1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
|
/************************************************************************
The lowest-level memory management
(c) 1997 Innobase Oy
Created 5/12/1997 Heikki Tuuri
*************************************************************************/
#include "mem0pool.h"
#ifdef UNIV_NONINL
#include "mem0pool.ic"
#endif
#include "sync0sync.h"
#include "ut0mem.h"
#include "ut0lst.h"
#include "ut0byte.h"
/* We would like to use also the buffer frames to allocate memory. This
would be desirable, because then the memory consumption of the database
would be fixed, and we might even lock the buffer pool to the main memory.
The problem here is that the buffer management routines can themselves call
memory allocation, while the buffer pool mutex is reserved.
The main components of the memory consumption are:
1. buffer pool,
2. parsed and optimized SQL statements,
3. data dictionary cache,
4. log buffer,
5. locks for each transaction,
6. hash table for the adaptive index,
7. state and buffers for each SQL query currently being executed,
8. session for each user, and
9. stack for each OS thread.
Items 1-3 are managed by an LRU algorithm. Items 5 and 6 can potentially
consume very much memory. Items 7 and 8 should consume quite little memory,
and the OS should take care of item 9, which too should consume little memory.
A solution to the memory management:
1. the buffer pool size is set separately;
2. log buffer size is set separately;
3. the common pool size for all the other entries, except 8, is set separately.
Problems: we may waste memory if the common pool is set too big. Another
problem is the locks, which may take very much space in big transactions.
Then the shared pool size should be set very big. We can allow locks to take
space from the buffer pool, but the SQL optimizer is then unaware of the
usable size of the buffer pool. We could also combine the objects in the
common pool and the buffers in the buffer pool into a single LRU list and
manage it uniformly, but this approach does not take into account the parsing
and other costs unique to SQL statements.
So, let the SQL statements and the data dictionary entries form one single
LRU list, let us call it the dictionary LRU list. The locks for a transaction
can be seen as a part of the state of the transaction. Hence, they should be
stored in the common pool. We still have the problem of a very big update
transaction, for example, which will set very many x-locks on rows, and the
locks will consume a lot of memory, say, half of the buffer pool size.
Another problem is what to do if we are not able to malloc a requested
block of memory from the common pool. Then we can truncate the LRU list of
the dictionary cache. If it does not help, a system error results.
Because 5 and 6 may potentially consume very much memory, we let them grow
into the buffer pool. We may let the locks of a transaction take frames
from the buffer pool, when the corresponding memory heap block has grown to
the size of a buffer frame. Similarly for the hash node cells of the locks,
and for the adaptive index. Thus, for each individual transaction, its locks
can occupy at most about the size of the buffer frame of memory in the common
pool, and after that its locks will grow into the buffer pool. */
/* Mask used to extract the free bit from area->size */
#define MEM_AREA_FREE 1
/* The smallest memory area total size */
#define MEM_AREA_MIN_SIZE (2 * sizeof(struct mem_area_struct))
/* Data structure for a memory pool. The space is allocated using the buddy
algorithm, where free list i contains areas of size 2 to power i. */
struct mem_pool_struct{
byte* buf; /* memory pool */
ulint size; /* memory common pool size */
ulint reserved; /* amount of currently allocated
memory */
mutex_t mutex; /* mutex protecting this struct */
UT_LIST_BASE_NODE_T(mem_area_t)
free_list[64]; /* lists of free memory areas: an
area is put to the list whose number
is the 2-logarithm of the area size */
};
/* The common memory pool */
mem_pool_t* mem_comm_pool = NULL;
ulint mem_out_of_mem_err_msg_count = 0;
/************************************************************************
Returns memory area size. */
UNIV_INLINE
ulint
mem_area_get_size(
/*==============*/
/* out: size */
mem_area_t* area) /* in: area */
{
return(area->size_and_free & ~MEM_AREA_FREE);
}
/************************************************************************
Sets memory area size. */
UNIV_INLINE
void
mem_area_set_size(
/*==============*/
