summaryrefslogtreecommitdiff
path: root/ft/omt-tmpl.cc
blob: 13d535604d04843c6a9b01a1f99a374d066cb331 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
/* -*- mode: C++; c-basic-offset: 4; indent-tabs-mode: nil -*- */
// vim: ft=cpp:expandtab:ts=8:sw=4:softtabstop=4:
#ident "$Id$"
#ident "Copyright (c) 2007-2012 Tokutek Inc.  All rights reserved."
#ident "The technology is licensed by the Massachusetts Institute of Technology, Rutgers State University of New Jersey, and the Research Foundation of State University of New York at Stony Brook under United States of America Serial No. 11/760379 and to the patents and/or patent applications resulting from it."

#ifndef OMT_TMPL_H
#include <toku_portability.h>
#include <toku_assert.h>
#include <memory.h>
#include <stdint.h>
#include <string.h>
#include <errno.h>
#include <db.h>
#include "omt-tmpl.h"
#include "fttypes.h"
#include "log-internal.h"
#endif

namespace toku {

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::create(void) {
    this->create_internal(2);
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::create_no_array(void) {
    this->create_internal_no_array(0);
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::create_from_sorted_array(const omtdata_t *const values, const uint32_t numvalues) {
    this->create_internal(numvalues);
    memcpy(this->d.a.values, values, numvalues * (sizeof values[0]));
    this->d.a.num_values = numvalues;
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::create_steal_sorted_array(omtdata_t **const values, const uint32_t numvalues, const uint32_t new_capacity) {
    invariant_notnull(values);
    this->create_internal_no_array(new_capacity);
    this->d.a.num_values = numvalues;
    this->d.a.values = *values;
    *values = nullptr;
}

template<typename omtdata_t, typename omtdataout_t>
int omt<omtdata_t, omtdataout_t>::split_at(omt *const newomt, const uint32_t idx) {
    invariant_notnull(newomt);
    if (idx > this->size()) { return EINVAL; }
    this->convert_to_array();
    const uint32_t newsize = this->size() - idx;
    newomt->create_from_sorted_array(&this->d.a.values[this->d.a.start_idx + idx], newsize);
    this->d.a.num_values = idx;
    this->maybe_resize_array(idx);
    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::merge(omt *const leftomt, omt *const rightomt) {
    invariant_notnull(leftomt);
    invariant_notnull(rightomt);
    const uint32_t leftsize = leftomt->size();
    const uint32_t rightsize = rightomt->size();
    const uint32_t newsize = leftsize + rightsize;

    if (leftomt->is_array) {
        if (leftomt->capacity - (leftomt->d.a.start_idx + leftomt->d.a.num_values) >= rightsize) {
            this->create_steal_sorted_array(&leftomt->d.a.values, leftomt->d.a.num_values, leftomt->capacity);
            this->d.a.start_idx = leftomt->d.a.start_idx;
        } else {
            this->create_internal(newsize);
            memcpy(&this->d.a.values[0],
                   &leftomt->d.a.values[leftomt->d.a.start_idx],
                   leftomt->d.a.num_values * (sizeof this->d.a.values[0]));
        }
    } else {
        this->create_internal(newsize);
        leftomt->fill_array_with_subtree_values(&this->d.a.values[0], leftomt->d.t.root);
    }
    leftomt->destroy();
    this->d.a.num_values = leftsize;

    if (rightomt->is_array) {
        memcpy(&this->d.a.values[this->d.a.start_idx + this->d.a.num_values],
               &rightomt->d.a.values[rightomt->d.a.start_idx],
               rightomt->d.a.num_values * (sizeof this->d.a.values[0]));
    } else {
        rightomt->fill_array_with_subtree_values(&this->d.a.values[this->d.a.start_idx + this->d.a.num_values],
                                                 rightomt->d.t.root);
    }
    rightomt->destroy();
    this->d.a.num_values += rightsize;
    invariant(this->size() == newsize);
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::clone(const omt &src) {
    this->create_internal(src.size());
    if (src.is_array) {
        memcpy(&this->d.a.values[0], &src.d.a.values[src.d.a.start_idx], src.d.a.num_values * (sizeof this->d.a.values[0]));
    } else {
        src.fill_array_with_subtree_values(&this->d.a.values[0], src.d.t.root);
    }
    this->d.a.num_values = src.size();
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::clear(void) {
    if (this->is_array) {
        this->d.a.start_idx = 0;
        this->d.a.num_values = 0;
    } else {
        this->d.t.root = NODE_NULL;
        this->d.t.free_idx = 0;
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::destroy(void) {
    this->clear();
    this->capacity = 0;
    if (this->is_array) {
        if (this->d.a.values != nullptr) {
            toku_free(this->d.a.values);
        }
        this->d.a.values = nullptr;
    } else {
        if (this->d.t.nodes != nullptr) {
            toku_free(this->d.t.nodes);
        }
        this->d.t.nodes = nullptr;
    }
}

