summaryrefslogtreecommitdiff
path: root/include/my_bit.h
blob: aee5240ac56b507d69fe02ff0b5f90a406b6c3d1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
/* Copyright (c) 2007, 2011, Oracle and/or its affiliates.
   Copyright (c) 2009-2011, Monty Program Ab

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1335  USA */

#ifndef MY_BIT_INCLUDED
#define MY_BIT_INCLUDED

#include <my_global.h>

/*
  Some useful bit functions
*/

C_MODE_START

extern const char _my_bits_nbits[256];
extern const uchar _my_bits_reverse_table[256];

/*
  Find smallest X in 2^X >= value
  This can be used to divide a number with value by doing a shift instead
*/

static inline uint my_bit_log2(ulong value)
{
  uint bit;
  for (bit=0 ; value > 1 ; value>>=1, bit++) ;
  return bit;
}

static inline uint my_count_bits(ulonglong v)
{
#if SIZEOF_LONG_LONG > 4
  /* The following code is a bit faster on 16 bit machines than if we would
     only shift v */
  ulong v2=(ulong) (v >> 32);
  return (uint) (uchar) (_my_bits_nbits[(uchar)  v] +
                         _my_bits_nbits[(uchar) (v >> 8)] +
                         _my_bits_nbits[(uchar) (v >> 16)] +
                         _my_bits_nbits[(uchar) (v >> 24)] +
                         _my_bits_nbits[(uchar) (v2)] +
                         _my_bits_nbits[(uchar) (v2 >> 8)] +
                         _my_bits_nbits[(uchar) (v2 >> 16)] +
                         _my_bits_nbits[(uchar) (v2 >> 24)]);
#else
  return (uint) (uchar) (_my_bits_nbits[(uchar)  v] +
                         _my_bits_nbits[(uchar) (v >> 8)] +
                         _my_bits_nbits[(uchar) (v >> 16)] +
                         _my_bits_nbits[(uchar) (v >> 24)]);
#endif
}

static inline uint my_count_bits_uint32(uint32 v)
{
  return (uint) (uchar) (_my_bits_nbits[(uchar)  v] +
                         _my_bits_nbits[(uchar) (v >> 8)] +
                         _my_bits_nbits[(uchar) (v >> 16)] +
                         _my_bits_nbits[(uchar) (v >> 24)]);
}


/*
  Next highest power of two

  SYNOPSIS
    my_round_up_to_next_power()
    v		Value to check

  RETURN
    Next or equal power of 2
    Note: 0 will return 0

  NOTES
    Algorithm by Sean Anderson, according to:
    http://graphics.stanford.edu/~seander/bithacks.html
    (Orignal code public domain)

    Comments shows how this works with 01100000000000000000000000001011
*/

static inline uint32 my_round_up_to_next_power(uint32 v)
{
  v--;			/* 01100000000000000000000000001010 */
  v|= v >> 1;		/* 01110000000000000000000000001111 */
  v|= v >> 2;		/* 01111100000000000000000000001111 */
  v|= v >> 4;		/* 01111111110000000000000000001111 */
  v|= v >> 8;		/* 01111111111111111100000000001111 */
  v|= v >> 16;		/* 01111111111111111111111111111111 */
  return v+1;		/* 10000000000000000000000000000000 */
}

static inline uint32 my_clear_highest_bit(uint32 v)
{
  uint32 w=v >> 1;
  w|= w >> 1;
  w|= w >> 2;
  w|= w >> 4;
  w|= w >> 8;
  w|= w >> 16;
  return v & w;
}

static inline uint32 my_reverse_bits(uint32 key)
{
  return
    ((uint32)_my_bits_reverse_table[ key      & 255] << 24) |
    ((uint32)_my_bits_reverse_table[(key>> 8) & 255] << 16) |
    ((uint32)_my_bits_reverse_table[(key>>16) & 255] <<  8) |
     (uint32)_my_bits_reverse_table[(key>>24)      ];
}

/*
  a number with the n lowest bits set
  an overflow-safe version of  (1 << n) - 1
*/
static inline uint32 my_set_bits(int n)
{
  return (((1UL << (n - 1)) - 1) << 1) | 1;
}

C_MODE_END

#endif /* MY_BIT_INCLUDED */