1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
|
/*-
* See the file LICENSE for redistribution information.
*
* Copyright (c) 1996, 1997, 1998, 1999, 2000
* Sleepycat Software. All rights reserved.
*
* $Id: db_page.h,v 11.28 2000/12/06 19:55:45 ubell Exp $
*/
#ifndef _DB_PAGE_H_
#define _DB_PAGE_H_
#if defined(__cplusplus)
extern "C" {
#endif
/*
* DB page formats.
*
* !!!
* This implementation requires that values within the following structures
* NOT be padded -- note, ANSI C permits random padding within structures.
* If your compiler pads randomly you can just forget ever making DB run on
* your system. In addition, no data type can require larger alignment than
* its own size, e.g., a 4-byte data element may not require 8-byte alignment.
*
* Note that key/data lengths are often stored in db_indx_t's -- this is
* not accidental, nor does it limit the key/data size. If the key/data
* item fits on a page, it's guaranteed to be small enough to fit into a
* db_indx_t, and storing it in one saves space.
*/
#define PGNO_INVALID 0 /* Invalid page number in any database. */
#define PGNO_BASE_MD 0 /* Base database: metadata page number. */
/* Page types. */
#define P_INVALID 0 /* Invalid page type. */
#define __P_DUPLICATE 1 /* Duplicate. DEPRECATED in 3.1 */
#define P_HASH 2 /* Hash. */
#define P_IBTREE 3 /* Btree internal. */
#define P_IRECNO 4 /* Recno internal. */
#define P_LBTREE 5 /* Btree leaf. */
#define P_LRECNO 6 /* Recno leaf. */
#define P_OVERFLOW 7 /* Overflow. */
#define P_HASHMETA 8 /* Hash metadata page. */
#define P_BTREEMETA 9 /* Btree metadata page. */
#define P_QAMMETA 10 /* Queue metadata page. */
#define P_QAMDATA 11 /* Queue data page. */
#define P_LDUP 12 /* Off-page duplicate leaf. */
#define P_PAGETYPE_MAX 13
/*
* When we create pages in mpool, we ask mpool to clear some number of bytes
* in the header. This number must be at least as big as the regular page
* headers and cover enough of the btree and hash meta-data pages to obliterate
* the page type.
*/
#define DB_PAGE_DB_LEN 32
#define DB_PAGE_QUEUE_LEN 0
/************************************************************************
GENERIC METADATA PAGE HEADER
*
* !!!
* The magic and version numbers have to be in the same place in all versions
* of the metadata page as the application may not have upgraded the database.
************************************************************************/
typedef struct _dbmeta31 {
DB_LSN lsn; /* 00-07: LSN. */
db_pgno_t pgno; /* 08-11: Current page number. */
u_int32_t magic; /* 12-15: Magic number. */
u_int32_t version; /* 16-19: Version. */
u_int32_t pagesize; /* 20-23: Pagesize. */
u_int8_t unused1[1]; /* 24: Unused. */
u_int8_t type; /* 25: Page type. */
u_int8_t unused2[2]; /* 26-27: Unused. */
u_int32_t free; /* 28-31: Free list page number. */
DB_LSN unused3; /* 32-39: former Lsn for allocation */
u_int32_t key_count; /* 40-43: Cached key count. */
u_int32_t record_count; /* 44-47: Cached record count. */
u_int32_t flags; /* 48-51: Flags: unique to each AM. */
/* 52-71: Unique file ID. */
u_int8_t uid[DB_FILE_ID_LEN];
} DBMETA31, DBMETA;
/************************************************************************
BTREE METADATA PAGE LAYOUT
************************************************************************/
typedef struct _btmeta31 {
#define BTM_DUP 0x001 /* Duplicates. */
#define BTM_RECNO 0x002 /* Recno tree. */
#define BTM_RECNUM 0x004 /* Btree: maintain record count. */
#define BTM_FIXEDLEN 0x008 /* Recno: fixed length records. */
#define BTM_RENUMBER 0x010 /* Recno: renumber on insert/delete. */
#define BTM_SUBDB 0x020 /* Subdatabases. */
#define BTM_DUPSORT 0x040 /* Duplicates are sorted. */
#define BTM_MASK 0x07f
DBMETA dbmeta; /* 00-71: Generic meta-data header. */
u_int32_t maxkey; /* 72-75: Btree: Maxkey. */
u_int32_t minkey; /* 76-79: Btree: Minkey. */
u_int32_t re_len; /* 80-83: Recno: fixed-length record length. */
u_int32_t re_pad; /* 84-87: Recno: fixed-length record pad. */
u_int32_t root; /* 88-92: Root page. */
/*
* Minimum page size is 128.