template<typename omtdata_t, typename omtdataout_t>
uint32_t omt<omtdata_t, omtdataout_t>::size(void) const {
    if (this->is_array) {
        return this->d.a.num_values;
    } else {
        return this->nweight(this->d.t.root);
    }
}


template<typename omtdata_t, typename omtdataout_t>
template<typename omtcmp_t, int (*h)(const omtdata_t &, const omtcmp_t &)>
int omt<omtdata_t, omtdataout_t>::insert(const omtdata_t &value, const omtcmp_t &v, uint32_t *const idx) {
    int r;
    uint32_t insert_idx;

    r = this->find_zero<omtcmp_t, h>(v, nullptr, &insert_idx);
    if (r==0) {
        if (idx) *idx = insert_idx;
        return DB_KEYEXIST;
    }
    if (r != DB_NOTFOUND) return r;

    if ((r = this->insert_at(value, insert_idx))) return r;
    if (idx) *idx = insert_idx;

    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
int omt<omtdata_t, omtdataout_t>::insert_at(const omtdata_t &value, const uint32_t idx) {
    if (idx > this->size()) { return EINVAL; }
    this->maybe_resize_or_convert(this->size() + 1);
    if (this->is_array && idx != this->d.a.num_values &&
        (idx != 0 || this->d.a.start_idx == 0)) {
        this->convert_to_tree();
    }
    if (this->is_array) {
        if (idx == this->d.a.num_values) {
            this->d.a.values[this->d.a.start_idx + this->d.a.num_values] = value;
        }
        else {
            this->d.a.values[--this->d.a.start_idx] = value;
        }
        this->d.a.num_values++;
    }
    else {
        node_idx *rebalance_idx = nullptr;
        this->insert_internal(&this->d.t.root, value, idx, &rebalance_idx);
        if (rebalance_idx != nullptr) {
            this->rebalance(rebalance_idx);
        }
    }
    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
int omt<omtdata_t, omtdataout_t>::set_at(const omtdata_t &value, const uint32_t idx) {
    if (idx >= this->size()) { return EINVAL; }
    if (this->is_array) {
        this->set_at_internal_array(value, idx);
    } else {
        this->set_at_internal(this->d.t.root, value, idx);
    }
    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
int omt<omtdata_t, omtdataout_t>::delete_at(const uint32_t idx) {
    if (idx >= this->size()) { return EINVAL; }
    this->maybe_resize_or_convert(this->size() - 1);
    if (this->is_array && idx != 0 && idx != this->d.a.num_values - 1) {
        this->convert_to_tree();
    }
    if (this->is_array) {
        //Testing for 0 does not rule out it being the last entry.
        //Test explicitly for num_values-1
        if (idx != this->d.a.num_values - 1) {
            this->d.a.start_idx++;
        }
        this->d.a.num_values--;
    } else {
        node_idx *rebalance_idx = nullptr;
        this->delete_internal(&this->d.t.root, idx, nullptr, &rebalance_idx);
        if (rebalance_idx != nullptr) {
            this->rebalance(rebalance_idx);
        }
    }
    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
template<typename iterate_extra_t,
         int (*f)(const omtdata_t &, const uint32_t, iterate_extra_t *const)>
int omt<omtdata_t, omtdataout_t>::iterate(iterate_extra_t *const iterate_extra) const {
    return this->iterate_on_range<iterate_extra_t, f>(0, this->size(), iterate_extra);
}

template<typename omtdata_t, typename omtdataout_t>
template<typename iterate_extra_t,
         int (*f)(const omtdata_t &, const uint32_t, iterate_extra_t *const)>
int omt<omtdata_t, omtdataout_t>::iterate_on_range(const uint32_t left, const uint32_t right, iterate_extra_t *const iterate_extra) const {
    if (right > this->size()) { return EINVAL; }
    if (this->is_array) {
        return this->iterate_internal_array<iterate_extra_t, f>(left, right, iterate_extra);
    }
    return this->iterate_internal<iterate_extra_t, f>(left, right, this->d.t.root, 0, iterate_extra);
}

