1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
|
/******************************************************
The transaction lock system
(c) 1996 Innobase Oy
Created 5/7/1996 Heikki Tuuri
*******************************************************/
#include "lock0lock.h"
#ifdef UNIV_NONINL
#include "lock0lock.ic"
#endif
#include "usr0sess.h"
#include "trx0purge.h"
#include "dict0mem.h"
#include "trx0sys.h"
/* 2 function prototypes copied from ha_innodb.cc: */
/*****************************************************************
If you want to print a thd that is not associated with the current thread,
you must call this function before reserving the InnoDB kernel_mutex, to
protect MySQL from setting thd->query NULL. If you print a thd of the current
thread, we know that MySQL cannot modify thd->query, and it is not necessary
to call this. Call innobase_mysql_end_print_arbitrary_thd() after you release
the kernel_mutex.
NOTE that /mysql/innobase/lock/lock0lock.c must contain the prototype for this
function! */
void
innobase_mysql_prepare_print_arbitrary_thd(void);
/*============================================*/
/*****************************************************************
Relases the mutex reserved by innobase_mysql_prepare_print_arbitrary_thd().
NOTE that /mysql/innobase/lock/lock0lock.c must contain the prototype for this
function! */
void
innobase_mysql_end_print_arbitrary_thd(void);
/*========================================*/
/* Restricts the length of search we will do in the waits-for
graph of transactions */
#define LOCK_MAX_N_STEPS_IN_DEADLOCK_CHECK 1000000
/* When releasing transaction locks, this specifies how often we release
the kernel mutex for a moment to give also others access to it */
#define LOCK_RELEASE_KERNEL_INTERVAL 1000
/* Safety margin when creating a new record lock: this many extra records
can be inserted to the page without need to create a lock with a bigger
bitmap */
#define LOCK_PAGE_BITMAP_MARGIN 64
/* An explicit record lock affects both the record and the gap before it.
An implicit x-lock does not affect the gap, it only locks the index
record from read or update.
If a transaction has modified or inserted an index record, then
it owns an implicit x-lock on the record. On a secondary index record,
a transaction has an implicit x-lock also if it has modified the
clustered index record, the max trx id of the page where the secondary
index record resides is >= trx id of the transaction (or database recovery
is running), and there are no explicit non-gap lock requests on the
secondary index record.
This complicated definition for a secondary index comes from the
implementation: we want to be able to determine if a secondary index
record has an implicit x-lock, just by looking at the present clustered
index record, not at the historical versions of the record. The
complicated definition can be explained to the user so that there is
nondeterminism in the access path when a query is answered: we may,
or may not, access the clustered index record and thus may, or may not,
bump into an x-lock set there.
Different transaction can have conflicting locks set on the gap at the
same time. The locks on the gap are purely inhibitive: an insert cannot
be made, or a select cursor may have to wait if a different transaction
has a conflicting lock on the gap. An x-lock on the gap does not give
the right to insert into the gap.
An explicit lock can be placed on a user record or the supremum record of
a page. The locks on the supremum record are always thought to be of the gap
type, though the gap bit is not set. When we perform an update of a record
where the size of the record changes, we may temporarily store its explicit
locks on the infimum record of the page, though the infimum otherwise never
carries locks.
A waiting record lock can also be of the gap type. A waiting lock request
can be granted when there is no conflicting mode lock request by another
transaction ahead of it in the explicit lock queue.
In version 4.0.5 we added yet another explicit lock type: LOCK_REC_NOT_GAP.
It only locks the record it is placed on, not the gap before the record.
This lock type is necessary to emulate an Oracle-like READ COMMITTED isolation
level.
-------------------------------------------------------------------------
RULE 1: If there is an implicit x-lock on a record, and there are non-gap
-------
lock requests waiting in the queue, then the transaction holding the implicit
x-lock also has an explicit non-gap record x-lock. Therefore, as locks are
released, we can grant locks to waiting lock requests purely by looking at
the explicit lock requests in the queue.
RULE 3: Different transactions cannot have conflicting granted non-gap locks
-------
on a record at the same time. However, they can have conflicting granted gap
locks.
RULE 4: If a there is a waiting lock request in a queue, no lock request,
-------
gap or not, can be inserted ahead of it in the queue. In record deletes
and page splits new gap type locks can be created by the database manager
for a transaction, and without rule 4, the waits-for graph of transactions
might become cyclic without the database noticing it, as the deadlock check
is only performed when a transaction itself requests a lock!
-------------------------------------------------------------------------
An insert is allowed to a gap if there are no explicit lock requests by
other transactions on the next record. It does not matter if these lock
requests are granted or waiting, gap bit set or not, with the exception
that a gap type request set by another transaction to wait for
its turn to do an insert is ignored. On the other hand, an
implicit x-lock by another transaction does not prevent an insert, which
allows for more concurrency when using an Oracle-style sequence number
generator for the primary key with many transactions doing inserts
concurrently.
A modify of a record is allowed if the transaction has an x-lock on the
record, or if other transactions do not have any non-gap lock requests on the
record.
A read of a single user record with a cursor is allowed if the transaction
has a non-gap explicit, or an implicit lock on the record, or if the other
transactions have no x-lock requests on the record. At a page supremum a
read is always allowed.
In summary, an implicit lock is seen as a granted x-lock only on the
record, not on the gap. An explicit lock with no gap bit set is a lock
both on the record and the gap. If the gap bit is set, the lock is only
on the gap. Different transaction cannot own conflicting locks on the
record at the same time, but they may own conflicting locks on the gap.
Granted locks on a record give an access right to the record, but gap type
locks just inhibit operations.
NOTE: Finding out if some transaction has an implicit x-lock on a secondary
index record can be cumbersome. We may have to look at previous versions of
the corresponding clustered index record to find out if a delete marked
secondary index record was delete marked by an active transaction, not by
a committed one.
FACT A: If a transaction has inserted a row, it can delete it any time
without need to wait for locks.
PROOF: The transaction has an implicit x-lock on every index record inserted
for the row, and can thus modify each record without the need to wait. Q.E.D.
FACT B: If a transaction has read some result set with a cursor, it can read
it again, and retrieves the same result set, if it has not modified the
result set in the meantime. Hence, there is no phantom problem. If the
biggest record, in the alphabetical order, touched by the cursor is removed,
a lock wait may occur, otherwise not.
PROOF: When a read cursor proceeds, it sets an s-lock on each user record
it passes, and a gap type s-lock on each page supremum. The cursor must
wait until it has these locks granted. Then no other transaction can
have a granted x-lock on any of the user records, and therefore cannot
modify the user records. Neither can any other transaction insert into
the gaps which were passed over by the cursor. Page splits and merges,
and removal of obsolete versions of records do not affect this, because
when a user record or a page supremum is removed, the next record inherits
its locks as gap type locks, and therefore blocks inserts to the same gap.
Also, if a page supremum is inserted, it inherits its locks from the successor
record. When the cursor is positioned again at the start of the result set,
the records it will touch on its course are either records it touched
during the last pass or new inserted page supremums. It can immediately
access all these records, and when it arrives at the biggest record, it
notices that the result set is complete. If the biggest record was removed,
lock wait can occur because the next record only inherits a gap type lock,
and a wait may be needed. Q.E.D. */
/* If an index record should be changed or a new inserted, we must check
the lock on the record or the next. When a read cursor starts reading,
we will set a record level s-lock on each record it passes, except on the
initial record on which the cursor is positioned before we start to fetch
records. Our index tree search has the convention that the B-tree
cursor is positioned BEFORE the first possibly matching record in
the search. Optimizations are possible here: if the record is searched
on an equality condition to a unique key, we could actually set a special
lock on the record, a lock which would not prevent any insert before
this record. In the next key locking an x-lock set on a record also
prevents inserts just before that record.
There are special infimum and supremum records on each page.
A supremum record can be locked by a read cursor. This records cannot be
updated but the lock prevents insert of a user record to the end of
the page.
Next key locks will prevent the phantom problem where new rows
could appear to SELECT result sets after the select operation has been
performed. Prevention of phantoms ensures the serilizability of
transactions.
What should we check if an insert of a new record is wanted?
Only the lock on the next record on the same page, because also the
supremum record can carry a lock. An s-lock prevents insertion, but
what about an x-lock? If it was set by a searched update, then there
is implicitly an s-lock, too, and the insert should be prevented.
What if our transaction owns an x-lock to the next record, but there is
a waiting s-lock request on the next record? If this s-lock was placed
by a read cursor moving in the ascending order in the index, we cannot
do the insert immediately, because when we finally commit our transaction,
the read cursor should see also the new inserted record. So we should
move the read cursor backward from the the next record for it to pass over
the new inserted record. This move backward may be too cumbersome to
implement. If we in this situation just enqueue a second x-lock request
for our transaction on the next record, then the deadlock mechanism
notices a deadlock between our transaction and the s-lock request
transaction. This seems to be an ok solution.
We could have the convention that granted explicit record locks,
lock the corresponding records from changing, and also lock the gaps
before them from inserting. A waiting explicit lock request locks the gap
before from inserting. Implicit record x-locks, which we derive from the
transaction id in the clustered index record, only lock the record itself
from modification, not the gap before it from inserting.
How should we store update locks? If the search is done by a unique
key, we could just modify the record trx id. Otherwise, we could put a record
x-lock on the record. If the update changes ordering fields of the
clustered index record, the inserted new record needs no record lock in
lock table, the trx id is enough. The same holds for a secondary index
record. Searched delete is similar to update.
PROBLEM:
What about waiting lock requests? If a transaction is waiting to make an
update to a record which another modified, how does the other transaction
know to send the end-lock-wait signal to the waiting transaction? If we have
the convention that a transaction may wait for just one lock at a time, how
do we preserve it if lock wait ends?
PROBLEM:
Checking the trx id label of a secondary index record. In the case of a
modification, not an insert, is this necessary? A secondary index record
is modified only by setting or resetting its deleted flag. A secondary index
record contains fields to uniquely determine the corresponding clustered
index record. A secondary index record is therefore only modified if we
also modify the clustered index record, and the trx id checking is done
on the clustered index record, before we come to modify the secondary index
record. So, in the case of delete marking or unmarking a secondary index
record, we do not have to care about trx ids, only the locks in the lock
table must be checked. In the case of a select from a secondary index, the
trx id is relevant, and in this case we may have to search the clustered
index record.
PROBLEM: How to update record locks when page is split or merged, or
--------------------------------------------------------------------
a record is deleted or updated?
If the size of fields in a record changes, we perform the update by
a delete followed by an insert. How can we retain the locks set or
waiting on the record? Because a record lock is indexed in the bitmap
by the heap number of the record, when we remove the record from the
record list, it is possible still to keep the lock bits. If the page
is reorganized, we could make a table of old and new heap numbers,
and permute the bitmaps in the locks accordingly. We can add to the
table a row telling where the updated record ended. If the update does
not require a reorganization of the page, we can simply move the lock
bits for the updated record to the position determined by its new heap
number (we may have to allocate a new lock, if we run out of the bitmap
in the old one).
A more complicated case is the one where the reinsertion of the
updated record is done pessimistically, because the structure of the
tree may change.
PROBLEM: If a supremum record is removed in a page merge, or a record
---------------------------------------------------------------------
removed in a purge, what to do to the waiting lock requests? In a split to
the right, we just move the lock requests to the new supremum. If a record
is removed, we could move the waiting lock request to its inheritor, the
next record in the index. But, the next record may already have lock
requests on its own queue. A new deadlock check should be made then. Maybe
it is easier just to release the waiting transactions. They can then enqueue
new lock requests on appropriate records.
PROBLEM: When a record is inserted, what locks should it inherit from the
-------------------------------------------------------------------------
upper neighbor? An insert of a new supremum record in a page split is
always possible, but an insert of a new user record requires that the upper
neighbor does not have any lock requests by other transactions, granted or
waiting, in its lock queue. Solution: We can copy the locks as gap type
locks, so that also the waiting locks are transformed to granted gap type
locks on the inserted record. */
ibool lock_print_waits = FALSE;
/* The lock system */
lock_sys_t* lock_sys = NULL;
/* A table lock */
typedef struct lock_table_struct lock_table_t;
struct lock_table_struct{
dict_table_t* table; /* database table in dictionary cache */
UT_LIST_NODE_T(lock_t)
locks; /* list of locks on the same table */
};
/* Record lock for a page */
typedef struct lock_rec_struct lock_rec_t;
struct lock_rec_struct{
ulint space; /* space id */
ulint page_no; /* page number */
ulint n_bits; /* number of bits in the lock bitmap */
/* NOTE: the lock bitmap is placed immediately
after the lock struct */
};
/* Lock struct */
struct lock_struct{
trx_t* trx; /* transaction owning the lock */
UT_LIST_NODE_T(lock_t)
trx_locks; /* list of the locks of the
transaction */
ulint type_mode; /* lock type, mode, LOCK_GAP or
LOCK_REC_NOT_GAP,
LOCK_INSERT_INTENTION,
wait flag, ORed */
hash_node_t hash; /* hash chain node for a record lock */
dict_index_t* index; /* index for a record lock */
union {
lock_table_t tab_lock;/* table lock */
lock_rec_t rec_lock;/* record lock */
} un_member;
};
/* We store info on the latest deadlock error to this buffer. InnoDB
Monitor will then fetch it and print */
ibool lock_deadlock_found = FALSE;
FILE* lock_latest_err_file;
/* Flags for recursive deadlock search */
#define LOCK_VICTIM_IS_START 1
#define LOCK_VICTIM_IS_OTHER 2
/************************************************************************
Checks if a lock request results in a deadlock. */
static
ibool
lock_deadlock_occurs(
/*=================*/
/* out: TRUE if a deadlock was detected */
lock_t* lock, /* in: lock the transaction is requesting */
trx_t* trx); /* in: transaction */
/************************************************************************
Looks recursively for a deadlock. */
static
ibool
lock_deadlock_recursive(
/*====================*/
/* out: TRUE if a deadlock was detected
or the calculation took too long */
trx_t* start, /* in: recursion starting point */
trx_t* trx, /* in: a transaction waiting for a lock */
lock_t* wait_lock, /* in: the lock trx is waiting to be granted */
ulint* cost); /* in/out: number of calculation steps thus
far: if this exceeds LOCK_MAX_N_STEPS_...