*/
} BTMETA31, BTMETA;
/************************************************************************
HASH METADATA PAGE LAYOUT
************************************************************************/
typedef struct _hashmeta31 {
#define DB_HASH_DUP 0x01 /* Duplicates. */
#define DB_HASH_SUBDB 0x02 /* Subdatabases. */
#define DB_HASH_DUPSORT 0x04 /* Duplicates are sorted. */
DBMETA dbmeta; /* 00-71: Generic meta-data page header. */
u_int32_t max_bucket; /* 72-75: ID of Maximum bucket in use */
u_int32_t high_mask; /* 76-79: Modulo mask into table */
u_int32_t low_mask; /* 80-83: Modulo mask into table lower half */
u_int32_t ffactor; /* 84-87: Fill factor */
u_int32_t nelem; /* 88-91: Number of keys in hash table */
u_int32_t h_charkey; /* 92-95: Value of hash(CHARKEY) */
#define NCACHED 32 /* number of spare points */
/* 96-223: Spare pages for overflow */
u_int32_t spares[NCACHED];
/*
* Minimum page size is 256.
*/
} HMETA31, HMETA;
/************************************************************************
QUEUE METADATA PAGE LAYOUT
************************************************************************/
/*
* QAM Meta data page structure
*
*/
typedef struct _qmeta32 {
DBMETA dbmeta; /* 00-71: Generic meta-data header. */
u_int32_t first_recno; /* 72-75: First not deleted record. */
u_int32_t cur_recno; /* 76-79: Last recno allocated. */
u_int32_t re_len; /* 80-83: Fixed-length record length. */
u_int32_t re_pad; /* 84-87: Fixed-length record pad. */
u_int32_t rec_page; /* 88-91: Records Per Page. */
u_int32_t page_ext; /* 92-95: Pages per extent */
/*
* Minimum page size is 128.
*/
} QMETA32, QMETA;
/*
* DBMETASIZE is a constant used by __db_file_setup and DB->verify
* as a buffer which is guaranteed to be larger than any possible
* metadata page size and smaller than any disk sector.
*/
#define DBMETASIZE 256
/************************************************************************
BTREE/HASH MAIN PAGE LAYOUT
************************************************************************/
/*
* +-----------------------------------+
* | lsn | pgno | prev pgno |
* +-----------------------------------+
* | next pgno | entries | hf offset |
* +-----------------------------------+
* | level | type | index |
* +-----------------------------------+
* | index | free --> |
* +-----------+-----------------------+
* | F R E E A R E A |
* +-----------------------------------+
* | <-- free | item |
* +-----------------------------------+
* | item | item | item |
* +-----------------------------------+
*
* sizeof(PAGE) == 26 bytes, and the following indices are guaranteed to be
* two-byte aligned.
*
* For hash and btree leaf pages, index items are paired, e.g., inp[0] is the
* key for inp[1]'s data. All other types of pages only contain single items.