template<typename omtdata_t, typename omtdataout_t>
template<typename iterate_extra_t,
         int (*f)(omtdata_t *, const uint32_t, iterate_extra_t *const)>
void omt<omtdata_t, omtdataout_t>::iterate_ptr(iterate_extra_t *const iterate_extra) {
    if (this->is_array) {
        this->iterate_ptr_internal_array<iterate_extra_t, f>(0, this->size(), iterate_extra);
    } else {
        this->iterate_ptr_internal<iterate_extra_t, f>(0, this->size(), this->d.t.root, 0, iterate_extra);
    }
}

template<typename omtdata_t, typename omtdataout_t>
int omt<omtdata_t, omtdataout_t>::fetch(const uint32_t idx, omtdataout_t *const value) const {
    if (idx >= this->size()) { return EINVAL; }
    if (this->is_array) {
        this->fetch_internal_array(idx, value);
    } else {
        this->fetch_internal(this->d.t.root, idx, value);
    }
    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
template<typename omtcmp_t,
         int (*h)(const omtdata_t &, const omtcmp_t &)>
int omt<omtdata_t, omtdataout_t>::find_zero(const omtcmp_t &extra, omtdataout_t *const value, uint32_t *const idxp) const {
    uint32_t tmp_index;
    uint32_t *const child_idxp = (idxp != nullptr) ? idxp : &tmp_index;
    int r;
    if (this->is_array) {
        r = this->find_internal_zero_array<omtcmp_t, h>(extra, value, child_idxp);
    }
    else {
        r = this->find_internal_zero<omtcmp_t, h>(this->d.t.root, extra, value, child_idxp);
    }
    return r;
}

template<typename omtdata_t, typename omtdataout_t>
template<typename omtcmp_t,
         int (*h)(const omtdata_t &, const omtcmp_t &)>
int omt<omtdata_t, omtdataout_t>::find(const omtcmp_t &extra, int direction, omtdataout_t *const value, uint32_t *const idxp) const {
    uint32_t tmp_index;
    uint32_t *const child_idxp = (idxp != nullptr) ? idxp : &tmp_index;
    invariant(direction != 0);
    if (direction < 0) {
        if (this->is_array) {
            return this->find_internal_minus_array<omtcmp_t, h>(extra, value, child_idxp);
        } else {
            return this->find_internal_minus<omtcmp_t, h>(this->d.t.root, extra, value, child_idxp);
        }
    } else {
        if (this->is_array) {
            return this->find_internal_plus_array<omtcmp_t, h>(extra, value, child_idxp);
        } else {
            return this->find_internal_plus<omtcmp_t, h>(this->d.t.root, extra, value, child_idxp);
        }
    }
}

template<typename omtdata_t, typename omtdataout_t>
size_t omt<omtdata_t, omtdataout_t>::memory_size(void) {
    if (this->is_array) {
        return (sizeof *this) + this->capacity * (sizeof this->d.a.values[0]);
    }
    return (sizeof *this) + this->capacity * (sizeof this->d.t.nodes[0]);
}


template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::create_internal_no_array(const uint32_t new_capacity) {
    this->is_array = true;
    this->capacity = new_capacity;
    this->d.a.start_idx = 0;
    this->d.a.num_values = 0;
    this->d.a.values = nullptr;
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::create_internal(const uint32_t new_capacity) {
    this->create_internal_no_array(new_capacity);
    XMALLOC_N(this->capacity, this->d.a.values);
}

template<typename omtdata_t, typename omtdataout_t>
uint32_t omt<omtdata_t, omtdataout_t>::nweight(const node_idx idx) const {
    if (idx == NODE_NULL) {
        return 0;
    } else {
        return this->d.t.nodes[idx].weight;
    }
}

template<typename omtdata_t, typename omtdataout_t>
typename omt<omtdata_t, omtdataout_t>::node_idx omt<omtdata_t, omtdataout_t>::node_malloc(void) {
    invariant(this->d.t.free_idx < this->capacity);
    return this->d.t.free_idx++;
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::node_free(const node_idx idx) {
    invariant(idx < this->capacity);
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::maybe_resize_array(const uint32_t n) {
    const uint32_t new_size = n<=2 ? 4 : 2*n;
    const uint32_t room = this->capacity - this->d.a.start_idx;

