1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
|
/******************************************************
Mutex, the basic synchronization primitive
(c) 1995 Innobase Oy
Created 9/5/1995 Heikki Tuuri
*******************************************************/
#include "sync0sync.h"
#ifdef UNIV_NONINL
#include "sync0sync.ic"
#endif
#include "sync0rw.h"
#include "buf0buf.h"
#include "srv0srv.h"
#include "buf0types.h"
/*
REASONS FOR IMPLEMENTING THE SPIN LOCK MUTEX
============================================
Semaphore operations in operating systems are slow: Solaris on a 1993 Sparc
takes 3 microseconds (us) for a lock-unlock pair and Windows NT on a 1995
Pentium takes 20 microseconds for a lock-unlock pair. Therefore, we have to
implement our own efficient spin lock mutex. Future operating systems may
provide efficient spin locks, but we cannot count on that.
Another reason for implementing a spin lock is that on multiprocessor systems
it can be more efficient for a processor to run a loop waiting for the
semaphore to be released than to switch to a different thread. A thread switch
takes 25 us on both platforms mentioned above. See Gray and Reuter's book
Transaction processing for background.
How long should the spin loop last before suspending the thread? On a
uniprocessor, spinning does not help at all, because if the thread owning the
mutex is not executing, it cannot be released. Spinning actually wastes
resources.
On a multiprocessor, we do not know if the thread owning the mutex is
executing or not. Thus it would make sense to spin as long as the operation
guarded by the mutex would typically last assuming that the thread is
executing. If the mutex is not released by that time, we may assume that the
thread owning the mutex is not executing and suspend the waiting thread.
A typical operation (where no i/o involved) guarded by a mutex or a read-write
lock may last 1 - 20 us on the current Pentium platform. The longest
operations are the binary searches on an index node.
We conclude that the best choice is to set the spin time at 20 us. Then the
system should work well on a multiprocessor. On a uniprocessor we have to
make sure that thread swithches due to mutex collisions are not frequent,
i.e., they do not happen every 100 us or so, because that wastes too much
resources. If the thread switches are not frequent, the 20 us wasted in spin
loop is not too much.
Empirical studies on the effect of spin time should be done for different
platforms.
IMPLEMENTATION OF THE MUTEX
===========================
For background, see Curt Schimmel's book on Unix implementation on modern
architectures. The key points in the implementation are atomicity and
serialization of memory accesses. The test-and-set instruction (XCHG in
Pentium) must be atomic. As new processors may have weak memory models, also
serialization of memory references may be necessary. The successor of Pentium,
P6, has at least one mode where the memory model is weak. As far as we know,
in Pentium all memory accesses are serialized in the program order and we do
not have to worry about the memory model. On other processors there are
special machine instructions called a fence, memory barrier, or storage
barrier (STBAR in Sparc), which can be used to serialize the memory accesses
to happen in program order relative to the fence instruction.
Leslie Lamport has devised a "bakery algorithm" to implement a mutex without
the atomic test-and-set, but his algorithm should be modified for weak memory
models. We do not use Lamport's algorithm, because we guess it is slower than
the atomic test-and-set.
Our mutex implementation works as follows: After that we perform the atomic
test-and-set instruction on the memory word. If the test returns zero, we
know we got the lock first. If the test returns not zero, some other thread
was quicker and got the lock: then we spin in a loop reading the memory word,
waiting it to become zero. It is wise to just read the word in the loop, not
perform numerous test-and-set instructions, because they generate memory
traffic between the cache and the main memory. The read loop can just access
the cache, saving bus bandwidth.
If we cannot acquire the mutex lock in the specified time, we reserve a cell
in the wait array, set the waiters byte in the mutex to 1. To avoid a race
condition, after setting the waiters byte and before suspending the waiting
thread, we still have to check that the mutex is reserved, because it may
have happened that the thread which was holding the mutex has just released
it and did not see the waiters byte set to 1, a case which would lead the
other thread to an infinite wait.
LEMMA 1: After a thread resets the event of the cell it reserves for waiting
========
for a mutex, some thread will eventually call sync_array_signal_object with
the mutex as an argument. Thus no infinite wait is possible.
Proof: After making the reservation the thread sets the waiters field in the
mutex to 1. Then it checks that the mutex is still reserved by some thread,
or it reserves the mutex for itself. In any case, some thread (which may be
also some earlier thread, not necessarily the one currently holding the mutex)
will set the waiters field to 0 in mutex_exit, and then call
sync_array_signal_object with the mutex as an argument.
