summaryrefslogtreecommitdiff
path: root/innobase/include/sync0sync.ic
blob: b3fde61db5ec97ab05c4e78686d06b4095795b1a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
/******************************************************
Mutex, the basic synchronization primitive

(c) 1995 Innobase Oy

Created 9/5/1995 Heikki Tuuri
*******************************************************/

/**********************************************************************
Sets the waiters field in a mutex. */

void
mutex_set_waiters(
/*==============*/
	mutex_t*	mutex,	/* in: mutex */
	ulint		n);	/* in: value to set */		
/**********************************************************************
Reserves a mutex for the current thread. If the mutex is reserved, the
function spins a preset time (controlled by SYNC_SPIN_ROUNDS) waiting
for the mutex before suspending the thread. */

void
mutex_spin_wait(
/*============*/
        mutex_t*	mutex,  	/* in: pointer to mutex */
	const char*	file_name,/* in: file name where mutex requested */
	ulint		line);	/* in: line where requested */
#ifdef UNIV_SYNC_DEBUG
/**********************************************************************
Sets the debug information for a reserved mutex. */

void
mutex_set_debug_info(
/*=================*/
	mutex_t*	mutex,		/* in: mutex */
	const char*	file_name,	/* in: file where requested */
	ulint		line);		/* in: line where requested */
#endif /* UNIV_SYNC_DEBUG */
/**********************************************************************
Releases the threads waiting in the primary wait array for this mutex. */

void
mutex_signal_object(
/*================*/
	mutex_t*	mutex);	/* in: mutex */

/**********************************************************************
Performs an atomic test-and-set instruction to the lock_word field of a
mutex. */
UNIV_INLINE
ulint
mutex_test_and_set(
/*===============*/
				/* out: the previous value of lock_word: 0 or
				1 */
	mutex_t*	mutex)	/* in: mutex */
{
#if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER)
	ulint	res;
	ulint*	lw;		/* assembler code is used to ensure that
				lock_word is loaded from memory */
	ut_ad(mutex);
	ut_ad(sizeof(ulint) == 4);

	lw = &(mutex->lock_word);

        __asm   MOV     ECX, lw
	__asm   MOV     EDX, 1
        __asm   XCHG    EDX, DWORD PTR [ECX]                    
       	__asm   MOV     res, EDX

	/* The fence below would prevent this thread from reading the data
	structure protected by the mutex before the test-and-set operation is
	committed, but the fence is apparently not needed:

	In a posting to comp.arch newsgroup (August 10, 1997) Andy Glew said
	that in P6 a LOCKed instruction like XCHG establishes a fence with
	respect to memory reads and writes and thus an explicit fence is not
	needed. In P5 he seemed to agree with a previous newsgroup poster that
	LOCKed instructions serialize all instruction execution, and,
	consequently, also memory operations. This is confirmed in Intel
	Software Dev. Manual, Vol. 3. */

	/* mutex_fence(); */

	return(res);
#elif defined(not_defined) && defined(__GNUC__) && defined(UNIV_INTEL_X86)
	ulint*	lw;
	ulint	res;

	lw = &(mutex->lock_word);

	/* In assembly we use the so-called AT & T syntax where
	the order of operands is inverted compared to the ordinary Intel
	syntax. The 'l' after the mnemonics denotes a 32-bit operation.
	The line after the code tells which values come out of the asm
	code, and the second line tells the input to the asm code. */

	asm volatile("movl $1, %%eax; xchgl (%%ecx), %%eax" :
	              "=eax" (res), "=m" (*lw) :
	              "ecx" (lw));
	return(res);
#else
	ibool	ret;

	ret = os_fast_mutex_trylock(&(mutex->os_fast_mutex));

	if (ret == 0) {
		/* We check that os_fast_mutex_trylock does not leak
		and allow race conditions */
		ut_a(mutex->lock_word == 0);

		mutex->lock_word = 1;
	}

	return(ret);
#endif
}

/**********************************************************************
Performs a reset instruction to the lock_word field of a mutex. This
instruction also serializes memory operations to the program order. */
UNIV_INLINE
void
mutex_reset_lock_word(
/*==================*/
	mutex_t*	mutex)	/* in: mutex */
{
#if defined(_WIN32) && defined(UNIV_CAN_USE_X86_ASSEMBLER)
	ulint*	lw;		/* assembler code is used to ensure that
				lock_word is loaded from memory */
	ut_ad(mutex);

	lw = &(mutex->lock_word);

