */ if (which) vio->write_timeout= timeout; else vio->read_timeout= timeout; } #ifdef __WIN__ /* Disable posting IO completion event to the port. In some cases (synchronous timed IO) we want to skip IOCP notifications. */ static void disable_iocp_notification(OVERLAPPED *overlapped) { HANDLE *handle = &(overlapped->hEvent); *handle = ((HANDLE)((ULONG_PTR) *handle|1)); } /* Enable posting IO completion event to the port */ static void enable_iocp_notification(OVERLAPPED *overlapped) { HANDLE *handle = &(overlapped->hEvent); *handle = (HANDLE)((ULONG_PTR) *handle & ~1); } /* Finish pending IO on pipe. Honor wait timeout */ static size_t pipe_complete_io(Vio* vio, char* buf, size_t size, DWORD timeout_ms) { DWORD length; DWORD ret; DBUG_ENTER("pipe_complete_io"); ret= WaitForSingleObjectEx(vio->pipe_overlapped.hEvent, timeout_ms, TRUE); /* WaitForSingleObjects will normally return WAIT_OBJECT_O (success, IO completed) or WAIT_TIMEOUT. */ if(ret != WAIT_OBJECT_0) { CancelIo(vio->hPipe); DBUG_PRINT("error",("WaitForSingleObject() returned %d", ret)); DBUG_RETURN((size_t)-1); } if (!GetOverlappedResult(vio->hPipe,&(vio->pipe_overlapped),&length, FALSE)) { DBUG_PRINT("error",("GetOverlappedResult() returned last error %d", GetLastError())); DBUG_RETURN((size_t)-1); } DBUG_RETURN(length); } size_t vio_read_pipe(Vio * vio, uchar *buf, size_t size) { DWORD bytes_read; size_t retval; DBUG_ENTER("vio_read_pipe"); DBUG_PRINT("enter", ("sd: %d buf: 0x%lx size: %u", vio->sd, (long) buf, (uint) size)); disable_iocp_notification(&vio->pipe_overlapped); if (ReadFile(vio->hPipe, buf, (DWORD)size, &bytes_read, &(vio->pipe_overlapped))) { retval= bytes_read; } else { if (GetLastError() != ERROR_IO_PENDING) { enable_iocp_notification(&vio->pipe_overlapped); DBUG_PRINT("error",("ReadFile() returned last error %d", GetLastError())); DBUG_RETURN((size_t)-1); } retval= pipe_complete_io(vio, buf, size,vio->read_timeout_ms); } enable_iocp_notification(&vio->pipe_overlapped); DBUG_PRINT("exit", ("%lld", (longlong)retval)); DBUG_RETURN(retval); } size_t vio_write_pipe(Vio * vio, const uchar* buf, size_t size) { DWORD bytes_written; size_t retval; DBUG_ENTER("vio_write_pipe"); DBUG_PRINT("enter", ("sd: %d buf: 0x%lx size: %u", vio->sd, (long) buf, (uint) size)); disable_iocp_notification(&vio->pipe_overlapped); if (WriteFile(vio->hPipe, buf, (DWORD)size, &bytes_written, &(vio->pipe_overlapped))) { retval= bytes_written; } else { enable_iocp_notification(&vio->pipe_overlapped); if (GetLastError() != ERROR_IO_PENDING) { DBUG_PRINT("vio_error",("WriteFile() returned last error %d", GetLastError())); DBUG_RETURN((size_t)-1); } retval= pipe_complete_io(vio, (char *)buf, size, vio->write_timeout_ms); } enable_iocp_notification(&vio->pipe_overlapped); DBUG_PRINT("exit", ("%lld", (longlong)retval)); DBUG_RETURN(retval); } my_bool vio_is_connected_pipe(Vio *vio) { if (PeekNamedPipe(vio->hPipe, NULL, 0, NULL, NULL, NULL)) return TRUE; else return (GetLastError() != ERROR_BROKEN_PIPE); } int vio_close_pipe(Vio * vio) { int r; DBUG_ENTER("vio_close_pipe"); CancelIo(vio->hPipe); CloseHandle(vio->pipe_overlapped.hEvent); DisconnectNamedPipe(vio->hPipe); r= CloseHandle(vio->hPipe); if (r) { DBUG_PRINT("vio_error", ("close() failed, error: %d",GetLastError())); /* FIXME: error handling (not critical for MySQL) */ } vio->type= VIO_CLOSED; vio->sd= -1; DBUG_RETURN(r); } void vio_win32_timeout(Vio *vio, uint which , uint timeout_sec) { DWORD timeout_ms; /* Windows is measuring timeouts in milliseconds. Check for possible int overflow. */ if (timeout_sec > UINT_MAX/1000) timeout_ms= INFINITE; else timeout_ms= timeout_sec * 1000; /* which == 1 means "write", which == 0 means "read".