we return TRUE */
#define lock_mutex_enter_kernel() mutex_enter(&kernel_mutex)
#define lock_mutex_exit_kernel() mutex_exit(&kernel_mutex)
/*************************************************************************
Checks that a transaction id is sensible, i.e., not in the future. */
ibool
lock_check_trx_id_sanity(
/*=====================*/
/* out: TRUE if ok */
dulint trx_id, /* in: trx id */
rec_t* rec, /* in: user record */
dict_index_t* index, /* in: clustered index */
ibool has_kernel_mutex)/* in: TRUE if the caller owns the
kernel mutex */
{
ibool is_ok = TRUE;
if (!has_kernel_mutex) {
mutex_enter(&kernel_mutex);
}
/* A sanity check: the trx_id in rec must be smaller than the global
trx id counter */
if (ut_dulint_cmp(trx_id, trx_sys->max_trx_id) >= 0) {
ut_print_timestamp(stderr);
fputs(" InnoDB: Error: transaction id associated"
" with record\n",
stderr);
rec_print(stderr, rec);
fputs("InnoDB: in ", stderr);
dict_index_name_print(stderr, index);
fprintf(stderr, "\n"
"InnoDB: is %lu %lu which is higher than the global trx id counter %lu %lu!\n"
"InnoDB: The table is corrupt. You have to do dump + drop + reimport.\n",
(ulong) ut_dulint_get_high(trx_id),
(ulong) ut_dulint_get_low(trx_id),
(ulong) ut_dulint_get_high(trx_sys->max_trx_id),
(ulong) ut_dulint_get_low(trx_sys->max_trx_id));
is_ok = FALSE;
}
if (!has_kernel_mutex) {
mutex_exit(&kernel_mutex);
}
return(is_ok);
}
/*************************************************************************
Checks that a record is seen in a consistent read. */
ibool
lock_clust_rec_cons_read_sees(
/*==========================*/
/* out: TRUE if sees, or FALSE if an earlier
version of the record should be retrieved */
rec_t* rec, /* in: user record which should be read or
passed over by a read cursor */
dict_index_t* index, /* in: clustered index */
read_view_t* view) /* in: consistent read view */
{
dulint trx_id;
ut_ad(index->type & DICT_CLUSTERED);
ut_ad(page_rec_is_user_rec(rec));
/* NOTE that we call this function while holding the search
system latch. To obey the latching order we must NOT reserve the
kernel mutex here! */
trx_id = row_get_rec_trx_id(rec, index);
if (read_view_sees_trx_id(view, trx_id)) {
return(TRUE);
}
return(FALSE);
}
/*************************************************************************
Checks that a non-clustered index record is seen in a consistent read. */
ulint
lock_sec_rec_cons_read_sees(
/*========================*/
/* out: TRUE if certainly sees, or FALSE if an
earlier version of the clustered index record
might be needed: NOTE that a non-clustered
index page contains so little information on
its modifications that also in the case FALSE,
the present version of rec may be the right,
but we must check this from the clustered
index record */
rec_t* rec, /* in: user record which should be read or
passed over by a read cursor */
dict_index_t* index, /* in: non-clustered index */
read_view_t* view) /* in: consistent read view */
{
dulint max_trx_id;
UT_NOT_USED(index);
ut_ad(!(index->type & DICT_CLUSTERED));
ut_ad(page_rec_is_user_rec(rec));
/* NOTE that we might call this function while holding the search
system latch. To obey the latching order we must NOT reserve the
kernel mutex here! */
if (recv_recovery_is_on()) {
return(FALSE);
}
max_trx_id = page_get_max_trx_id(buf_frame_align(rec));
if (ut_dulint_cmp(max_trx_id, view->up_limit_id) >= 0) {
return(FALSE);
}
return(TRUE);
}
/*************************************************************************
Creates the lock system at database start. */
void
lock_sys_create(
/*============*/
ulint n_cells) /* in: number of slots in lock hash table */
{
lock_sys = mem_alloc(sizeof(lock_sys_t));
lock_sys->rec_hash = hash_create(n_cells);
/* hash_create_mutexes(lock_sys->rec_hash, 2, SYNC_REC_LOCK); */
lock_latest_err_file = os_file_create_tmpfile();
}
/*************************************************************************
Gets the size of a lock struct. */
ulint
lock_get_size(void)
/*===============*/
/* out: size in bytes */
{
return((ulint)sizeof(lock_t));
}
/*************************************************************************
Gets the mode of a lock. */
UNIV_INLINE
ulint
lock_get_mode(
/*==========*/
/* out: mode */
lock_t* lock) /* in: lock */
{
ut_ad(lock);
return(lock->type_mode & LOCK_MODE_MASK);
}
/*************************************************************************
Gets the type of a lock. */
UNIV_INLINE
ulint
lock_get_type(
/*==========*/
/* out: LOCK_TABLE or LOCK_REC */
lock_t* lock) /* in: lock */
{
ut_ad(lock);
return(lock->type_mode & LOCK_TYPE_MASK);
}
/*************************************************************************
Gets the wait flag of a lock. */
UNIV_INLINE
ibool
lock_get_wait(
/*==========*/
/* out: TRUE if waiting */
lock_t* lock) /* in: lock */
{
ut_ad(lock);
if (lock->type_mode & LOCK_WAIT) {
return(TRUE);
}
return(FALSE);
}
/*************************************************************************
Sets the wait flag of a lock and the back pointer in trx to lock. */
UNIV_INLINE
void
lock_set_lock_and_trx_wait(
/*=======================*/
lock_t* lock, /* in: lock */
trx_t* trx) /* in: trx */
{
ut_ad(lock);
ut_ad(trx->wait_lock == NULL);
trx->wait_lock = lock;
lock->type_mode = lock->type_mode | LOCK_WAIT;
}
/**************************************************************************
The back pointer to a waiting lock request in the transaction is set to NULL
and the wait bit in lock type_mode is reset. */
UNIV_INLINE
void
lock_reset_lock_and_trx_wait(
/*=========================*/
lock_t* lock) /* in: record lock */
{
ut_ad((lock->trx)->wait_lock == lock);
ut_ad(lock_get_wait(lock));
/* Reset the back pointer in trx to this waiting lock request */
(lock->trx)->wait_lock = NULL;
lock->type_mode = lock->type_mode & ~LOCK_WAIT;
}
/*************************************************************************
Gets the gap flag of a record lock. */
UNIV_INLINE
ibool
lock_rec_get_gap(
/*=============*/
/* out: TRUE if gap flag set */
lock_t* lock) /* in: record lock */
{
ut_ad(lock);
ut_ad(lock_get_type(lock) == LOCK_REC);
if (lock->type_mode & LOCK_GAP) {
return(TRUE);
}
return(FALSE);
}
/*************************************************************************
Gets the LOCK_REC_NOT_GAP flag of a record lock. */
UNIV_INLINE
ibool
lock_rec_get_rec_not_gap(
/*=====================*/
/* out: TRUE if LOCK_REC_NOT_GAP flag set */
lock_t* lock) /* in: record lock */
{
ut_ad(lock);
ut_ad(lock_get_type(lock) == LOCK_REC);
if (lock->type_mode & LOCK_REC_NOT_GAP) {
return(TRUE);
}
return(FALSE);
}
/*************************************************************************
Gets the waiting insert flag of a record lock. */
UNIV_INLINE
ibool
lock_rec_get_insert_intention(
/*==========================*/
/* out: TRUE if gap flag set */
lock_t* lock) /* in: record lock */
{
ut_ad(lock);
ut_ad(lock_get_type(lock) == LOCK_REC);
if (lock->type_mode & LOCK_INSERT_INTENTION) {
return(TRUE);
}
return(FALSE);
}
/*************************************************************************
Calculates if lock mode 1 is stronger or equal to lock mode 2. */
UNIV_INLINE
ibool
lock_mode_stronger_or_eq(
/*=====================*/
/* out: TRUE if mode1 stronger or equal to mode2 */
ulint mode1, /* in: lock mode */
ulint mode2) /* in: lock mode */
{
ut_ad(mode1 == LOCK_X || mode1 == LOCK_S || mode1 == LOCK_IX
|| mode1 == LOCK_IS || mode1 == LOCK_AUTO_INC);
ut_ad(mode2 == LOCK_X || mode2 == LOCK_S || mode2 == LOCK_IX
|| mode2 == LOCK_IS || mode2 == LOCK_AUTO_INC);
if (mode1 == LOCK_X) {
return(TRUE);
} else if (mode1 == LOCK_AUTO_INC && mode2 == LOCK_AUTO_INC) {
return(TRUE);
} else if (mode1 == LOCK_S
&& (mode2 == LOCK_S || mode2 == LOCK_IS)) {
return(TRUE);
} else if (mode1 == LOCK_IS && mode2 == LOCK_IS) {
return(TRUE);
} else if (mode1 == LOCK_IX && (mode2 == LOCK_IX
|| mode2 == LOCK_IS)) {
return(TRUE);
}
return(FALSE);
}
/*************************************************************************
Calculates if lock mode 1 is compatible with lock mode 2. */
UNIV_INLINE
ibool
lock_mode_compatible(
/*=================*/
/* out: TRUE if mode1 compatible with mode2 */
ulint mode1, /* in: lock mode */
ulint mode2) /* in: lock mode */
{
ut_ad(mode1 == LOCK_X || mode1 == LOCK_S || mode1 == LOCK_IX
|| mode1 == LOCK_IS || mode1 == LOCK_AUTO_INC);
ut_ad(mode2 == LOCK_X || mode2 == LOCK_S || mode2 == LOCK_IX
|| mode2 == LOCK_IS || mode2 == LOCK_AUTO_INC);
if (mode1 == LOCK_S && (mode2 == LOCK_IS || mode2 == LOCK_S)) {
return(TRUE);
} else if (mode1 == LOCK_X) {
return(FALSE);
} else if (mode1 == LOCK_AUTO_INC && (mode2 == LOCK_IS
|| mode2 == LOCK_IX)) {
return(TRUE);
} else if (mode1 == LOCK_IS && (mode2 == LOCK_IS
|| mode2 == LOCK_IX
|| mode2 == LOCK_AUTO_INC
|| mode2 == LOCK_S)) {
return(TRUE);
} else if (mode1 == LOCK_IX && (mode2 == LOCK_IS
|| mode2 == LOCK_AUTO_INC
|| mode2 == LOCK_IX)) {
return(TRUE);
}
return(FALSE);
}
/*************************************************************************
Checks if a lock request for a new lock has to wait for request lock2. */
UNIV_INLINE
ibool
lock_rec_has_to_wait(
/*=================*/
/* out: TRUE if new lock has to wait for lock2 to be
removed */
trx_t* trx, /* in: trx of new lock */
ulint type_mode,/* in: precise mode of the new lock to set:
LOCK_S or LOCK_X, possibly ORed to
LOCK_GAP or LOCK_REC_NOT_GAP, LOCK_INSERT_INTENTION */
lock_t* lock2) /* in: another record lock; NOTE that it is assumed
that this has a lock bit set on the same record as
in the new lock we are setting */
{
ut_ad(trx && lock2);
ut_ad(lock_get_type(lock2) == LOCK_REC);
if (trx != lock2->trx
&& !lock_mode_compatible(LOCK_MODE_MASK & type_mode,
lock_get_mode(lock2))) {
/* We have somewhat complex rules when gap type record locks
cause waits */
if ((type_mode & LOCK_REC_NOT_GAP)
&& lock_rec_get_gap(lock2)) {
/* Lock on just the record does not need to wait for
a gap type lock */
return(FALSE);
}
if ((type_mode & LOCK_GAP)
&& lock_rec_get_rec_not_gap(lock2)) {
/* Lock on gap does not need to wait for
a LOCK_REC_NOT_GAP type lock */
return(FALSE);
}
if (lock_rec_get_insert_intention(lock2)) {
/* No lock request needs to wait for an insert
intention lock to be removed. This is ok since our
rules allow conflicting locks on gaps. This eliminates
a spurious deadlock caused by a next-key lock waiting
for an insert intention lock; when the insert
intention lock was granted, the insert deadlocked on
the waiting next-key lock.
Also, insert intention locks do not disturb each
other. */
return(FALSE);
}
return(TRUE);
}
return(FALSE);
}
/*************************************************************************
Checks if a lock request lock1 has to wait for request lock2. */
static
ibool
lock_has_to_wait(
/*=============*/
/* out: TRUE if lock1 has to wait for lock2 to be
removed */
lock_t* lock1, /* in: waiting lock */
lock_t* lock2) /* in: another lock; NOTE that it is assumed that this
has a lock bit set on the same record as in lock1 if
the locks are record locks */
{
ut_ad(lock1 && lock2);
if (lock1->trx != lock2->trx
&& !lock_mode_compatible(lock_get_mode(lock1),
lock_get_mode(lock2))) {
if (lock_get_type(lock1) == LOCK_REC) {
ut_ad(lock_get_type(lock2) == LOCK_REC);
return(lock_rec_has_to_wait(lock1->trx,
lock1->type_mode, lock2));
}
return(TRUE);
}
return(FALSE);
}
/*============== RECORD LOCK BASIC FUNCTIONS ============================*/
/*************************************************************************
Gets the number of bits in a record lock bitmap. */
UNIV_INLINE
ulint
lock_rec_get_n_bits(
/*================*/
/* out: number of bits */
lock_t* lock) /* in: record lock */
{
return(lock->un_member.rec_lock.n_bits);
}
/*************************************************************************
Gets the nth bit of a record lock. */
UNIV_INLINE
ibool
lock_rec_get_nth_bit(
/*=================*/
/* out: TRUE if bit set */
lock_t* lock, /* in: record lock */
ulint i) /* in: index of the bit */
{
ulint byte_index;
ulint bit_index;
ulint b;
ut_ad(lock);
ut_ad(lock_get_type(lock) == LOCK_REC);
if (i >= lock->un_member.rec_lock.n_bits) {
return(FALSE);
}
byte_index = i / 8;
bit_index = i % 8;
b = (ulint)*((byte*)lock + sizeof(lock_t) + byte_index);
return(ut_bit_get_nth(b, bit_index));
}
/**************************************************************************
Sets the nth bit of a record lock to TRUE. */
UNIV_INLINE
void
lock_rec_set_nth_bit(
/*==================*/
lock_t* lock, /* in: record lock */
ulint i) /* in: index of the bit */
{
ulint byte_index;
ulint bit_index;
byte* ptr;
ulint b;
ut_ad(lock);
ut_ad(lock_get_type(lock) == LOCK_REC);
ut_ad(i < lock->un_member.rec_lock.n_bits);
byte_index = i / 8;
bit_index = i % 8;
ptr = (byte*)lock + sizeof(lock_t) + byte_index;
b = (ulint)*ptr;
b = ut_bit_set_nth(b, bit_index, TRUE);
*ptr = (byte)b;
}
/**************************************************************************
Looks for a set bit in a record lock bitmap. Returns ULINT_UNDEFINED,
if none found. */
static
ulint
lock_rec_find_set_bit(
/*==================*/
/* out: bit index == heap number of the record, or
ULINT_UNDEFINED if none found */
lock_t* lock) /* in: record lock with at least one bit set */
{
ulint i;
for (i = 0; i < lock_rec_get_n_bits(lock); i++) {
if (lock_rec_get_nth_bit(lock, i)) {
return(i);
}
}
return(ULINT_UNDEFINED);
}
/**************************************************************************
Resets the nth bit of a record lock. */
UNIV_INLINE
void
lock_rec_reset_nth_bit(
/*===================*/
lock_t* lock, /* in: record lock */
ulint i) /* in: index of the bit which must be set to TRUE
when this function is called */
{
ulint byte_index;
ulint bit_index;
byte* ptr;
ulint b;
ut_ad(lock);
ut_ad(lock_get_type(lock) == LOCK_REC);
ut_ad(i < lock->un_member.rec_lock.n_bits);
byte_index = i / 8;
bit_index = i % 8;
ptr = (byte*)lock + sizeof(lock_t) + byte_index;
b = (ulint)*ptr;
b = ut_bit_set_nth(b, bit_index, FALSE);