*/
typedef struct _db_page {
DB_LSN lsn; /* 00-07: Log sequence number. */
db_pgno_t pgno; /* 08-11: Current page number. */
db_pgno_t prev_pgno; /* 12-15: Previous page number. */
db_pgno_t next_pgno; /* 16-19: Next page number. */
db_indx_t entries; /* 20-21: Number of items on the page. */
db_indx_t hf_offset; /* 22-23: High free byte page offset. */
/*
* The btree levels are numbered from the leaf to the root, starting
* with 1, so the leaf is level 1, its parent is level 2, and so on.
* We maintain this level on all btree pages, but the only place that
* we actually need it is on the root page. It would not be difficult
* to hide the byte on the root page once it becomes an internal page,
* so we could get this byte back if we needed it for something else.
*/
#define LEAFLEVEL 1
#define MAXBTREELEVEL 255
u_int8_t level; /* 24: Btree tree level. */
u_int8_t type; /* 25: Page type. */
db_indx_t inp[1]; /* Variable length index of items. */
} PAGE;
/* PAGE element macros. */
#define LSN(p) (((PAGE *)p)->lsn)
#define PGNO(p) (((PAGE *)p)->pgno)
#define PREV_PGNO(p) (((PAGE *)p)->prev_pgno)
#define NEXT_PGNO(p) (((PAGE *)p)->next_pgno)
#define NUM_ENT(p) (((PAGE *)p)->entries)
#define HOFFSET(p) (((PAGE *)p)->hf_offset)
#define LEVEL(p) (((PAGE *)p)->level)
#define TYPE(p) (((PAGE *)p)->type)
/************************************************************************
QUEUE MAIN PAGE LAYOUT
************************************************************************/
typedef struct _qpage {
DB_LSN lsn; /* 00-07: Log sequence number. */
db_pgno_t pgno; /* 08-11: Current page number. */
u_int32_t unused0[3]; /* 12-23: Unused. */
u_int8_t unused1[1]; /* 24: Unused. */
u_int8_t type; /* 25: Page type. */
u_int8_t unused2[2]; /* 26-27: Unused. */
} QPAGE;
/*
* !!!
* The next_pgno and prev_pgno fields are not maintained for btree and recno
* internal pages. Doing so only provides a minor performance improvement,
* it's hard to do when deleting internal pages, and it increases the chance
* of deadlock during deletes and splits because we have to re-link pages at
* more than the leaf level.
*
* !!!
* The btree/recno access method needs db_recno_t bytes of space on the root
* page to specify how many records are stored in the tree. (The alternative
* is to store the number of records in the meta-data page, which will create
* a second hot spot in trees being actively modified, or recalculate it from
* the BINTERNAL fields on each access.) Overload the PREV_PGNO field.
*/
#define RE_NREC(p) \
((TYPE(p) == P_IBTREE || TYPE(p) == P_IRECNO) ? \
PREV_PGNO(p) : (TYPE(p) == P_LBTREE ? NUM_ENT(p) / 2 : NUM_ENT(p)))
#define RE_NREC_ADJ(p, adj) \
PREV_PGNO(p) += adj;
#define RE_NREC_SET(p, num) \
PREV_PGNO(p) = num;
/*
* Initialize a page.
*
* !!!
* Don't modify the page's LSN, code depends on it being unchanged after a
* P_INIT call.
*/
#define P_INIT(pg, pg_size, n, pg_prev, pg_next, btl, pg_type) do { \
PGNO(pg) = n; \
PREV_PGNO(pg) = pg_prev; \
NEXT_PGNO(pg) = pg_next; \
NUM_ENT(pg) = 0; \
HOFFSET(pg) = pg_size; \
LEVEL(pg) = btl; \
TYPE(pg) = pg_type; \
} while (0)
/* Page header length (offset to first index). */
#define P_OVERHEAD (SSZA(PAGE, inp))
/* First free byte. */
#define LOFFSET(pg) (P_OVERHEAD + NUM_ENT(pg) * sizeof(db_indx_t))
/* Free space on a regular page. */
#define P_FREESPACE(pg) (HOFFSET(pg) - LOFFSET(pg))
/* Get a pointer to the bytes at a specific index. */
#define P_ENTRY(pg, indx) ((u_int8_t *)pg + ((PAGE *)pg)->inp[indx])
/************************************************************************
OVERFLOW PAGE LAYOUT
************************************************************************/
/*
* Overflow items are referenced by HOFFPAGE and BOVERFLOW structures, which
* store a page number (the first page of the overflow item) and a length
* (the total length of the overflow item). The overflow item consists of
* some number of overflow pages, linked by the next_pgno field of the page.
