1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
|
/* Copyright (c) 2007, 2011, Oracle and/or its affiliates.
Copyright (c) 2009, 2020, MariaDB Corporation.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335 USA */
#ifndef MY_BIT_INCLUDED
#define MY_BIT_INCLUDED
/*
Some useful bit functions
*/
C_MODE_START
extern const uchar _my_bits_reverse_table[256];
/*
my_bit_log2_xxx()
In the given value, find the highest bit set,
which is the smallest X that satisfies the condition: (2^X >= value).
Can be used as a reverse operation for (1<<X), to find X.
Examples:
- returns 0 for (1<<0)
- returns 1 for (1<<1)
- returns 2 for (1<<2)
- returns 2 for 3, which has (1<<2) as the highest bit set.
Note, the behaviour of log2(0) is not defined.
Let's return 0 for the input 0, for the code simplicity.
See the 000x branch. It covers both (1<<0) and 0.
*/
static inline CONSTEXPR uint my_bit_log2_hex_digit(uint8 value)
{
return value & 0x0C ? /*1100*/ (value & 0x08 ? /*1000*/ 3 : /*0100*/ 2) :
/*0010*/ (value & 0x02 ? /*0010*/ 1 : /*000x*/ 0);
}
static inline CONSTEXPR uint my_bit_log2_uint8(uint8 value)
{
return value & 0xF0 ? my_bit_log2_hex_digit((uint8) (value >> 4)) + 4:
my_bit_log2_hex_digit(value);
}
static inline CONSTEXPR uint my_bit_log2_uint16(uint16 value)
{
return value & 0xFF00 ? my_bit_log2_uint8((uint8) (value >> 8)) + 8 :
my_bit_log2_uint8((uint8) value);
}
static inline CONSTEXPR uint my_bit_log2_uint32(uint32 value)
{
return value & 0xFFFF0000UL ?
my_bit_log2_uint16((uint16) (value >> 16)) + 16 :
my_bit_log2_uint16((uint16) value);
}
static inline CONSTEXPR uint my_bit_log2_uint64(ulonglong value)
{
return value & 0xFFFFFFFF00000000ULL ?
my_bit_log2_uint32((uint32) (value >> 32)) + 32 :
my_bit_log2_uint32((uint32) value);
}
static inline CONSTEXPR uint my_bit_log2_size_t(size_t value)
{
#ifdef __cplusplus
static_assert(sizeof(size_t) <= sizeof(ulonglong),
"size_t <= ulonglong is an assumption that needs to be fixed "
"for this architecture. Please create an issue on "
"https://jira.mariadb.org");
#endif
return my_bit_log2_uint64((ulonglong) value);
}
/*
Count bits in 32bit integer
Algorithm by Sean Anderson, according to:
http://graphics.stanford.edu/~seander/bithacks.html
under "Counting bits set, in parallel"
(Original code public domain).
*/
static inline uint my_count_bits_uint32(uint32 v)
{
v = v - ((v >> 1) & 0x55555555);
v = (v & 0x33333333) + ((v >> 2) & 0x33333333);
return (((v + (v >> 4)) & 0xF0F0F0F) * 0x1010101) >> 24;
}
static inline uint my_count_bits(ulonglong x)
{
return my_count_bits_uint32((uint32)x) + my_count_bits_uint32((uint32)(x >> 32));
}
/*
Next highest power of two
SYNOPSIS
my_round_up_to_next_power()
v Value to check
RETURN
Next or equal power of 2
Note: 0 will return 0
NOTES
Algorithm by Sean Anderson, according to:
http://graphics.stanford.edu/~seander/bithacks.html
(Original code public domain)
Comments shows how this works with 01100000000000000000000000001011
*/
static inline uint32 my_round_up_to_next_power(uint32 v)
{
v--; /* 01100000000000000000000000001010 */
v|= v >> 1; /* 01110000000000000000000000001111 */
v|= v >> 2; /* 01111100000000000000000000001111 */
v|= v >> 4; /* 01111111110000000000000000001111 */
v|= v >> 8; /* 01111111111111111100000000001111 */
v|= v >> 16; /* 01111111111111111111111111111111 */
return v+1; /* 10000000000000000000000000000000 */
}
static inline uint32 my_clear_highest_bit(uint32 v)
{
uint32 w=v >> 1;
w|= w >> 1;
w|= w >> 2;
w|= w >> 4;
w|= w >> 8;
w|= w >> 16;
return v & w;
}
static inline uint32 my_reverse_bits(uint32 key)
{
return
((uint32)_my_bits_reverse_table[ key & 255] << 24) |
((uint32)_my_bits_reverse_table[(key>> 8) & 255] << 16) |
((uint32)_my_bits_reverse_table[(key>>16) & 255] << 8) |
(uint32)_my_bits_reverse_table[(key>>24) ];
}
/*
a number with the n lowest bits set
an overflow-safe version of (1 << n) - 1
*/
static inline uint64 my_set_bits(int n)
{
return (((1ULL << (n - 1)) - 1) << 1) | 1;
}
/* Create a mask of the significant bits for the last byte (1,3,7,..255) */
static inline uchar last_byte_mask(uint bits)
{
/* Get the number of used bits-1 (0..7) in the last byte */
unsigned int const used = (bits - 1U) & 7U;
/* Return bitmask for the significant bits */
return (uchar) ((2U << used) - 1);
}
#ifdef _MSC_VER
#include <intrin.h>
#endif
/*
Find the position of the first(least significant) bit set in
the argument. Returns 64 if the argument was 0.
*/
static inline uint my_find_first_bit(ulonglong n)
{
if(!n)
return 64;
#if defined(__GNUC__)
return __builtin_ctzll(n);
#elif defined(_MSC_VER)
#if defined(_M_IX86)
unsigned long bit;
if( _BitScanForward(&bit, (uint)n))
return bit;
_BitScanForward(&bit, (uint)(n>>32));
return bit + 32;
#else
unsigned long bit;
_BitScanForward64(&bit, n);
return bit;
#endif
#else
/* Generic case */
uint shift= 0;
static const uchar last_bit[16] = { 32, 0, 1, 0,
2, 0, 1, 0,
3, 0, 1, 0,
2, 0, 1, 0};
uint bit;
while ((bit = last_bit[(n >> shift) & 0xF]) == 32)
shift+= 4;
return shift+bit;
#endif
}
C_MODE_END
#endif /* MY_BIT_INCLUDED */
|