*ptr = (byte)b;
}
/*************************************************************************
Gets the first or next record lock on a page. */
UNIV_INLINE
lock_t*
lock_rec_get_next_on_page(
/*======================*/
/* out: next lock, NULL if none exists */
lock_t* lock) /* in: a record lock */
{
ulint space;
ulint page_no;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(lock_get_type(lock) == LOCK_REC);
space = lock->un_member.rec_lock.space;
page_no = lock->un_member.rec_lock.page_no;
for (;;) {
lock = HASH_GET_NEXT(hash, lock);
if (!lock) {
break;
}
if ((lock->un_member.rec_lock.space == space)
&& (lock->un_member.rec_lock.page_no == page_no)) {
break;
}
}
return(lock);
}
/*************************************************************************
Gets the first record lock on a page, where the page is identified by its
file address. */
UNIV_INLINE
lock_t*
lock_rec_get_first_on_page_addr(
/*============================*/
/* out: first lock, NULL if none exists */
ulint space, /* in: space */
ulint page_no)/* in: page number */
{
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
lock = HASH_GET_FIRST(lock_sys->rec_hash,
lock_rec_hash(space, page_no));
while (lock) {
if ((lock->un_member.rec_lock.space == space)
&& (lock->un_member.rec_lock.page_no == page_no)) {
break;
}
lock = HASH_GET_NEXT(hash, lock);
}
return(lock);
}
/*************************************************************************
Returns TRUE if there are explicit record locks on a page. */
ibool
lock_rec_expl_exist_on_page(
/*========================*/
/* out: TRUE if there are explicit record locks on
the page */
ulint space, /* in: space id */
ulint page_no)/* in: page number */
{
ibool ret;
mutex_enter(&kernel_mutex);
if (lock_rec_get_first_on_page_addr(space, page_no)) {
ret = TRUE;
} else {
ret = FALSE;
}
mutex_exit(&kernel_mutex);
return(ret);
}
/*************************************************************************
Gets the first record lock on a page, where the page is identified by a
pointer to it. */
UNIV_INLINE
lock_t*
lock_rec_get_first_on_page(
/*=======================*/
/* out: first lock, NULL if none exists */
byte* ptr) /* in: pointer to somewhere on the page */
{
ulint hash;
lock_t* lock;
ulint space;
ulint page_no;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
hash = buf_frame_get_lock_hash_val(ptr);
lock = HASH_GET_FIRST(lock_sys->rec_hash, hash);
while (lock) {
space = buf_frame_get_space_id(ptr);
page_no = buf_frame_get_page_no(ptr);
if ((lock->un_member.rec_lock.space == space)
&& (lock->un_member.rec_lock.page_no == page_no)) {
break;
}
lock = HASH_GET_NEXT(hash, lock);
}
return(lock);
}
/*************************************************************************
Gets the next explicit lock request on a record. */
UNIV_INLINE
lock_t*
lock_rec_get_next(
/*==============*/
/* out: next lock, NULL if none exists */
rec_t* rec, /* in: record on a page */
lock_t* lock) /* in: lock */
{
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(lock_get_type(lock) == LOCK_REC);
for (;;) {
lock = lock_rec_get_next_on_page(lock);
if (lock == NULL) {
return(NULL);
}
if (lock_rec_get_nth_bit(lock, rec_get_heap_no(rec))) {
return(lock);
}
}
}
/*************************************************************************
Gets the first explicit lock request on a record. */
UNIV_INLINE
lock_t*
lock_rec_get_first(
/*===============*/
/* out: first lock, NULL if none exists */
rec_t* rec) /* in: record on a page */
{
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
lock = lock_rec_get_first_on_page(rec);
while (lock) {
if (lock_rec_get_nth_bit(lock, rec_get_heap_no(rec))) {
break;
}
lock = lock_rec_get_next_on_page(lock);
}
return(lock);
}
/*************************************************************************
Resets the record lock bitmap to zero. NOTE: does not touch the wait_lock
pointer in the transaction! This function is used in lock object creation
and resetting. */
static
void
lock_rec_bitmap_reset(
/*==================*/
lock_t* lock) /* in: record lock */
{
byte* ptr;
ulint n_bytes;
ulint i;
ut_ad(lock_get_type(lock) == LOCK_REC);
/* Reset to zero the bitmap which resides immediately after the lock
struct */
ptr = (byte*)lock + sizeof(lock_t);
n_bytes = lock_rec_get_n_bits(lock) / 8;
ut_ad((lock_rec_get_n_bits(lock) % 8) == 0);
for (i = 0; i < n_bytes; i++) {
*ptr = 0;
ptr++;
}
}
/*************************************************************************
Copies a record lock to heap. */
static
lock_t*
lock_rec_copy(
/*==========*/
/* out: copy of lock */
lock_t* lock, /* in: record lock */
mem_heap_t* heap) /* in: memory heap */
{
lock_t* dupl_lock;
ulint size;
ut_ad(lock_get_type(lock) == LOCK_REC);
size = sizeof(lock_t) + lock_rec_get_n_bits(lock) / 8;
dupl_lock = mem_heap_alloc(heap, size);
ut_memcpy(dupl_lock, lock, size);
return(dupl_lock);
}
/*************************************************************************
Gets the previous record lock set on a record. */
static
lock_t*
lock_rec_get_prev(
/*==============*/
/* out: previous lock on the same record, NULL if
none exists */
lock_t* in_lock,/* in: record lock */
ulint heap_no)/* in: heap number of the record */
{
lock_t* lock;
ulint space;
ulint page_no;
lock_t* found_lock = NULL;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(lock_get_type(in_lock) == LOCK_REC);
space = in_lock->un_member.rec_lock.space;
page_no = in_lock->un_member.rec_lock.page_no;
lock = lock_rec_get_first_on_page_addr(space, page_no);
for (;;) {
ut_ad(lock);
if (lock == in_lock) {
return(found_lock);
}
if (lock_rec_get_nth_bit(lock, heap_no)) {
found_lock = lock;
}
lock = lock_rec_get_next_on_page(lock);
}
}
/*============= FUNCTIONS FOR ANALYZING TABLE LOCK QUEUE ================*/
/*************************************************************************
Checks if a transaction has the specified table lock, or stronger. */
UNIV_INLINE
lock_t*
lock_table_has(
/*===========*/
/* out: lock or NULL */
trx_t* trx, /* in: transaction */
dict_table_t* table, /* in: table */
ulint mode) /* in: lock mode */
{
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
/* Look for stronger locks the same trx already has on the table */
lock = UT_LIST_GET_LAST(table->locks);
while (lock != NULL) {
if (lock->trx == trx
&& lock_mode_stronger_or_eq(lock_get_mode(lock), mode)) {
/* The same trx already has locked the table in
a mode stronger or equal to the mode given */
ut_ad(!lock_get_wait(lock));
return(lock);
}
lock = UT_LIST_GET_PREV(un_member.tab_lock.locks, lock);
}
return(NULL);
}
/*============= FUNCTIONS FOR ANALYZING RECORD LOCK QUEUE ================*/
/*************************************************************************
Checks if a transaction has a GRANTED explicit lock on rec stronger or equal
to precise_mode. */
UNIV_INLINE
lock_t*
lock_rec_has_expl(
/*==============*/
/* out: lock or NULL */
ulint precise_mode,/* in: LOCK_S or LOCK_X possibly ORed to
LOCK_GAP or LOCK_REC_NOT_GAP,
for a supremum record we regard this always a gap
type request */
rec_t* rec, /* in: record */
trx_t* trx) /* in: transaction */
{
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad((precise_mode & LOCK_MODE_MASK) == LOCK_S
|| (precise_mode & LOCK_MODE_MASK) == LOCK_X);
ut_ad(!(precise_mode & LOCK_INSERT_INTENTION));
lock = lock_rec_get_first(rec);
while (lock) {
if (lock->trx == trx
&& lock_mode_stronger_or_eq(lock_get_mode(lock),
precise_mode & LOCK_MODE_MASK)
&& !lock_get_wait(lock)
&& (!lock_rec_get_rec_not_gap(lock)
|| (precise_mode & LOCK_REC_NOT_GAP)
|| page_rec_is_supremum(rec))
&& (!lock_rec_get_gap(lock)
|| (precise_mode & LOCK_GAP)
|| page_rec_is_supremum(rec))
&& (!lock_rec_get_insert_intention(lock))) {
return(lock);
}
lock = lock_rec_get_next(rec, lock);
}
return(NULL);
}
/*************************************************************************
Checks if some other transaction has a lock request in the queue. */
static
lock_t*
lock_rec_other_has_expl_req(
/*========================*/
/* out: lock or NULL */
ulint mode, /* in: LOCK_S or LOCK_X */
ulint gap, /* in: LOCK_GAP if also gap locks are taken
into account, or 0 if not */
ulint wait, /* in: LOCK_WAIT if also waiting locks are
taken into account, or 0 if not */
rec_t* rec, /* in: record to look at */
trx_t* trx) /* in: transaction, or NULL if requests by all
transactions are taken into account */
{
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(mode == LOCK_X || mode == LOCK_S);
ut_ad(gap == 0 || gap == LOCK_GAP);
ut_ad(wait == 0 || wait == LOCK_WAIT);
lock = lock_rec_get_first(rec);
while (lock) {
if (lock->trx != trx
&& (gap ||
!(lock_rec_get_gap(lock) || page_rec_is_supremum(rec)))
&& (wait || !lock_get_wait(lock))
&& lock_mode_stronger_or_eq(lock_get_mode(lock), mode)) {
return(lock);
}
lock = lock_rec_get_next(rec, lock);
}
return(NULL);
}
/*************************************************************************
Checks if some other transaction has a conflicting explicit lock request
in the queue, so that we have to wait. */
static
lock_t*
lock_rec_other_has_conflicting(
/*===========================*/
/* out: lock or NULL */
ulint mode, /* in: LOCK_S or LOCK_X,
possibly ORed to LOCK_GAP or LOC_REC_NOT_GAP,
LOCK_INSERT_INTENTION */
rec_t* rec, /* in: record to look at */
trx_t* trx) /* in: our transaction */
{
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
lock = lock_rec_get_first(rec);
while (lock) {
if (lock_rec_has_to_wait(trx, mode, lock)) {
return(lock);
}
lock = lock_rec_get_next(rec, lock);
}
return(NULL);
}
/*************************************************************************
Looks for a suitable type record lock struct by the same trx on the same page.
This can be used to save space when a new record lock should be set on a page:
no new struct is needed, if a suitable old is found. */
UNIV_INLINE
lock_t*
lock_rec_find_similar_on_page(
/*==========================*/
/* out: lock or NULL */
ulint type_mode, /* in: lock type_mode field */
rec_t* rec, /* in: record */
trx_t* trx) /* in: transaction */
{
lock_t* lock;
ulint heap_no;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
heap_no = rec_get_heap_no(rec);
lock = lock_rec_get_first_on_page(rec);
while (lock != NULL) {
if (lock->trx == trx
&& lock->type_mode == type_mode
&& lock_rec_get_n_bits(lock) > heap_no) {
return(lock);
}
lock = lock_rec_get_next_on_page(lock);
}
return(NULL);
}
/*************************************************************************
Checks if some transaction has an implicit x-lock on a record in a secondary
index. */
trx_t*
lock_sec_rec_some_has_impl_off_kernel(
/*==================================*/
/* out: transaction which has the x-lock, or
NULL */
rec_t* rec, /* in: user record */
dict_index_t* index) /* in: secondary index */
{
page_t* page;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(!(index->type & DICT_CLUSTERED));
ut_ad(page_rec_is_user_rec(rec));
page = buf_frame_align(rec);
/* Some transaction may have an implicit x-lock on the record only
if the max trx id for the page >= min trx id for the trx list, or
database recovery is running. We do not write the changes of a page
max trx id to the log, and therefore during recovery, this value
for a page may be incorrect. */
if (!(ut_dulint_cmp(page_get_max_trx_id(page),
trx_list_get_min_trx_id()) >= 0)
&& !recv_recovery_is_on()) {
return(NULL);
}
/* Ok, in this case it is possible that some transaction has an
implicit x-lock. We have to look in the clustered index. */
if (!lock_check_trx_id_sanity(page_get_max_trx_id(page), rec, index,
TRUE)) {
buf_page_print(page);
/* The page is corrupt: try to avoid a crash by returning
NULL */
return(NULL);
}
return(row_vers_impl_x_locked_off_kernel(rec, index));
}
/*============== RECORD LOCK CREATION AND QUEUE MANAGEMENT =============*/
/*************************************************************************
Creates a new record lock and inserts it to the lock queue. Does NOT check
for deadlocks or lock compatibility! */
static
lock_t*
lock_rec_create(
/*============*/
/* out: created lock, NULL if out of memory */
ulint type_mode,/* in: lock mode and wait flag, type is
ignored and replaced by LOCK_REC */
rec_t* rec, /* in: record on page */
dict_index_t* index, /* in: index of record */
trx_t* trx) /* in: transaction */
{
page_t* page;
lock_t* lock;
ulint page_no;
ulint heap_no;
ulint space;
ulint n_bits;
ulint n_bytes;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
page = buf_frame_align(rec);
space = buf_frame_get_space_id(page);
page_no = buf_frame_get_page_no(page);
heap_no = rec_get_heap_no(rec);
/* If rec is the supremum record, then we reset the gap and
LOCK_REC_NOT_GAP bits, as all locks on the supremum are
automatically of the gap type */
if (rec == page_get_supremum_rec(page)) {
ut_ad(!(type_mode & LOCK_REC_NOT_GAP));
type_mode = type_mode & ~(LOCK_GAP | LOCK_REC_NOT_GAP);
}
/* Make lock bitmap bigger by a safety margin */
n_bits = page_header_get_field(page, PAGE_N_HEAP)
+ LOCK_PAGE_BITMAP_MARGIN;
n_bytes = 1 + n_bits / 8;
lock = mem_heap_alloc(trx->lock_heap, sizeof(lock_t) + n_bytes);
if (lock == NULL) {
return(NULL);
}
UT_LIST_ADD_LAST(trx_locks, trx->trx_locks, lock);
lock->trx = trx;
lock->type_mode = (type_mode & ~LOCK_TYPE_MASK) | LOCK_REC;
lock->index = index;
lock->un_member.rec_lock.space = space;
lock->un_member.rec_lock.page_no = page_no;
lock->un_member.rec_lock.n_bits = n_bytes * 8;
/* Reset to zero the bitmap which resides immediately after the
lock struct */
lock_rec_bitmap_reset(lock);
/* Set the bit corresponding to rec */
lock_rec_set_nth_bit(lock, heap_no);
HASH_INSERT(lock_t, hash, lock_sys->rec_hash,
lock_rec_fold(space, page_no), lock);
if (type_mode & LOCK_WAIT) {
lock_set_lock_and_trx_wait(lock, trx);
}
return(lock);
}
/*************************************************************************
Enqueues a waiting request for a lock which cannot be granted immediately.