Q.E.D. */
ulint sync_dummy = 0;
/* The number of system calls made in this module. Intended for performance
monitoring. */
ulint mutex_system_call_count = 0;
/* Number of spin waits on mutexes: for performance monitoring */
ulint mutex_spin_round_count = 0;
ulint mutex_spin_wait_count = 0;
ulint mutex_exit_count = 0;
/* The global array of wait cells for implementation of the database's own
mutexes and read-write locks */
sync_array_t* sync_primary_wait_array;
/* This variable is set to TRUE when sync_init is called */
ibool sync_initialized = FALSE;
/* Global list of database mutexes (not OS mutexes) created. */
UT_LIST_BASE_NODE_T(mutex_t) mutex_list;
/* Mutex protecting the mutex_list variable */
mutex_t mutex_list_mutex;
typedef struct sync_level_struct sync_level_t;
typedef struct sync_thread_struct sync_thread_t;
/* The latch levels currently owned by threads are stored in this data
structure; the size of this array is OS_THREAD_MAX_N */
sync_thread_t* sync_thread_level_arrays;
/* Mutex protecting sync_thread_level_arrays */
mutex_t sync_thread_mutex;
/* Latching order checks start when this is set TRUE */
ibool sync_order_checks_on = FALSE;
/* Dummy mutex used to implement mutex_fence */
mutex_t dummy_mutex_for_fence;
struct sync_thread_struct{
os_thread_id_t id; /* OS thread id */
sync_level_t* levels; /* level array for this thread; if this is NULL
this slot is unused */
};
/* Number of slots reserved for each OS thread in the sync level array */
#define SYNC_THREAD_N_LEVELS 256
struct sync_level_struct{
void* latch; /* pointer to a mutex or an rw-lock; NULL means that
the slot is empty */
ulint level; /* level of the latch in the latching order */
};
/**********************************************************************
Creates, or rather, initializes a mutex object in a specified memory
location (which must be appropriately aligned). The mutex is initialized
in the reset state. Explicit freeing of the mutex with mutex_free is
necessary only if the memory block containing it is freed. */
void
mutex_create_func(
/*==============*/
mutex_t* mutex, /* in: pointer to memory */
char* cfile_name, /* in: file name where created */
ulint cline) /* in: file line where created */
{
#ifdef _WIN32
mutex_reset_lock_word(mutex);
#else
os_fast_mutex_init(&(mutex->os_fast_mutex));
mutex->lock_word = 0;
#endif
mutex_set_waiters(mutex, 0);
mutex->magic_n = MUTEX_MAGIC_N;
mutex->line = 0;
mutex->file_name = "FILE NOT KNOWN";
mutex->thread_id = ULINT_UNDEFINED;
mutex->level = SYNC_LEVEL_NONE;
ut_memcpy(&(mutex->cfile_name), cfile_name,
ut_min(MUTEX_CNAME_LEN - 1, ut_strlen(cfile_name)));
mutex->cfile_name[MUTEX_CNAME_LEN - 1] = '\0';
mutex->cline = cline;
/* Check that lock_word is aligned; this is important on Intel */
ut_a(((ulint)(&(mutex->lock_word))) % 4 == 0);
/* NOTE! The very first mutexes are not put to the mutex list */
if ((mutex == &mutex_list_mutex) || (mutex == &sync_thread_mutex)) {
return;
}
mutex_enter(&mutex_list_mutex);
UT_LIST_ADD_FIRST(list, mutex_list, mutex);
mutex_exit(&mutex_list_mutex);
}
/**********************************************************************
Calling this function is obligatory only if the memory buffer containing
the mutex is freed. Removes a mutex object from the mutex list. The mutex
is checked to be in the reset state. */
void
mutex_free(
/*=======*/
mutex_t* mutex) /* in: mutex */
{
ut_ad(mutex_validate(mutex));
ut_a(mutex_get_lock_word(mutex) == 0);
ut_a(mutex_get_waiters(mutex) == 0);
mutex_enter(&mutex_list_mutex);
UT_LIST_REMOVE(list, mutex_list, mutex);
mutex_exit(&mutex_list_mutex);
#ifndef _WIN32
os_fast_mutex_free(&(mutex->os_fast_mutex));
#endif
/* If we free the mutex protecting the mutex list (freeing is
not necessary), we have to reset the magic number AFTER removing
it from the list. */
mutex->magic_n = 0;
}
/************************************************************************
Tries to lock the mutex for the current thread. If the lock is not acquired
