1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
|
/******************************************************
Simple SQL optimizer
(c) 1997 Innobase Oy
Created 12/21/1997 Heikki Tuuri
*******************************************************/
#include "pars0opt.h"
#ifdef UNIV_NONINL
#include "pars0opt.ic"
#endif
#include "row0sel.h"
#include "row0ins.h"
#include "row0upd.h"
#include "dict0dict.h"
#include "dict0mem.h"
#include "que0que.h"
#include "pars0grm.h"
#include "pars0pars.h"
#include "lock0lock.h"
#define OPT_EQUAL 1 /* comparison by = */
#define OPT_COMPARISON 2 /* comparison by <, >, <=, or >= */
#define OPT_NOT_COND 1
#define OPT_END_COND 2
#define OPT_TEST_COND 3
#define OPT_SCROLL_COND 4
/***********************************************************************
Inverts a comparison operator. */
static
int
opt_invert_cmp_op(
/*==============*/
/* out: the equivalent operator when the order of
the arguments is switched */
int op) /* in: operator */
{
if (op == '<') {
return('>');
} else if (op == '>') {
return('<');
} else if (op == '=') {
return('=');
} else if (op == PARS_LE_TOKEN) {
return(PARS_GE_TOKEN);
} else if (op == PARS_GE_TOKEN) {
return(PARS_LE_TOKEN);
} else {
ut_error;
}
return(0);
}
/***********************************************************************
Checks if the value of an expression can be calculated BEFORE the nth table
in a join is accessed. If this is the case, it can possibly be used in an
index search for the nth table. */
static
ibool
opt_check_exp_determined_before(
/*============================*/
/* out: TRUE if already determined */
que_node_t* exp, /* in: expression */
sel_node_t* sel_node, /* in: select node */
ulint nth_table) /* in: nth table will be accessed */
{
func_node_t* func_node;
sym_node_t* sym_node;
dict_table_t* table;
que_node_t* arg;
ulint i;
ut_ad(exp && sel_node);
if (que_node_get_type(exp) == QUE_NODE_FUNC) {
func_node = exp;
arg = func_node->args;
while (arg) {
if (!opt_check_exp_determined_before(arg, sel_node,
nth_table)) {
return(FALSE);
}
arg = que_node_get_next(arg);
}
return(TRUE);
}
ut_a(que_node_get_type(exp) == QUE_NODE_SYMBOL);
sym_node = exp;
if (sym_node->token_type != SYM_COLUMN) {
return(TRUE);
}
for (i = 0; i < nth_table; i++) {
table = sel_node_get_nth_plan(sel_node, i)->table;
if (sym_node->table == table) {
return(TRUE);
}
}
return(FALSE);
}
/***********************************************************************
Looks in a comparison condition if a column value is already restricted by
it BEFORE the nth table is accessed. */
static
que_node_t*
opt_look_for_col_in_comparison_before(
/*==================================*/
/* out: expression restricting the
value of the column, or NULL if not
known */
ulint cmp_type, /* in: OPT_EQUAL, OPT_COMPARISON */
ulint col_no, /* in: column number */
func_node_t* search_cond, /* in: comparison condition */
sel_node_t* sel_node, /* in: select node */
ulint nth_table, /* in: nth table in a join (a query
from a single table is considered a
join of 1 table) */
ulint* op) /* out: comparison operator ('=',
PARS_GE_TOKEN, ... ); this is inverted
if the column appears on the right
side */
{
sym_node_t* sym_node;
dict_table_t* table;
que_node_t* exp;
que_node_t* arg;
ut_ad(search_cond);
ut_a((search_cond->func == '<')
|| (search_cond->func == '>')
|| (search_cond->func == '=')
|| (search_cond->func == PARS_GE_TOKEN)
|| (search_cond->func == PARS_LE_TOKEN));
table = sel_node_get_nth_plan(sel_node, nth_table)->table;
if ((cmp_type == OPT_EQUAL) && (search_cond->func != '=')) {
return(NULL);
} else if ((cmp_type == OPT_COMPARISON)