Checks for deadlocks. */
static
ulint
lock_rec_enqueue_waiting(
/*=====================*/
/* out: DB_LOCK_WAIT, DB_DEADLOCK, or
DB_QUE_THR_SUSPENDED, or DB_SUCCESS;
DB_SUCCESS means that there was a deadlock,
but another transaction was chosen as a
victim, and we got the lock immediately:
no need to wait then */
ulint type_mode,/* in: lock mode this transaction is
requesting: LOCK_S or LOCK_X, possibly ORed
with LOCK_GAP or LOCK_REC_NOT_GAP, ORed
with LOCK_INSERT_INTENTION if this waiting
lock request is set when performing an
insert of an index record */
rec_t* rec, /* in: record */
dict_index_t* index, /* in: index of record */
que_thr_t* thr) /* in: query thread */
{
lock_t* lock;
trx_t* trx;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
/* Test if there already is some other reason to suspend thread:
we do not enqueue a lock request if the query thread should be
stopped anyway */
if (que_thr_stop(thr)) {
ut_error;
return(DB_QUE_THR_SUSPENDED);
}
trx = thr_get_trx(thr);
if (trx->dict_operation) {
ut_print_timestamp(stderr);
fputs(
" InnoDB: Error: a record lock wait happens in a dictionary operation!\n"
"InnoDB: Table name ", stderr);
ut_print_name(stderr, index->table_name);
fputs(".\n"
"InnoDB: Submit a detailed bug report to http://bugs.mysql.com\n",
stderr);
}
/* Enqueue the lock request that will wait to be granted */
lock = lock_rec_create(type_mode | LOCK_WAIT, rec, index, trx);
/* Check if a deadlock occurs: if yes, remove the lock request and
return an error code */
if (lock_deadlock_occurs(lock, trx)) {
lock_reset_lock_and_trx_wait(lock);
lock_rec_reset_nth_bit(lock, rec_get_heap_no(rec));
return(DB_DEADLOCK);
}
/* If there was a deadlock but we chose another transaction as a
victim, it is possible that we already have the lock now granted! */
if (trx->wait_lock == NULL) {
return(DB_SUCCESS);
}
trx->que_state = TRX_QUE_LOCK_WAIT;
trx->was_chosen_as_deadlock_victim = FALSE;
trx->wait_started = time(NULL);
ut_a(que_thr_stop(thr));
if (lock_print_waits) {
fprintf(stderr, "Lock wait for trx %lu in index ",
(ulong) ut_dulint_get_low(trx->id));
ut_print_name(stderr, index->name);
}
return(DB_LOCK_WAIT);
}
/*************************************************************************
Adds a record lock request in the record queue. The request is normally
added as the last in the queue, but if there are no waiting lock requests
on the record, and the request to be added is not a waiting request, we
can reuse a suitable record lock object already existing on the same page,
just setting the appropriate bit in its bitmap. This is a low-level function
which does NOT check for deadlocks or lock compatibility! */
static
lock_t*
lock_rec_add_to_queue(
/*==================*/
/* out: lock where the bit was set, NULL if out
of memory */
ulint type_mode,/* in: lock mode, wait, gap etc. flags;
type is ignored and replaced by LOCK_REC */
rec_t* rec, /* in: record on page */
dict_index_t* index, /* in: index of record */
trx_t* trx) /* in: transaction */
{
lock_t* lock;
lock_t* similar_lock = NULL;
ulint heap_no;
page_t* page;
ibool somebody_waits = FALSE;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad((type_mode & (LOCK_WAIT | LOCK_GAP))
|| ((type_mode & LOCK_MODE_MASK) != LOCK_S)
|| !lock_rec_other_has_expl_req(LOCK_X, 0, LOCK_WAIT, rec, trx));
ut_ad((type_mode & (LOCK_WAIT | LOCK_GAP))
|| ((type_mode & LOCK_MODE_MASK) != LOCK_X)
|| !lock_rec_other_has_expl_req(LOCK_S, 0, LOCK_WAIT, rec, trx));
type_mode = type_mode | LOCK_REC;
page = buf_frame_align(rec);
/* If rec is the supremum record, then we can reset the gap bit, as
all locks on the supremum are automatically of the gap type, and we
try to avoid unnecessary memory consumption of a new record lock
struct for a gap type lock */
if (rec == page_get_supremum_rec(page)) {
ut_ad(!(type_mode & LOCK_REC_NOT_GAP));
/* There should never be LOCK_REC_NOT_GAP on a supremum
record, but let us play safe */
type_mode = type_mode & ~(LOCK_GAP | LOCK_REC_NOT_GAP);
}
/* Look for a waiting lock request on the same record or on a gap */
heap_no = rec_get_heap_no(rec);
lock = lock_rec_get_first_on_page(rec);
while (lock != NULL) {
if (lock_get_wait(lock)
&& (lock_rec_get_nth_bit(lock, heap_no))) {
somebody_waits = TRUE;
}
lock = lock_rec_get_next_on_page(lock);
}
/* Look for a similar record lock on the same page: if one is found
and there are no waiting lock requests, we can just set the bit */
similar_lock = lock_rec_find_similar_on_page(type_mode, rec, trx);
if (similar_lock && !somebody_waits && !(type_mode & LOCK_WAIT)) {
lock_rec_set_nth_bit(similar_lock, heap_no);
return(similar_lock);
}
return(lock_rec_create(type_mode, rec, index, trx));
}
/*************************************************************************
This is a fast routine for locking a record in the most common cases:
there are no explicit locks on the page, or there is just one lock, owned
by this transaction, and of the right type_mode. This is a low-level function
which does NOT look at implicit locks! Checks lock compatibility within
explicit locks. This function sets a normal next-key lock, or in the case of
a page supremum record, a gap type lock. */
UNIV_INLINE
ibool
lock_rec_lock_fast(
/*===============*/
/* out: TRUE if locking succeeded */
ibool impl, /* in: if TRUE, no lock is set if no wait
is necessary: we assume that the caller will
set an implicit lock */
ulint mode, /* in: lock mode: LOCK_X or LOCK_S possibly
ORed to either LOCK_GAP or LOCK_REC_NOT_GAP */
rec_t* rec, /* in: record */
dict_index_t* index, /* in: index of record */
que_thr_t* thr) /* in: query thread */
{
lock_t* lock;
ulint heap_no;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad((LOCK_MODE_MASK & mode) != LOCK_S
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));
ut_ad((LOCK_MODE_MASK & mode) != LOCK_X
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
ut_ad((LOCK_MODE_MASK & mode) == LOCK_S
|| (LOCK_MODE_MASK & mode) == LOCK_X);
ut_ad(mode - (LOCK_MODE_MASK & mode) == LOCK_GAP
|| mode - (LOCK_MODE_MASK & mode) == 0
|| mode - (LOCK_MODE_MASK & mode) == LOCK_REC_NOT_GAP);
heap_no = rec_get_heap_no(rec);
lock = lock_rec_get_first_on_page(rec);
if (lock == NULL) {
if (!impl) {
lock_rec_create(mode, rec, index, thr_get_trx(thr));
}
return(TRUE);
}
if (lock_rec_get_next_on_page(lock)) {
return(FALSE);
}
if (lock->trx != thr_get_trx(thr)
|| lock->type_mode != (mode | LOCK_REC)
|| lock_rec_get_n_bits(lock) <= heap_no) {
return(FALSE);
}
if (!impl) {
lock_rec_set_nth_bit(lock, heap_no);
}
return(TRUE);
}
/*************************************************************************
This is the general, and slower, routine for locking a record. This is a
low-level function which does NOT look at implicit locks! Checks lock
compatibility within explicit locks. This function sets a normal next-key
lock, or in the case of a page supremum record, a gap type lock. */
static
ulint
lock_rec_lock_slow(
/*===============*/
/* out: DB_SUCCESS, DB_LOCK_WAIT, or error
code */
ibool impl, /* in: if TRUE, no lock is set if no wait is
necessary: we assume that the caller will set
an implicit lock */
ulint mode, /* in: lock mode: LOCK_X or LOCK_S possibly
ORed to either LOCK_GAP or LOCK_REC_NOT_GAP */
rec_t* rec, /* in: record */
dict_index_t* index, /* in: index of record */
que_thr_t* thr) /* in: query thread */
{
trx_t* trx;
ulint err;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad((LOCK_MODE_MASK & mode) != LOCK_S
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));
ut_ad((LOCK_MODE_MASK & mode) != LOCK_X
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
ut_ad((LOCK_MODE_MASK & mode) == LOCK_S
|| (LOCK_MODE_MASK & mode) == LOCK_X);
ut_ad(mode - (LOCK_MODE_MASK & mode) == LOCK_GAP
|| mode - (LOCK_MODE_MASK & mode) == 0
|| mode - (LOCK_MODE_MASK & mode) == LOCK_REC_NOT_GAP);
trx = thr_get_trx(thr);
if (lock_rec_has_expl(mode, rec, trx)) {
/* The trx already has a strong enough lock on rec: do
nothing */
err = DB_SUCCESS;
} else if (lock_rec_other_has_conflicting(mode, rec, trx)) {
/* If another transaction has a non-gap conflicting request in
the queue, as this transaction does not have a lock strong
enough already granted on the record, we have to wait. */
err = lock_rec_enqueue_waiting(mode, rec, index, thr);
} else {
if (!impl) {
/* Set the requested lock on the record */
lock_rec_add_to_queue(LOCK_REC | mode, rec, index,
trx);
}
err = DB_SUCCESS;
}
return(err);
}
/*************************************************************************
Tries to lock the specified record in the mode requested. If not immediately
possible, enqueues a waiting lock request. This is a low-level function
which does NOT look at implicit locks! Checks lock compatibility within
explicit locks. This function sets a normal next-key lock, or in the case
of a page supremum record, a gap type lock. */
static
ulint
lock_rec_lock(
/*==========*/
/* out: DB_SUCCESS, DB_LOCK_WAIT, or error
code */
ibool impl, /* in: if TRUE, no lock is set if no wait is
necessary: we assume that the caller will set
an implicit lock */
ulint mode, /* in: lock mode: LOCK_X or LOCK_S possibly
ORed to either LOCK_GAP or LOCK_REC_NOT_GAP */
rec_t* rec, /* in: record */
dict_index_t* index, /* in: index of record */
que_thr_t* thr) /* in: query thread */
{
ulint err;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad((LOCK_MODE_MASK & mode) != LOCK_S
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));
ut_ad((LOCK_MODE_MASK & mode) != LOCK_X
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
ut_ad((LOCK_MODE_MASK & mode) == LOCK_S
|| (LOCK_MODE_MASK & mode) == LOCK_X);
ut_ad(mode - (LOCK_MODE_MASK & mode) == LOCK_GAP
|| mode - (LOCK_MODE_MASK & mode) == LOCK_REC_NOT_GAP
|| mode - (LOCK_MODE_MASK & mode) == 0);
if (lock_rec_lock_fast(impl, mode, rec, index, thr)) {
/* We try a simplified and faster subroutine for the most
common cases */
err = DB_SUCCESS;
} else {
err = lock_rec_lock_slow(impl, mode, rec, index, thr);
}
return(err);
}
/*************************************************************************
Checks if a waiting record lock request still has to wait in a queue. */
static
ibool
lock_rec_has_to_wait_in_queue(
/*==========================*/
/* out: TRUE if still has to wait */
lock_t* wait_lock) /* in: waiting record lock */
{
lock_t* lock;
ulint space;
ulint page_no;
ulint heap_no;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(lock_get_wait(wait_lock));
ut_ad(lock_get_type(wait_lock) == LOCK_REC);
space = wait_lock->un_member.rec_lock.space;
page_no = wait_lock->un_member.rec_lock.page_no;
heap_no = lock_rec_find_set_bit(wait_lock);
lock = lock_rec_get_first_on_page_addr(space, page_no);
while (lock != wait_lock) {
if (lock_rec_get_nth_bit(lock, heap_no)
&& lock_has_to_wait(wait_lock, lock)) {
return(TRUE);
}
lock = lock_rec_get_next_on_page(lock);
}
return(FALSE);
}
/*****************************************************************
Grants a lock to a waiting lock request and releases the waiting
transaction. */
static
void
lock_grant(
/*=======*/
lock_t* lock) /* in: waiting lock request */
{
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
lock_reset_lock_and_trx_wait(lock);
if (lock_get_mode(lock) == LOCK_AUTO_INC) {
if (lock->trx->auto_inc_lock != NULL) {
fprintf(stderr,
"InnoDB: Error: trx already had an AUTO-INC lock!\n");
}
/* Store pointer to lock to trx so that we know to
release it at the end of the SQL statement */
lock->trx->auto_inc_lock = lock;
} else if (lock_get_type(lock) == LOCK_TABLE_EXP) {
ut_a(lock_get_mode(lock) == LOCK_S
|| lock_get_mode(lock) == LOCK_X);
}
if (lock_print_waits) {
fprintf(stderr, "Lock wait for trx %lu ends\n",
(ulong) ut_dulint_get_low(lock->trx->id));
}
/* If we are resolving a deadlock by choosing another transaction
as a victim, then our original transaction may not be in the
TRX_QUE_LOCK_WAIT state, and there is no need to end the lock wait
for it */
if (lock->trx->que_state == TRX_QUE_LOCK_WAIT) {
trx_end_lock_wait(lock->trx);
}
}
/*****************************************************************
Cancels a waiting record lock request and releases the waiting transaction
that requested it. NOTE: does NOT check if waiting lock requests behind this
one can now be granted! */
static
void
lock_rec_cancel(
/*============*/
lock_t* lock) /* in: waiting record lock request */
{
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(lock_get_type(lock) == LOCK_REC);
/* Reset the bit (there can be only one set bit) in the lock bitmap */
lock_rec_reset_nth_bit(lock, lock_rec_find_set_bit(lock));
/* Reset the wait flag and the back pointer to lock in trx */
lock_reset_lock_and_trx_wait(lock);
/* The following function releases the trx from lock wait */
trx_end_lock_wait(lock->trx);
}
/*****************************************************************
Removes a record lock request, waiting or granted, from the queue and
grants locks to other transactions in the queue if they now are entitled
to a lock. NOTE: all record locks contained in in_lock are removed. */
static
void
lock_rec_dequeue_from_page(
/*=======================*/
lock_t* in_lock)/* in: record lock object: all record locks which
are contained in this lock object are removed;
transactions waiting behind will get their lock
requests granted, if they are now qualified to it */
{
ulint space;
ulint page_no;
lock_t* lock;
trx_t* trx;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(lock_get_type(in_lock) == LOCK_REC);
trx = in_lock->trx;
space = in_lock->un_member.rec_lock.space;
page_no = in_lock->un_member.rec_lock.page_no;
HASH_DELETE(lock_t, hash, lock_sys->rec_hash,
lock_rec_fold(space, page_no), in_lock);
UT_LIST_REMOVE(trx_locks, trx->trx_locks, in_lock);
/* Check if waiting locks in the queue can now be granted: grant
locks if there are no conflicting locks ahead. */
lock = lock_rec_get_first_on_page_addr(space, page_no);
while (lock != NULL) {
if (lock_get_wait(lock)
&& !lock_rec_has_to_wait_in_queue(lock)) {
/* Grant the lock */
lock_grant(lock);
}
lock = lock_rec_get_next_on_page(lock);
}
}
/*****************************************************************
Removes a record lock request, waiting or granted, from the queue. */
static
void
lock_rec_discard(
/*=============*/
lock_t* in_lock)/* in: record lock object: all record locks which
are contained in this lock object are removed */
{
ulint space;
ulint page_no;
trx_t* trx;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(lock_get_type(in_lock) == LOCK_REC);
trx = in_lock->trx;
space = in_lock->un_member.rec_lock.space;
page_no = in_lock->un_member.rec_lock.page_no;
HASH_DELETE(lock_t, hash, lock_sys->rec_hash,
lock_rec_fold(space, page_no), in_lock);
UT_LIST_REMOVE(trx_locks, trx->trx_locks, in_lock);
}
/*****************************************************************
Removes record lock objects set on an index page which is discarded. This
function does not move locks, or check for waiting locks, therefore the
lock bitmaps must already be reset when this function is called. */
static
void
lock_rec_free_all_from_discard_page(
/*================================*/
page_t* page) /* in: page to be discarded */
{
ulint space;
ulint page_no;
lock_t* lock;
lock_t* next_lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
space = buf_frame_get_space_id(page);
page_no = buf_frame_get_page_no(page);
lock = lock_rec_get_first_on_page_addr(space, page_no);
while (lock != NULL) {
ut_ad(lock_rec_find_set_bit(lock) == ULINT_UNDEFINED);
ut_ad(!lock_get_wait(lock));
next_lock = lock_rec_get_next_on_page(lock);
lock_rec_discard(lock);
lock = next_lock;
}
}
/*============= RECORD LOCK MOVING AND INHERITING ===================*/
/*****************************************************************
Resets the lock bits for a single record. Releases transactions waiting for
lock requests here. */
void
lock_rec_reset_and_release_wait(
/*============================*/
rec_t* rec) /* in: record whose locks bits should be reset */
{
lock_t* lock;
ulint heap_no;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
heap_no = rec_get_heap_no(rec);
lock = lock_rec_get_first(rec);