    if (room < n || this->capacity / 2 >= new_size) {
        omtdata_t *XMALLOC_N(new_size, tmp_values);
        memcpy(tmp_values, &this->d.a.values[this->d.a.start_idx],
               this->d.a.num_values * (sizeof tmp_values[0]));
        this->d.a.start_idx = 0;
        this->capacity = new_size;
        toku_free(this->d.a.values);
        this->d.a.values = tmp_values;
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::fill_array_with_subtree_values(omtdata_t *const array, const node_idx tree_idx) const {
    if (tree_idx==NODE_NULL) return;
    const omt_node &tree = this->d.t.nodes[tree_idx];
    this->fill_array_with_subtree_values(&array[0], tree.left);
    array[this->nweight(tree.left)] = tree.value;
    this->fill_array_with_subtree_values(&array[this->nweight(tree.left) + 1], tree.right);
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::convert_to_array(void) {
    if (!this->is_array) {
        const uint32_t num_values = this->size();
        uint32_t new_size = 2*num_values;
        new_size = new_size < 4 ? 4 : new_size;

        omtdata_t *XMALLOC_N(new_size, tmp_values);
        this->fill_array_with_subtree_values(tmp_values, this->d.t.root);
        toku_free(this->d.t.nodes);
        this->is_array       = true;
        this->capacity       = new_size;
        this->d.a.num_values = num_values;
        this->d.a.values     = tmp_values;
        this->d.a.start_idx  = 0;
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::rebuild_from_sorted_array(node_idx *const n_idxp, const omtdata_t *const values, const uint32_t numvalues) {
    if (numvalues==0) {
        *n_idxp = NODE_NULL;
    } else {
        const uint32_t halfway = numvalues/2;
        const node_idx newidx = this->node_malloc();
        omt_node *const newnode = &this->d.t.nodes[newidx];
        newnode->weight = numvalues;
        newnode->value = values[halfway];
        *n_idxp = newidx; // update everything before the recursive calls so the second call can be a tail call.
        this->rebuild_from_sorted_array(&newnode->left,  &values[0], halfway);
        this->rebuild_from_sorted_array(&newnode->right, &values[halfway+1], numvalues - (halfway+1));
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::convert_to_tree(void) {
    if (this->is_array) {
        const uint32_t num_nodes = this->size();
        uint32_t new_size  = num_nodes*2;
        new_size = new_size < 4 ? 4 : new_size;

        omt_node *XMALLOC_N(new_size, new_nodes);
        omtdata_t *const values = this->d.a.values;
        omtdata_t *const tmp_values = &values[this->d.a.start_idx];
        this->is_array = false;
        this->d.t.nodes = new_nodes;
        this->capacity = new_size;
        this->d.t.free_idx = 0;
        this->d.t.root = NODE_NULL;
        this->rebuild_from_sorted_array(&this->d.t.root, tmp_values, num_nodes);
        toku_free(values);
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::maybe_resize_or_convert(const uint32_t n) {
    if (this->is_array) {
        this->maybe_resize_array(n);
    } else {
        const uint32_t new_size = n<=2 ? 4 : 2*n;
        const uint32_t num_nodes = this->nweight(this->d.t.root);
        if ((this->capacity/2 >= new_size) ||
            (this->d.t.free_idx >= this->capacity && num_nodes < n) ||
            (this->capacity<n)) {
            this->convert_to_array();
        }
    }
}