&& (search_cond->func != '<')
&& (search_cond->func != '>')
&& (search_cond->func != PARS_GE_TOKEN)
&& (search_cond->func != PARS_LE_TOKEN)) {
return(NULL);
}
arg = search_cond->args;
if (que_node_get_type(arg) == QUE_NODE_SYMBOL) {
sym_node = arg;
if ((sym_node->token_type == SYM_COLUMN)
&& (sym_node->table == table)
&& (sym_node->col_no == col_no)) {
/* sym_node contains the desired column id */
/* Check if the expression on the right side of the
operator is already determined */
exp = que_node_get_next(arg);
if (opt_check_exp_determined_before(exp, sel_node,
nth_table)) {
*op = search_cond->func;
return(exp);
}
}
}
exp = search_cond->args;
arg = que_node_get_next(arg);
if (que_node_get_type(arg) == QUE_NODE_SYMBOL) {
sym_node = arg;
if ((sym_node->token_type == SYM_COLUMN)
&& (sym_node->table == table)
&& (sym_node->col_no == col_no)) {
if (opt_check_exp_determined_before(exp, sel_node,
nth_table)) {
*op = opt_invert_cmp_op(search_cond->func);
return(exp);
}
}
}
return(NULL);
}
/***********************************************************************
Looks in a search condition if a column value is already restricted by the
search condition BEFORE the nth table is accessed. Takes into account that
if we will fetch in an ascending order, we cannot utilize an upper limit for
a column value; in a descending order, respectively, a lower limit. */
static
que_node_t*
opt_look_for_col_in_cond_before(
/*============================*/
/* out: expression restricting the
value of the column, or NULL if not
known */
ulint cmp_type, /* in: OPT_EQUAL, OPT_COMPARISON */
ulint col_no, /* in: column number */
func_node_t* search_cond, /* in: search condition or NULL */
sel_node_t* sel_node, /* in: select node */
ulint nth_table, /* in: nth table in a join (a query
from a single table is considered a
join of 1 table) */
ulint* op) /* out: comparison operator ('=',
PARS_GE_TOKEN, ... ) */
{
func_node_t* new_cond;
que_node_t* exp;
if (search_cond == NULL) {
return(NULL);
}
ut_a(que_node_get_type(search_cond) == QUE_NODE_FUNC);
ut_a(search_cond->func != PARS_OR_TOKEN);
ut_a(search_cond->func != PARS_NOT_TOKEN);
if (search_cond->func == PARS_AND_TOKEN) {
new_cond = search_cond->args;
exp = opt_look_for_col_in_cond_before(cmp_type, col_no,
new_cond, sel_node, nth_table, op);
if (exp) {
return(exp);
}
new_cond = que_node_get_next(new_cond);
exp = opt_look_for_col_in_cond_before(cmp_type, col_no,
new_cond, sel_node, nth_table, op);
return(exp);
}
exp = opt_look_for_col_in_comparison_before(cmp_type, col_no,
search_cond, sel_node, nth_table, op);
if (exp == NULL) {
return(NULL);
}
/* If we will fetch in an ascending order, we cannot utilize an upper
limit for a column value; in a descending order, respectively, a lower
limit */
if (sel_node->asc && ((*op == '<') || (*op == PARS_LE_TOKEN))) {
return(NULL);
} else if (!sel_node->asc && ((*op == '>') || (*op == PARS_GE_TOKEN))) {
return(NULL);
}
return(exp);
}
/***********************************************************************
Calculates the goodness for an index according to a select node. The
goodness is 4 times the number of first fields in index whose values we
already know exactly in the query. If we have a comparison condition for
an additional field, 2 point are added. If the index is unique, and we know
all the unique fields for the index we add 1024 points. For a clustered index
we add 1 point. */
static
ulint
opt_calc_index_goodness(
/*====================*/
/* out: goodness */
dict_index_t* index, /* in: index */
sel_node_t* sel_node, /* in: parsed select node */