while (lock != NULL) {
if (lock_get_wait(lock)) {
lock_rec_cancel(lock);
} else {
lock_rec_reset_nth_bit(lock, heap_no);
}
lock = lock_rec_get_next(rec, lock);
}
}
/*****************************************************************
Makes a record to inherit the locks (except LOCK_INSERT_INTENTION type)
of another record as gap type locks, but does not reset the lock bits of
the other record. Also waiting lock requests on rec are inherited as
GRANTED gap locks. */
void
lock_rec_inherit_to_gap(
/*====================*/
rec_t* heir, /* in: record which inherits */
rec_t* rec) /* in: record from which inherited; does NOT reset
the locks on this record */
{
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
lock = lock_rec_get_first(rec);
while (lock != NULL) {
if (!lock_rec_get_insert_intention(lock)) {
lock_rec_add_to_queue(LOCK_REC | lock_get_mode(lock)
| LOCK_GAP,
heir, lock->index, lock->trx);
}
lock = lock_rec_get_next(rec, lock);
}
}
/*****************************************************************
Makes a record to inherit the gap locks (except LOCK_INSERT_INTENTION type)
of another record as gap type locks, but does not reset the lock bits of the
other record. Also waiting lock requests are inherited as GRANTED gap locks. */
static
void
lock_rec_inherit_to_gap_if_gap_lock(
/*================================*/
rec_t* heir, /* in: record which inherits */
rec_t* rec) /* in: record from which inherited; does NOT reset
the locks on this record */
{
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
lock = lock_rec_get_first(rec);
while (lock != NULL) {
if (!lock_rec_get_insert_intention(lock)
&& (page_rec_is_supremum(rec)
|| !lock_rec_get_rec_not_gap(lock))) {
lock_rec_add_to_queue(LOCK_REC | lock_get_mode(lock)
| LOCK_GAP,
heir, lock->index, lock->trx);
}
lock = lock_rec_get_next(rec, lock);
}
}
/*****************************************************************
Moves the locks of a record to another record and resets the lock bits of
the donating record. */
static
void
lock_rec_move(
/*==========*/
rec_t* receiver, /* in: record which gets locks; this record
must have no lock requests on it! */
rec_t* donator) /* in: record which gives locks */
{
lock_t* lock;
ulint heap_no;
ulint type_mode;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
heap_no = rec_get_heap_no(donator);
lock = lock_rec_get_first(donator);
ut_ad(lock_rec_get_first(receiver) == NULL);
while (lock != NULL) {
type_mode = lock->type_mode;
lock_rec_reset_nth_bit(lock, heap_no);
if (lock_get_wait(lock)) {
lock_reset_lock_and_trx_wait(lock);
}
/* Note that we FIRST reset the bit, and then set the lock:
the function works also if donator == receiver */
lock_rec_add_to_queue(type_mode, receiver, lock->index,
lock->trx);
lock = lock_rec_get_next(donator, lock);
}
ut_ad(lock_rec_get_first(donator) == NULL);
}
/*****************************************************************
Updates the lock table when we have reorganized a page. NOTE: we copy
also the locks set on the infimum of the page; the infimum may carry
locks if an update of a record is occurring on the page, and its locks
were temporarily stored on the infimum. */
void
lock_move_reorganize_page(
/*======================*/
page_t* page, /* in: old index page, now reorganized */
page_t* old_page) /* in: copy of the old, not reorganized page */
{
lock_t* lock;
lock_t* old_lock;
page_cur_t cur1;
page_cur_t cur2;
ulint old_heap_no;
UT_LIST_BASE_NODE_T(lock_t) old_locks;
mem_heap_t* heap = NULL;
rec_t* sup;
lock_mutex_enter_kernel();
lock = lock_rec_get_first_on_page(page);
if (lock == NULL) {
lock_mutex_exit_kernel();
return;
}
heap = mem_heap_create(256);
/* Copy first all the locks on the page to heap and reset the
bitmaps in the original locks; chain the copies of the locks
using the trx_locks field in them. */
UT_LIST_INIT(old_locks);
while (lock != NULL) {
/* Make a copy of the lock */
old_lock = lock_rec_copy(lock, heap);
UT_LIST_ADD_LAST(trx_locks, old_locks, old_lock);
/* Reset bitmap of lock */
lock_rec_bitmap_reset(lock);
if (lock_get_wait(lock)) {
lock_reset_lock_and_trx_wait(lock);
}
lock = lock_rec_get_next_on_page(lock);
}
sup = page_get_supremum_rec(page);
lock = UT_LIST_GET_FIRST(old_locks);
while (lock) {
/* NOTE: we copy also the locks set on the infimum and
supremum of the page; the infimum may carry locks if an
update of a record is occurring on the page, and its locks
were temporarily stored on the infimum */
page_cur_set_before_first(page, &cur1);
page_cur_set_before_first(old_page, &cur2);
/* Set locks according to old locks */
for (;;) {
ut_ad(0 == ut_memcmp(page_cur_get_rec(&cur1),
page_cur_get_rec(&cur2),
rec_get_data_size(
page_cur_get_rec(&cur2))));
old_heap_no = rec_get_heap_no(page_cur_get_rec(&cur2));
if (lock_rec_get_nth_bit(lock, old_heap_no)) {
/* NOTE that the old lock bitmap could be too
small for the new heap number! */
lock_rec_add_to_queue(lock->type_mode,
page_cur_get_rec(&cur1),
lock->index, lock->trx);
/* if ((page_cur_get_rec(&cur1) == sup)
&& lock_get_wait(lock)) {
fprintf(stderr,
"---\n--\n!!!Lock reorg: supr type %lu\n",
lock->type_mode);
} */
}
if (page_cur_get_rec(&cur1) == sup) {
break;
}
page_cur_move_to_next(&cur1);
page_cur_move_to_next(&cur2);
}
/* Remember that we chained old locks on the trx_locks field: */
lock = UT_LIST_GET_NEXT(trx_locks, lock);
}
lock_mutex_exit_kernel();
mem_heap_free(heap);
/* ut_ad(lock_rec_validate_page(buf_frame_get_space_id(page),
buf_frame_get_page_no(page))); */
}
/*****************************************************************
Moves the explicit locks on user records to another page if a record
list end is moved to another page. */
void
lock_move_rec_list_end(
/*===================*/
page_t* new_page, /* in: index page to move to */
page_t* page, /* in: index page */
rec_t* rec) /* in: record on page: this is the
first record moved */
{
lock_t* lock;
page_cur_t cur1;
page_cur_t cur2;
ulint heap_no;
rec_t* sup;
ulint type_mode;
lock_mutex_enter_kernel();
/* Note: when we move locks from record to record, waiting locks
and possible granted gap type locks behind them are enqueued in
the original order, because new elements are inserted to a hash
table to the end of the hash chain, and lock_rec_add_to_queue
does not reuse locks if there are waiters in the queue. */
sup = page_get_supremum_rec(page);
lock = lock_rec_get_first_on_page(page);
while (lock != NULL) {
page_cur_position(rec, &cur1);
if (page_cur_is_before_first(&cur1)) {
page_cur_move_to_next(&cur1);
}
page_cur_set_before_first(new_page, &cur2);
page_cur_move_to_next(&cur2);
/* Copy lock requests on user records to new page and
reset the lock bits on the old */
while (page_cur_get_rec(&cur1) != sup) {
ut_ad(0 == ut_memcmp(page_cur_get_rec(&cur1),
page_cur_get_rec(&cur2),
rec_get_data_size(
page_cur_get_rec(&cur2))));
heap_no = rec_get_heap_no(page_cur_get_rec(&cur1));
if (lock_rec_get_nth_bit(lock, heap_no)) {
type_mode = lock->type_mode;
lock_rec_reset_nth_bit(lock, heap_no);
if (lock_get_wait(lock)) {
lock_reset_lock_and_trx_wait(lock);
}
lock_rec_add_to_queue(type_mode,
page_cur_get_rec(&cur2),
lock->index, lock->trx);
}
page_cur_move_to_next(&cur1);
page_cur_move_to_next(&cur2);
}
lock = lock_rec_get_next_on_page(lock);
}
lock_mutex_exit_kernel();
/* ut_ad(lock_rec_validate_page(buf_frame_get_space_id(page),
buf_frame_get_page_no(page)));
ut_ad(lock_rec_validate_page(buf_frame_get_space_id(new_page),
buf_frame_get_page_no(new_page))); */
}
/*****************************************************************
Moves the explicit locks on user records to another page if a record
list start is moved to another page. */
void
lock_move_rec_list_start(
/*=====================*/
page_t* new_page, /* in: index page to move to */
page_t* page, /* in: index page */
rec_t* rec, /* in: record on page: this is the
first record NOT copied */
rec_t* old_end) /* in: old previous-to-last record on
new_page before the records were copied */
{
lock_t* lock;
page_cur_t cur1;
page_cur_t cur2;
ulint heap_no;
ulint type_mode;
ut_a(new_page);
lock_mutex_enter_kernel();
lock = lock_rec_get_first_on_page(page);
while (lock != NULL) {
page_cur_set_before_first(page, &cur1);
page_cur_move_to_next(&cur1);
page_cur_position(old_end, &cur2);
page_cur_move_to_next(&cur2);
/* Copy lock requests on user records to new page and
reset the lock bits on the old */
while (page_cur_get_rec(&cur1) != rec) {
ut_ad(0 == ut_memcmp(page_cur_get_rec(&cur1),
page_cur_get_rec(&cur2),
rec_get_data_size(
page_cur_get_rec(&cur2))));
heap_no = rec_get_heap_no(page_cur_get_rec(&cur1));
if (lock_rec_get_nth_bit(lock, heap_no)) {
type_mode = lock->type_mode;
lock_rec_reset_nth_bit(lock, heap_no);
if (lock_get_wait(lock)) {
lock_reset_lock_and_trx_wait(lock);
}
lock_rec_add_to_queue(type_mode,
page_cur_get_rec(&cur2),
lock->index, lock->trx);
}
page_cur_move_to_next(&cur1);
page_cur_move_to_next(&cur2);
}
lock = lock_rec_get_next_on_page(lock);
}
lock_mutex_exit_kernel();
/* ut_ad(lock_rec_validate_page(buf_frame_get_space_id(page),
buf_frame_get_page_no(page)));
ut_ad(lock_rec_validate_page(buf_frame_get_space_id(new_page),
buf_frame_get_page_no(new_page))); */
}
/*****************************************************************
Updates the lock table when a page is split to the right. */
void
lock_update_split_right(
/*====================*/
page_t* right_page, /* in: right page */
page_t* left_page) /* in: left page */
{
lock_mutex_enter_kernel();
/* Move the locks on the supremum of the left page to the supremum
of the right page */
lock_rec_move(page_get_supremum_rec(right_page),
page_get_supremum_rec(left_page));
/* Inherit the locks to the supremum of left page from the successor
of the infimum on right page */
lock_rec_inherit_to_gap(page_get_supremum_rec(left_page),
page_rec_get_next(page_get_infimum_rec(right_page)));
lock_mutex_exit_kernel();
}
/*****************************************************************
Updates the lock table when a page is merged to the right. */
void
lock_update_merge_right(
/*====================*/
rec_t* orig_succ, /* in: original successor of infimum
on the right page before merge */
page_t* left_page) /* in: merged index page which will be
discarded */
{
lock_mutex_enter_kernel();
/* Inherit the locks from the supremum of the left page to the
original successor of infimum on the right page, to which the left
page was merged */
lock_rec_inherit_to_gap(orig_succ, page_get_supremum_rec(left_page));
/* Reset the locks on the supremum of the left page, releasing
waiting transactions */
lock_rec_reset_and_release_wait(page_get_supremum_rec(left_page));
lock_rec_free_all_from_discard_page(left_page);
lock_mutex_exit_kernel();
}
/*****************************************************************
Updates the lock table when the root page is copied to another in
btr_root_raise_and_insert. Note that we leave lock structs on the
root page, even though they do not make sense on other than leaf
pages: the reason is that in a pessimistic update the infimum record
of the root page will act as a dummy carrier of the locks of the record
to be updated. */
void
lock_update_root_raise(
/*===================*/
page_t* new_page, /* in: index page to which copied */
page_t* root) /* in: root page */
{
lock_mutex_enter_kernel();
/* Move the locks on the supremum of the root to the supremum
of new_page */
lock_rec_move(page_get_supremum_rec(new_page),
page_get_supremum_rec(root));
lock_mutex_exit_kernel();
}
/*****************************************************************
Updates the lock table when a page is copied to another and the original page
is removed from the chain of leaf pages, except if page is the root! */
void
lock_update_copy_and_discard(
/*=========================*/
page_t* new_page, /* in: index page to which copied */
page_t* page) /* in: index page; NOT the root! */
{
lock_mutex_enter_kernel();
/* Move the locks on the supremum of the old page to the supremum
of new_page */
lock_rec_move(page_get_supremum_rec(new_page),
page_get_supremum_rec(page));
lock_rec_free_all_from_discard_page(page);
lock_mutex_exit_kernel();
}
/*****************************************************************
Updates the lock table when a page is split to the left. */
void
lock_update_split_left(
/*===================*/
page_t* right_page, /* in: right page */
page_t* left_page) /* in: left page */
{
lock_mutex_enter_kernel();
/* Inherit the locks to the supremum of the left page from the
successor of the infimum on the right page */
lock_rec_inherit_to_gap(page_get_supremum_rec(left_page),
page_rec_get_next(page_get_infimum_rec(right_page)));
lock_mutex_exit_kernel();
}
/*****************************************************************
Updates the lock table when a page is merged to the left. */
void
lock_update_merge_left(
/*===================*/
page_t* left_page, /* in: left page to which merged */
rec_t* orig_pred, /* in: original predecessor of supremum
on the left page before merge */
page_t* right_page) /* in: merged index page which will be
discarded */
{
lock_mutex_enter_kernel();
if (page_rec_get_next(orig_pred) != page_get_supremum_rec(left_page)) {
/* Inherit the locks on the supremum of the left page to the
first record which was moved from the right page */
lock_rec_inherit_to_gap(page_rec_get_next(orig_pred),
page_get_supremum_rec(left_page));
/* Reset the locks on the supremum of the left page,
releasing waiting transactions */
lock_rec_reset_and_release_wait(page_get_supremum_rec(
left_page));
}
/* Move the locks from the supremum of right page to the supremum
of the left page */
lock_rec_move(page_get_supremum_rec(left_page),
page_get_supremum_rec(right_page));
lock_rec_free_all_from_discard_page(right_page);
lock_mutex_exit_kernel();
}
/*****************************************************************
Resets the original locks on heir and replaces them with gap type locks
inherited from rec. */
void
lock_rec_reset_and_inherit_gap_locks(
/*=================================*/
rec_t* heir, /* in: heir record */
rec_t* rec) /* in: record */
{
mutex_enter(&kernel_mutex);
lock_rec_reset_and_release_wait(heir);
lock_rec_inherit_to_gap(heir, rec);
mutex_exit(&kernel_mutex);
}
/*****************************************************************
Updates the lock table when a page is discarded. */
void
lock_update_discard(
/*================*/
rec_t* heir, /* in: record which will inherit the locks */
page_t* page) /* in: index page which will be discarded */
{
rec_t* rec;
lock_mutex_enter_kernel();
if (NULL == lock_rec_get_first_on_page(page)) {
/* No locks exist on page, nothing to do */
lock_mutex_exit_kernel();
return;
}
/* Inherit all the locks on the page to the record and reset all
the locks on the page */
rec = page_get_infimum_rec(page);
for (;;) {
lock_rec_inherit_to_gap(heir, rec);
/* Reset the locks on rec, releasing waiting transactions */
lock_rec_reset_and_release_wait(rec);
if (rec == page_get_supremum_rec(page)) {
break;
}
rec = page_rec_get_next(rec);
}
lock_rec_free_all_from_discard_page(page);
lock_mutex_exit_kernel();
}
/*****************************************************************
Updates the lock table when a new user record is inserted. */
void
lock_update_insert(
/*===============*/
rec_t* rec) /* in: the inserted record */
{
lock_mutex_enter_kernel();
/* Inherit the gap-locking locks for rec, in gap mode, from the next
record */
lock_rec_inherit_to_gap_if_gap_lock(rec, page_rec_get_next(rec));
lock_mutex_exit_kernel();
}
/*****************************************************************
Updates the lock table when a record is removed. */
void
lock_update_delete(
/*===============*/
rec_t* rec) /* in: the record to be removed */
{
lock_mutex_enter_kernel();
/* Let the next record inherit the locks from rec, in gap mode */
lock_rec_inherit_to_gap(page_rec_get_next(rec), rec);
/* Reset the lock bits on rec and release waiting transactions */
lock_rec_reset_and_release_wait(rec);
lock_mutex_exit_kernel();
}
/*************************************************************************
Stores on the page infimum record the explicit locks of another record.
