summaryrefslogtreecommitdiff
path: root/include/my_bit.h
blob: 7e733d9d581f8e9d6a24688885331148d9adf6a0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
#ifndef MY_BIT_INCLUDED
#define MY_BIT_INCLUDED

#include <my_global.h>

/*
  Some useful bit functions
*/

C_MODE_START

extern const char _my_bits_nbits[256];
extern const uchar _my_bits_reverse_table[256];

/*
  Find smallest X in 2^X >= value
  This can be used to divide a number with value by doing a shift instead
*/

static inline uint my_bit_log2(ulong value)
{
  uint bit;
  for (bit=0 ; value > 1 ; value>>=1, bit++) ;
  return bit;
}

static inline uint my_count_bits(ulonglong v)
{
#if SIZEOF_LONG_LONG > 4
  /* The following code is a bit faster on 16 bit machines than if we would
     only shift v */
  ulong v2=(ulong) (v >> 32);
  return (uint) (uchar) (_my_bits_nbits[(uchar)  v] +
                         _my_bits_nbits[(uchar) (v >> 8)] +
                         _my_bits_nbits[(uchar) (v >> 16)] +
                         _my_bits_nbits[(uchar) (v >> 24)] +
                         _my_bits_nbits[(uchar) (v2)] +
                         _my_bits_nbits[(uchar) (v2 >> 8)] +
                         _my_bits_nbits[(uchar) (v2 >> 16)] +
                         _my_bits_nbits[(uchar) (v2 >> 24)]);
#else
  return (uint) (uchar) (_my_bits_nbits[(uchar)  v] +
                         _my_bits_nbits[(uchar) (v >> 8)] +
                         _my_bits_nbits[(uchar) (v >> 16)] +
                         _my_bits_nbits[(uchar) (v >> 24)]);
#endif
}

static inline uint my_count_bits_ushort(ushort v)
{
  return _my_bits_nbits[v];
}


/*
  Next highest power of two

  SYNOPSIS
    my_round_up_to_next_power()
    v		Value to check

  RETURN
    Next or equal power of 2
    Note: 0 will return 0

  NOTES
    Algorithm by Sean Anderson, according to:
    http://graphics.stanford.edu/~seander/bithacks.html
    (Orignal code public domain)

    Comments shows how this works with 01100000000000000000000000001011
*/

static inline uint32 my_round_up_to_next_power(uint32 v)
{
  v--;			/* 01100000000000000000000000001010 */
  v|= v >> 1;		/* 01110000000000000000000000001111 */
  v|= v >> 2;		/* 01111100000000000000000000001111 */
  v|= v >> 4;		/* 01111111110000000000000000001111 */
  v|= v >> 8;		/* 01111111111111111100000000001111 */
  v|= v >> 16;		/* 01111111111111111111111111111111 */
  return v+1;		/* 10000000000000000000000000000000 */
}

static inline uint32 my_clear_highest_bit(uint32 v)
{
  uint32 w=v >> 1;
  w|= w >> 1;
  w|= w >> 2;
  w|= w >> 4;
  w|= w >> 8;
  w|= w >> 16;
  return v & w;
}

static inline uint32 my_reverse_bits(uint32 key)
{
  return
    (_my_bits_reverse_table[ key      & 255] << 24) |
    (_my_bits_reverse_table[(key>> 8) & 255] << 16) |
    (_my_bits_reverse_table[(key>>16) & 255] <<  8) |
     _my_bits_reverse_table[(key>>24)      ];
}

C_MODE_END

#endif /* MY_BIT_INCLUDED */