ulint nth_table, /* in: nth table in a join */
que_node_t** index_plan, /* in/out: comparison expressions for
this index */
ulint* last_op) /* out: last comparison operator, if
goodness > 1 */
{
que_node_t* exp;
ulint goodness;
ulint n_fields;
ulint col_no;
ulint mix_id_col_no;
ulint op;
ulint j;
goodness = 0;
/* Note that as higher level node pointers in the B-tree contain
page addresses as the last field, we must not put more fields in
the search tuple than dict_index_get_n_unique_in_tree(index); see
the note in btr_cur_search_to_nth_level. */
n_fields = dict_index_get_n_unique_in_tree(index);
mix_id_col_no = dict_table_get_sys_col_no(index->table, DATA_MIX_ID);
for (j = 0; j < n_fields; j++) {
col_no = dict_index_get_nth_col_no(index, j);
exp = opt_look_for_col_in_cond_before(OPT_EQUAL, col_no,
sel_node->search_cond,
sel_node, nth_table, &op);
if (col_no == mix_id_col_no) {
ut_ad(exp == NULL);
index_plan[j] = NULL;
*last_op = '=';
goodness += 4;
} else if (exp) {
/* The value for this column is exactly known already
at this stage of the join */
index_plan[j] = exp;
*last_op = op;
goodness += 4;
} else {
/* Look for non-equality comparisons */
exp = opt_look_for_col_in_cond_before(OPT_COMPARISON,
col_no, sel_node->search_cond,
sel_node, nth_table, &op);
if (exp) {
index_plan[j] = exp;
*last_op = op;
goodness += 2;
}
break;
}
}
if (goodness >= 4 * dict_index_get_n_unique(index)) {
goodness += 1024;
if (index->type & DICT_CLUSTERED) {
goodness += 1024;
}
}
/* We have to test for goodness here, as last_op may note be set */
if (goodness && index->type & DICT_CLUSTERED) {
goodness++;
}
return(goodness);
}
/***********************************************************************
Calculates the number of matched fields based on an index goodness. */
UNIV_INLINE
ulint
opt_calc_n_fields_from_goodness(
/*============================*/
/* out: number of excatly or partially matched
fields */
ulint goodness) /* in: goodness */
{
return(((goodness % 1024) + 2) / 4);
}
/***********************************************************************
Converts a comparison operator to the corresponding search mode PAGE_CUR_GE,
... */
UNIV_INLINE
ulint
opt_op_to_search_mode(
/*==================*/
/* out: search mode */
ibool asc, /* in: TRUE if the rows should be fetched in an
ascending order */
ulint op) /* in: operator '=', PARS_GE_TOKEN, ... */
{
if (op == '=') {
if (asc) {
return(PAGE_CUR_GE);
} else {
return(PAGE_CUR_LE);
}
} else if (op == '<') {
ut_a(!asc);
return(PAGE_CUR_L);
} else if (op == '>') {
ut_a(asc);
return(PAGE_CUR_G);
} else if (op == PARS_GE_TOKEN) {
ut_a(asc);
return(PAGE_CUR_GE);
} else if (op == PARS_LE_TOKEN) {
ut_a(!asc);
return(PAGE_CUR_LE);
} else {
ut_error;
}
return(0);
}
/***********************************************************************
Determines if a node is an argument node of a function node. */
static
ibool
opt_is_arg(
/*=======*/
/* out: TRUE if is an argument */
que_node_t* arg_node, /* in: possible argument node */
func_node_t* func_node) /* in: function node */
{
que_node_t* arg;
arg = func_node->args;
while (arg) {
if (arg == arg_node) {
return(TRUE);
}
arg = que_node_get_next(arg);
}
return(FALSE);
}
/***********************************************************************
Decides if the fetching of rows should be made in a descending order, and
also checks that the chosen query plan produces a result which satisfies
the order-by. */
static
void
opt_check_order_by(
/*===============*/
sel_node_t* sel_node) /* in: select node; asserts an error
if the plan does not agree with the
order-by */
{
order_node_t* order_node;