*/ if(which) vio->write_timeout_ms= timeout_ms; else vio->read_timeout_ms= timeout_ms; } #ifdef HAVE_SMEM size_t vio_read_shared_memory(Vio * vio, uchar* buf, size_t size) { size_t length; size_t remain_local; char *current_position; HANDLE events[2]; DBUG_ENTER("vio_read_shared_memory"); DBUG_PRINT("enter", ("sd: %d buf: 0x%lx size: %d", vio->sd, (long) buf, size)); remain_local = size; current_position=buf; events[0]= vio->event_server_wrote; events[1]= vio->event_conn_closed; do { if (vio->shared_memory_remain == 0) { /* WaitForMultipleObjects can return next values: WAIT_OBJECT_0+0 - event from vio->event_server_wrote WAIT_OBJECT_0+1 - event from vio->event_conn_closed. We can't read anything WAIT_ABANDONED_0 and WAIT_TIMEOUT - fail. We can't read anything */ if (WaitForMultipleObjects(array_elements(events), events, FALSE, vio->read_timeout_ms) != WAIT_OBJECT_0) { DBUG_RETURN(-1); }; vio->shared_memory_pos = vio->handle_map; vio->shared_memory_remain = uint4korr((ulong*)vio->shared_memory_pos); vio->shared_memory_pos+=4; } length = size; if (vio->shared_memory_remain < length) length = vio->shared_memory_remain; if (length > remain_local) length = remain_local; memcpy(current_position,vio->shared_memory_pos,length); vio->shared_memory_remain-=length; vio->shared_memory_pos+=length; current_position+=length; remain_local-=length; if (!vio->shared_memory_remain) { if (!SetEvent(vio->event_client_read)) DBUG_RETURN(-1); } } while (remain_local); length = size; DBUG_PRINT("exit", ("%lu", (ulong) length)); DBUG_RETURN(length); } size_t vio_write_shared_memory(Vio * vio, const uchar* buf, size_t size) { size_t length, remain, sz; HANDLE pos; const uchar *current_position; HANDLE events[2]; DBUG_ENTER("vio_write_shared_memory"); DBUG_PRINT("enter", ("sd: %d buf: 0x%lx size: %d", vio->sd, (long) buf, size)); remain = size; current_position = buf; events[0]= vio->event_server_read; events[1]= vio->event_conn_closed; while (remain != 0) { if (WaitForMultipleObjects(array_elements(events), events, FALSE, vio->write_timeout_ms) != WAIT_OBJECT_0) { DBUG_RETURN((size_t) -1); } sz= (remain > shared_memory_buffer_length ? shared_memory_buffer_length : remain); int4store(vio->handle_map,sz); pos = vio->handle_map + 4; memcpy(pos,current_position,sz); remain-=sz; current_position+=sz; if (!SetEvent(vio->event_client_wrote)) DBUG_RETURN((size_t) -1); } length = size; DBUG_PRINT("exit", ("%lu", (ulong) length)); DBUG_RETURN(length); } my_bool vio_is_connected_shared_memory(Vio *vio) { return (WaitForSingleObject(vio->event_conn_closed, 0) != WAIT_OBJECT_0); } /** Close shared memory and DBUG_PRINT any errors that happen on closing. @return Zero if all closing functions succeed, and nonzero otherwise. */ int vio_close_shared_memory(Vio * vio) { int error_count= 