template<typename omtdata_t, typename omtdataout_t>
bool omt<omtdata_t, omtdataout_t>::will_need_rebalance(const node_idx n_idx, const int leftmod, const int rightmod) const {
    if (n_idx==NODE_NULL) { return false; }
    const omt_node &n = this->d.t.nodes[n_idx];
    // one of the 1's is for the root.
    // the other is to take ceil(n/2)
    const uint32_t weight_left  = this->nweight(n.left)  + leftmod;
    const uint32_t weight_right = this->nweight(n.right) + rightmod;
    return ((1+weight_left < (1+1+weight_right)/2)
            ||
            (1+weight_right < (1+1+weight_left)/2));
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::insert_internal(node_idx *const n_idxp, const omtdata_t &value, const uint32_t idx, node_idx **const rebalance_idx) {
    if (*n_idxp == NODE_NULL) {
        invariant_zero(idx);
        const node_idx newidx = this->node_malloc();
        omt_node *const newnode = &this->d.t.nodes[newidx];
        newnode->weight = 1;
        newnode->left = NODE_NULL;
        newnode->right = NODE_NULL;
        newnode->value = value;
        *n_idxp = newidx;
    } else {
        const node_idx thisidx = *n_idxp;
        omt_node *const n = &this->d.t.nodes[thisidx];
        n->weight++;
        if (idx <= this->nweight(n->left)) {
            if (*rebalance_idx == nullptr && this->will_need_rebalance(thisidx, 1, 0)) {
                *rebalance_idx = n_idxp;
            }
            this->insert_internal(&n->left, value, idx, rebalance_idx);
        } else {
            if (*rebalance_idx == nullptr && this->will_need_rebalance(thisidx, 0, 1)) {
                *rebalance_idx = n_idxp;
            }
            const uint32_t sub_index = idx - this->nweight(n->left) - 1;
            this->insert_internal(&n->right, value, sub_index, rebalance_idx);
        }
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::set_at_internal_array(const omtdata_t &value, const uint32_t idx) {
    this->d.a.values[this->d.a.start_idx + idx] = value;
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::set_at_internal(const node_idx n_idx, const omtdata_t &value, const uint32_t idx) {
    invariant(n_idx != NODE_NULL);
    omt_node *const n = &this->d.t.nodes[n_idx];
    const uint32_t leftweight = this->nweight(n->left);
    if (idx < leftweight) {
        this->set_at_internal(n->left, value, idx);
    } else if (idx == leftweight) {
        n->value = value;
    } else {
        this->set_at_internal(n->right, value, idx - leftweight - 1);
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::delete_internal(node_idx *const n_idxp, const uint32_t idx, omt_node *const copyn, node_idx **const rebalance_idx) {
    invariant_notnull(n_idxp);
    invariant_notnull(rebalance_idx);
    invariant(*n_idxp != NODE_NULL);
    omt_node *const n = &this->d.t.nodes[*n_idxp];
    const uint32_t leftweight = this->nweight(n->left);
    if (idx < leftweight) {
        n->weight--;
        if (*rebalance_idx == nullptr && this->will_need_rebalance(*n_idxp, -1, 0)) {
            *rebalance_idx = n_idxp;
        }
        this->delete_internal(&n->left, idx, copyn, rebalance_idx);
    } else if (idx == leftweight) {
        if (n->left == NODE_NULL) {
            const uint32_t oldidx = *n_idxp;
            *n_idxp = n->right;
            if (copyn != nullptr) {
                copyn->value = n->value;
            }
            this->node_free(oldidx);
        } else if (n->right == NODE_NULL) {
            const uint32_t oldidx = *n_idxp;
            *n_idxp = n->left;
            if (copyn != nullptr) {
                copyn->value = n->value;
            }
            this->node_free(oldidx);
        } else {
            if (*rebalance_idx == nullptr && this->will_need_rebalance(*n_idxp, 0, -1)) {
                *rebalance_idx = n_idxp;
            }
            // don't need to copy up value, it's only used by this
            // next call, and when that gets to the bottom there
            // won't be any more recursion
            n->weight--;
            this->delete_internal(&n->right, 0, n, rebalance_idx);
        }
    } else {
        n->weight--;
        if (*rebalance_idx == nullptr && this->will_need_rebalance(*n_idxp, 0, -1)) {
            *rebalance_idx = n_idxp;
        }
        this->delete_internal(&n->right, idx - leftweight - 1, copyn, rebalance_idx);
    }
}

template<typename omtdata_t, typename omtdataout_t>
template<typename iterate_extra_t,
         int (*f)(const omtdata_t &, const uint32_t, iterate_extra_t *const)>
int omt<omtdata_t, omtdataout_t>::iterate_internal_array(const uint32_t left, const uint32_t right,
                                                         iterate_extra_t *const iterate_extra) const {
    int r;
    for (uint32_t i = left; i < right; ++i) {
        r = f(this->d.a.values[this->d.a.start_idx + i], i, iterate_extra);
        if (r != 0) {
            return r;
        }
    }
    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
template<typename iterate_extra_t,
         int (*f)(omtdata_t *, const uint32_t, iterate_extra_t *const)>
void omt<omtdata_t, omtdataout_t>::iterate_ptr_internal(const uint32_t left, const uint32_t right,
                                                        const node_idx n_idx, const uint32_t idx,
                                                        iterate_extra_t *const iterate_extra) {
    if (n_idx != NODE_NULL) { 
        omt_node *const n = &this->d.t.nodes[n_idx];
        const uint32_t idx_root = idx + this->nweight(n->left);
        if (left < idx_root) {
            this->iterate_ptr_internal<iterate_extra_t, f>(left, right, n->left, idx, iterate_extra);
        }
        if (left <= idx_root && idx_root < right) {
            int r = f(&n->value, idx_root, iterate_extra);
            lazy_assert_zero(r);
        }
        if (idx_root + 1 < right) {
            this->iterate_ptr_internal<iterate_extra_t, f>(left, right, n->right, idx_root + 1, iterate_extra);
        }
    }
}