dict_table_t* order_table;
ulint order_col_no;
plan_t* plan;
ulint i;
if (!sel_node->order_by) {
return;
}
order_node = sel_node->order_by;
order_col_no = order_node->column->col_no;
order_table = order_node->column->table;
/* If there is an order-by clause, the first non-exactly matched field
in the index used for the last table in the table list should be the
column defined in the order-by clause, and for all the other tables
we should get only at most a single row, otherwise we cannot presently
calculate the order-by, as we have no sort utility */
for (i = 0; i < sel_node->n_tables; i++) {
plan = sel_node_get_nth_plan(sel_node, i);
if (i < sel_node->n_tables - 1) {
ut_a(dict_index_get_n_unique(plan->index)
<= plan->n_exact_match);
} else {
ut_a(plan->table == order_table);
ut_a((dict_index_get_n_unique(plan->index)
<= plan->n_exact_match)
|| (dict_index_get_nth_col_no(plan->index,
plan->n_exact_match)
== order_col_no));
}
}
}
/***********************************************************************
Optimizes a select. Decides which indexes to tables to use. The tables
are accessed in the order that they were written to the FROM part in the
select statement. */
static
void
opt_search_plan_for_table(
/*======================*/
sel_node_t* sel_node, /* in: parsed select node */
ulint i, /* in: this is the ith table */
dict_table_t* table) /* in: table */
{
plan_t* plan;
dict_index_t* index;
dict_index_t* best_index;
ulint n_fields;
ulint goodness;
ulint last_op = 75946965; /* Eliminate a Purify
warning */
ulint best_goodness;
ulint best_last_op = 0; /* remove warning */
ulint mix_id_pos;
que_node_t* index_plan[128];
que_node_t* best_index_plan[128];
plan = sel_node_get_nth_plan(sel_node, i);
plan->table = table;
plan->asc = sel_node->asc;
plan->pcur_is_open = FALSE;
plan->cursor_at_end = FALSE;
/* Calculate goodness for each index of the table */
index = dict_table_get_first_index(table);
best_index = index; /* Eliminate compiler warning */
best_goodness = 0;
/* should be do ... until ? comment by Jani */
while (index) {
goodness = opt_calc_index_goodness(index, sel_node, i,
index_plan, &last_op);
if (goodness > best_goodness) {
best_index = index;
best_goodness = goodness;
n_fields = opt_calc_n_fields_from_goodness(goodness);
ut_memcpy(best_index_plan, index_plan,
n_fields * sizeof(void*));
best_last_op = last_op;
}
index = dict_table_get_next_index(index);
}
plan->index = best_index;
n_fields = opt_calc_n_fields_from_goodness(best_goodness);
if (n_fields == 0) {
plan->tuple = NULL;
plan->n_exact_match = 0;
} else {
plan->tuple = dtuple_create(pars_sym_tab_global->heap,
n_fields);
dict_index_copy_types(plan->tuple, plan->index, n_fields);
plan->tuple_exps = mem_heap_alloc(pars_sym_tab_global->heap,
n_fields * sizeof(void*));
ut_memcpy(plan->tuple_exps, best_index_plan,
n_fields * sizeof(void*));
if (best_last_op == '=') {
plan->n_exact_match = n_fields;
} else {
plan->n_exact_match = n_fields - 1;
}
plan->mode = opt_op_to_search_mode(sel_node->asc,
best_last_op);
}
if ((best_index->type & DICT_CLUSTERED)
&& (plan->n_exact_match >= dict_index_get_n_unique(best_index))) {
plan->unique_search = TRUE;
} else {
plan->unique_search = FALSE;
}
if ((table->type != DICT_TABLE_ORDINARY)
&& (best_index->type & DICT_CLUSTERED)) {
plan->mixed_index = TRUE;
mix_id_pos = table->mix_len;
if (mix_id_pos < n_fields) {
/* We have to add the mix id as a (string) literal
expression to the tuple_exps */
plan->tuple_exps[mix_id_pos] =
sym_tab_add_str_lit(pars_sym_tab_global,
table->mix_id_buf,
table->mix_id_len);
}
} else {
plan->mixed_index = FALSE;
}
