1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
|
/*
Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; see the file COPYING. If not, write to the
Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301 USA.
*/
#include "runtime.hpp"
#include "hc128.hpp"
namespace TaoCrypt {
#ifdef BIG_ENDIAN_ORDER
#define LITTLE32(x) ByteReverse((word32)x)
#else
#define LITTLE32(x) (x)
#endif
/*h1 function*/
#define h1(x, y) { \
byte a,c; \
a = (byte) (x); \
c = (byte) ((x) >> 16); \
y = (T_[512+a])+(T_[512+256+c]); \
}
/*h2 function*/
#define h2(x, y) { \
byte a,c; \
a = (byte) (x); \
c = (byte) ((x) >> 16); \
y = (T_[a])+(T_[256+c]); \
}
/*one step of HC-128, update P and generate 32 bits keystream*/
#define step_P(u,v,a,b,c,d,n){ \
word32 tem0,tem1,tem2,tem3; \
h1((X_[(d)]),tem3); \
tem0 = rotrFixed((T_[(v)]),23); \
tem1 = rotrFixed((X_[(c)]),10); \
tem2 = rotrFixed((X_[(b)]),8); \
(T_[(u)]) += tem2+(tem0 ^ tem1); \
(X_[(a)]) = (T_[(u)]); \
(n) = tem3 ^ (T_[(u)]) ; \
}
/*one step of HC-128, update Q and generate 32 bits keystream*/
#define step_Q(u,v,a,b,c,d,n){ \
word32 tem0,tem1,tem2,tem3; \
h2((Y_[(d)]),tem3); \
tem0 = rotrFixed((T_[(v)]),(32-23)); \
tem1 = rotrFixed((Y_[(c)]),(32-10)); \
tem2 = rotrFixed((Y_[(b)]),(32-8)); \
(T_[(u)]) += tem2 + (tem0 ^ tem1); \
(Y_[(a)]) = (T_[(u)]); \
(n) = tem3 ^ (T_[(u)]) ; \
}
/*16 steps of HC-128, generate 512 bits keystream*/
void HC128::GenerateKeystream(word32* keystream)
{
word32 cc,dd;
cc = counter1024_ & 0x1ff;
dd = (cc+16)&0x1ff;
if (counter1024_ < 512)
{
counter1024_ = (counter1024_ + 16) & 0x3ff;
step_P(cc+0, cc+1, 0, 6, 13,4, keystream[0]);
step_P(cc+1, cc+2, 1, 7, 14,5, keystream[1]);
step_P(cc+2, cc+3, 2, 8, 15,6, keystream[2]);
step_P(cc+3, cc+4, 3, 9, 0, 7, keystream[3]);
step_P(cc+4, cc+5, 4, 10,1, 8, keystream[4]);
step_P(cc+5, cc+6, 5, 11,2, 9, keystream[5]);
step_P(cc+6, cc+7, 6, 12,3, 10,keystream[6]);
step_P(cc+7, cc+8, 7, 13,4, 11,keystream[7]);
step_P(cc+8, cc+9, 8, 14,5, 12,keystream[8]);
step_P(cc+9, cc+10,9, 15,6, 13,keystream[9]);
step_P(cc+10,cc+11,10,0, 7, 14,keystream[10]);
step_P(cc+11,cc+12,11,1, 8, 15,keystream[11]);
step_P(cc+12,cc+13,12,2, 9, 0, keystream[12]);
step_P(cc+13,cc+14,13,3, 10,1, keystream[13]);
step_P(cc+14,cc+15,14,4, 11,2, keystream[14]);
step_P(cc+15,dd+0, 15,5, 12,3, keystream[15]);
}
else
{
counter1024_ = (counter1024_ + 16) & 0x3ff;
step_Q(512+cc+0, 512+cc+1, 0, 6, 13,4, keystream[0]);
step_Q(512+cc+1, 512+cc+2, 1, 7, 14,5, keystream[1]);
step_Q(512+cc+2, 512+cc+3, 2, 8, 15,6, keystream[2]);
step_Q(512+cc+3, 512+cc+4, 3, 9, 0, 7, keystream[3]);
step_Q(512+cc+4, 512+cc+5, 4, 10,1, 8, keystream[4]);
step_Q(512+cc+5, 512+cc+6, 5, 11,2, 9, keystream[5]);
step_Q(512+cc+6, 512+cc+7, 6, 12,3, 10,keystream[6]);
step_Q(512+cc+7, 512+cc+8, 7, 13,4, 11,keystream[7]);
step_Q(512+cc+8, 512+cc+9, 8, 14,5, 12,keystream[8]);
step_Q(512+cc+9, 512+cc+10,9, 15,6, 13,keystream[9]);