template<typename omtdata_t, typename omtdataout_t>
template<typename iterate_extra_t,
         int (*f)(omtdata_t *, const uint32_t, iterate_extra_t *const)>
void omt<omtdata_t, omtdataout_t>::iterate_ptr_internal_array(const uint32_t left, const uint32_t right,
                                                              iterate_extra_t *const iterate_extra) {
    for (uint32_t i = left; i < right; ++i) {
        int r = f(&this->d.a.values[this->d.a.start_idx + i], i, iterate_extra);
        lazy_assert_zero(r);
    }
}

template<typename omtdata_t, typename omtdataout_t>
template<typename iterate_extra_t,
         int (*f)(const omtdata_t &, const uint32_t, iterate_extra_t *const)>
int omt<omtdata_t, omtdataout_t>::iterate_internal(const uint32_t left, const uint32_t right,
                                                   const node_idx n_idx, const uint32_t idx,
                                                   iterate_extra_t *const iterate_extra) const {
    if (n_idx == NODE_NULL) { return 0; }
    int r;
    const omt_node &n = this->d.t.nodes[n_idx];
    const uint32_t idx_root = idx + this->nweight(n.left);
    if (left < idx_root) {
        r = this->iterate_internal<iterate_extra_t, f>(left, right, n.left, idx, iterate_extra);
        if (r != 0) { return r; }
    }
    if (left <= idx_root && idx_root < right) {
        r = f(n.value, idx_root, iterate_extra);
        if (r != 0) { return r; }
    }
    if (idx_root + 1 < right) {
        return this->iterate_internal<iterate_extra_t, f>(left, right, n.right, idx_root + 1, iterate_extra);
    }
    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::fetch_internal_array(const uint32_t i, omtdataout_t *value) const {
    if (value != nullptr) {
        copyout(value, &this->d.a.values[this->d.a.start_idx + i]);
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::fetch_internal(const node_idx idx, const uint32_t i, omtdataout_t *value) const {
    omt_node *const n = &this->d.t.nodes[idx];
    const uint32_t leftweight = this->nweight(n->left);
    if (i < leftweight) {
        this->fetch_internal(n->left, i, value);
    } else if (i == leftweight) {
        if (value != nullptr) {
            copyout(value, n);
        }
    } else {
        this->fetch_internal(n->right, i - leftweight - 1, value);
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::fill_array_with_subtree_idxs(node_idx *const array, const node_idx tree_idx) const {
    if (tree_idx != NODE_NULL) {
        const omt_node &tree = this->d.t.nodes[tree_idx];
        this->fill_array_with_subtree_idxs(&array[0], tree.left);
        array[this->nweight(tree.left)] = tree_idx;
        this->fill_array_with_subtree_idxs(&array[this->nweight(tree.left) + 1], tree.right);
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::rebuild_subtree_from_idxs(node_idx *const n_idxp, const node_idx *const idxs, const uint32_t numvalues) {
    if (numvalues==0) {
        *n_idxp = NODE_NULL;
    } else {
        uint32_t halfway = numvalues/2;
        *n_idxp = idxs[halfway];
        //node_idx newidx = idxs[halfway];
        omt_node *const newnode = &this->d.t.nodes[*n_idxp];
        newnode->weight = numvalues;
        // value is already in there.
        this->rebuild_subtree_from_idxs(&newnode->left,  &idxs[0], halfway);
        this->rebuild_subtree_from_idxs(&newnode->right, &idxs[halfway+1], numvalues-(halfway+1));
        //n_idx = newidx;
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::rebalance(node_idx *const n_idxp) {
    node_idx idx = *n_idxp;
    if (idx==this->d.t.root) {
        //Try to convert to an array.
        //If this fails, (malloc) nothing will have changed.
        //In the failure case we continue on to the standard rebalance
        //algorithm.
        this->convert_to_array();
    } else {
        const omt_node &n = this->d.t.nodes[idx];
        node_idx *tmp_array;
        size_t mem_needed = n.weight * (sizeof tmp_array[0]);
        size_t mem_free = (this->capacity - this->d.t.free_idx) * (sizeof this->d.t.nodes[0]);
        bool malloced;
        if (mem_needed<=mem_free) {
            //There is sufficient free space at the end of the nodes array
            //to hold enough node indexes to rebalance.
            malloced = false;
            tmp_array = reinterpret_cast<node_idx *>(&this->d.t.nodes[this->d.t.free_idx]);
        }
        else {
            malloced = true;
            XMALLOC_N(n.weight, tmp_array);
        }
        this->fill_array_with_subtree_idxs(tmp_array, idx);
        this->rebuild_subtree_from_idxs(n_idxp, tmp_array, n.weight);
        if (malloced) toku_free(tmp_array);
    }
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::copyout(omtdata_t *const out, const omt_node *const n) {
    *out = n->value;
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::copyout(omtdata_t **const out, omt_node *const n) {
    *out = &n->value;
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::copyout(omtdata_t *const out, const omtdata_t *const stored_value_ptr) {
    *out = *stored_value_ptr;
}

