1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
|
#ifndef MY_ATOMIC_INCLUDED
#define MY_ATOMIC_INCLUDED
/* Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
/*
This header defines five atomic operations:
my_atomic_add#(&var, what)
my_atomic_add#_explicit(&var, what, memory_order)
'Fetch and Add'
add 'what' to *var, and return the old value of *var
All memory orders are valid.
my_atomic_fas#(&var, what)
my_atomic_fas#_explicit(&var, what, memory_order)
'Fetch And Store'
store 'what' in *var, and return the old value of *var
All memory orders are valid.
my_atomic_cas#(&var, &old, new)
my_atomic_cas#_weak_explicit(&var, &old, new, succ, fail)
my_atomic_cas#_strong_explicit(&var, &old, new, succ, fail)
'Compare And Swap'
if *var is equal to *old, then store 'new' in *var, and return TRUE
otherwise store *var in *old, and return FALSE
succ - the memory synchronization ordering for the read-modify-write
operation if the comparison succeeds. All memory orders are valid.
fail - the memory synchronization ordering for the load operation if the
comparison fails. Cannot be MY_MEMORY_ORDER_RELEASE or
MY_MEMORY_ORDER_ACQ_REL and cannot specify stronger ordering than succ.
The weak form is allowed to fail spuriously, that is, act as if *var != *old
even if they are equal. When a compare-and-exchange is in a loop, the weak
version will yield better performance on some platforms. When a weak
compare-and-exchange would require a loop and a strong one would not, the
strong one is preferable.
my_atomic_load#(&var)
my_atomic_load#_explicit(&var, memory_order)
return *var
Order must be one of MY_MEMORY_ORDER_RELAXED, MY_MEMORY_ORDER_CONSUME,
MY_MEMORY_ORDER_ACQUIRE, MY_MEMORY_ORDER_SEQ_CST.
my_atomic_store#(&var, what)
my_atomic_store#_explicit(&var, what, memory_order)
store 'what' in *var
Order must be one of MY_MEMORY_ORDER_RELAXED, MY_MEMORY_ORDER_RELEASE,
MY_MEMORY_ORDER_SEQ_CST.
'#' is substituted by a size suffix - 8, 16, 32, 64, or ptr
(e.g. my_atomic_add8, my_atomic_fas32, my_atomic_casptr).
The first version orders memory accesses according to MY_MEMORY_ORDER_SEQ_CST,
the second version (with _explicit suffix) orders memory accesses according to
given memory order.
memory_order specifies how non-atomic memory accesses are to be ordered around
an atomic operation:
MY_MEMORY_ORDER_RELAXED - there are no constraints on reordering of memory
accesses around the atomic variable.
MY_MEMORY_ORDER_CONSUME - no reads in the current thread dependent on the
value currently loaded can be reordered before this
load. This ensures that writes to dependent
variables in other threads that release the same
atomic variable are visible in the current thread.
On most platforms, this affects compiler
optimization only.
MY_MEMORY_ORDER_ACQUIRE - no reads in the current thread can be reordered
before this load. This ensures that all writes in
other threads that release the same atomic variable
are visible in the current thread.
MY_MEMORY_ORDER_RELEASE - no writes in the current thread can be reordered
after this store. This ensures that all writes in
the current thread are visible in other threads that
acquire the same atomic variable.
MY_MEMORY_ORDER_ACQ_REL - no reads in the current thread can be reordered
before this load as well as no writes in the current
thread can be reordered after this store. The
operation is read-modify-write operation. It is
ensured that all writes in another threads that
release the same atomic variable are visible before
the modification and the modification is visible in
other threads that acquire the same atomic variable.
MY_MEMORY_ORDER_SEQ_CST - The operation has the same semantics as
acquire-release operation, and additionally has
sequentially-consistent operation ordering.
We choose implementation as follows: on Windows using Visual C++ the native
implementation should be preferrable. When using gcc we prefer the Solaris
implementation before the gcc because of stability preference, we choose gcc
builtins if available.