step_Q(512+cc+10,512+cc+11,10,0, 7, 14,keystream[10]);
step_Q(512+cc+11,512+cc+12,11,1, 8, 15,keystream[11]);
step_Q(512+cc+12,512+cc+13,12,2, 9, 0, keystream[12]);
step_Q(512+cc+13,512+cc+14,13,3, 10,1, keystream[13]);
step_Q(512+cc+14,512+cc+15,14,4, 11,2, keystream[14]);
step_Q(512+cc+15,512+dd+0, 15,5, 12,3, keystream[15]);
}
}
/* The following defines the initialization functions */
#define f1(x) (rotrFixed((x),7) ^ rotrFixed((x),18) ^ ((x) >> 3))
#define f2(x) (rotrFixed((x),17) ^ rotrFixed((x),19) ^ ((x) >> 10))
/*update table P*/
#define update_P(u,v,a,b,c,d){ \
word32 tem0,tem1,tem2,tem3; \
tem0 = rotrFixed((T_[(v)]),23); \
tem1 = rotrFixed((X_[(c)]),10); \
tem2 = rotrFixed((X_[(b)]),8); \
h1((X_[(d)]),tem3); \
(T_[(u)]) = ((T_[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
(X_[(a)]) = (T_[(u)]); \
}
/*update table Q*/
#define update_Q(u,v,a,b,c,d){ \
word32 tem0,tem1,tem2,tem3; \
tem0 = rotrFixed((T_[(v)]),(32-23)); \
tem1 = rotrFixed((Y_[(c)]),(32-10)); \
tem2 = rotrFixed((Y_[(b)]),(32-8)); \
h2((Y_[(d)]),tem3); \
(T_[(u)]) = ((T_[(u)]) + tem2+(tem0^tem1)) ^ tem3; \
(Y_[(a)]) = (T_[(u)]); \
}
/*16 steps of HC-128, without generating keystream, */
/*but use the outputs to update P and Q*/
void HC128::SetupUpdate() /*each time 16 steps*/
{
word32 cc,dd;
cc = counter1024_ & 0x1ff;
dd = (cc+16)&0x1ff;
if (counter1024_ < 512)
{
counter1024_ = (counter1024_ + 16) & 0x3ff;
update_P(cc+0, cc+1, 0, 6, 13, 4);
update_P(cc+1, cc+2, 1, 7, 14, 5);
update_P(cc+2, cc+3, 2, 8, 15, 6);
update_P(cc+3, cc+4, 3, 9, 0, 7);
update_P(cc+4, cc+5, 4, 10,1, 8);
update_P(cc+5, cc+6, 5, 11,2, 9);
update_P(cc+6, cc+7, 6, 12,3, 10);
update_P(cc+7, cc+8, 7, 13,4, 11);
update_P(cc+8, cc+9, 8, 14,5, 12);
update_P(cc+9, cc+10,9, 15,6, 13);
update_P(cc+10,cc+11,10,0, 7, 14);
update_P(cc+11,cc+12,11,1, 8, 15);
update_P(cc+12,cc+13,12,2, 9, 0);
update_P(cc+13,cc+14,13,3, 10, 1);
update_P(cc+14,cc+15,14,4, 11, 2);
update_P(cc+15,dd+0, 15,5, 12, 3);
}
else
{
counter1024_ = (counter1024_ + 16) & 0x3ff;
update_Q(512+cc+0, 512+cc+1, 0, 6, 13, 4);
update_Q(512+cc+1, 512+cc+2, 1, 7, 14, 5);
update_Q(512+cc+2, 512+cc+3, 2, 8, 15, 6);
update_Q(512+cc+3, 512+cc+4, 3, 9, 0, 7);
update_Q(512+cc+4, 512+cc+5, 4, 10,1, 8);
update_Q(512+cc+5, 512+cc+6, 5, 11,2, 9);
update_Q(512+cc+6, 512+cc+7, 6, 12,3, 10);
update_Q(512+cc+7, 512+cc+8, 7, 13,4, 11);
update_Q(512+cc+8, 512+cc+9, 8, 14,5, 12);
update_Q(512+cc+9, 512+cc+10,9, 15,6, 13);
update_Q(512+cc+10,512+cc+11,10,0, 7, 14);
update_Q(512+cc+11,512+cc+12,11,1, 8, 15);
update_Q(512+cc+12,512+cc+13,12,2, 9, 0);
update_Q(512+cc+13,512+cc+14,13,3, 10, 1);
update_Q(512+cc+14,512+cc+15,14,4, 11, 2);
update_Q(512+cc+15,512+dd+0, 15,5, 12, 3);
}
}
/* for the 128-bit key: key[0]...key[15]
* key[0] is the least significant byte of ctx->key[0] (K_0);
* key[3] is the most significant byte of ctx->key[0] (K_0);
* ...