This function is used to store the lock state of a record when it is
updated and the size of the record changes in the update. The record
is moved in such an update, perhaps to another page. The infimum record
acts as a dummy carrier record, taking care of lock releases while the
actual record is being moved. */
void
lock_rec_store_on_page_infimum(
/*===========================*/
rec_t* rec) /* in: record whose lock state is stored
on the infimum record of the same page; lock
bits are reset on the record */
{
page_t* page;
page = buf_frame_align(rec);
lock_mutex_enter_kernel();
lock_rec_move(page_get_infimum_rec(page), rec);
lock_mutex_exit_kernel();
}
/*************************************************************************
Restores the state of explicit lock requests on a single record, where the
state was stored on the infimum of the page. */
void
lock_rec_restore_from_page_infimum(
/*===============================*/
rec_t* rec, /* in: record whose lock state is restored */
page_t* page) /* in: page (rec is not necessarily on this page)
whose infimum stored the lock state; lock bits are
reset on the infimum */
{
lock_mutex_enter_kernel();
lock_rec_move(rec, page_get_infimum_rec(page));
lock_mutex_exit_kernel();
}
/*=========== DEADLOCK CHECKING ======================================*/
/************************************************************************
Checks if a lock request results in a deadlock. */
static
ibool
lock_deadlock_occurs(
/*=================*/
/* out: TRUE if a deadlock was detected and we
chose trx as a victim; FALSE if no deadlock, or
there was a deadlock, but we chose other
transaction(s) as victim(s) */
lock_t* lock, /* in: lock the transaction is requesting */
trx_t* trx) /* in: transaction */
{
dict_table_t* table;
dict_index_t* index;
trx_t* mark_trx;
ulint ret;
ulint cost = 0;
ut_ad(trx && lock);
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
retry:
/* We check that adding this trx to the waits-for graph
does not produce a cycle. First mark all active transactions
with 0: */
mark_trx = UT_LIST_GET_FIRST(trx_sys->trx_list);
while (mark_trx) {
mark_trx->deadlock_mark = 0;
mark_trx = UT_LIST_GET_NEXT(trx_list, mark_trx);
}
ret = lock_deadlock_recursive(trx, trx, lock, &cost);
if (ret == LOCK_VICTIM_IS_OTHER) {
/* We chose some other trx as a victim: retry if there still
is a deadlock */
goto retry;
}
if (ret == LOCK_VICTIM_IS_START) {
if (lock_get_type(lock) & LOCK_TABLE) {
table = lock->un_member.tab_lock.table;
index = NULL;
} else {
index = lock->index;
table = index->table;
}
lock_deadlock_found = TRUE;
fputs("*** WE ROLL BACK TRANSACTION (2)\n",
lock_latest_err_file);
return(TRUE);
}
return(FALSE);
}
/************************************************************************
Looks recursively for a deadlock. */
static
ulint
lock_deadlock_recursive(
/*====================*/
/* out: 0 if no deadlock found,
LOCK_VICTIM_IS_START if there was a deadlock
and we chose 'start' as the victim,
LOCK_VICTIM_IS_OTHER if a deadlock
was found and we chose some other trx as a
victim: we must do the search again in this
last case because there may be another
deadlock! */
trx_t* start, /* in: recursion starting point */
trx_t* trx, /* in: a transaction waiting for a lock */
lock_t* wait_lock, /* in: the lock trx is waiting to be granted */
ulint* cost) /* in/out: number of calculation steps thus
far: if this exceeds LOCK_MAX_N_STEPS_...
we return LOCK_VICTIM_IS_START */
{
lock_t* lock;
ulint bit_no = ULINT_UNDEFINED;
trx_t* lock_trx;
ulint ret;
ut_a(trx && start && wait_lock);
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
if (trx->deadlock_mark == 1) {
/* We have already exhaustively searched the subtree starting
from this trx */
return(0);
}
*cost = *cost + 1;
if (*cost > LOCK_MAX_N_STEPS_IN_DEADLOCK_CHECK) {
return(LOCK_VICTIM_IS_START);
}
lock = wait_lock;
if (lock_get_type(wait_lock) == LOCK_REC) {
bit_no = lock_rec_find_set_bit(wait_lock);
ut_a(bit_no != ULINT_UNDEFINED);
}
/* Look at the locks ahead of wait_lock in the lock queue */
for (;;) {
if (lock_get_type(lock) & LOCK_TABLE) {
lock = UT_LIST_GET_PREV(un_member.tab_lock.locks, lock);
} else {
ut_ad(lock_get_type(lock) == LOCK_REC);
ut_a(bit_no != ULINT_UNDEFINED);
lock = lock_rec_get_prev(lock, bit_no);
}
if (lock == NULL) {
/* We can mark this subtree as searched */
trx->deadlock_mark = 1;
return(FALSE);
}
if (lock_has_to_wait(wait_lock, lock)) {
lock_trx = lock->trx;
if (lock_trx == start) {
/* We came back to the recursion starting
point: a deadlock detected */
FILE* ef = lock_latest_err_file;
rewind(ef);
ut_print_timestamp(ef);
fputs("\n*** (1) TRANSACTION:\n", ef);
trx_print(ef, wait_lock->trx);
fputs(
"*** (1) WAITING FOR THIS LOCK TO BE GRANTED:\n", ef);
if (lock_get_type(wait_lock) == LOCK_REC) {
lock_rec_print(ef, wait_lock);
} else {
lock_table_print(ef, wait_lock);
}
fputs("*** (2) TRANSACTION:\n", ef);
trx_print(ef, lock->trx);
fputs("*** (2) HOLDS THE LOCK(S):\n", ef);
if (lock_get_type(lock) == LOCK_REC) {
lock_rec_print(ef, lock);
} else {
lock_table_print(ef, lock);
}
fputs(
"*** (2) WAITING FOR THIS LOCK TO BE GRANTED:\n", ef);
if (lock_get_type(start->wait_lock)
== LOCK_REC) {
lock_rec_print(ef, start->wait_lock);
} else {
lock_table_print(ef, start->wait_lock);
}
if (lock_print_waits) {
fputs("Deadlock detected\n", stderr);
}
if (ut_dulint_cmp(wait_lock->trx->undo_no,
start->undo_no) >= 0) {
/* Our recursion starting point
transaction is 'smaller', let us
choose 'start' as the victim and roll
back it */
return(LOCK_VICTIM_IS_START);
}
lock_deadlock_found = TRUE;
/* Let us choose the transaction of wait_lock
as a victim to try to avoid deadlocking our
recursion starting point transaction */
fputs("*** WE ROLL BACK TRANSACTION (1)\n",
ef);
wait_lock->trx->was_chosen_as_deadlock_victim
= TRUE;
lock_cancel_waiting_and_release(wait_lock);
/* Since trx and wait_lock are no longer
in the waits-for graph, we can return FALSE;
note that our selective algorithm can choose
several transactions as victims, but still
we may end up rolling back also the recursion
starting point transaction! */
return(LOCK_VICTIM_IS_OTHER);
}
if (lock_trx->que_state == TRX_QUE_LOCK_WAIT) {
/* Another trx ahead has requested lock in an
incompatible mode, and is itself waiting for
a lock */
ret = lock_deadlock_recursive(start, lock_trx,
lock_trx->wait_lock, cost);
if (ret != 0) {
return(ret);
}
}
}
}/* end of the 'for (;;)'-loop */
}
/*========================= TABLE LOCKS ==============================*/
/*************************************************************************
Creates a table lock object and adds it as the last in the lock queue
of the table. Does NOT check for deadlocks or lock compatibility. */
UNIV_INLINE
lock_t*
lock_table_create(
/*==============*/
/* out, own: new lock object, or NULL if
out of memory */
dict_table_t* table, /* in: database table in dictionary cache */
ulint type_mode,/* in: lock mode possibly ORed with
LOCK_WAIT */
trx_t* trx) /* in: trx */
{
lock_t* lock;
ut_ad(table && trx);
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
if (type_mode == LOCK_AUTO_INC) {
/* Only one trx can have the lock on the table
at a time: we may use the memory preallocated
to the table object */
lock = table->auto_inc_lock;
ut_a(trx->auto_inc_lock == NULL);
trx->auto_inc_lock = lock;
} else {
lock = mem_heap_alloc(trx->lock_heap, sizeof(lock_t));
}
if (lock == NULL) {
return(NULL);
}
UT_LIST_ADD_LAST(trx_locks, trx->trx_locks, lock);
lock->type_mode = type_mode | LOCK_TABLE;
lock->trx = trx;
if (lock_get_type(lock) == LOCK_TABLE_EXP) {
lock->trx->n_lock_table_exp++;
}
lock->un_member.tab_lock.table = table;
UT_LIST_ADD_LAST(un_member.tab_lock.locks, table->locks, lock);
if (type_mode & LOCK_WAIT) {
lock_set_lock_and_trx_wait(lock, trx);
}
return(lock);
}
/*****************************************************************
Removes a table lock request from the queue and the trx list of locks;
this is a low-level function which does NOT check if waiting requests
can now be granted. */
UNIV_INLINE
void
lock_table_remove_low(
/*==================*/
lock_t* lock) /* in: table lock */
{
dict_table_t* table;
trx_t* trx;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
table = lock->un_member.tab_lock.table;
trx = lock->trx;
if (lock == trx->auto_inc_lock) {
trx->auto_inc_lock = NULL;
}
if (lock_get_type(lock) == LOCK_TABLE_EXP) {
lock->trx->n_lock_table_exp--;
}
UT_LIST_REMOVE(trx_locks, trx->trx_locks, lock);
UT_LIST_REMOVE(un_member.tab_lock.locks, table->locks, lock);
}
/*************************************************************************
Enqueues a waiting request for a table lock which cannot be granted
immediately. Checks for deadlocks. */
static
ulint
lock_table_enqueue_waiting(
/*=======================*/
/* out: DB_LOCK_WAIT, DB_DEADLOCK, or
DB_QUE_THR_SUSPENDED, or DB_SUCCESS;
DB_SUCCESS means that there was a deadlock,
but another transaction was chosen as a
victim, and we got the lock immediately:
no need to wait then */
ulint mode, /* in: lock mode this transaction is
requesting */
dict_table_t* table, /* in: table */
que_thr_t* thr) /* in: query thread */
{
lock_t* lock;
trx_t* trx;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
/* Test if there already is some other reason to suspend thread:
we do not enqueue a lock request if the query thread should be
stopped anyway */
if (que_thr_stop(thr)) {
ut_error;
return(DB_QUE_THR_SUSPENDED);
}
trx = thr_get_trx(thr);
if (trx->dict_operation) {
ut_print_timestamp(stderr);
fputs(
" InnoDB: Error: a table lock wait happens in a dictionary operation!\n"
"InnoDB: Table name ", stderr);
ut_print_name(stderr, table->name);
fputs(".\n"
"InnoDB: Submit a detailed bug report to http://bugs.mysql.com\n",
stderr);
}
/* Enqueue the lock request that will wait to be granted */
lock = lock_table_create(table, mode | LOCK_WAIT, trx);
/* Check if a deadlock occurs: if yes, remove the lock request and
return an error code */
if (lock_deadlock_occurs(lock, trx)) {
lock_reset_lock_and_trx_wait(lock);
lock_table_remove_low(lock);
return(DB_DEADLOCK);
}
if (trx->wait_lock == NULL) {
/* Deadlock resolution chose another transaction as a victim,
and we accidentally got our lock granted! */
return(DB_SUCCESS);
}
trx->que_state = TRX_QUE_LOCK_WAIT;
trx->was_chosen_as_deadlock_victim = FALSE;
trx->wait_started = time(NULL);
ut_a(que_thr_stop(thr));
return(DB_LOCK_WAIT);
}
/*************************************************************************
Checks if other transactions have an incompatible mode lock request in
the lock queue. */
UNIV_INLINE
ibool
lock_table_other_has_incompatible(
/*==============================*/
trx_t* trx, /* in: transaction, or NULL if all
transactions should be included */
ulint wait, /* in: LOCK_WAIT if also waiting locks are
taken into account, or 0 if not */
dict_table_t* table, /* in: table */
ulint mode) /* in: lock mode */
{
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
lock = UT_LIST_GET_LAST(table->locks);
while (lock != NULL) {
if ((lock->trx != trx)
&& (!lock_mode_compatible(lock_get_mode(lock), mode))
&& (wait || !(lock_get_wait(lock)))) {
return(TRUE);
}
lock = UT_LIST_GET_PREV(un_member.tab_lock.locks, lock);
}
return(FALSE);
}
/*************************************************************************
Locks the specified database table in the mode given. If the lock cannot
be granted immediately, the query thread is put to wait. */
ulint
lock_table(
/*=======*/
/* out: DB_SUCCESS, DB_LOCK_WAIT,
DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
ulint flags, /* in: if BTR_NO_LOCKING_FLAG bit is set,
does nothing;
if LOCK_TABLE_EXP bits are set,
creates an explicit table lock */
dict_table_t* table, /* in: database table in dictionary cache */
ulint mode, /* in: lock mode */
que_thr_t* thr) /* in: query thread */
{
trx_t* trx;
ulint err;
ut_ad(table && thr);
if (flags & BTR_NO_LOCKING_FLAG) {
return(DB_SUCCESS);
}
ut_a(flags == 0 || flags == LOCK_TABLE_EXP);
trx = thr_get_trx(thr);
lock_mutex_enter_kernel();
/* Look for stronger locks the same trx already has on the table */
if (lock_table_has(trx, table, mode)) {
lock_mutex_exit_kernel();
return(DB_SUCCESS);
}
/* We have to check if the new lock is compatible with any locks
other transactions have in the table lock queue. */
if (lock_table_other_has_incompatible(trx, LOCK_WAIT, table, mode)) {
/* Another trx has a request on the table in an incompatible
mode: this trx may have to wait */
err = lock_table_enqueue_waiting(mode, table, thr);
lock_mutex_exit_kernel();
return(err);
}
lock_table_create(table, mode | flags, trx);
ut_a(!flags || mode == LOCK_S || mode == LOCK_X);
lock_mutex_exit_kernel();
return(DB_SUCCESS);
}
/*************************************************************************
Checks if there are any locks set on the table. */
ibool
lock_is_on_table(
/*=============*/
/* out: TRUE if there are lock(s) */
dict_table_t* table) /* in: database table in dictionary cache */
{
ibool ret;
ut_ad(table);
lock_mutex_enter_kernel();
if (UT_LIST_GET_LAST(table->locks)) {
ret = TRUE;
} else {
ret = FALSE;
}
lock_mutex_exit_kernel();
return(ret);
}
/*************************************************************************
Checks if a waiting table lock request still has to wait in a queue. */
static
ibool
lock_table_has_to_wait_in_queue(
/*============================*/
/* out: TRUE if still has to wait */
lock_t* wait_lock) /* in: waiting table lock */
{
dict_table_t* table;
lock_t* lock;
ut_ad(lock_get_wait(wait_lock));
table = wait_lock->un_member.tab_lock.table;
lock = UT_LIST_GET_FIRST(table->locks);
while (lock != wait_lock) {
if (lock_has_to_wait(wait_lock, lock)) {
return(TRUE);
}
lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock);
}
return(FALSE);
}
/*****************************************************************
Removes a table lock request, waiting or granted, from the queue and grants
locks to other transactions in the queue, if they now are entitled to a
lock. */
static
void
lock_table_dequeue(
/*===============*/
lock_t* in_lock)/* in: table lock object; transactions waiting
behind will get their lock requests granted, if
they are now qualified to it */
{
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_a(lock_get_type(in_lock) == LOCK_TABLE ||
lock_get_type(in_lock) == LOCK_TABLE_EXP);
lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, in_lock);
lock_table_remove_low(in_lock);
/* Check if waiting locks in the queue can now be granted: grant
locks if there are no conflicting locks ahead. */
while (lock != NULL) {
if (lock_get_wait(lock)
&& !lock_table_has_to_wait_in_queue(lock)) {
/* Grant the lock */
lock_grant(lock);
}
lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock);
}
}
/*=========================== LOCK RELEASE ==============================*/
/*************************************************************************
Releases a table lock.
Releases possible other transactions waiting for this lock. */
void
lock_table_unlock(
/*==============*/
lock_t* lock) /* in: lock */
{
mutex_enter(&kernel_mutex);
lock_table_dequeue(lock);
mutex_exit(&kernel_mutex);
}
/*************************************************************************
Releases an auto-inc lock a transaction possibly has on a table.
Releases possible other transactions waiting for this lock. */
void
lock_table_unlock_auto_inc(
/*=======================*/
trx_t* trx) /* in: transaction */
{
if (trx->auto_inc_lock) {
mutex_enter(&kernel_mutex);
lock_table_dequeue(trx->auto_inc_lock);
mutex_exit(&kernel_mutex);
}
}
/*************************************************************************
Releases transaction locks, and releases possible other transactions waiting
because of these locks. */
void
lock_release_off_kernel(
/*====================*/
trx_t* trx) /* in: transaction */
{
dict_table_t* table;
ulint count;
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
lock = UT_LIST_GET_LAST(trx->trx_locks);
count = 0;
while (lock != NULL) {
count++;
if (lock_get_type(lock) == LOCK_REC) {
lock_rec_dequeue_from_page(lock);
} else {
ut_ad(lock_get_type(lock) & LOCK_TABLE);
if (lock_get_mode(lock) != LOCK_IS
&& 0 != ut_dulint_cmp(trx->undo_no,
ut_dulint_zero)) {
/* The trx may have modified the table.