*/
#if defined(_MSC_VER)
#include "atomic/generic-msvc.h"
#elif defined(HAVE_SOLARIS_ATOMIC)
#include "atomic/solaris.h"
#elif defined(HAVE_GCC_C11_ATOMICS)
#include "atomic/gcc_builtins.h"
#elif defined(HAVE_GCC_ATOMIC_BUILTINS)
#include "atomic/gcc_sync.h"
#endif
#if SIZEOF_LONG == 4
#define my_atomic_addlong(A,B) my_atomic_add32((int32*) (A), (B))
#define my_atomic_loadlong(A) my_atomic_load32((int32*) (A))
#define my_atomic_loadlong_explicit(A,O) my_atomic_load32_explicit((int32*) (A), (O))
#define my_atomic_storelong(A,B) my_atomic_store32((int32*) (A), (B))
#define my_atomic_faslong(A,B) my_atomic_fas32((int32*) (A), (B))
#define my_atomic_caslong(A,B,C) my_atomic_cas32((int32*) (A), (int32*) (B), (C))
#else
#define my_atomic_addlong(A,B) my_atomic_add64((int64*) (A), (B))
#define my_atomic_loadlong(A) my_atomic_load64((int64*) (A))
#define my_atomic_loadlong_explicit(A,O) my_atomic_load64_explicit((int64*) (A), (O))
#define my_atomic_storelong(A,B) my_atomic_store64((int64*) (A), (B))
#define my_atomic_faslong(A,B) my_atomic_fas64((int64*) (A), (B))
#define my_atomic_caslong(A,B,C) my_atomic_cas64((int64*) (A), (int64*) (B), (C))
#endif
#ifndef MY_MEMORY_ORDER_SEQ_CST
#define MY_MEMORY_ORDER_RELAXED
#define MY_MEMORY_ORDER_CONSUME
#define MY_MEMORY_ORDER_ACQUIRE
#define MY_MEMORY_ORDER_RELEASE
#define MY_MEMORY_ORDER_ACQ_REL
#define MY_MEMORY_ORDER_SEQ_CST
#define my_atomic_store32_explicit(P, D, O) my_atomic_store32((P), (D))
#define my_atomic_store64_explicit(P, D, O) my_atomic_store64((P), (D))
#define my_atomic_storeptr_explicit(P, D, O) my_atomic_storeptr((P), (D))
#define my_atomic_load32_explicit(P, O) my_atomic_load32((P))
#define my_atomic_load64_explicit(P, O) my_atomic_load64((P))
#define my_atomic_loadptr_explicit(P, O) my_atomic_loadptr((P))
#define my_atomic_fas32_explicit(P, D, O) my_atomic_fas32((P), (D))
#define my_atomic_fas64_explicit(P, D, O) my_atomic_fas64((P), (D))
#define my_atomic_fasptr_explicit(P, D, O) my_atomic_fasptr((P), (D))
#define my_atomic_add32_explicit(P, A, O) my_atomic_add32((P), (A))
#define my_atomic_add64_explicit(P, A, O) my_atomic_add64((P), (A))
#define my_atomic_addptr_explicit(P, A, O) my_atomic_addptr((P), (A))
#define my_atomic_cas32_weak_explicit(P, E, D, S, F) \
my_atomic_cas32((P), (E), (D))
#define my_atomic_cas64_weak_explicit(P, E, D, S, F) \
my_atomic_cas64((P), (E), (D))
#define my_atomic_casptr_weak_explicit(P, E, D, S, F) \
my_atomic_casptr((P), (E), (D))
#define my_atomic_cas32_strong_explicit(P, E, D, S, F) \
my_atomic_cas32((P), (E), (D))
#define my_atomic_cas64_strong_explicit(P, E, D, S, F) \
my_atomic_cas64((P), (E), (D))
#define my_atomic_casptr_strong_explicit(P, E, D, S, F) \
my_atomic_casptr((P), (E), (D))
#endif
#endif /* MY_ATOMIC_INCLUDED */
|