plan->old_vers_heap = NULL;
btr_pcur_init(&(plan->pcur));
btr_pcur_init(&(plan->clust_pcur));
}
/***********************************************************************
Looks at a comparison condition and decides if it can, and need, be tested for
a table AFTER the table has been accessed. */
static
ulint
opt_classify_comparison(
/*====================*/
/* out: OPT_NOT_COND if not for this
table, else OPT_END_COND,
OPT_TEST_COND, or OPT_SCROLL_COND,
where the last means that the
condition need not be tested, except
when scroll cursors are used */
sel_node_t* sel_node, /* in: select node */
ulint i, /* in: ith table in the join */
func_node_t* cond) /* in: comparison condition */
{
plan_t* plan;
ulint n_fields;
ulint op;
ulint j;
ut_ad(cond && sel_node);
plan = sel_node_get_nth_plan(sel_node, i);
/* Check if the condition is determined after the ith table has been
accessed, but not after the i - 1:th */
if (!opt_check_exp_determined_before(cond, sel_node, i + 1)) {
return(OPT_NOT_COND);
}
if ((i > 0) && opt_check_exp_determined_before(cond, sel_node, i)) {
return(OPT_NOT_COND);
}
/* If the condition is an exact match condition used in constructing
the search tuple, it is classified as OPT_END_COND */
if (plan->tuple) {
n_fields = dtuple_get_n_fields(plan->tuple);
} else {
n_fields = 0;
}
for (j = 0; j < plan->n_exact_match; j++) {
if (opt_is_arg(plan->tuple_exps[j], cond)) {
return(OPT_END_COND);
}
}
/* If the condition is an non-exact match condition used in
constructing the search tuple, it is classified as OPT_SCROLL_COND.
When the cursor is positioned, and if a non-scroll cursor is used,
there is no need to test this condition; if a scroll cursor is used
the testing is necessary when the cursor is reversed. */
if ((n_fields > plan->n_exact_match)
&& opt_is_arg(plan->tuple_exps[n_fields - 1], cond)) {
return(OPT_SCROLL_COND);
}
/* If the condition is a non-exact match condition on the first field
in index for which there is no exact match, and it limits the search
range from the opposite side of the search tuple already BEFORE we
access the table, it is classified as OPT_END_COND */
if ((dict_index_get_n_fields(plan->index) > plan->n_exact_match)
&& opt_look_for_col_in_comparison_before(
OPT_COMPARISON,
dict_index_get_nth_col_no(plan->index,
plan->n_exact_match),
cond, sel_node, i, &op)) {
if (sel_node->asc && ((op == '<') || (op == PARS_LE_TOKEN))) {
return(OPT_END_COND);
}
if (!sel_node->asc && ((op == '>') || (op == PARS_GE_TOKEN))) {
return(OPT_END_COND);
}
}
/* Otherwise, cond is classified as OPT_TEST_COND */
return(OPT_TEST_COND);
}
/***********************************************************************
Recursively looks for test conditions for a table in a join. */
static
void
opt_find_test_conds(
/*================*/
sel_node_t* sel_node, /* in: select node */
ulint i, /* in: ith table in the join */
func_node_t* cond) /* in: conjunction of search
conditions or NULL */
{
func_node_t* new_cond;
ulint class;
plan_t* plan;
if (cond == NULL) {
return;
}
if (cond->func == PARS_AND_TOKEN) {
new_cond = cond->args;
opt_find_test_conds(sel_node, i, new_cond);
new_cond = que_node_get_next(new_cond);
opt_find_test_conds(sel_node, i, new_cond);
return;
}
plan = sel_node_get_nth_plan(sel_node, i);
class = opt_classify_comparison(sel_node, i, cond);
if (class == OPT_END_COND) {
UT_LIST_ADD_LAST(cond_list, plan->end_conds, cond);
} else if (class == OPT_TEST_COND) {
UT_LIST_ADD_LAST(cond_list, plan->other_conds, cond);
}
}
/***********************************************************************
Normalizes a list of comparison conditions so that a column of the table