mem_area_t* area, /* in: area */
ulint size) /* in: size */
{
area->size_and_free = (area->size_and_free & MEM_AREA_FREE)
| size;
}
/************************************************************************
Returns memory area free bit. */
UNIV_INLINE
ibool
mem_area_get_free(
/*==============*/
/* out: TRUE if free */
mem_area_t* area) /* in: area */
{
ut_ad(TRUE == MEM_AREA_FREE);
return(area->size_and_free & MEM_AREA_FREE);
}
/************************************************************************
Sets memory area free bit. */
UNIV_INLINE
void
mem_area_set_free(
/*==============*/
mem_area_t* area, /* in: area */
ibool free) /* in: free bit value */
{
ut_ad(TRUE == MEM_AREA_FREE);
area->size_and_free = (area->size_and_free & ~MEM_AREA_FREE)
| free;
}
/************************************************************************
Creates a memory pool. */
mem_pool_t*
mem_pool_create(
/*============*/
/* out: memory pool */
ulint size) /* in: pool size in bytes */
{
mem_pool_t* pool;
mem_area_t* area;
ulint i;
ulint used;
ut_a(size > 10000);
pool = ut_malloc(sizeof(mem_pool_t));
pool->buf = ut_malloc(size);
pool->size = size;
mutex_create(&(pool->mutex));
mutex_set_level(&(pool->mutex), SYNC_MEM_POOL);
/* Initialize the free lists */
for (i = 0; i < 64; i++) {
UT_LIST_INIT(pool->free_list[i]);
}
used = 0;
while (size - used >= MEM_AREA_MIN_SIZE) {
i = ut_2_log(size - used);
if (ut_2_exp(i) > size - used) {
/* ut_2_log rounds upward */
i--;
}
area = (mem_area_t*)(pool->buf + used);
mem_area_set_size(area, ut_2_exp(i));
mem_area_set_free(area, TRUE);
UT_LIST_ADD_FIRST(free_list, pool->free_list[i], area);
used = used + ut_2_exp(i);
}
ut_ad(size >= used);
pool->reserved = 0;
return(pool);
}
/************************************************************************
Fills the specified free list. */
static
ibool
mem_pool_fill_free_list(
/*====================*/
/* out: TRUE if we were able to insert a
block to the free list */
ulint i, /* in: free list index */
mem_pool_t* pool) /* in: memory pool */
{
mem_area_t* area;
mem_area_t* area2;
ibool ret;
ut_ad(mutex_own(&(pool->mutex)));
if (i >= 63) {
/* We come here when we have run out of space in the
memory pool: */
if (mem_out_of_mem_err_msg_count % 1000 == 0) {
/* We do not print the message every time: */
fprintf(stderr,
"Innobase: Warning: out of memory in additional memory pool.\n");
fprintf(stderr,
"Innobase: Innobase will start allocating memory from the OS.\n");
fprintf(stderr,
"Innobase: You should restart the database with a bigger value in\n");
fprintf(stderr,
"Innobase: the MySQL .cnf file for innobase_additional_mem_pool_size.\n");
}
mem_out_of_mem_err_msg_count++;
return(FALSE);
}
area = UT_LIST_GET_FIRST(pool->free_list[i + 1]);
if (area == NULL) {
ret = mem_pool_fill_free_list(i + 1, pool);
if (ret == FALSE) {
return(FALSE);
}
area = UT_LIST_GET_FIRST(pool->free_list[i + 1]);
}
UT_LIST_REMOVE(free_list, pool->free_list[i + 1], area);
area2 = (mem_area_t*)(((byte*)area) + ut_2_exp(i));
mem_area_set_size(area2, ut_2_exp(i));
mem_area_set_free(area2, TRUE);
UT_LIST_ADD_FIRST(free_list, pool->free_list[i], area2);
mem_area_set_size(area, ut_2_exp(i));
UT_LIST_ADD_FIRST(free_list, pool->free_list[i], area);
return(TRUE);
}
/************************************************************************
Allocates memory from a pool. NOTE: This low-level function should only be
used in mem0mem.*! */
void*
mem_area_alloc(
/*===========*/
/* out, own: allocated memory buffer */
ulint size, /* in: allocated size in bytes; for optimum
space usage, the size should be a power of 2
minus MEM_AREA_EXTRA_SIZE */
mem_pool_t* pool) /* in: memory pool */
{
mem_area_t* area;
ulint n;
ibool ret;
n = ut_2_log(ut_max(size + MEM_AREA_EXTRA_SIZE, MEM_AREA_MIN_SIZE));
mutex_enter(&(pool->mutex));
area = UT_LIST_GET_FIRST(pool->free_list[n]);
if (area == NULL) {
ret = mem_pool_fill_free_list(n, pool);
if (ret == FALSE) {
/* Out of memory in memory pool: we try to allocate
from the operating system with the regular malloc: */
mutex_exit(&(pool->mutex));
return(ut_malloc(size));
}
area = UT_LIST_GET_FIRST(pool->free_list[n]);
}
ut_a(mem_area_get_free(area));
ut_ad(mem_area_get_size(area) == ut_2_exp(n));
mem_area_set_free(area, FALSE);
UT_LIST_REMOVE(free_list, pool->free_list[n], area);
pool->reserved += mem_area_get_size(area);
mutex_exit(&(pool->mutex));
ut_ad(mem_pool_validate(pool));
return((void*)(MEM_AREA_EXTRA_SIZE + ((byte*)area)));
}
/************************************************************************