immediately, returns with return value 1. */
ulint
mutex_enter_nowait(
/*===============*/
/* out: 0 if succeed, 1 if not */
mutex_t* mutex) /* in: pointer to mutex */
{
ut_ad(mutex_validate(mutex));
if (!mutex_test_and_set(mutex)) {
#ifdef UNIV_SYNC_DEBUG
mutex_set_debug_info(mutex, IB__FILE__, __LINE__);
#endif
return(0); /* Succeeded! */
}
return(1);
}
/**********************************************************************
Checks that the mutex has been initialized. */
ibool
mutex_validate(
/*===========*/
mutex_t* mutex)
{
ut_a(mutex);
ut_a(mutex->magic_n == MUTEX_MAGIC_N);
return(TRUE);
}
/**********************************************************************
Sets the waiters field in a mutex. */
void
mutex_set_waiters(
/*==============*/
mutex_t* mutex, /* in: mutex */
ulint n) /* in: value to set */
{
volatile ulint* ptr; /* declared volatile to ensure that
the value is stored to memory */
ut_ad(mutex);
ptr = &(mutex->waiters);
*ptr = n; /* Here we assume that the write of a single
word in memory is atomic */
}
/**********************************************************************
Reserves a mutex for the current thread. If the mutex is reserved, the
function spins a preset time (controlled by SYNC_SPIN_ROUNDS), waiting
for the mutex before suspending the thread. */
void
mutex_spin_wait(
/*============*/
mutex_t* mutex /* in: pointer to mutex */
#ifdef UNIV_SYNC_DEBUG
,char* file_name, /* in: file name where mutex requested */
ulint line /* in: line where requested */
#endif
)
{
ulint index; /* index of the reserved wait cell */
ulint i; /* spin round count */
ut_ad(mutex);
mutex_loop:
i = 0;
/* Spin waiting for the lock word to become zero. Note that we do not
have to assume that the read access to the lock word is atomic, as the
actual locking is always committed with atomic test-and-set. In
reality, however, all processors probably have an atomic read of a
memory word. */
spin_loop:
mutex_spin_wait_count++;
while (mutex_get_lock_word(mutex) != 0 && i < SYNC_SPIN_ROUNDS) {
if (srv_spin_wait_delay) {
ut_delay(ut_rnd_interval(0, srv_spin_wait_delay));
}
i++;
}
if (i == SYNC_SPIN_ROUNDS) {
os_thread_yield();
}
if (srv_print_latch_waits) {
printf(
"Thread %lu spin wait mutex at %lx cfile %s cline %lu rnds %lu\n",
os_thread_get_curr_id(), (ulint)mutex, &(mutex->cfile_name),
mutex->cline, i);
}
mutex_spin_round_count += i;
if (mutex_test_and_set(mutex) == 0) {
/* Succeeded! */
#ifdef UNIV_SYNC_DEBUG
mutex_set_debug_info(mutex, file_name, line);
#endif
return;
}
/* We may end up with a situation where lock_word is
0 but the OS fast mutex is still reserved. On FreeBSD
the OS does not seem to schedule a thread which is constantly
calling pthread_mutex_trylock (in mutex_test_and_set
implementation). Then we could end up spinning here indefinitely.
The following 'i++' stops this infinite spin. */
i++;
if (i < SYNC_SPIN_ROUNDS) {
goto spin_loop;
}
sync_array_reserve_cell(sync_primary_wait_array, mutex,
SYNC_MUTEX,
#ifdef UNIV_SYNC_DEBUG
file_name, line,
#endif
&index);
mutex_system_call_count++;
/* The memory order of the array reservation and the change in the
waiters field is important: when we suspend a thread, we first
reserve the cell and then set waiters field to 1. When threads are
released in mutex_exit, the waiters field is first set to zero and
then the event is set to the signaled state. */
mutex_set_waiters(mutex, 1);
if (mutex_test_and_set(mutex) == 0) {
/* Succeeded! Free the reserved wait cell */
sync_array_free_cell(sync_primary_wait_array, index);
#ifdef UNIV_SYNC_DEBUG
mutex_set_debug_info(mutex, file_name, line);
#endif
if (srv_print_latch_waits) {
printf(
"Thread %lu spin wait succeeds at 2: mutex at %lx\n",
os_thread_get_curr_id(), (ulint)mutex);
}
return;
/* Note that in this case we leave the waiters field
set to 1. We cannot reset it to zero, as we do not know
if there are other waiters. */
}
/* Now we know that there has been some thread holding the mutex
after the change in the wait array and the waiters field was made.