0; DBUG_ENTER("vio_close_shared_memory"); if (vio->type != VIO_CLOSED) { /* Set event_conn_closed for notification of both client and server that connection is closed */ SetEvent(vio->event_conn_closed); /* Close all handlers. UnmapViewOfFile and CloseHandle return non-zero result if they are success. */ if (UnmapViewOfFile(vio->handle_map) == 0) { error_count++; DBUG_PRINT("vio_error", ("UnmapViewOfFile() failed")); } if (CloseHandle(vio->event_server_wrote) == 0) { error_count++; DBUG_PRINT("vio_error", ("CloseHandle(vio->esw) failed")); } if (CloseHandle(vio->event_server_read) == 0) { error_count++; DBUG_PRINT("vio_error", ("CloseHandle(vio->esr) failed")); } if (CloseHandle(vio->event_client_wrote) == 0) { error_count++; DBUG_PRINT("vio_error", ("CloseHandle(vio->ecw) failed")); } if (CloseHandle(vio->event_client_read) == 0) { error_count++; DBUG_PRINT("vio_error", ("CloseHandle(vio->ecr) failed")); } if (CloseHandle(vio->handle_file_map) == 0) { error_count++; DBUG_PRINT("vio_error", ("CloseHandle(vio->hfm) failed")); } if (CloseHandle(vio->event_conn_closed) == 0) { error_count++; DBUG_PRINT("vio_error", ("CloseHandle(vio->ecc) failed")); } } vio->type= VIO_CLOSED; vio->sd= -1; DBUG_RETURN(error_count); } #endif /* HAVE_SMEM */ #endif /* __WIN__ */ /** Number of bytes in the read buffer. @return number of bytes in the read buffer or < 0 if error. */ ssize_t vio_pending(Vio *vio) { #ifdef HAVE_OPENSSL SSL *ssl= (SSL*) vio->ssl_arg; #endif if (vio->read_pos < vio->read_end) return vio->read_end - vio->read_pos; #ifdef HAVE_OPENSSL if (ssl) return SSL_pending(ssl); #endif return 0; } /** Checks if the error code, returned by vio_getnameinfo(), means it was the "No-name" error. Windows-specific note: getnameinfo() returns WSANO_DATA instead of EAI_NODATA or EAI_NONAME when no reverse mapping is available at the host (i.e. Windows can't get hostname by IP-address). This error should be treated as EAI_NONAME. @return if the error code is actually EAI_NONAME. @retval true if the error code is EAI_NONAME. @retval false otherwise. */ my_bool vio_is_no_name_error(int err_code) { #ifdef _WIN32 return err_code == WSANO_DATA || err_code == EAI_NONAME; #else return err_code == EAI_NONAME; #endif } /** This is a wrapper for the system getnameinfo(), because different OS differ in the getnameinfo() implementation: - Solaris 10 requires that the 2nd argument (salen) must match the actual size of the struct sockaddr_storage passed to it; - Mac OS X has sockaddr_in::sin_len and sockaddr_in6::sin6_len and requires them to be filled. */ int vio_getnameinfo(const struct sockaddr *sa, char *hostname, size_t hostname_size, char *port, size_t port_size, int flags) { int sa_length= 0; switch (sa->sa_family) { case AF_INET: sa_length= sizeof (struct sockaddr_in); #ifdef HAVE_SOCKADDR_IN_SIN_LEN ((struct sockaddr_in *) sa)->sin_len= sa_length; #endif /* HAVE_SOCKADDR_IN_SIN_LEN */ break; #ifdef HAVE_IPV6 case AF_INET6: sa_length= sizeof (struct sockaddr_in6); # ifdef HAVE_SOCKADDR_IN6_SIN6_LEN ((struct sockaddr_in6 *) sa)->sin6_len= sa_length; # endif /* HAVE_SOCKADDR_IN6_SIN6_LEN */ break; #endif /* HAVE_IPV6 */ } return getnameinfo(sa, sa_length, hostname, hostname_size, port, port_size, flags); }