* A next_pgno field of PGNO_INVALID flags the end of the overflow item.
*
* Overflow page overloads:
* The amount of overflow data stored on each page is stored in the
* hf_offset field.
*
* The implementation reference counts overflow items as it's possible
* for them to be promoted onto btree internal pages. The reference
* count is stored in the entries field.
*/
#define OV_LEN(p) (((PAGE *)p)->hf_offset)
#define OV_REF(p) (((PAGE *)p)->entries)
/* Maximum number of bytes that you can put on an overflow page. */
#define P_MAXSPACE(psize) ((psize) - P_OVERHEAD)
/* Free space on an overflow page. */
#define P_OVFLSPACE(psize, pg) (P_MAXSPACE(psize) - HOFFSET(pg))
/************************************************************************
HASH PAGE LAYOUT
************************************************************************/
/* Each index references a group of bytes on the page. */
#define H_KEYDATA 1 /* Key/data item. */
#define H_DUPLICATE 2 /* Duplicate key/data item. */
#define H_OFFPAGE 3 /* Overflow key/data item. */
#define H_OFFDUP 4 /* Overflow page of duplicates. */
/*
* !!!
* Items on hash pages are (potentially) unaligned, so we can never cast the
* (page + offset) pointer to an HKEYDATA, HOFFPAGE or HOFFDUP structure, as
* we do with B+tree on-page structures. Because we frequently want the type
* field, it requires no alignment, and it's in the same location in all three
* structures, there's a pair of macros.
*/
#define HPAGE_PTYPE(p) (*(u_int8_t *)p)
#define HPAGE_TYPE(pg, indx) (*P_ENTRY(pg, indx))
/*
* The first and second types are H_KEYDATA and H_DUPLICATE, represented
* by the HKEYDATA structure:
*
* +-----------------------------------+
* | type | key/data ... |
* +-----------------------------------+
*
* For duplicates, the data field encodes duplicate elements in the data
* field:
*
* +---------------------------------------------------------------+
* | type | len1 | element1 | len1 | len2 | element2 | len2 |
* +---------------------------------------------------------------+
*
* Thus, by keeping track of the offset in the element, we can do both
* backward and forward traversal.
*/
typedef struct _hkeydata {
u_int8_t type; /* 00: Page type. */
u_int8_t data[1]; /* Variable length key/data item. */
} HKEYDATA;
#define HKEYDATA_DATA(p) (((u_int8_t *)p) + SSZA(HKEYDATA, data))
/*
* The length of any HKEYDATA item. Note that indx is an element index,
* not a PAIR index.
*/
#define LEN_HITEM(pg, pgsize, indx) \
(((indx) == 0 ? pgsize : \
((PAGE *)(pg))->inp[indx - 1]) - ((PAGE *)(pg))->inp[indx])
#define LEN_HKEYDATA(pg, psize, indx) \
(LEN_HITEM(pg, psize, indx) - HKEYDATA_SIZE(0))
/*
* Page space required to add a new HKEYDATA item to the page, with and
* without the index value.
*/
#define HKEYDATA_SIZE(len) \
((len) + SSZA(HKEYDATA, data))
#define HKEYDATA_PSIZE(len) \
(HKEYDATA_SIZE(len) + sizeof(db_indx_t))
/* Put a HKEYDATA item at the location referenced by a page entry. */
#define PUT_HKEYDATA(pe, kd, len, type) { \
((HKEYDATA *)pe)->type = type; \
memcpy((u_int8_t *)pe + sizeof(u_int8_t), kd, len); \
}
/*
* Macros the describe the page layout in terms of key-data pairs.