Now there is no risk of infinite wait on the event. */
if (srv_print_latch_waits) {
printf(
"Thread %lu OS wait mutex at %lx cfile %s cline %lu rnds %lu\n",
os_thread_get_curr_id(), (ulint)mutex, &(mutex->cfile_name),
mutex->cline, i);
}
mutex_system_call_count++;
sync_array_wait_event(sync_primary_wait_array, index);
goto mutex_loop;
}
/**********************************************************************
Releases the threads waiting in the primary wait array for this mutex. */
void
mutex_signal_object(
/*================*/
mutex_t* mutex) /* in: mutex */
{
mutex_set_waiters(mutex, 0);
/* The memory order of resetting the waiters field and
signaling the object is important. See LEMMA 1 above. */
sync_array_signal_object(sync_primary_wait_array, mutex);
}
/**********************************************************************
Sets the debug information for a reserved mutex. */
void
mutex_set_debug_info(
/*=================*/
mutex_t* mutex, /* in: mutex */
char* file_name, /* in: file where requested */
ulint line) /* in: line where requested */
{
ut_ad(mutex);
ut_ad(file_name);
sync_thread_add_level(mutex, mutex->level);
mutex->file_name = file_name;
mutex->line = line;
mutex->thread_id = os_thread_get_curr_id();
}
/**********************************************************************
Gets the debug information for a reserved mutex. */
void
mutex_get_debug_info(
/*=================*/
mutex_t* mutex, /* in: mutex */
char** file_name, /* out: file where requested */
ulint* line, /* out: line where requested */
os_thread_id_t* thread_id) /* out: id of the thread which owns
the mutex */
{
ut_ad(mutex);
*file_name = mutex->file_name;
*line = mutex->line;
*thread_id = mutex->thread_id;
}
/**********************************************************************
Sets the mutex latching level field. */
void
mutex_set_level(
/*============*/
mutex_t* mutex, /* in: mutex */
ulint level) /* in: level */
{
mutex->level = level;
}
/**********************************************************************
Checks that the current thread owns the mutex. Works only in the debug
version. */
ibool
mutex_own(
/*======*/
/* out: TRUE if owns */
mutex_t* mutex) /* in: mutex */
{
ut_a(mutex_validate(mutex));
if (mutex_get_lock_word(mutex) != 1) {
return(FALSE);
}
if (mutex->thread_id != os_thread_get_curr_id()) {
return(FALSE);
}
return(TRUE);
}
/**********************************************************************
Prints debug info of currently reserved mutexes. */
void
mutex_list_print_info(void)
/*=======================*/
{
#ifndef UNIV_SYNC_DEBUG
printf("Sorry, cannot give mutex list info in non-debug version!\n");
#else
mutex_t* mutex;
char* file_name;
ulint line;
os_thread_id_t thread_id;
ulint count = 0;
printf("-----------------------------------------------\n");
printf("MUTEX INFO\n");
mutex_enter(&mutex_list_mutex);
mutex = UT_LIST_GET_FIRST(mutex_list);
while (mutex != NULL) {
count++;
if (mutex_get_lock_word(mutex) != 0) {
mutex_get_debug_info(mutex, &file_name, &line, &thread_id);
printf("Locked mutex: addr %lx thread %ld file %s line %ld\n",
(ulint)mutex, thread_id, file_name, line);
}
mutex = UT_LIST_GET_NEXT(list, mutex);
}
printf("Total number of mutexes %ld\n", count);
mutex_exit(&mutex_list_mutex);
#endif
}
/**********************************************************************
Counts currently reserved mutexes. Works only in the debug version. */
ulint
mutex_n_reserved(void)
/*==================*/
{
#ifndef UNIV_SYNC_DEBUG
printf("Sorry, cannot give mutex info in non-debug version!\n");
ut_error;
return(0);
#else
mutex_t* mutex;
ulint count = 0;