appears on the left side of the comparison if possible. This is accomplished
by switching the arguments of the operator. */
static
void
opt_normalize_cmp_conds(
/*====================*/
func_node_t* cond, /* in: first in a list of comparison
conditions, or NULL */
dict_table_t* table) /* in: table */
{
que_node_t* arg1;
que_node_t* arg2;
sym_node_t* sym_node;
while (cond) {
arg1 = cond->args;
arg2 = que_node_get_next(arg1);
if (que_node_get_type(arg2) == QUE_NODE_SYMBOL) {
sym_node = arg2;
if ((sym_node->token_type == SYM_COLUMN)
&& (sym_node->table == table)) {
/* Switch the order of the arguments */
cond->args = arg2;
que_node_list_add_last(NULL, arg2);
que_node_list_add_last(arg2, arg1);
/* Invert the operator */
cond->func = opt_invert_cmp_op(cond->func);
}
}
cond = UT_LIST_GET_NEXT(cond_list, cond);
}
}
/***********************************************************************
Finds out the search condition conjuncts we can, and need, to test as the ith
table in a join is accessed. The search tuple can eliminate the need to test
some conjuncts. */
static
void
opt_determine_and_normalize_test_conds(
/*===================================*/
sel_node_t* sel_node, /* in: select node */
ulint i) /* in: ith table in the join */
{
plan_t* plan;
plan = sel_node_get_nth_plan(sel_node, i);
UT_LIST_INIT(plan->end_conds);
UT_LIST_INIT(plan->other_conds);
/* Recursively go through the conjuncts and classify them */
opt_find_test_conds(sel_node, i, sel_node->search_cond);
opt_normalize_cmp_conds(UT_LIST_GET_FIRST(plan->end_conds),
plan->table);
ut_a(UT_LIST_GET_LEN(plan->end_conds) >= plan->n_exact_match);
}
/***********************************************************************
Looks for occurrences of the columns of the table in the query subgraph and
adds them to the list of columns if an occurrence of the same column does not
already exist in the list. If the column is already in the list, puts a value
indirection to point to the occurrence in the column list, except if the
column occurrence we are looking at is in the column list, in which case
nothing is done. */
void
opt_find_all_cols(
/*==============*/
ibool copy_val, /* in: if TRUE, new found columns are
added as columns to copy */
dict_index_t* index, /* in: index of the table to use */
sym_node_list_t* col_list, /* in: base node of a list where
to add new found columns */
plan_t* plan, /* in: plan or NULL */
que_node_t* exp) /* in: expression or condition or
NULL */
{
func_node_t* func_node;
que_node_t* arg;
sym_node_t* sym_node;
sym_node_t* col_node;
ulint col_pos;
if (exp == NULL) {
return;
}
if (que_node_get_type(exp) == QUE_NODE_FUNC) {
func_node = exp;
arg = func_node->args;
while (arg) {
opt_find_all_cols(copy_val, index, col_list, plan,
arg);
arg = que_node_get_next(arg);
}
return;
}
ut_a(que_node_get_type(exp) == QUE_NODE_SYMBOL);
sym_node = exp;
if (sym_node->token_type != SYM_COLUMN) {
return;
}
if (sym_node->table != index->table) {
return;
}
/* Look for an occurrence of the same column in the plan column
list */
col_node = UT_LIST_GET_FIRST(*col_list);
while (col_node) {
if (col_node->col_no == sym_node->col_no) {
if (col_node == sym_node) {
/* sym_node was already in a list: do
nothing */
return;
}
/* Put an indirection */
sym_node->indirection = col_node;
sym_node->alias = col_node;
return;
}
col_node = UT_LIST_GET_NEXT(col_var_list, col_node);
}
/* The same column did not occur in the list: add it */
UT_LIST_ADD_LAST(col_var_list, *col_list, sym_node);
sym_node->copy_val = copy_val;
/* Fill in the field_no fields in sym_node */