*/
#define H_NUMPAIRS(pg) (NUM_ENT(pg) / 2)
#define H_KEYINDEX(indx) (indx)
#define H_DATAINDEX(indx) ((indx) + 1)
#define H_PAIRKEY(pg, indx) P_ENTRY(pg, H_KEYINDEX(indx))
#define H_PAIRDATA(pg, indx) P_ENTRY(pg, H_DATAINDEX(indx))
#define H_PAIRSIZE(pg, psize, indx) \
(LEN_HITEM(pg, psize, H_KEYINDEX(indx)) + \
LEN_HITEM(pg, psize, H_DATAINDEX(indx)))
#define LEN_HDATA(p, psize, indx) LEN_HKEYDATA(p, psize, H_DATAINDEX(indx))
#define LEN_HKEY(p, psize, indx) LEN_HKEYDATA(p, psize, H_KEYINDEX(indx))
/*
* The third type is the H_OFFPAGE, represented by the HOFFPAGE structure:
*/
typedef struct _hoffpage {
u_int8_t type; /* 00: Page type and delete flag. */
u_int8_t unused[3]; /* 01-03: Padding, unused. */
db_pgno_t pgno; /* 04-07: Offpage page number. */
u_int32_t tlen; /* 08-11: Total length of item. */
} HOFFPAGE;
#define HOFFPAGE_PGNO(p) (((u_int8_t *)p) + SSZ(HOFFPAGE, pgno))
#define HOFFPAGE_TLEN(p) (((u_int8_t *)p) + SSZ(HOFFPAGE, tlen))
/*
* Page space required to add a new HOFFPAGE item to the page, with and
* without the index value.
*/
#define HOFFPAGE_SIZE (sizeof(HOFFPAGE))
#define HOFFPAGE_PSIZE (HOFFPAGE_SIZE + sizeof(db_indx_t))
/*
* The fourth type is H_OFFDUP represented by the HOFFDUP structure:
*/
typedef struct _hoffdup {
u_int8_t type; /* 00: Page type and delete flag. */
u_int8_t unused[3]; /* 01-03: Padding, unused. */
db_pgno_t pgno; /* 04-07: Offpage page number. */
} HOFFDUP;
#define HOFFDUP_PGNO(p) (((u_int8_t *)p) + SSZ(HOFFDUP, pgno))
/*
* Page space required to add a new HOFFDUP item to the page, with and
* without the index value.
*/
#define HOFFDUP_SIZE (sizeof(HOFFDUP))
/************************************************************************
BTREE PAGE LAYOUT
************************************************************************/
/* Each index references a group of bytes on the page. */
#define B_KEYDATA 1 /* Key/data item. */
#define B_DUPLICATE 2 /* Duplicate key/data item. */
#define B_OVERFLOW 3 /* Overflow key/data item. */
/*
* We have to store a deleted entry flag in the page. The reason is complex,
* but the simple version is that we can't delete on-page items referenced by
* a cursor -- the return order of subsequent insertions might be wrong. The
* delete flag is an overload of the top bit of the type byte.
*/
#define B_DELETE (0x80)
#define B_DCLR(t) (t) &= ~B_DELETE
#define B_DSET(t) (t) |= B_DELETE
#define B_DISSET(t) ((t) & B_DELETE)
#define B_TYPE(t) ((t) & ~B_DELETE)
#define B_TSET(t, type, deleted) { \
(t) = (type); \
if (deleted) \
B_DSET(t); \
}
/*
* The first type is B_KEYDATA, represented by the BKEYDATA structure:
*/
typedef struct _bkeydata {
db_indx_t len; /* 00-01: Key/data item length. */
u_int8_t type; /* 02: Page type AND DELETE FLAG. */
u_int8_t data[1]; /* Variable length key/data item. */
} BKEYDATA;
/* Get a BKEYDATA item for a specific index. */
#define GET_BKEYDATA(pg, indx) \
((BKEYDATA *)P_ENTRY(pg, indx))
/*
* Page space required to add a new BKEYDATA item to the page, with and
* without the index value.
