1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
|
/*
Copyright (C) 2000-2007 MySQL AB
Use is subject to license terms
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1335 USA.
*/
/* based on Wei Dai's algebra.h from CryptoPP */
#ifndef TAO_CRYPT_ALGEBRA_HPP
#define TAO_CRYPT_ALGEBRA_HPP
#include "integer.hpp"
namespace TaoCrypt {
// "const Element&" returned by member functions are references
// to internal data members. Since each object may have only
// one such data member for holding results, the following code
// will produce incorrect results:
// abcd = group.Add(group.Add(a,b), group.Add(c,d));
// But this should be fine:
// abcd = group.Add(a, group.Add(b, group.Add(c,d));
// Abstract Group
class TAOCRYPT_NO_VTABLE AbstractGroup : public virtual_base
{
public:
typedef Integer Element;
virtual ~AbstractGroup() {}
virtual bool Equal(const Element &a, const Element &b) const =0;
virtual const Element& Identity() const =0;
virtual const Element& Add(const Element &a, const Element &b) const =0;
virtual const Element& Inverse(const Element &a) const =0;
virtual bool InversionIsFast() const {return false;}
virtual const Element& Double(const Element &a) const;
virtual const Element& Subtract(const Element &a, const Element &b) const;
virtual Element& Accumulate(Element &a, const Element &b) const;
virtual Element& Reduce(Element &a, const Element &b) const;
virtual Element ScalarMultiply(const Element &a, const Integer &e) const;
virtual Element CascadeScalarMultiply(const Element &x, const Integer &e1,
const Element &y, const Integer &e2) const;
virtual void SimultaneousMultiply(Element *results, const Element &base,
const Integer *exponents, unsigned int exponentsCount) const;
};
// Abstract Ring
class TAOCRYPT_NO_VTABLE AbstractRing : public AbstractGroup
{
public:
typedef Integer Element;
AbstractRing() : AbstractGroup() {m_mg.m_pRing = this;}
AbstractRing(const AbstractRing &source) : AbstractGroup()
{m_mg.m_pRing = this;}
AbstractRing& operator=(const AbstractRing &source) {return *this;}
virtual bool IsUnit(const Element &a) const =0;
virtual const Element& MultiplicativeIdentity() const =0;
virtual const Element& Multiply(const Element&, const Element&) const =0;
virtual const Element& MultiplicativeInverse(const Element &a) const =0;
virtual const Element& Square(const Element &a) const;
virtual const Element& Divide(const Element &a, const Element &b) const;
virtual Element Exponentiate(const Element &a, const Integer &e) const;
virtual Element CascadeExponentiate(const Element &x, const Integer &e1,
const Element &y, const Integer &e2) const;
virtual void SimultaneousExponentiate(Element *results, const Element&,
const Integer *exponents, unsigned int exponentsCount) const;
virtual const AbstractGroup& MultiplicativeGroup() const
{return m_mg;}
private:
class MultiplicativeGroupT : public AbstractGroup
{
public:
const AbstractRing& GetRing() const
{return *m_pRing;}
bool Equal(const Element &a, const Element &b) const
{return GetRing().Equal(a, b);}
const Element& Identity() const
{return GetRing().MultiplicativeIdentity();}
const Element& Add(const Element &a, const Element &b) const
{return GetRing().Multiply(a, b);}
Element& Accumulate(Element &a, const Element &b) const
{return a = GetRing().Multiply(a, b);}
const Element& Inverse(const Element &a) const
{return GetRing().MultiplicativeInverse(a);}
const Element& Subtract(const Element &a, const Element &b) const
{return GetRing().Divide(a, b);}
Element& Reduce(Element &a, const Element &b) const
{return a = GetRing().Divide(a, b);}
const Element& Double(const Element &a) const
{return GetRing().Square(a);}
Element ScalarMultiply(const Element &a, const Integer &e) const
{return GetRing().Exponentiate(a, e);}
Element CascadeScalarMultiply(const Element &x, const Integer &e1,
const Element &y, const Integer &e2) const
{return GetRing().CascadeExponentiate(x, e1, y, e2);}
void SimultaneousMultiply(Element *results, const Element &base,
const Integer *exponents, unsigned int exponentsCount) const
{GetRing().SimultaneousExponentiate(results, base, exponents,
exponentsCount);}
const AbstractRing* m_pRing;
};
MultiplicativeGroupT m_mg;
};
// Abstract Euclidean Domain
class TAOCRYPT_NO_VTABLE AbstractEuclideanDomain
: public AbstractRing
{
public:
typedef Integer Element;
virtual void DivisionAlgorithm(Element &r, Element &q, const Element &a,
const Element &d) const =0;
virtual const Element& Mod(const Element &a, const Element &b) const =0;
virtual const Element& Gcd(const Element &a, const Element &b) const;
protected:
mutable Element result;
};
// EuclideanDomainOf
class EuclideanDomainOf : public AbstractEuclideanDomain
{
public:
typedef Integer Element;
EuclideanDomainOf() {}
bool Equal(const Element &a, const Element &b) const
{return a==b;}
const Element& Identity() const
{return Element::Zero();}
const Element& Add(const Element &a, const Element &b) const
{return result = a+b;}
Element& Accumulate(Element &a, const Element &b) const
{return a+=b;}
const Element& Inverse(const Element &a) const
{return result = -a;}
const Element& Subtract(const Element &a, const Element &b) const
{return result = a-b;}
Element& Reduce(Element &a, const Element &b) const
{return a-=b;}
const Element& Double(const Element &a) const
{return result = a.Doubled();}
const Element& MultiplicativeIdentity() const
{return Element::One();}
const Element& Multiply(const Element &a, const Element &b) const
{return result = a*b;}
const Element& Square(const Element &a) const
{return result = a.Squared();}
bool IsUnit(const Element &a) const
{return a.IsUnit();}
const Element& MultiplicativeInverse(const Element &a) const
{return result = a.MultiplicativeInverse();}
const Element& Divide(const Element &a, const Element &b) const
{return result = a/b;}
const Element& Mod(const Element &a, const Element &b) const
{return result = a%b;}
void DivisionAlgorithm(Element &r, Element &q, const Element &a,
const Element &d) const
{Element::Divide(r, q, a, d);}
private:
mutable Element result;
};
} // namespace
#endif // TAO_CRYPT_ALGEBRA_HPP
|