sym_node->field_nos[SYM_CLUST_FIELD_NO]
= dict_index_get_nth_col_pos(
dict_table_get_first_index(index->table),
sym_node->col_no);
if (!(index->type & DICT_CLUSTERED)) {
ut_a(plan);
col_pos = dict_index_get_nth_col_pos(index, sym_node->col_no);
if (col_pos == ULINT_UNDEFINED) {
plan->must_get_clust = TRUE;
}
sym_node->field_nos[SYM_SEC_FIELD_NO] = col_pos;
}
}
/***********************************************************************
Looks for occurrences of the columns of the table in conditions which are
not yet determined AFTER the join operation has fetched a row in the ith
table. The values for these column must be copied to dynamic memory for
later use. */
static
void
opt_find_copy_cols(
/*===============*/
sel_node_t* sel_node, /* in: select node */
ulint i, /* in: ith table in the join */
func_node_t* search_cond) /* in: search condition or NULL */
{
func_node_t* new_cond;
plan_t* plan;
if (search_cond == NULL) {
return;
}
ut_ad(que_node_get_type(search_cond) == QUE_NODE_FUNC);
if (search_cond->func == PARS_AND_TOKEN) {
new_cond = search_cond->args;
opt_find_copy_cols(sel_node, i, new_cond);
new_cond = que_node_get_next(new_cond);
opt_find_copy_cols(sel_node, i, new_cond);
return;
}
if (!opt_check_exp_determined_before(search_cond, sel_node, i + 1)) {
/* Any ith table columns occurring in search_cond should be
copied, as this condition cannot be tested already on the
fetch from the ith table */
plan = sel_node_get_nth_plan(sel_node, i);
opt_find_all_cols(TRUE, plan->index, &(plan->columns), plan,
search_cond);
}
}
/***********************************************************************
Classifies the table columns according to whether we use the column only while
holding the latch on the page, or whether we have to copy the column value to
dynamic memory. Puts the first occurrence of a column to either list in the
plan node, and puts indirections to later occurrences of the column. */
static
void
opt_classify_cols(
/*==============*/
sel_node_t* sel_node, /* in: select node */
ulint i) /* in: ith table in the join */
{
plan_t* plan;
que_node_t* exp;
plan = sel_node_get_nth_plan(sel_node, i);
/* The final value of the following field will depend on the
environment of the select statement: */
plan->must_get_clust = FALSE;
UT_LIST_INIT(plan->columns);
/* All select list columns should be copied: therefore TRUE as the
first argument */
exp = sel_node->select_list;
while (exp) {
opt_find_all_cols(TRUE, plan->index, &(plan->columns), plan,
exp);
exp = que_node_get_next(exp);
}
opt_find_copy_cols(sel_node, i, sel_node->search_cond);
/* All remaining columns in the search condition are temporary
columns: therefore FALSE */
opt_find_all_cols(FALSE, plan->index, &(plan->columns), plan,
sel_node->search_cond);
}
/***********************************************************************
Fills in the info in plan which is used in accessing a clustered index
record. The columns must already be classified for the plan node. */
static
void
opt_clust_access(
/*=============*/
sel_node_t* sel_node, /* in: select node */
ulint n) /* in: nth table in select */
{
plan_t* plan;
dict_table_t* table;
dict_index_t* clust_index;
dict_index_t* index;
dfield_t* dfield;
mem_heap_t* heap;
ulint n_fields;
ulint pos;
ulint i;
plan = sel_node_get_nth_plan(sel_node, n);
index = plan->index;
/* The final value of the following field depends on the environment
of the select statement: */
plan->no_prefetch = FALSE;
if (index->type & DICT_CLUSTERED) {
plan->clust_map = NULL;
plan->clust_ref = NULL;
return;
}
table = index->table;
clust_index = dict_table_get_first_index(table);
