1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
|
/*
Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA.
*/
/* based on Wei Dai's integer.h from CryptoPP */
#ifndef TAO_CRYPT_INTEGER_HPP
#define TAO_CRYPT_INTEGER_HPP
#ifdef _MSC_VER
// 4250: dominance
// 4660: explicitly instantiating a class already implicitly instantiated
// 4661: no suitable definition provided for explicit template request
// 4786: identifer was truncated in debug information
// 4355: 'this' : used in base member initializer list
# pragma warning(disable: 4250 4660 4661 4786 4355)
#endif
#include "misc.hpp"
#include "block.hpp"
#include "random.hpp"
#include "file.hpp"
#include <string.h>
#ifdef USE_SYS_STL
#include <algorithm>
#else
#include "algorithm.hpp"
#endif
#ifdef TAOCRYPT_X86ASM_AVAILABLE
#if defined(__GNUC__) && (__GNUC__ >= 4)
// GCC 4 or greater optimizes too much inline on recursive for bigint,
// -O3 just as fast without asm here anyway
#undef TAOCRYPT_X86ASM_AVAILABLE
#endif
#endif
#ifdef TAOCRYPT_X86ASM_AVAILABLE
#ifdef _M_IX86
#if (defined(__INTEL_COMPILER) && (__INTEL_COMPILER >= 500)) || \
(defined(__ICL) && (__ICL >= 500))
#define SSE2_INTRINSICS_AVAILABLE
#define TAOCRYPT_MM_MALLOC_AVAILABLE
#elif defined(_MSC_VER)
// _mm_free seems to be the only way to tell if the Processor Pack is
//installed or not
#include <malloc.h>
#if defined(_mm_free)
#define SSE2_INTRINSICS_AVAILABLE
#define TAOCRYPT_MM_MALLOC_AVAILABLE
#endif
#endif
#endif
// SSE2 intrinsics work in GCC 3.3 or later
#if defined(__SSE2__) && (__GNUC__ == 4 || __GNUC_MAJOR__ > 3 || \
__GNUC_MINOR__ > 2)
#define SSE2_INTRINSICS_AVAILABLE
#endif
#endif // X86ASM
namespace TaoCrypt {
#if defined(SSE2_INTRINSICS_AVAILABLE)
// Allocator handling proper alignment
template <class T>
class AlignedAllocator : public AllocatorBase<T>
{
public:
typedef typename AllocatorBase<T>::pointer pointer;
typedef typename AllocatorBase<T>::size_type size_type;
pointer allocate(size_type n, const void* = 0);
void deallocate(void* p, size_type n);
pointer reallocate(T* p, size_type oldSize, size_type newSize,
bool preserve)
{
return StdReallocate(*this, p, oldSize, newSize, preserve);
}
#if !(defined(TAOCRYPT_MALLOC_ALIGNMENT_IS_16) || \
defined(TAOCRYPT_MEMALIGN_AVAILABLE) || \
defined(TAOCRYPT_MM_MALLOC_AVAILABLE))
#define TAOCRYPT_NO_ALIGNED_ALLOC
AlignedAllocator() : m_pBlock(0) {}
protected:
void *m_pBlock;
#endif
};
typedef Block<word, AlignedAllocator<word> > AlignedWordBlock;
#else
typedef WordBlock AlignedWordBlock;
#endif
// general MAX
template<typename T> inline
const T& max(const T& a, const T& b)
{
return a > b ? a : b;
}
// Large Integer class
class Integer {
public:
enum Sign {POSITIVE = 0, NEGATIVE = 1 };
enum Signedness { UNSIGNED, SIGNED };
enum RandomNumberType { ANY, PRIME };
class DivideByZero {};
Integer();
Integer(const Integer& t);
Integer(signed long value);
Integer(Sign s, word highWord, word lowWord);
// BER Decode Source
explicit Integer(Source&);
Integer(const byte* encodedInteger, unsigned int byteCount,
Signedness s = UNSIGNED);
~Integer() {}
static const Integer& Zero();
static const Integer& One();
Integer& Ref() { return *this; }
Integer(RandomNumberGenerator& rng, const Integer& min,
const Integer& max);
static Integer Power2(unsigned int e);
unsigned int MinEncodedSize(Signedness = UNSIGNED) const;
unsigned int Encode(byte* output, unsigned int outputLen,
Signedness = UNSIGNED) const;
void Decode(const byte* input, unsigned int inputLen,
Signedness = UNSIGNED);
void Decode(Source&);
bool IsConvertableToLong() const;
signed long ConvertToLong() const;
unsigned int BitCount() const;
unsigned int ByteCount() const;
unsigned int WordCount() const;
bool GetBit(unsigned int i) const;
byte GetByte(unsigned int i) const;
unsigned long GetBits(unsigned int i, unsigned int n) const;
bool IsZero() const { return !*this; }
bool NotZero() const { return !IsZero(); }
bool IsNegative() const { return sign_ == NEGATIVE; }
bool NotNegative() const { return !IsNegative(); }
bool IsPositive() const { return NotNegative() && NotZero(); }
bool NotPositive() const { return !IsPositive(); }
bool IsEven() const { return GetBit(0) == 0; }
bool IsOdd() const { return GetBit(0) == 1; }
Integer& operator=(const Integer& t);
Integer& operator+=(const Integer& t);
Integer& operator-=(const Integer& t);
