blob: 3335861384f503735e28491be89057a93791b338 (
plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
|
/*******************************************************************
Random numbers and hashing
(c) 1994, 1995 Innobase Oy
Created 5/11/1994 Heikki Tuuri
********************************************************************/
#include "ut0rnd.h"
#ifdef UNIV_NONINL
#include "ut0rnd.ic"
#endif
/* These random numbers are used in ut_find_prime */
#define UT_RANDOM_1 1.0412321
#define UT_RANDOM_2 1.1131347
#define UT_RANDOM_3 1.0132677
ulint ut_rnd_ulint_counter = 65654363;
/***************************************************************
Looks for a prime number slightly greater than the given argument.
The prime is chosen so that it is not near any power of 2. */
ulint
ut_find_prime(
/*==========*/
/* out: prime */
ulint n) /* in: positive number > 100 */
{
ulint pow2;
ulint i;
n += 100;
pow2 = 1;
while (pow2 * 2 < n) {
pow2 = 2 * pow2;
}
if ((double)n < 1.05 * (double)pow2) {
n = (ulint) ((double)n * UT_RANDOM_1);
}
pow2 = 2 * pow2;
if ((double)n > 0.95 * (double)pow2) {
n = (ulint) ((double)n * UT_RANDOM_2);
}
if (n > pow2 - 20) {
n += 30;
}
/* Now we have n far enough from powers of 2. To make
n more random (especially, if it was not near
a power of 2), we then multiply it by a random number. */
n = (ulint) ((double)n * UT_RANDOM_3);
for (;; n++) {
i = 2;
while (i * i <= n) {
if (n % i == 0) {
goto next_n;
}
i++;
}
/* Found a prime */
break;
next_n: ;
}
return(n);
}
|