mutex_enter(&mutex_list_mutex);
mutex = UT_LIST_GET_FIRST(mutex_list);
while (mutex != NULL) {
if (mutex_get_lock_word(mutex) != 0) {
count++;
}
mutex = UT_LIST_GET_NEXT(list, mutex);
}
mutex_exit(&mutex_list_mutex);
ut_a(count >= 1);
return(count - 1); /* Subtract one, because this function itself
was holding one mutex (mutex_list_mutex) */
#endif
}
/**********************************************************************
Returns TRUE if no mutex or rw-lock is currently locked. Works only in
the debug version. */
ibool
sync_all_freed(void)
/*================*/
{
#ifdef UNIV_SYNC_DEBUG
if (mutex_n_reserved() + rw_lock_n_locked() == 0) {
return(TRUE);
} else {
return(FALSE);
}
#else
ut_error;
return(FALSE);
#endif
}
/**********************************************************************
Gets the value in the nth slot in the thread level arrays. */
static
sync_thread_t*
sync_thread_level_arrays_get_nth(
/*=============================*/
/* out: pointer to thread slot */
ulint n) /* in: slot number */
{
ut_ad(n < OS_THREAD_MAX_N);
return(sync_thread_level_arrays + n);
}
/**********************************************************************
Looks for the thread slot for the calling thread. */
static
sync_thread_t*
sync_thread_level_arrays_find_slot(void)
/*====================================*/
/* out: pointer to thread slot, NULL if not found */
{
sync_thread_t* slot;
os_thread_id_t id;
ulint i;
id = os_thread_get_curr_id();
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = sync_thread_level_arrays_get_nth(i);
if (slot->levels && (slot->id == id)) {
return(slot);
}
}
return(NULL);
}
/**********************************************************************
Looks for an unused thread slot. */
static
sync_thread_t*
sync_thread_level_arrays_find_free(void)
/*====================================*/
/* out: pointer to thread slot */
{
sync_thread_t* slot;
ulint i;
for (i = 0; i < OS_THREAD_MAX_N; i++) {
slot = sync_thread_level_arrays_get_nth(i);
if (slot->levels == NULL) {
return(slot);
}
}
return(NULL);
}
/**********************************************************************
Gets the value in the nth slot in the thread level array. */
static
sync_level_t*
sync_thread_levels_get_nth(
/*=======================*/
/* out: pointer to level slot */
sync_level_t* arr, /* in: pointer to level array for an OS
thread */
ulint n) /* in: slot number */
{
ut_ad(n < SYNC_THREAD_N_LEVELS);
return(arr + n);
}
/**********************************************************************
Checks if all the level values stored in the level array are greater than
the given limit. */
static
ibool
sync_thread_levels_g(
/*=================*/
/* out: TRUE if all greater */
sync_level_t* arr, /* in: pointer to level array for an OS
thread */
ulint limit) /* in: level limit */
{
sync_level_t* slot;
rw_lock_t* lock;
mutex_t* mutex;
ulint i;
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
slot = sync_thread_levels_get_nth(arr, i);
if (slot->latch != NULL) {
if (slot->level <= limit) {
lock = slot->latch;
mutex = slot->latch;
ut_error;
return(FALSE);
}
}
}
return(TRUE);
}
/**********************************************************************
Checks if the level value is stored in the level array. */
static
ibool
sync_thread_levels_contain(
/*=======================*/
/* out: TRUE if stored */
sync_level_t* arr, /* in: pointer to level array for an OS
thread */
ulint level) /* in: level */
{
sync_level_t* slot;
ulint i;
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
slot = sync_thread_levels_get_nth(arr, i);
if (slot->latch != NULL) {
if (slot->level == level) {
return(TRUE);
}