Integer& operator*=(const Integer& t) { return *this = Times(t); }
Integer& operator/=(const Integer& t)
{ return *this = DividedBy(t);}
Integer& operator%=(const Integer& t) { return *this = Modulo(t); }
Integer& operator/=(word t) { return *this = DividedBy(t); }
Integer& operator%=(word t) { return *this = Modulo(t); }
Integer& operator<<=(unsigned int);
Integer& operator>>=(unsigned int);
void Randomize(RandomNumberGenerator &rng, unsigned int bitcount);
void Randomize(RandomNumberGenerator &rng, const Integer &min,
const Integer &max);
void SetBit(unsigned int n, bool value = 1);
void SetByte(unsigned int n, byte value);
void Negate();
void SetPositive() { sign_ = POSITIVE; }
void SetNegative() { if (!!(*this)) sign_ = NEGATIVE; }
void Swap(Integer& a);
bool operator!() const;
Integer operator+() const {return *this;}
Integer operator-() const;
Integer& operator++();
Integer& operator--();
Integer operator++(int)
{ Integer temp = *this; ++*this; return temp; }
Integer operator--(int)
{ Integer temp = *this; --*this; return temp; }
int Compare(const Integer& a) const;
Integer Plus(const Integer &b) const;
Integer Minus(const Integer &b) const;
Integer Times(const Integer &b) const;
Integer DividedBy(const Integer &b) const;
Integer Modulo(const Integer &b) const;
Integer DividedBy(word b) const;
word Modulo(word b) const;
Integer operator>>(unsigned int n) const { return Integer(*this)>>=n; }
Integer operator<<(unsigned int n) const { return Integer(*this)<<=n; }
Integer AbsoluteValue() const;
Integer Doubled() const { return Plus(*this); }
Integer Squared() const { return Times(*this); }
Integer SquareRoot() const;
bool IsSquare() const;
bool IsUnit() const;
Integer MultiplicativeInverse() const;
friend Integer a_times_b_mod_c(const Integer& x, const Integer& y,
const Integer& m);
friend Integer a_exp_b_mod_c(const Integer& x, const Integer& e,
const Integer& m);
static void Divide(Integer& r, Integer& q, const Integer& a,
const Integer& d);
static void Divide(word& r, Integer& q, const Integer& a, word d);
static void DivideByPowerOf2(Integer& r, Integer& q, const Integer& a,
unsigned int n);
static Integer Gcd(const Integer& a, const Integer& n);
Integer InverseMod(const Integer& n) const;
word InverseMod(word n) const;
private:
friend class ModularArithmetic;
friend class MontgomeryRepresentation;
Integer(word value, unsigned int length);
int PositiveCompare(const Integer& t) const;
friend void PositiveAdd(Integer& sum, const Integer& a, const Integer& b);
friend void PositiveSubtract(Integer& diff, const Integer& a,
const Integer& b);
friend void PositiveMultiply(Integer& product, const Integer& a,
const Integer& b);
friend void PositiveDivide(Integer& remainder, Integer& quotient, const
Integer& dividend, const Integer& divisor);
AlignedWordBlock reg_;
Sign sign_;
};
inline bool operator==(const Integer& a, const Integer& b)
{return a.Compare(b)==0;}
inline bool operator!=(const Integer& a, const Integer& b)
{return a.Compare(b)!=0;}
inline bool operator> (const Integer& a, const Integer& b)
{return a.Compare(b)> 0;}
inline bool operator>=(const Integer& a, const Integer& b)
{return a.Compare(b)>=0;}
inline bool operator< (const Integer& a, const Integer& b)
{return a.Compare(b)< 0;}
inline bool operator<=(const Integer& a, const Integer& b)
{return a.Compare(b)<=0;}
inline Integer operator+(const Integer &a, const Integer &b)
{return a.Plus(b);}
inline Integer operator-(const Integer &a, const Integer &b)
{return a.Minus(b);}
inline Integer operator*(const Integer &a, const Integer &b)
{return a.Times(b);}
inline Integer operator/(const Integer &a, const Integer &b)
{return a.DividedBy(b);}
inline Integer operator%(const Integer &a, const Integer &b)
{return a.Modulo(b);}
inline Integer operator/(const Integer &a, word b) {return a.DividedBy(b);}
inline word operator%(const Integer &a, word b) {return a.Modulo(b);}
inline void swap(Integer &a, Integer &b)
{
a.Swap(b);
}
Integer CRT(const Integer& xp, const Integer& p, const Integer& xq,
const Integer& q, const Integer& u);
inline Integer ModularExponentiation(const Integer& a, const Integer& e,
const Integer& m)
{
return a_exp_b_mod_c(a, e, m);
}
Integer ModularRoot(const Integer& a, const Integer& dp, const Integer& dq,
const Integer& p, const Integer& q, const Integer& u);
} // namespace
#endif // TAO_CRYPT_INTEGER_HPP
|