blob: 311161b015ef16f96ddeb1b52c9f0c0b13a18464 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
|
/******************************************************
Hash storage.
Provides a data structure that stores chunks of data in
its own storage, avoiding duplicates.
(c) 2007 Innobase Oy
Created September 24, 2007 Vasil Dimov
*******************************************************/
#include "univ.i"
#include "ha0storage.h"
#include "hash0hash.h"
#include "mem0mem.h"
struct ha_storage_struct {
mem_heap_t* heap; /* storage from which memory is
allocated */
hash_table_t* hash; /* hash table used to avoid
duplicates */
};
/* Objects of this type are put in the hash */
typedef struct ha_storage_node_struct ha_storage_node_t;
struct ha_storage_node_struct {
ulint data_len;/* length of the data */
const void* data; /* pointer to data */
ha_storage_node_t* next; /* next node in hash chain */
};
/***********************************************************************
Creates a hash storage. If any of the parameters is 0, then a default
value is used. */
UNIV_INLINE
ha_storage_t*
ha_storage_create(
/*==============*/
/* out, own: hash storage */
ulint initial_heap_bytes, /* in: initial heap's size */
ulint initial_hash_cells) /* in: initial number of cells
in the hash table */
{
ha_storage_t* storage;
mem_heap_t* heap;
if (initial_heap_bytes == 0) {
initial_heap_bytes = HA_STORAGE_DEFAULT_HEAP_BYTES;
}
if (initial_hash_cells == 0) {
initial_hash_cells = HA_STORAGE_DEFAULT_HASH_CELLS;
}
/* we put "storage" within "storage->heap" */
heap = mem_heap_create(sizeof(ha_storage_t)
+ initial_heap_bytes);
storage = (ha_storage_t*) mem_heap_alloc(heap,
sizeof(ha_storage_t));
storage->heap = heap;
storage->hash = hash_create(initial_hash_cells);
return(storage);
}
/***********************************************************************
Empties a hash storage, freeing memory occupied by data chunks.
This invalidates any pointers previously returned by ha_storage_put().
The hash storage is not invalidated itself and can be used again. */
UNIV_INLINE
void
ha_storage_empty(
/*=============*/
ha_storage_t** storage) /* in/out: hash storage */
{
ha_storage_t temp_storage;
temp_storage.heap = (*storage)->heap;
temp_storage.hash = (*storage)->hash;
hash_table_clear(temp_storage.hash);
mem_heap_empty(temp_storage.heap);
*storage = (ha_storage_t*) mem_heap_alloc(temp_storage.heap,
sizeof(ha_storage_t));
(*storage)->heap = temp_storage.heap;
(*storage)->hash = temp_storage.hash;
}
/***********************************************************************
Frees a hash storage and everything it contains, it cannot be used after
this call.
This invalidates any pointers previously returned by ha_storage_put().
*/
UNIV_INLINE
void
ha_storage_free(
/*============*/
ha_storage_t* storage) /* in/out: hash storage */
{
/* order is important because the pointer storage->hash is
within the heap */
hash_table_free(storage->hash);
mem_heap_free(storage->heap);
}
/***********************************************************************
Gets the size of the memory used by a storage. */
UNIV_INLINE
ulint
ha_storage_get_size(
/*================*/
/* out: bytes used */
const ha_storage_t* storage) /* in: hash storage */
{
ulint ret;
ret = mem_heap_get_size(storage->heap);
/* this assumes hash->heap and hash->heaps are NULL */
ret += sizeof(hash_table_t);
ret += sizeof(hash_cell_t) * hash_get_n_cells(storage->hash);
return(ret);
}
|