summaryrefslogtreecommitdiff
path: root/include/my_bit.h
blob: 4db6efcac8c045e986aba8ed47f1f10783e6d2a7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
/* Copyright (c) 2007, 2011, Oracle and/or its affiliates.
   Copyright (c) 2009, 2017, MariaDB Corporation.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335  USA */

#ifndef MY_BIT_INCLUDED
#define MY_BIT_INCLUDED

#include <my_global.h>

/*
  Some useful bit functions
*/

C_MODE_START

extern const uchar _my_bits_reverse_table[256];

/*
  Find smallest X in 2^X >= value
  This can be used to divide a number with value by doing a shift instead
*/

static inline uint my_bit_log2(ulong value)
{
  uint bit;
  for (bit=0 ; value > 1 ; value>>=1, bit++) ;
  return bit;
}


/*
Count bits in 32bit integer

  Algorithm by Sean Anderson, according to:
  http://graphics.stanford.edu/~seander/bithacks.html
  under "Counting bits set, in parallel"

 (Orignal code public domain).
*/
static inline uint my_count_bits_uint32(uint32 v)
{
  v = v - ((v >> 1) & 0x55555555);
  v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
  return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
}


static inline uint my_count_bits(ulonglong x)
{
  return my_count_bits_uint32((uint32)x) + my_count_bits_uint32((uint32)(x >> 32));
}




/*
  Next highest power of two

  SYNOPSIS
    my_round_up_to_next_power()
    v		Value to check

  RETURN
    Next or equal power of 2
    Note: 0 will return 0

  NOTES
    Algorithm by Sean Anderson, according to:
    http://graphics.stanford.edu/~seander/bithacks.html
    (Orignal code public domain)

    Comments shows how this works with 01100000000000000000000000001011
*/

static inline uint32 my_round_up_to_next_power(uint32 v)
{
  v--;			/* 01100000000000000000000000001010 */
  v|= v >> 1;		/* 01110000000000000000000000001111 */
  v|= v >> 2;		/* 01111100000000000000000000001111 */
  v|= v >> 4;		/* 01111111110000000000000000001111 */
  v|= v >> 8;		/* 01111111111111111100000000001111 */
  v|= v >> 16;		/* 01111111111111111111111111111111 */
  return v+1;		/* 10000000000000000000000000000000 */
}

static inline uint32 my_clear_highest_bit(uint32 v)
{
  uint32 w=v >> 1;
  w|= w >> 1;
  w|= w >> 2;
  w|= w >> 4;
  w|= w >> 8;
  w|= w >> 16;
  return v & w;
}

static inline uint32 my_reverse_bits(uint32 key)
{
  return
    ((uint32)_my_bits_reverse_table[ key      & 255] << 24) |
    ((uint32)_my_bits_reverse_table[(key>> 8) & 255] << 16) |
    ((uint32)_my_bits_reverse_table[(key>>16) & 255] <<  8) |
     (uint32)_my_bits_reverse_table[(key>>24)      ];
}

/*
  a number with the n lowest bits set
  an overflow-safe version of  (1 << n) - 1
*/
static inline uint32 my_set_bits(int n)
{
  return (((1UL << (n - 1)) - 1) << 1) | 1;
}

C_MODE_END

#endif /* MY_BIT_INCLUDED */