template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::copyout(omtdata_t **const out, omtdata_t *const stored_value_ptr) {
    *out = stored_value_ptr;
}

template<typename omtdata_t, typename omtdataout_t>
template<typename omtcmp_t,
         int (*h)(const omtdata_t &, const omtcmp_t &)>
int omt<omtdata_t, omtdataout_t>::find_internal_zero_array(const omtcmp_t &extra, omtdataout_t *value, uint32_t *const idxp) const {
    invariant_notnull(idxp);
    uint32_t min = this->d.a.start_idx;
    uint32_t limit = this->d.a.start_idx + this->d.a.num_values;
    uint32_t best_pos = NODE_NULL;
    uint32_t best_zero = NODE_NULL;

    while (min!=limit) {
        uint32_t mid = (min + limit) / 2;
        int hv = h(this->d.a.values[mid], extra);
        if (hv<0) {
            min = mid+1;
        }
        else if (hv>0) {
            best_pos  = mid;
            limit     = mid;
        }
        else {
            best_zero = mid;
            limit     = mid;
        }
    }
    if (best_zero!=NODE_NULL) {
        //Found a zero
        if (value != nullptr) {
            copyout(value, &this->d.a.values[best_zero]);
        }
        *idxp = best_zero - this->d.a.start_idx;
        return 0;
    }
    if (best_pos!=NODE_NULL) *idxp = best_pos - this->d.a.start_idx;
    else                     *idxp = this->d.a.num_values;
    return DB_NOTFOUND;
}

template<typename omtdata_t, typename omtdataout_t>
template<typename omtcmp_t,
         int (*h)(const omtdata_t &, const omtcmp_t &)>
int omt<omtdata_t, omtdataout_t>::find_internal_zero(const node_idx n_idx, const omtcmp_t &extra, omtdataout_t *value, uint32_t *const idxp) const {
    invariant_notnull(idxp);
    if (n_idx==NODE_NULL) {
        *idxp = 0;
        return DB_NOTFOUND;
    }
    omt_node *const n = &this->d.t.nodes[n_idx];
    int hv = h(n->value, extra);
    if (hv<0) {
        int r = this->find_internal_zero<omtcmp_t, h>(n->right, extra, value, idxp);
        *idxp += this->nweight(n->left)+1;
        return r;
    } else if (hv>0) {
        return this->find_internal_zero<omtcmp_t, h>(n->left, extra, value, idxp);
    } else {
        int r = this->find_internal_zero<omtcmp_t, h>(n->left, extra, value, idxp);
        if (r==DB_NOTFOUND) {
            *idxp = this->nweight(n->left);
            if (value != nullptr) {
                copyout(value, n);
            }
            r = 0;
        }
        return r;
    }
}

template<typename omtdata_t, typename omtdataout_t>
template<typename omtcmp_t,
         int (*h)(const omtdata_t &, const omtcmp_t &)>
int omt<omtdata_t, omtdataout_t>::find_internal_plus_array(const omtcmp_t &extra, omtdataout_t *value, uint32_t *const idxp) const {
    invariant_notnull(idxp);
    uint32_t min = this->d.a.start_idx;
    uint32_t limit = this->d.a.start_idx + this->d.a.num_values;
    uint32_t best = NODE_NULL;