We block the use of the MySQL query cache
for all currently active transactions. */
table = lock->un_member.tab_lock.table;
table->query_cache_inv_trx_id =
trx_sys->max_trx_id;
}
lock_table_dequeue(lock);
if (lock_get_type(lock) == LOCK_TABLE_EXP) {
ut_a(lock_get_mode(lock) == LOCK_S
|| lock_get_mode(lock) == LOCK_X);
}
}
if (count == LOCK_RELEASE_KERNEL_INTERVAL) {
/* Release the kernel mutex for a while, so that we
do not monopolize it */
lock_mutex_exit_kernel();
lock_mutex_enter_kernel();
count = 0;
}
lock = UT_LIST_GET_LAST(trx->trx_locks);
}
mem_heap_empty(trx->lock_heap);
ut_a(trx->auto_inc_lock == NULL);
ut_a(trx->n_lock_table_exp == 0);
}
/*************************************************************************
Releases table locks explicitly requested with LOCK TABLES (indicated by
lock type LOCK_TABLE_EXP), and releases possible other transactions waiting
because of these locks. */
void
lock_release_tables_off_kernel(
/*===========================*/
trx_t* trx) /* in: transaction */
{
dict_table_t* table;
ulint count;
lock_t* lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
lock = UT_LIST_GET_LAST(trx->trx_locks);
count = 0;
while (lock != NULL) {
count++;
if (lock_get_type(lock) == LOCK_TABLE_EXP) {
ut_a(lock_get_mode(lock) == LOCK_S
|| lock_get_mode(lock) == LOCK_X);
if (trx->insert_undo || trx->update_undo) {
/* The trx may have modified the table.
We block the use of the MySQL query
cache for all currently active
transactions. */
table = lock->un_member.tab_lock.table;
table->query_cache_inv_trx_id =
trx_sys->max_trx_id;
}
lock_table_dequeue(lock);
lock = UT_LIST_GET_LAST(trx->trx_locks);
continue;
}
if (count == LOCK_RELEASE_KERNEL_INTERVAL) {
/* Release the kernel mutex for a while, so that we
do not monopolize it */
lock_mutex_exit_kernel();
lock_mutex_enter_kernel();
count = 0;
}
lock = UT_LIST_GET_PREV(trx_locks, lock);
}
ut_a(trx->n_lock_table_exp == 0);
}
/*************************************************************************
Cancels a waiting lock request and releases possible other transactions
waiting behind it. */
void
lock_cancel_waiting_and_release(
/*============================*/
lock_t* lock) /* in: waiting lock request */
{
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
if (lock_get_type(lock) == LOCK_REC) {
lock_rec_dequeue_from_page(lock);
} else {
ut_ad(lock_get_type(lock) & LOCK_TABLE);
lock_table_dequeue(lock);
}
/* Reset the wait flag and the back pointer to lock in trx */
lock_reset_lock_and_trx_wait(lock);
/* The following function releases the trx from lock wait */
trx_end_lock_wait(lock->trx);
}
/*************************************************************************
Resets all record and table locks of a transaction on a table to be dropped.
No lock is allowed to be a wait lock. */
static
void
lock_reset_all_on_table_for_trx(
/*============================*/
dict_table_t* table, /* in: table to be dropped */
trx_t* trx) /* in: a transaction */
{
lock_t* lock;
lock_t* prev_lock;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
lock = UT_LIST_GET_LAST(trx->trx_locks);
while (lock != NULL) {
prev_lock = UT_LIST_GET_PREV(trx_locks, lock);
if (lock_get_type(lock) == LOCK_REC
&& lock->index->table == table) {
ut_a(!lock_get_wait(lock));
lock_rec_discard(lock);
} else if (lock_get_type(lock) & LOCK_TABLE
&& lock->un_member.tab_lock.table == table) {
ut_a(!lock_get_wait(lock));
lock_table_remove_low(lock);
}
lock = prev_lock;
}
}
/*************************************************************************
Resets all locks, both table and record locks, on a table to be dropped.
No lock is allowed to be a wait lock. */
void
lock_reset_all_on_table(
/*====================*/
dict_table_t* table) /* in: table to be dropped */
{
lock_t* lock;
mutex_enter(&kernel_mutex);
lock = UT_LIST_GET_FIRST(table->locks);
while (lock) {
ut_a(!lock_get_wait(lock));
lock_reset_all_on_table_for_trx(table, lock->trx);
lock = UT_LIST_GET_FIRST(table->locks);
}
mutex_exit(&kernel_mutex);
}
/*===================== VALIDATION AND DEBUGGING ====================*/
/*************************************************************************
Prints info of a table lock. */
void
lock_table_print(
/*=============*/
FILE* file, /* in: file where to print */
lock_t* lock) /* in: table type lock */
{
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_a(lock_get_type(lock) == LOCK_TABLE ||
lock_get_type(lock) == LOCK_TABLE_EXP);
if (lock_get_type(lock) == LOCK_TABLE_EXP) {
fputs("EXPLICIT ", file);
}
fputs("TABLE LOCK table ", file);
ut_print_name(file, lock->un_member.tab_lock.table->name);
fprintf(file, " trx id %lu %lu",
(ulong) (lock->trx)->id.high, (ulong) (lock->trx)->id.low);
if (lock_get_mode(lock) == LOCK_S) {
fputs(" lock mode S", file);
} else if (lock_get_mode(lock) == LOCK_X) {
fputs(" lock mode X", file);
} else if (lock_get_mode(lock) == LOCK_IS) {
fputs(" lock mode IS", file);
} else if (lock_get_mode(lock) == LOCK_IX) {
fputs(" lock mode IX", file);
} else if (lock_get_mode(lock) == LOCK_AUTO_INC) {
fputs(" lock mode AUTO-INC", file);
} else {
fprintf(file, " unknown lock mode %lu", (ulong) lock_get_mode(lock));
}
if (lock_get_wait(lock)) {
fputs(" waiting", file);
}
putc('\n', file);
}
/*************************************************************************
Prints info of a record lock. */
void
lock_rec_print(
/*===========*/
FILE* file, /* in: file where to print */
lock_t* lock) /* in: record type lock */
{
page_t* page;
ulint space;
ulint page_no;
ulint i;
mtr_t mtr;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_a(lock_get_type(lock) == LOCK_REC);
space = lock->un_member.rec_lock.space;
page_no = lock->un_member.rec_lock.page_no;
fprintf(file, "RECORD LOCKS space id %lu page no %lu n bits %lu ",
(ulong) space, (ulong) page_no,
(ulong) lock_rec_get_n_bits(lock));
dict_index_name_print(file, lock->index);
fprintf(file, " trx id %lu %lu",
(ulong) (lock->trx)->id.high,
(ulong) (lock->trx)->id.low);
if (lock_get_mode(lock) == LOCK_S) {
fputs(" lock mode S", file);
} else if (lock_get_mode(lock) == LOCK_X) {
fputs(" lock_mode X", file);
} else {
ut_error;
}
if (lock_rec_get_gap(lock)) {
fputs(" locks gap before rec", file);
}
if (lock_rec_get_rec_not_gap(lock)) {
fputs(" locks rec but not gap", file);
}
if (lock_rec_get_insert_intention(lock)) {
fputs(" insert intention", file);
}
if (lock_get_wait(lock)) {
fputs(" waiting", file);
}
mtr_start(&mtr);
putc('\n', file);
/* If the page is not in the buffer pool, we cannot load it
because we have the kernel mutex and ibuf operations would
break the latching order */
page = buf_page_get_gen(space, page_no, RW_NO_LATCH,
NULL, BUF_GET_IF_IN_POOL,
__FILE__, __LINE__, &mtr);
if (page) {
page = buf_page_get_nowait(space, page_no, RW_S_LATCH, &mtr);
if (!page) {
/* Let us try to get an X-latch. If the current thread
is holding an X-latch on the page, we cannot get an
S-latch. */
page = buf_page_get_nowait(space, page_no, RW_X_LATCH,
&mtr);
}
}
if (page) {
#ifdef UNIV_SYNC_DEBUG
buf_page_dbg_add_level(page, SYNC_NO_ORDER_CHECK);
#endif /* UNIV_SYNC_DEBUG */
}
for (i = 0; i < lock_rec_get_n_bits(lock); i++) {
if (lock_rec_get_nth_bit(lock, i)) {
fprintf(file, "Record lock, heap no %lu ", (ulong) i);
if (page) {
rec_print(file,
page_find_rec_with_heap_no(page, i));
}
putc('\n', file);
}
}
mtr_commit(&mtr);
}
/*************************************************************************
Calculates the number of record lock structs in the record lock hash table. */
static
ulint
lock_get_n_rec_locks(void)
/*======================*/
{
lock_t* lock;
ulint n_locks = 0;
ulint i;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
for (i = 0; i < hash_get_n_cells(lock_sys->rec_hash); i++) {
lock = HASH_GET_FIRST(lock_sys->rec_hash, i);
while (lock) {
n_locks++;
lock = HASH_GET_NEXT(hash, lock);
}
}
return(n_locks);
}
/*************************************************************************
Prints info of locks for all transactions. */
void
lock_print_info(
/*============*/
FILE* file) /* in: file where to print */
{
lock_t* lock;
trx_t* trx;
ulint space;
ulint page_no;
page_t* page;
ibool load_page_first = TRUE;
ulint nth_trx = 0;
ulint nth_lock = 0;
ulint i;
mtr_t mtr;
/* We must protect the MySQL thd->query field with a MySQL mutex, and
because the MySQL mutex must be reserved before the kernel_mutex of
InnoDB, we call innobase_mysql_prepare_print_arbitrary_thd() here. */
innobase_mysql_prepare_print_arbitrary_thd();
lock_mutex_enter_kernel();
if (lock_deadlock_found) {
fputs(
"------------------------\n"
"LATEST DETECTED DEADLOCK\n"
"------------------------\n", file);
ut_copy_file(file, lock_latest_err_file);
}
fputs(
"------------\n"
"TRANSACTIONS\n"
"------------\n", file);
fprintf(file, "Trx id counter %lu %lu\n",
(ulong) ut_dulint_get_high(trx_sys->max_trx_id),
(ulong) ut_dulint_get_low(trx_sys->max_trx_id));
fprintf(file,
"Purge done for trx's n:o < %lu %lu undo n:o < %lu %lu\n",
(ulong) ut_dulint_get_high(purge_sys->purge_trx_no),
(ulong) ut_dulint_get_low(purge_sys->purge_trx_no),
(ulong) ut_dulint_get_high(purge_sys->purge_undo_no),
(ulong) ut_dulint_get_low(purge_sys->purge_undo_no));
fprintf(file,
"Total number of lock structs in row lock hash table %lu\n",
(ulong) lock_get_n_rec_locks());
fprintf(file, "LIST OF TRANSACTIONS FOR EACH SESSION:\n");
/* First print info on non-active transactions */
trx = UT_LIST_GET_FIRST(trx_sys->mysql_trx_list);
while (trx) {
if (trx->conc_state == TRX_NOT_STARTED) {
fputs("---", file);
trx_print(file, trx);
}
trx = UT_LIST_GET_NEXT(mysql_trx_list, trx);
}
loop:
trx = UT_LIST_GET_FIRST(trx_sys->trx_list);
i = 0;
/* Since we temporarily release the kernel mutex when
reading a database page in below, variable trx may be
obsolete now and we must loop through the trx list to
get probably the same trx, or some other trx. */
while (trx && (i < nth_trx)) {
trx = UT_LIST_GET_NEXT(trx_list, trx);
i++;
}
if (trx == NULL) {
lock_mutex_exit_kernel();
innobase_mysql_end_print_arbitrary_thd();
ut_ad(lock_validate());
return;
}
if (nth_lock == 0) {
fputs("---", file);
trx_print(file, trx);
if (trx->read_view) {
fprintf(file,
"Trx read view will not see trx with id >= %lu %lu, sees < %lu %lu\n",
(ulong) ut_dulint_get_high(trx->read_view->low_limit_id),
(ulong) ut_dulint_get_low(trx->read_view->low_limit_id),
(ulong) ut_dulint_get_high(trx->read_view->up_limit_id),
(ulong) ut_dulint_get_low(trx->read_view->up_limit_id));
}
if (trx->que_state == TRX_QUE_LOCK_WAIT) {
fprintf(file,
"------- TRX HAS BEEN WAITING %lu SEC FOR THIS LOCK TO BE GRANTED:\n",
(ulong)difftime(time(NULL), trx->wait_started));
if (lock_get_type(trx->wait_lock) == LOCK_REC) {
lock_rec_print(file, trx->wait_lock);
} else {
lock_table_print(file, trx->wait_lock);
}
fputs("------------------\n", file);
}
}
if (!srv_print_innodb_lock_monitor) {
nth_trx++;
goto loop;
}
i = 0;
/* Look at the note about the trx loop above why we loop here:
lock may be an obsolete pointer now. */
lock = UT_LIST_GET_FIRST(trx->trx_locks);
while (lock && (i < nth_lock)) {
lock = UT_LIST_GET_NEXT(trx_locks, lock);
i++;
}
if (lock == NULL) {
nth_trx++;
nth_lock = 0;
goto loop;
}
if (lock_get_type(lock) == LOCK_REC) {
space = lock->un_member.rec_lock.space;
page_no = lock->un_member.rec_lock.page_no;
if (load_page_first) {
lock_mutex_exit_kernel();
innobase_mysql_end_print_arbitrary_thd();
mtr_start(&mtr);
page = buf_page_get_with_no_latch(space, page_no, &mtr);
mtr_commit(&mtr);
load_page_first = FALSE;
innobase_mysql_prepare_print_arbitrary_thd();
lock_mutex_enter_kernel();
goto loop;
}
lock_rec_print(file, lock);
} else {
ut_ad(lock_get_type(lock) & LOCK_TABLE);
lock_table_print(file, lock);
}
load_page_first = TRUE;
nth_lock++;
if (nth_lock >= 10) {
fputs(
"10 LOCKS PRINTED FOR THIS TRX: SUPPRESSING FURTHER PRINTS\n",
file);
nth_trx++;
nth_lock = 0;
goto loop;
}
goto loop;
}
/*************************************************************************
Validates the lock queue on a table. */
ibool
lock_table_queue_validate(
/*======================*/
/* out: TRUE if ok */
dict_table_t* table) /* in: table */
{
lock_t* lock;
ibool is_waiting;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
is_waiting = FALSE;
lock = UT_LIST_GET_FIRST(table->locks);
while (lock) {
ut_a(((lock->trx)->conc_state == TRX_ACTIVE)
|| ((lock->trx)->conc_state == TRX_COMMITTED_IN_MEMORY));
if (!lock_get_wait(lock)) {
ut_a(!is_waiting);
ut_a(!lock_table_other_has_incompatible(lock->trx, 0,
table, lock_get_mode(lock)));
} else {
is_waiting = TRUE;
ut_a(lock_table_has_to_wait_in_queue(lock));
}
lock = UT_LIST_GET_NEXT(un_member.tab_lock.locks, lock);
}
return(TRUE);
}
/*************************************************************************
Validates the lock queue on a single record. */
ibool
lock_rec_queue_validate(
/*====================*/
/* out: TRUE if ok */
rec_t* rec, /* in: record to look at */
dict_index_t* index) /* in: index, or NULL if not known */
{
trx_t* impl_trx;
lock_t* lock;
ut_a(rec);
lock_mutex_enter_kernel();
if (page_rec_is_supremum(rec) || page_rec_is_infimum(rec)) {
lock = lock_rec_get_first(rec);
while (lock) {
ut_a(lock->trx->conc_state == TRX_ACTIVE
|| lock->trx->conc_state
== TRX_COMMITTED_IN_MEMORY);
ut_a(trx_in_trx_list(lock->trx));
if (lock_get_wait(lock)) {
ut_a(lock_rec_has_to_wait_in_queue(lock));
}
if (index) {
ut_a(lock->index == index);
}
lock = lock_rec_get_next(rec, lock);
}
lock_mutex_exit_kernel();
return(TRUE);
}
if (index && (index->type & DICT_CLUSTERED)) {
impl_trx = lock_clust_rec_some_has_impl(rec, index);
if (impl_trx && lock_rec_other_has_expl_req(LOCK_S, 0,
LOCK_WAIT, rec, impl_trx)) {