}
}
return(FALSE);
}
/**********************************************************************
Checks that the level array for the current thread is empty. */
ibool
sync_thread_levels_empty_gen(
/*=========================*/
/* out: TRUE if empty except the
exceptions specified below */
ibool dict_mutex_allowed) /* in: TRUE if dictionary mutex is
allowed to be owned by the thread,
also purge_is_running mutex is
allowed */
{
sync_level_t* arr;
sync_thread_t* thread_slot;
sync_level_t* slot;
rw_lock_t* lock;
mutex_t* mutex;
ulint i;
if (!sync_order_checks_on) {
return(TRUE);
}
mutex_enter(&sync_thread_mutex);
thread_slot = sync_thread_level_arrays_find_slot();
if (thread_slot == NULL) {
mutex_exit(&sync_thread_mutex);
return(TRUE);
}
arr = thread_slot->levels;
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
slot = sync_thread_levels_get_nth(arr, i);
if (slot->latch != NULL && (!dict_mutex_allowed ||
(slot->level != SYNC_DICT
&& slot->level != SYNC_PURGE_IS_RUNNING))) {
lock = slot->latch;
mutex = slot->latch;
mutex_exit(&sync_thread_mutex);
sync_print();
ut_error;
return(FALSE);
}
}
mutex_exit(&sync_thread_mutex);
return(TRUE);
}
/**********************************************************************
Checks that the level array for the current thread is empty. */
ibool
sync_thread_levels_empty(void)
/*==========================*/
/* out: TRUE if empty */
{
return(sync_thread_levels_empty_gen(FALSE));
}
/**********************************************************************
Adds a latch and its level in the thread level array. Allocates the memory
for the array if called first time for this OS thread. Makes the checks
against other latch levels stored in the array for this thread. */
void
sync_thread_add_level(
/*==================*/
void* latch, /* in: pointer to a mutex or an rw-lock */
ulint level) /* in: level in the latching order; if SYNC_LEVEL_NONE,
nothing is done */
{
sync_level_t* array;
sync_level_t* slot;
sync_thread_t* thread_slot;
ulint i;
if (!sync_order_checks_on) {
return;
}
if ((latch == (void*)&sync_thread_mutex)
|| (latch == (void*)&mutex_list_mutex)
|| (latch == (void*)&rw_lock_debug_mutex)
|| (latch == (void*)&rw_lock_list_mutex)) {
return;
}
if (level == SYNC_LEVEL_NONE) {
return;
}
mutex_enter(&sync_thread_mutex);
thread_slot = sync_thread_level_arrays_find_slot();
if (thread_slot == NULL) {
/* We have to allocate the level array for a new thread */
array = ut_malloc(sizeof(sync_level_t) * SYNC_THREAD_N_LEVELS);
thread_slot = sync_thread_level_arrays_find_free();
thread_slot->id = os_thread_get_curr_id();
thread_slot->levels = array;
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
slot = sync_thread_levels_get_nth(array, i);
slot->latch = NULL;
}
}
array = thread_slot->levels;
/* NOTE that there is a problem with _NODE and _LEAF levels: if the
B-tree height changes, then a leaf can change to an internal node
or the other way around. We do not know at present if this can cause
unnecessary assertion failures below. */
if (level == SYNC_NO_ORDER_CHECK) {
/* Do no order checking */
} else if (level == SYNC_MEM_POOL) {
ut_a(sync_thread_levels_g(array, SYNC_MEM_POOL));
} else if (level == SYNC_MEM_HASH) {
ut_a(sync_thread_levels_g(array, SYNC_MEM_HASH));
} else if (level == SYNC_RECV) {
ut_a(sync_thread_levels_g(array, SYNC_RECV));
} else if (level == SYNC_LOG) {
ut_a(sync_thread_levels_g(array, SYNC_LOG));
} else if (level == SYNC_ANY_LATCH) {
ut_a(sync_thread_levels_g(array, SYNC_ANY_LATCH));
} else if (level == SYNC_TRX_SYS_HEADER) {
ut_a(sync_thread_levels_contain(array, SYNC_KERNEL));
} else if (level == SYNC_BUF_BLOCK) {