n_fields = dict_index_get_n_unique(clust_index);
heap = pars_sym_tab_global->heap;
plan->clust_ref = dtuple_create(heap, n_fields);
dict_index_copy_types(plan->clust_ref, clust_index, n_fields);
plan->clust_map = mem_heap_alloc(heap, n_fields * sizeof(ulint));
for (i = 0; i < n_fields; i++) {
pos = dict_index_get_nth_field_pos(index, clust_index, i);
*(plan->clust_map + i) = pos;
ut_ad((pos != ULINT_UNDEFINED)
|| ((table->type == DICT_TABLE_CLUSTER_MEMBER)
&& (i == table->mix_len)));
}
if (table->type == DICT_TABLE_CLUSTER_MEMBER) {
/* Preset the mix id field to the mix id constant */
dfield = dtuple_get_nth_field(plan->clust_ref, table->mix_len);
dfield_set_data(dfield, mem_heap_alloc(heap,
table->mix_id_len),
table->mix_id_len);
ut_memcpy(dfield_get_data(dfield), table->mix_id_buf,
table->mix_id_len);
}
}
/***********************************************************************
Optimizes a select. Decides which indexes to tables to use. The tables
are accessed in the order that they were written to the FROM part in the
select statement. */
void
opt_search_plan(
/*============*/
sel_node_t* sel_node) /* in: parsed select node */
{
sym_node_t* table_node;
dict_table_t* table;
order_node_t* order_by;
ulint i;
sel_node->plans = mem_heap_alloc(pars_sym_tab_global->heap,
sel_node->n_tables * sizeof(plan_t));
/* Analyze the search condition to find out what we know at each
join stage about the conditions that the columns of a table should
satisfy */
table_node = sel_node->table_list;
if (sel_node->order_by == NULL) {
sel_node->asc = TRUE;
} else {
order_by = sel_node->order_by;
sel_node->asc = order_by->asc;
}
for (i = 0; i < sel_node->n_tables; i++) {
table = table_node->table;
/* Choose index through which to access the table */
opt_search_plan_for_table(sel_node, i, table);
/* Determine the search condition conjuncts we can test at
this table; normalize the end conditions */
opt_determine_and_normalize_test_conds(sel_node, i);
table_node = que_node_get_next(table_node);
}
table_node = sel_node->table_list;
for (i = 0; i < sel_node->n_tables; i++) {
/* Classify the table columns into those we only need to access
but not copy, and to those we must copy to dynamic memory */
opt_classify_cols(sel_node, i);
/* Calculate possible info for accessing the clustered index
record */
opt_clust_access(sel_node, i);
table_node = que_node_get_next(table_node);
}
/* Check that the plan obeys a possible order-by clause: if not,
an assertion error occurs */
opt_check_order_by(sel_node);
#ifdef UNIV_SQL_DEBUG
opt_print_query_plan(sel_node);
#endif
}
/************************************************************************
Prints info of a query plan. */
void
opt_print_query_plan(
/*=================*/
sel_node_t* sel_node) /* in: select node */
{
plan_t* plan;
ulint n_fields;
ulint i;
printf("QUERY PLAN FOR A SELECT NODE\n");
if (sel_node->asc) {
printf("Asc. search; ");
} else {
printf("Desc. search; ");
}
if (sel_node->set_x_locks) {
printf("sets row x-locks; ");
ut_a(sel_node->row_lock_mode == LOCK_X);
ut_a(!sel_node->consistent_read);
} else if (sel_node->consistent_read) {
printf("consistent read; ");
} else {
ut_a(sel_node->row_lock_mode == LOCK_S);
printf("sets row s-locks; ");
}
printf("\n");
for (i = 0; i < sel_node->n_tables; i++) {
plan = sel_node_get_nth_plan(sel_node, i);
if (plan->tuple) {
n_fields = dtuple_get_n_fields(plan->tuple);
} else {
n_fields = 0;
}
printf(
"Table %s index %s; exact m. %lu, match %lu, end conds %lu\n",
plan->table->name, plan->index->name,
plan->n_exact_match, n_fields,
UT_LIST_GET_LEN(plan->end_conds));
}
}
|