    while (min != limit) {
        const uint32_t mid = (min + limit) / 2;
        const int hv = h(this->d.a.values[mid], extra);
        if (hv > 0) {
            best = mid;
            limit = mid;
        } else {
            min = mid + 1;
        }
    }
    if (best == NODE_NULL) { return DB_NOTFOUND; }
    if (value != nullptr) {
        copyout(value, &this->d.a.values[best]);
    }
    *idxp = best - this->d.a.start_idx;
    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
template<typename omtcmp_t,
         int (*h)(const omtdata_t &, const omtcmp_t &)>
int omt<omtdata_t, omtdataout_t>::find_internal_plus(const node_idx n_idx, const omtcmp_t &extra, omtdataout_t *value, uint32_t *const idxp) const {
    invariant_notnull(idxp);
    if (n_idx==NODE_NULL) {
        return DB_NOTFOUND;
    }
    omt_node *const n = &this->d.t.nodes[n_idx];
    int hv = h(n->value, extra);
    int r;
    if (hv > 0) {
        r = this->find_internal_plus<omtcmp_t, h>(n->left, extra, value, idxp);
        if (r == DB_NOTFOUND) {
            *idxp = this->nweight(n->left);
            if (value != nullptr) {
                copyout(value, n);
            }
            r = 0;
        }
    } else {
        r = this->find_internal_plus<omtcmp_t, h>(n->right, extra, value, idxp);
        if (r == 0) {
            *idxp += this->nweight(n->left) + 1;
        }
    }
    return r;
}

template<typename omtdata_t, typename omtdataout_t>
template<typename omtcmp_t,
         int (*h)(const omtdata_t &, const omtcmp_t &)>
int omt<omtdata_t, omtdataout_t>::find_internal_minus_array(const omtcmp_t &extra, omtdataout_t *value, uint32_t *const idxp) const {
    invariant_notnull(idxp);
    uint32_t min = this->d.a.start_idx;
    uint32_t limit = this->d.a.start_idx + this->d.a.num_values;
    uint32_t best = NODE_NULL;

    while (min != limit) {
        const uint32_t mid = (min + limit) / 2;
        const int hv = h(this->d.a.values[mid], extra);
        if (hv < 0) {
            best = mid;
            min = mid + 1;
        } else {
            limit = mid;
        }
    }
    if (best == NODE_NULL) { return DB_NOTFOUND; }
    if (value != nullptr) {
        copyout(value, &this->d.a.values[best]);
    }
    *idxp = best - this->d.a.start_idx;
    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
template<typename omtcmp_t,
         int (*h)(const omtdata_t &, const omtcmp_t &)>
int omt<omtdata_t, omtdataout_t>::find_internal_minus(const node_idx n_idx, const omtcmp_t &extra, omtdataout_t *value, uint32_t *const idxp) const {
    invariant_notnull(idxp);
    if (n_idx==NODE_NULL) {
        return DB_NOTFOUND;
    }
    omt_node *const n = &this->d.t.nodes[n_idx];
    int hv = h(n->value, extra);
    if (hv < 0) {
        int r = this->find_internal_minus<omtcmp_t, h>(n->right, extra, value, idxp);
        if (r == 0) {
            *idxp += this->nweight(n->left) + 1;
        } else if (r == DB_NOTFOUND) {
            *idxp = this->nweight(n->left);
            if (value != nullptr) {
                copyout(value, n);
            }
            r = 0;
        }
        return r;
    } else {
        return this->find_internal_minus<omtcmp_t, h>(n->left, extra, value, idxp);
    }
}

template<typename omtdata_t, typename omtdataout_t>
int omt<omtdata_t, omtdataout_t>::deep_clone_iter(const omtdata_t &value, const uint32_t idx, omt *const dest) {
#ifndef __ICC
    static_assert(std::is_pointer<omtdata_t>::value, "omtdata_t isn't a pointer, can't do deep clone");
#endif
    invariant_notnull(dest);
    invariant(idx == dest->d.a.num_values);
    invariant(idx < dest->capacity);
    omtdata_t &destp = dest->d.a.values[dest->d.a.num_values++];
    XMEMDUP(destp, value);
    return 0;
}

template<typename omtdata_t, typename omtdataout_t>
int omt<omtdata_t, omtdataout_t>::free_items_iter(omtdata_t *value, const uint32_t UU(idx), void *const UU(unused)) {
#ifndef __ICC
    static_assert(std::is_pointer<omtdata_t>::value, "omtdata_t isn't a pointer, can't do free items");
#endif
    invariant_notnull(*value);
    toku_free(*value);
    return 0;
}
template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::free_items(void) {
    this->iterate_ptr<void, free_items_iter>(nullptr);
}
template<typename omtdata_t, typename omtdataout_t>
void omt<omtdata_t, omtdataout_t>::deep_clone(const omt &src) {
    this->create_internal(src.size());
    int r = src.iterate<omt, deep_clone_iter>(this);
    lazy_assert_zero(r);
    this->d.a.num_values = src.size();
}

} // namespace toku