* key[12] is the least significant byte of ctx->key[3] (K_3)
* key[15] is the most significant byte of ctx->key[3] (K_3)
*
* for the 128-bit iv: iv[0]...iv[15]
* iv[0] is the least significant byte of ctx->iv[0] (IV_0);
* iv[3] is the most significant byte of ctx->iv[0] (IV_0);
* ...
* iv[12] is the least significant byte of ctx->iv[3] (IV_3)
* iv[15] is the most significant byte of ctx->iv[3] (IV_3)
*/
void HC128::SetIV(const byte* iv)
{
word32 i;
for (i = 0; i < (128 >> 5); i++)
iv_[i] = LITTLE32(((word32*)iv)[i]);
for (; i < 8; i++) iv_[i] = iv_[i-4];
/* expand the key and IV into the table T */
/* (expand the key and IV into the table P and Q) */
for (i = 0; i < 8; i++) T_[i] = key_[i];
for (i = 8; i < 16; i++) T_[i] = iv_[i-8];
for (i = 16; i < (256+16); i++)
T_[i] = f2(T_[i-2]) + T_[i-7] + f1(T_[i-15]) + T_[i-16]+i;
for (i = 0; i < 16; i++) T_[i] = T_[256+i];
for (i = 16; i < 1024; i++)
T_[i] = f2(T_[i-2]) + T_[i-7] + f1(T_[i-15]) + T_[i-16]+256+i;
/* initialize counter1024, X and Y */
counter1024_ = 0;
for (i = 0; i < 16; i++) X_[i] = T_[512-16+i];
for (i = 0; i < 16; i++) Y_[i] = T_[512+512-16+i];
/* run the cipher 1024 steps before generating the output */
for (i = 0; i < 64; i++) SetupUpdate();
}
void HC128::SetKey(const byte* key, const byte* iv)
{
word32 i;
/* Key size in bits 128 */
for (i = 0; i < (128 >> 5); i++)
key_[i] = LITTLE32(((word32*)key)[i]);
for ( ; i < 8 ; i++) key_[i] = key_[i-4];
SetIV(iv);
}
/* The following defines the encryption of data stream */
void HC128::Process(byte* output, const byte* input, word32 msglen)
{
word32 i, keystream[16];
for ( ; msglen >= 64; msglen -= 64, input += 64, output += 64)
{
GenerateKeystream(keystream);
/* unroll loop */
((word32*)output)[0] = ((word32*)input)[0] ^ LITTLE32(keystream[0]);
((word32*)output)[1] = ((word32*)input)[1] ^ LITTLE32(keystream[1]);
((word32*)output)[2] = ((word32*)input)[2] ^ LITTLE32(keystream[2]);
((word32*)output)[3] = ((word32*)input)[3] ^ LITTLE32(keystream[3]);
((word32*)output)[4] = ((word32*)input)[4] ^ LITTLE32(keystream[4]);
((word32*)output)[5] = ((word32*)input)[5] ^ LITTLE32(keystream[5]);
((word32*)output)[6] = ((word32*)input)[6] ^ LITTLE32(keystream[6]);
((word32*)output)[7] = ((word32*)input)[7] ^ LITTLE32(keystream[7]);
((word32*)output)[8] = ((word32*)input)[8] ^ LITTLE32(keystream[8]);
((word32*)output)[9] = ((word32*)input)[9] ^ LITTLE32(keystream[9]);
((word32*)output)[10] = ((word32*)input)[10] ^ LITTLE32(keystream[10]);
((word32*)output)[11] = ((word32*)input)[11] ^ LITTLE32(keystream[11]);
((word32*)output)[12] = ((word32*)input)[12] ^ LITTLE32(keystream[12]);
((word32*)output)[13] = ((word32*)input)[13] ^ LITTLE32(keystream[13]);
((word32*)output)[14] = ((word32*)input)[14] ^ LITTLE32(keystream[14]);
((word32*)output)[15] = ((word32*)input)[15] ^ LITTLE32(keystream[15]);
}
if (msglen > 0)
{
GenerateKeystream(keystream);
#ifdef BIG_ENDIAN_ORDER
{
word32 wordsLeft = msglen / sizeof(word32);
if (msglen % sizeof(word32)) wordsLeft++;
ByteReverse(keystream, keystream, wordsLeft * sizeof(word32));
}
#endif
for (i = 0; i < msglen; i++)
output[i] = input[i] ^ ((byte*)keystream)[i];
}
}
} // namespace
|