	__asm   MOV     EDX, 0
        __asm   MOV     ECX, lw
        __asm   XCHG    EDX, DWORD PTR [ECX]                    
#elif defined(not_defined) && defined(__GNUC__) && defined(UNIV_INTEL_X86)
	ulint*	lw;

	lw = &(mutex->lock_word);

	/* In assembly we use the so-called AT & T syntax where
	the order of operands is inverted compared to the ordinary Intel
	syntax. The 'l' after the mnemonics denotes a 32-bit operation. */

	asm volatile("movl $0, %%eax; xchgl (%%ecx), %%eax" :
	              "=m" (*lw) :
	              "ecx" (lw) :
		      "eax");	/* gcc does not seem to understand
				that our asm code resets eax: tell it
				explicitly that after the third ':' */
#else
	mutex->lock_word = 0;

	os_fast_mutex_unlock(&(mutex->os_fast_mutex));
#endif
}

/**********************************************************************
Gets the value of the lock word. */
UNIV_INLINE
ulint
mutex_get_lock_word(
/*================*/
	mutex_t*	mutex)	/* in: mutex */
{
volatile ulint*	ptr;		/* declared volatile to ensure that
				lock_word is loaded from memory */
	ut_ad(mutex);

	ptr = &(mutex->lock_word);

	return(*ptr);
}

/**********************************************************************
Gets the waiters field in a mutex. */
UNIV_INLINE
ulint
mutex_get_waiters(
/*==============*/
				/* out: value to set */		
	mutex_t*	mutex)	/* in: mutex */
{
volatile ulint*	ptr;		/* declared volatile to ensure that
				the value is read from memory */
	ut_ad(mutex);

	ptr = &(mutex->waiters);

	return(*ptr);		/* Here we assume that the read of a single
				word from memory is atomic */
}

/**********************************************************************
Unlocks a mutex owned by the current thread. */
UNIV_INLINE
void
mutex_exit(
/*=======*/
	mutex_t*	mutex)	/* in: pointer to mutex */
{
#ifdef UNIV_SYNC_DEBUG
	ut_ad(mutex_own(mutex));

	mutex->thread_id = ULINT_UNDEFINED;

	sync_thread_reset_level(mutex);
#endif 
	mutex_reset_lock_word(mutex);

	/* A problem: we assume that mutex_reset_lock word
	is a memory barrier, that is when we read the waiters
	field next, the read must be serialized in memory
	after the reset. A speculative processor might
	perform the read first, which could leave a waiting
	thread hanging indefinitely.

	Our current solution call every 10 seconds
	sync_arr_wake_threads_if_sema_free()
	to wake up possible hanging threads if
	they are missed in mutex_signal_object. */

	if (mutex_get_waiters(mutex) != 0) {
		
		mutex_signal_object(mutex);
	}
	
#ifdef UNIV_SYNC_PERF_STAT
	mutex_exit_count++;
#endif
}

/**********************************************************************
Locks a mutex for the current thread. If the mutex is reserved, the function
spins a preset time (controlled by SYNC_SPIN_ROUNDS), waiting for the mutex
before suspending the thread. */
UNIV_INLINE
void
mutex_enter_func(
/*=============*/
	mutex_t*	mutex,		/* in: pointer to mutex */
	const char*	file_name, 	/* in: file name where locked */
	ulint		line)		/* in: line where locked */
{
	ut_ad(mutex_validate(mutex));

	/* Note that we do not peek at the value of lock_word before trying
	the atomic test_and_set; we could peek, and possibly save time. */

#ifndef UNIV_HOTBACKUP
  mutex->count_using++;
#endif /* UNIV_HOTBACKUP */
	
  if (!mutex_test_and_set(mutex))
  {
#ifdef UNIV_SYNC_DEBUG
		mutex_set_debug_info(mutex, file_name, line);
#endif
		return;	/* Succeeded! */
	}

	mutex_spin_wait(mutex, file_name, line);

}