*/
#define BKEYDATA_SIZE(len) \
ALIGN((len) + SSZA(BKEYDATA, data), sizeof(u_int32_t))
#define BKEYDATA_PSIZE(len) \
(BKEYDATA_SIZE(len) + sizeof(db_indx_t))
/*
* The second and third types are B_DUPLICATE and B_OVERFLOW, represented
* by the BOVERFLOW structure.
*/
typedef struct _boverflow {
db_indx_t unused1; /* 00-01: Padding, unused. */
u_int8_t type; /* 02: Page type AND DELETE FLAG. */
u_int8_t unused2; /* 03: Padding, unused. */
db_pgno_t pgno; /* 04-07: Next page number. */
u_int32_t tlen; /* 08-11: Total length of item. */
} BOVERFLOW;
/* Get a BOVERFLOW item for a specific index. */
#define GET_BOVERFLOW(pg, indx) \
((BOVERFLOW *)P_ENTRY(pg, indx))
/*
* Page space required to add a new BOVERFLOW item to the page, with and
* without the index value.
*/
#define BOVERFLOW_SIZE \
ALIGN(sizeof(BOVERFLOW), sizeof(u_int32_t))
#define BOVERFLOW_PSIZE \
(BOVERFLOW_SIZE + sizeof(db_indx_t))
/*
* Btree leaf and hash page layouts group indices in sets of two, one for the
* key and one for the data. Everything else does it in sets of one to save
* space. Use the following macros so that it's real obvious what's going on.
*/
#define O_INDX 1
#define P_INDX 2
/************************************************************************
BTREE INTERNAL PAGE LAYOUT
************************************************************************/
/*
* Btree internal entry.
*/
typedef struct _binternal {
db_indx_t len; /* 00-01: Key/data item length. */
u_int8_t type; /* 02: Page type AND DELETE FLAG. */
u_int8_t unused; /* 03: Padding, unused. */
db_pgno_t pgno; /* 04-07: Page number of referenced page. */
db_recno_t nrecs; /* 08-11: Subtree record count. */
u_int8_t data[1]; /* Variable length key item. */
} BINTERNAL;
/* Get a BINTERNAL item for a specific index. */
#define GET_BINTERNAL(pg, indx) \
((BINTERNAL *)P_ENTRY(pg, indx))
/*
* Page space required to add a new BINTERNAL item to the page, with and
* without the index value.
*/
#define BINTERNAL_SIZE(len) \
ALIGN((len) + SSZA(BINTERNAL, data), sizeof(u_int32_t))
#define BINTERNAL_PSIZE(len) \
(BINTERNAL_SIZE(len) + sizeof(db_indx_t))
/************************************************************************
RECNO INTERNAL PAGE LAYOUT
************************************************************************/
/*
* The recno internal entry.
*/
typedef struct _rinternal {
db_pgno_t pgno; /* 00-03: Page number of referenced page. */
db_recno_t nrecs; /* 04-07: Subtree record count. */
} RINTERNAL;
/* Get a RINTERNAL item for a specific index. */
#define GET_RINTERNAL(pg, indx) \
((RINTERNAL *)P_ENTRY(pg, indx))
/*
* Page space required to add a new RINTERNAL item to the page, with and
* without the index value.
*/
#define RINTERNAL_SIZE \
ALIGN(sizeof(RINTERNAL), sizeof(u_int32_t))
#define RINTERNAL_PSIZE \
(RINTERNAL_SIZE + sizeof(db_indx_t))
#if defined(__cplusplus)
}
#endif
#endif /* _DB_PAGE_H_ */
|