ut_a((sync_thread_levels_contain(array, SYNC_BUF_POOL)
&& sync_thread_levels_g(array, SYNC_BUF_BLOCK - 1))
|| sync_thread_levels_g(array, SYNC_BUF_BLOCK));
} else if (level == SYNC_BUF_POOL) {
ut_a(sync_thread_levels_g(array, SYNC_BUF_POOL));
} else if (level == SYNC_SEARCH_SYS) {
ut_a(sync_thread_levels_g(array, SYNC_SEARCH_SYS));
} else if (level == SYNC_TRX_LOCK_HEAP) {
ut_a(sync_thread_levels_g(array, SYNC_TRX_LOCK_HEAP));
} else if (level == SYNC_REC_LOCK) {
ut_a((sync_thread_levels_contain(array, SYNC_KERNEL)
&& sync_thread_levels_g(array, SYNC_REC_LOCK - 1))
|| sync_thread_levels_g(array, SYNC_REC_LOCK));
} else if (level == SYNC_KERNEL) {
ut_a(sync_thread_levels_g(array, SYNC_KERNEL));
} else if (level == SYNC_IBUF_BITMAP) {
ut_a((sync_thread_levels_contain(array, SYNC_IBUF_BITMAP_MUTEX)
&& sync_thread_levels_g(array, SYNC_IBUF_BITMAP - 1))
|| sync_thread_levels_g(array, SYNC_IBUF_BITMAP));
} else if (level == SYNC_IBUF_BITMAP_MUTEX) {
ut_a(sync_thread_levels_g(array, SYNC_IBUF_BITMAP_MUTEX));
} else if (level == SYNC_FSP_PAGE) {
ut_a(sync_thread_levels_contain(array, SYNC_FSP));
} else if (level == SYNC_FSP) {
ut_a(sync_thread_levels_contain(array, SYNC_FSP)
|| sync_thread_levels_g(array, SYNC_FSP));
} else if (level == SYNC_TRX_UNDO_PAGE) {
ut_a(sync_thread_levels_contain(array, SYNC_TRX_UNDO)
|| sync_thread_levels_contain(array, SYNC_RSEG)
|| sync_thread_levels_contain(array, SYNC_PURGE_SYS)
|| sync_thread_levels_g(array, SYNC_TRX_UNDO_PAGE));
} else if (level == SYNC_RSEG_HEADER) {
ut_a(sync_thread_levels_contain(array, SYNC_RSEG));
} else if (level == SYNC_RSEG_HEADER_NEW) {
ut_a(sync_thread_levels_contain(array, SYNC_KERNEL)
&& sync_thread_levels_contain(array, SYNC_FSP_PAGE));
} else if (level == SYNC_RSEG) {
ut_a(sync_thread_levels_g(array, SYNC_RSEG));
} else if (level == SYNC_TRX_UNDO) {
ut_a(sync_thread_levels_g(array, SYNC_TRX_UNDO));
} else if (level == SYNC_PURGE_LATCH) {
ut_a(sync_thread_levels_g(array, SYNC_PURGE_LATCH));
} else if (level == SYNC_PURGE_SYS) {
ut_a(sync_thread_levels_g(array, SYNC_PURGE_SYS));
} else if (level == SYNC_TREE_NODE) {
ut_a(sync_thread_levels_contain(array, SYNC_INDEX_TREE)
|| sync_thread_levels_g(array, SYNC_TREE_NODE - 1));
} else if (level == SYNC_TREE_NODE_FROM_HASH) {
ut_a(1);
} else if (level == SYNC_TREE_NODE_NEW) {
ut_a(sync_thread_levels_contain(array, SYNC_FSP_PAGE)
|| sync_thread_levels_contain(array, SYNC_IBUF_MUTEX));
} else if (level == SYNC_INDEX_TREE) {
ut_a((sync_thread_levels_contain(array, SYNC_IBUF_MUTEX)
&& sync_thread_levels_contain(array, SYNC_FSP)
&& sync_thread_levels_g(array, SYNC_FSP_PAGE - 1))
|| sync_thread_levels_g(array, SYNC_TREE_NODE - 1));
} else if (level == SYNC_IBUF_MUTEX) {
ut_a(sync_thread_levels_g(array, SYNC_FSP_PAGE - 1));
} else if (level == SYNC_IBUF_PESS_INSERT_MUTEX) {
ut_a(sync_thread_levels_g(array, SYNC_FSP - 1)
&& !sync_thread_levels_contain(array, SYNC_IBUF_MUTEX));
} else if (level == SYNC_IBUF_HEADER) {
ut_a(sync_thread_levels_g(array, SYNC_FSP - 1)
&& !sync_thread_levels_contain(array, SYNC_IBUF_MUTEX)
&& !sync_thread_levels_contain(array,
SYNC_IBUF_PESS_INSERT_MUTEX));
} else if (level == SYNC_DICT_HEADER) {
ut_a(sync_thread_levels_g(array, SYNC_DICT_HEADER));
} else if (level == SYNC_PURGE_IS_RUNNING) {
ut_a(sync_thread_levels_g(array, SYNC_PURGE_IS_RUNNING));
} else if (level == SYNC_DICT) {
ut_a(buf_debug_prints
|| sync_thread_levels_g(array, SYNC_DICT));
} else {
ut_error;
}
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
slot = sync_thread_levels_get_nth(array, i);
if (slot->latch == NULL) {
slot->latch = latch;
slot->level = level;