ut_a(lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP, rec,
impl_trx));
}
}
if (index && !(index->type & DICT_CLUSTERED)) {
/* The kernel mutex may get released temporarily in the
next function call: we have to release lock table mutex
to obey the latching order */
impl_trx = lock_sec_rec_some_has_impl_off_kernel(rec, index);
if (impl_trx && lock_rec_other_has_expl_req(LOCK_S, 0,
LOCK_WAIT, rec, impl_trx)) {
ut_a(lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP, rec,
impl_trx));
}
}
lock = lock_rec_get_first(rec);
while (lock) {
ut_a(lock->trx->conc_state == TRX_ACTIVE
|| lock->trx->conc_state == TRX_COMMITTED_IN_MEMORY);
ut_a(trx_in_trx_list(lock->trx));
if (index) {
ut_a(lock->index == index);
}
if (!lock_rec_get_gap(lock) && !lock_get_wait(lock)) {
if (lock_get_mode(lock) == LOCK_S) {
ut_a(!lock_rec_other_has_expl_req(LOCK_X,
0, 0, rec, lock->trx));
} else {
ut_a(!lock_rec_other_has_expl_req(LOCK_S,
0, 0, rec, lock->trx));
}
} else if (lock_get_wait(lock) && !lock_rec_get_gap(lock)) {
ut_a(lock_rec_has_to_wait_in_queue(lock));
}
lock = lock_rec_get_next(rec, lock);
}
lock_mutex_exit_kernel();
return(TRUE);
}
/*************************************************************************
Validates the record lock queues on a page. */
ibool
lock_rec_validate_page(
/*===================*/
/* out: TRUE if ok */
ulint space, /* in: space id */
ulint page_no)/* in: page number */
{
dict_index_t* index;
page_t* page;
lock_t* lock;
rec_t* rec;
ulint nth_lock = 0;
ulint nth_bit = 0;
ulint i;
mtr_t mtr;
#ifdef UNIV_SYNC_DEBUG
ut_ad(!mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
mtr_start(&mtr);
page = buf_page_get(space, page_no, RW_X_LATCH, &mtr);
#ifdef UNIV_SYNC_DEBUG
buf_page_dbg_add_level(page, SYNC_NO_ORDER_CHECK);
#endif /* UNIV_SYNC_DEBUG */
lock_mutex_enter_kernel();
loop:
lock = lock_rec_get_first_on_page_addr(space, page_no);
if (!lock) {
goto function_exit;
}
for (i = 0; i < nth_lock; i++) {
lock = lock_rec_get_next_on_page(lock);
if (!lock) {
goto function_exit;
}
}
ut_a(trx_in_trx_list(lock->trx));
ut_a(lock->trx->conc_state == TRX_ACTIVE
|| lock->trx->conc_state == TRX_COMMITTED_IN_MEMORY);
for (i = nth_bit; i < lock_rec_get_n_bits(lock); i++) {
if (i == 1 || lock_rec_get_nth_bit(lock, i)) {
index = lock->index;
rec = page_find_rec_with_heap_no(page, i);
fprintf(stderr,
"Validating %lu %lu\n", (ulong) space, (ulong) page_no);
lock_mutex_exit_kernel();
lock_rec_queue_validate(rec, index);
lock_mutex_enter_kernel();
nth_bit = i + 1;
goto loop;
}
}
nth_bit = 0;
nth_lock++;
goto loop;
function_exit:
lock_mutex_exit_kernel();
mtr_commit(&mtr);
return(TRUE);
}
/*************************************************************************
Validates the lock system. */
ibool
lock_validate(void)
/*===============*/
/* out: TRUE if ok */
{
lock_t* lock;
trx_t* trx;
dulint limit;
ulint space;
ulint page_no;
ulint i;
lock_mutex_enter_kernel();
trx = UT_LIST_GET_FIRST(trx_sys->trx_list);
while (trx) {
lock = UT_LIST_GET_FIRST(trx->trx_locks);
while (lock) {
if (lock_get_type(lock) & LOCK_TABLE) {
lock_table_queue_validate(
lock->un_member.tab_lock.table);
}
lock = UT_LIST_GET_NEXT(trx_locks, lock);
}
trx = UT_LIST_GET_NEXT(trx_list, trx);
}
for (i = 0; i < hash_get_n_cells(lock_sys->rec_hash); i++) {
limit = ut_dulint_zero;
for (;;) {
lock = HASH_GET_FIRST(lock_sys->rec_hash, i);
while (lock) {
ut_a(trx_in_trx_list(lock->trx));
space = lock->un_member.rec_lock.space;
page_no = lock->un_member.rec_lock.page_no;
if (ut_dulint_cmp(
ut_dulint_create(space, page_no),
limit) >= 0) {
break;
}
lock = HASH_GET_NEXT(hash, lock);
}
if (!lock) {
break;
}
lock_mutex_exit_kernel();
lock_rec_validate_page(space, page_no);
lock_mutex_enter_kernel();
limit = ut_dulint_create(space, page_no + 1);
}
}
lock_mutex_exit_kernel();
return(TRUE);
}
/*============ RECORD LOCK CHECKS FOR ROW OPERATIONS ====================*/
/*************************************************************************
Checks if locks of other transactions prevent an immediate insert of
a record. If they do, first tests if the query thread should anyway
be suspended for some reason; if not, then puts the transaction and
the query thread to the lock wait state and inserts a waiting request
for a gap x-lock to the lock queue. */
ulint
lock_rec_insert_check_and_lock(
/*===========================*/
/* out: DB_SUCCESS, DB_LOCK_WAIT,
DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
ulint flags, /* in: if BTR_NO_LOCKING_FLAG bit is set,
does nothing */
rec_t* rec, /* in: record after which to insert */
dict_index_t* index, /* in: index */
que_thr_t* thr, /* in: query thread */
ibool* inherit)/* out: set to TRUE if the new inserted
record maybe should inherit LOCK_GAP type
locks from the successor record */
{
rec_t* next_rec;
trx_t* trx;
lock_t* lock;
ulint err;
if (flags & BTR_NO_LOCKING_FLAG) {
return(DB_SUCCESS);
}
ut_ad(rec);
trx = thr_get_trx(thr);
next_rec = page_rec_get_next(rec);
*inherit = FALSE;
lock_mutex_enter_kernel();
ut_ad(lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
lock = lock_rec_get_first(next_rec);
if (lock == NULL) {
/* We optimize CPU time usage in the simplest case */
lock_mutex_exit_kernel();
if (!(index->type & DICT_CLUSTERED)) {
/* Update the page max trx id field */
page_update_max_trx_id(buf_frame_align(rec),
thr_get_trx(thr)->id);
}
return(DB_SUCCESS);
}
*inherit = TRUE;
/* If another transaction has an explicit lock request which locks
the gap, waiting or granted, on the successor, the insert has to wait.
An exception is the case where the lock by the another transaction
is a gap type lock which it placed to wait for its turn to insert. We
do not consider that kind of a lock conflicting with our insert. This
eliminates an unnecessary deadlock which resulted when 2 transactions
had to wait for their insert. Both had waiting gap type lock requests
on the successor, which produced an unnecessary deadlock. */
if (lock_rec_other_has_conflicting(LOCK_X | LOCK_GAP
| LOCK_INSERT_INTENTION, next_rec, trx)) {
/* Note that we may get DB_SUCCESS also here! */
err = lock_rec_enqueue_waiting(LOCK_X | LOCK_GAP
| LOCK_INSERT_INTENTION,
next_rec, index, thr);
} else {
err = DB_SUCCESS;
}
lock_mutex_exit_kernel();
if (!(index->type & DICT_CLUSTERED) && (err == DB_SUCCESS)) {
/* Update the page max trx id field */
page_update_max_trx_id(buf_frame_align(rec),
thr_get_trx(thr)->id);
}
ut_ad(lock_rec_queue_validate(next_rec, index));
return(err);
}
/*************************************************************************
If a transaction has an implicit x-lock on a record, but no explicit x-lock
set on the record, sets one for it. NOTE that in the case of a secondary
index, the kernel mutex may get temporarily released. */
static
void
lock_rec_convert_impl_to_expl(
/*==========================*/
rec_t* rec, /* in: user record on page */
dict_index_t* index) /* in: index of record */
{
trx_t* impl_trx;
#ifdef UNIV_SYNC_DEBUG
ut_ad(mutex_own(&kernel_mutex));
#endif /* UNIV_SYNC_DEBUG */
ut_ad(page_rec_is_user_rec(rec));
if (index->type & DICT_CLUSTERED) {
impl_trx = lock_clust_rec_some_has_impl(rec, index);
} else {
impl_trx = lock_sec_rec_some_has_impl_off_kernel(rec, index);
}
if (impl_trx) {
/* If the transaction has no explicit x-lock set on the
record, set one for it */
if (!lock_rec_has_expl(LOCK_X | LOCK_REC_NOT_GAP, rec,
impl_trx)) {
lock_rec_add_to_queue(LOCK_REC | LOCK_X
| LOCK_REC_NOT_GAP, rec, index,
impl_trx);
}
}
}
/*************************************************************************
Checks if locks of other transactions prevent an immediate modify (update,
delete mark, or delete unmark) of a clustered index record. If they do,
first tests if the query thread should anyway be suspended for some
reason; if not, then puts the transaction and the query thread to the
lock wait state and inserts a waiting request for a record x-lock to the
lock queue. */
ulint
lock_clust_rec_modify_check_and_lock(
/*=================================*/
/* out: DB_SUCCESS, DB_LOCK_WAIT,
DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
ulint flags, /* in: if BTR_NO_LOCKING_FLAG bit is set,
does nothing */
rec_t* rec, /* in: record which should be modified */
dict_index_t* index, /* in: clustered index */
que_thr_t* thr) /* in: query thread */
{
ulint err;
if (flags & BTR_NO_LOCKING_FLAG) {
return(DB_SUCCESS);
}
ut_ad(index->type & DICT_CLUSTERED);
lock_mutex_enter_kernel();
ut_ad(lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
/* If a transaction has no explicit x-lock set on the record, set one
for it */
lock_rec_convert_impl_to_expl(rec, index);
err = lock_rec_lock(TRUE, LOCK_X | LOCK_REC_NOT_GAP, rec, index, thr);
lock_mutex_exit_kernel();
ut_ad(lock_rec_queue_validate(rec, index));
return(err);
}
/*************************************************************************
Checks if locks of other transactions prevent an immediate modify (delete
mark or delete unmark) of a secondary index record. */
ulint
lock_sec_rec_modify_check_and_lock(
/*===============================*/
/* out: DB_SUCCESS, DB_LOCK_WAIT,
DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
ulint flags, /* in: if BTR_NO_LOCKING_FLAG bit is set,
does nothing */
rec_t* rec, /* in: record which should be modified;
NOTE: as this is a secondary index, we
always have to modify the clustered index
record first: see the comment below */
dict_index_t* index, /* in: secondary index */
que_thr_t* thr) /* in: query thread */
{
ulint err;
if (flags & BTR_NO_LOCKING_FLAG) {
return(DB_SUCCESS);
}
ut_ad(!(index->type & DICT_CLUSTERED));
/* Another transaction cannot have an implicit lock on the record,
because when we come here, we already have modified the clustered
index record, and this would not have been possible if another active
transaction had modified this secondary index record. */
lock_mutex_enter_kernel();
ut_ad(lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
err = lock_rec_lock(TRUE, LOCK_X | LOCK_REC_NOT_GAP, rec, index, thr);
lock_mutex_exit_kernel();
ut_ad(lock_rec_queue_validate(rec, index));
if (err == DB_SUCCESS) {
/* Update the page max trx id field */
page_update_max_trx_id(buf_frame_align(rec),
thr_get_trx(thr)->id);
}
return(err);
}
/*************************************************************************
Like the counterpart for a clustered index below, but now we read a
secondary index record. */
ulint
lock_sec_rec_read_check_and_lock(
/*=============================*/
/* out: DB_SUCCESS, DB_LOCK_WAIT,
DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
ulint flags, /* in: if BTR_NO_LOCKING_FLAG bit is set,
does nothing */
rec_t* rec, /* in: user record or page supremum record
which should be read or passed over by a read
cursor */
dict_index_t* index, /* in: secondary index */
ulint mode, /* in: mode of the lock which the read cursor
should set on records: LOCK_S or LOCK_X; the
latter is possible in SELECT FOR UPDATE */
ulint gap_mode,/* in: LOCK_ORDINARY, LOCK_GAP, or
LOCK_REC_NOT_GAP */
que_thr_t* thr) /* in: query thread */
{
ulint err;
ut_ad(!(index->type & DICT_CLUSTERED));
ut_ad(page_rec_is_user_rec(rec) || page_rec_is_supremum(rec));
if (flags & BTR_NO_LOCKING_FLAG) {
return(DB_SUCCESS);
}
lock_mutex_enter_kernel();
ut_ad(mode != LOCK_X
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
ut_ad(mode != LOCK_S
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));
/* Some transaction may have an implicit x-lock on the record only
if the max trx id for the page >= min trx id for the trx list or a
database recovery is running. */
if (((ut_dulint_cmp(page_get_max_trx_id(buf_frame_align(rec)),
trx_list_get_min_trx_id()) >= 0)
|| recv_recovery_is_on())
&& !page_rec_is_supremum(rec)) {
lock_rec_convert_impl_to_expl(rec, index);
}
err = lock_rec_lock(FALSE, mode | gap_mode, rec, index, thr);
lock_mutex_exit_kernel();
ut_ad(lock_rec_queue_validate(rec, index));
return(err);
}
/*************************************************************************
Checks if locks of other transactions prevent an immediate read, or passing
over by a read cursor, of a clustered index record. If they do, first tests
if the query thread should anyway be suspended for some reason; if not, then
puts the transaction and the query thread to the lock wait state and inserts a
waiting request for a record lock to the lock queue. Sets the requested mode
lock on the record. */
ulint
lock_clust_rec_read_check_and_lock(
/*===============================*/
/* out: DB_SUCCESS, DB_LOCK_WAIT,
DB_DEADLOCK, or DB_QUE_THR_SUSPENDED */
ulint flags, /* in: if BTR_NO_LOCKING_FLAG bit is set,
does nothing */
rec_t* rec, /* in: user record or page supremum record
which should be read or passed over by a read
cursor */
dict_index_t* index, /* in: clustered index */
ulint mode, /* in: mode of the lock which the read cursor
should set on records: LOCK_S or LOCK_X; the
latter is possible in SELECT FOR UPDATE */
ulint gap_mode,/* in: LOCK_ORDINARY, LOCK_GAP, or
LOCK_REC_NOT_GAP */
que_thr_t* thr) /* in: query thread */
{
ulint err;
ut_ad(index->type & DICT_CLUSTERED);
ut_ad(page_rec_is_user_rec(rec) || page_rec_is_supremum(rec));
ut_ad(gap_mode == LOCK_ORDINARY || gap_mode == LOCK_GAP
|| gap_mode == LOCK_REC_NOT_GAP);
if (flags & BTR_NO_LOCKING_FLAG) {
return(DB_SUCCESS);
}
lock_mutex_enter_kernel();
ut_ad(mode != LOCK_X
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IX));
ut_ad(mode != LOCK_S
|| lock_table_has(thr_get_trx(thr), index->table, LOCK_IS));
if (!page_rec_is_supremum(rec)) {
lock_rec_convert_impl_to_expl(rec, index);
}
err = lock_rec_lock(FALSE, mode | gap_mode, rec, index, thr);
lock_mutex_exit_kernel();
ut_ad(lock_rec_queue_validate(rec, index));
return(err);
}
|