Gets the buddy of an area, if it exists in pool. */
UNIV_INLINE
mem_area_t*
mem_area_get_buddy(
/*===============*/
/* out: the buddy, NULL if no buddy in pool */
mem_area_t* area, /* in: memory area */
ulint size, /* in: memory area size */
mem_pool_t* pool) /* in: memory pool */
{
mem_area_t* buddy;
ut_ad(size != 0);
if (((((byte*)area) - pool->buf) % (2 * size)) == 0) {
/* The buddy is in a higher address */
buddy = (mem_area_t*)(((byte*)area) + size);
if ((((byte*)buddy) - pool->buf) + size > pool->size) {
/* The buddy is not wholly contained in the pool:
there is no buddy */
buddy = NULL;
}
} else {
/* The buddy is in a lower address; NOTE that area cannot
be at the pool lower end, because then we would end up to
the upper branch in this if-clause: the remainder would be
0 */
buddy = (mem_area_t*)(((byte*)area) - size);
}
return(buddy);
}
/************************************************************************
Frees memory to a pool. */
void
mem_area_free(
/*==========*/
void* ptr, /* in, own: pointer to allocated memory
buffer */
mem_pool_t* pool) /* in: memory pool */
{
mem_area_t* area;
mem_area_t* buddy;
void* new_ptr;
ulint size;
ulint n;
if (mem_out_of_mem_err_msg_count > 0) {
/* It may be that the area was really allocated from the
OS with regular malloc: check if ptr points within
our memory pool */
if ((byte*)ptr < pool->buf
|| (byte*)ptr >= pool->buf + pool->size) {
ut_free(ptr);
return;
}
}
area = (mem_area_t*) (((byte*)ptr) - MEM_AREA_EXTRA_SIZE);
size = mem_area_get_size(area);
ut_ad(size != 0);
ut_a(!mem_area_get_free(area));
#ifdef UNIV_LIGHT_MEM_DEBUG
if (((byte*)area) + size < pool->buf + pool->size) {
ulint next_size;
next_size = mem_area_get_size(
(mem_area_t*)(((byte*)area) + size));
ut_a(ut_2_power_up(next_size) == next_size);
}
#endif
buddy = mem_area_get_buddy(area, size, pool);
n = ut_2_log(size);
mutex_enter(&(pool->mutex));
if (buddy && mem_area_get_free(buddy)
&& (size == mem_area_get_size(buddy))) {
/* The buddy is in a free list */
if ((byte*)buddy < (byte*)area) {
new_ptr = ((byte*)buddy) + MEM_AREA_EXTRA_SIZE;
mem_area_set_size(buddy, 2 * size);
mem_area_set_free(buddy, FALSE);
} else {
new_ptr = ptr;
mem_area_set_size(area, 2 * size);
}
/* Remove the buddy from its free list and merge it to area */
UT_LIST_REMOVE(free_list, pool->free_list[n], buddy);
pool->reserved += ut_2_exp(n);
mutex_exit(&(pool->mutex));
mem_area_free(new_ptr, pool);
return;
} else {
UT_LIST_ADD_FIRST(free_list, pool->free_list[n], area);
mem_area_set_free(area, TRUE);
ut_ad(pool->reserved >= size);
pool->reserved -= size;
}
mutex_exit(&(pool->mutex));
ut_ad(mem_pool_validate(pool));
}
/************************************************************************
Validates a memory pool. */
ibool
mem_pool_validate(
/*==============*/
/* out: TRUE if ok */
mem_pool_t* pool) /* in: memory pool */
{
mem_area_t* area;
mem_area_t* buddy;
ulint free;
ulint i;
mutex_enter(&(pool->mutex));
free = 0;
for (i = 0; i < 64; i++) {
UT_LIST_VALIDATE(free_list, mem_area_t, pool->free_list[i]);
area = UT_LIST_GET_FIRST(pool->free_list[i]);
while (area != NULL) {
ut_a(mem_area_get_free(area));
ut_a(mem_area_get_size(area) == ut_2_exp(i));
buddy = mem_area_get_buddy(area, ut_2_exp(i), pool);
ut_a(!buddy || !mem_area_get_free(buddy)
|| (ut_2_exp(i) != mem_area_get_size(buddy)));
area = UT_LIST_GET_NEXT(free_list, area);
free += ut_2_exp(i);
}
}
ut_a(free + pool->reserved == pool->size
- (pool->size % MEM_AREA_MIN_SIZE));
mutex_exit(&(pool->mutex));
return(TRUE);
}
/************************************************************************
Prints info of a memory pool. */
void
mem_pool_print_info(
/*================*/
FILE* outfile,/* in: output file to write to */
mem_pool_t* pool) /* in: memory pool */
{
ulint i;
mem_pool_validate(pool);
fprintf(outfile, "INFO OF A MEMORY POOL\n");
mutex_enter(&(pool->mutex));
for (i = 0; i < 64; i++) {
if (UT_LIST_GET_LEN(pool->free_list[i]) > 0) {
fprintf(outfile,
"Free list length %lu for blocks of size %lu\n",
UT_LIST_GET_LEN(pool->free_list[i]),
ut_2_exp(i));
}
}
fprintf(outfile, "Pool size %lu, reserved %lu.\n", pool->size,
pool->reserved);
mutex_exit(&(pool->mutex));
}
/************************************************************************
Returns the amount of reserved memory. */
ulint
mem_pool_get_reserved(
/*==================*/
/* out: reserved mmeory in bytes */
mem_pool_t* pool) /* in: memory pool */
{
ulint reserved;
mutex_enter(&(pool->mutex));
reserved = pool->reserved;
mutex_exit(&(pool->mutex));
return(reserved);
}
|