break;
}
}
ut_a(i < SYNC_THREAD_N_LEVELS);
mutex_exit(&sync_thread_mutex);
}
/**********************************************************************
Removes a latch from the thread level array if it is found there. */
ibool
sync_thread_reset_level(
/*====================*/
/* out: TRUE if found from the array; it is an error
if the latch is not found */
void* latch) /* in: pointer to a mutex or an rw-lock */
{
sync_level_t* array;
sync_level_t* slot;
sync_thread_t* thread_slot;
ulint i;
if (!sync_order_checks_on) {
return(FALSE);
}
if ((latch == (void*)&sync_thread_mutex)
|| (latch == (void*)&mutex_list_mutex)
|| (latch == (void*)&rw_lock_debug_mutex)
|| (latch == (void*)&rw_lock_list_mutex)) {
return(FALSE);
}
mutex_enter(&sync_thread_mutex);
thread_slot = sync_thread_level_arrays_find_slot();
if (thread_slot == NULL) {
ut_error;
mutex_exit(&sync_thread_mutex);
return(FALSE);
}
array = thread_slot->levels;
for (i = 0; i < SYNC_THREAD_N_LEVELS; i++) {
slot = sync_thread_levels_get_nth(array, i);
if (slot->latch == latch) {
slot->latch = NULL;
mutex_exit(&sync_thread_mutex);
return(TRUE);
}
}
ut_error;
mutex_exit(&sync_thread_mutex);
return(FALSE);
}
/**********************************************************************
Initializes the synchronization data structures. */
void
sync_init(void)
/*===========*/
{
sync_thread_t* thread_slot;
ulint i;
ut_a(sync_initialized == FALSE);
sync_initialized = TRUE;
/* Create the primary system wait array which is protected by an OS
mutex */
sync_primary_wait_array = sync_array_create(OS_THREAD_MAX_N,
SYNC_ARRAY_OS_MUTEX);
/* Create the thread latch level array where the latch levels
are stored for each OS thread */
sync_thread_level_arrays = ut_malloc(OS_THREAD_MAX_N
* sizeof(sync_thread_t));
for (i = 0; i < OS_THREAD_MAX_N; i++) {
thread_slot = sync_thread_level_arrays_get_nth(i);
thread_slot->levels = NULL;
}
/* Init the mutex list and create the mutex to protect it. */
UT_LIST_INIT(mutex_list);
mutex_create(&mutex_list_mutex);
mutex_set_level(&mutex_list_mutex, SYNC_NO_ORDER_CHECK);
mutex_create(&sync_thread_mutex);
mutex_set_level(&sync_thread_mutex, SYNC_NO_ORDER_CHECK);
/* Init the rw-lock list and create the mutex to protect it. */
UT_LIST_INIT(rw_lock_list);
mutex_create(&rw_lock_list_mutex);
mutex_set_level(&rw_lock_list_mutex, SYNC_NO_ORDER_CHECK);
mutex_create(&rw_lock_debug_mutex);
mutex_set_level(&rw_lock_debug_mutex, SYNC_NO_ORDER_CHECK);
rw_lock_debug_event = os_event_create(NULL);
rw_lock_debug_waiters = FALSE;
}
/**********************************************************************
Frees the resources in synchronization data structures. */
void
sync_close(void)
/*===========*/
{
sync_array_free(sync_primary_wait_array);
}
/***********************************************************************
Prints wait info of the sync system. */
void
sync_print_wait_info(void)
/*======================*/
{
printf(
"Mut ex %lu sp %lu r %lu sys %lu; rws %lu %lu %lu; rwx %lu %lu %lu\n",
mutex_exit_count,
mutex_spin_wait_count, mutex_spin_round_count,
mutex_system_call_count,
rw_s_exit_count,
rw_s_spin_wait_count, rw_s_system_call_count,
rw_x_exit_count,
rw_x_spin_wait_count, rw_x_system_call_count);
}
/***********************************************************************
Prints info of the sync system. */
void
sync_print(void)
/*============*/
{
printf("SYNC INFO:------------------------------------------\n");
mutex_list_print_info();
rw_lock_list_print_info();
sync_array_print_info(sync_primary_wait_array);
sync_print_wait_info();
printf("----------------------------------------------------\n");
}
|