summaryrefslogtreecommitdiff
path: root/mysys/mf_keycache.c
blob: 19e1e165b120c49e88c9d6456bd06e8157282797 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
/* Copyright (c) 2000, 2013, Oracle and/or its affiliates.
   Copyright (c) 2017, MariaDB Corporation.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */



/**
  @file 
  The file contains the following modules:

    Simple Key Cache Module

    Partitioned Key Cache Module

    Key Cache Interface Module
     
*/

#include "mysys_priv.h"
#include "mysys_err.h"
#include <keycache.h>
#include "my_static.h"
#include <m_string.h>
#include <my_bit.h>
#include <errno.h>
#include <stdarg.h>
#include "probes_mysql.h"

/****************************************************************************** 
  Simple Key Cache Module

  The module contains implementations of all key cache interface functions
  employed by partitioned key caches. 
     
******************************************************************************/

/*
  These functions handle keyblock cacheing for ISAM and MyISAM tables.

  One cache can handle many files.
  It must contain buffers of the same blocksize.

  init_key_cache() should be used to init cache handler.

  The free list (free_block_list) is a stack like structure.
  When a block is freed by free_block(), it is pushed onto the stack.
  When a new block is required it is first tried to pop one from the stack.
  If the stack is empty, it is tried to get a never-used block from the pool.
  If this is empty too, then a block is taken from the LRU ring, flushing it
  to disk, if necessary. This is handled in find_key_block().
  With the new free list, the blocks can have three temperatures:
  hot, warm and cold (which is free). This is remembered in the block header
  by the enum BLOCK_TEMPERATURE temperature variable. Remembering the
  temperature is necessary to correctly count the number of warm blocks,
  which is required to decide when blocks are allowed to become hot. Whenever
  a block is inserted to another (sub-)chain, we take the old and new
  temperature into account to decide if we got one more or less warm block.
  blocks_unused is the sum of never used blocks in the pool and of currently
  free blocks. blocks_used is the number of blocks fetched from the pool and
  as such gives the maximum number of in-use blocks at any time.

  Key Cache Locking
  =================

  All key cache locking is done with a single mutex per key cache:
  keycache->cache_lock. This mutex is locked almost all the time
  when executing code in this file (mf_keycache.c).
  However it is released for I/O and some copy operations.

  The cache_lock is also released when waiting for some event. Waiting
  and signalling is done via condition variables. In most cases the
  thread waits on its thread->suspend condition variable. Every thread
  has a my_thread_var structure, which contains this variable and a
  '*next' and '**prev' pointer. These pointers are used to insert the
  thread into a wait queue.

  A thread can wait for one block and thus be in one wait queue at a
  time only.

  Before starting to wait on its condition variable with
  mysql_cond_wait(), the thread enters itself to a specific wait queue
  with link_into_queue() (double linked with '*next' + '**prev') or
  wait_on_queue() (single linked with '*next').

  Another thread, when releasing a resource, looks up the waiting thread
  in the related wait queue. It sends a signal with
  mysql_cond_signal() to the waiting thread.

  NOTE: Depending on the particular wait situation, either the sending
  thread removes the waiting thread from the wait queue with
  unlink_from_queue() or release_whole_queue() respectively, or the waiting
  thread removes itself.

  There is one exception from this locking scheme when one thread wants
  to reuse a block for some other address. This works by first marking
  the block reserved (status= BLOCK_IN_SWITCH) and then waiting for all
  threads that are reading the block to finish. Each block has a
  reference to a condition variable (condvar). It holds a reference to
  the thread->suspend condition variable for the waiting thread (if such
  a thread exists). When that thread is signaled, the reference is
  cleared. The number of readers of a block is registered in
  block->hash_link->requests. See wait_for_readers() / remove_reader()
  for details. This is similar to the above, but it clearly means that
  only one thread can wait for a particular block. There is no queue in
  this case. Strangely enough block->convar is used for waiting for the
  assigned hash_link only. More precisely it is used to wait for all
  requests to be unregistered from the assigned hash_link.

  The resize_queue serves two purposes:
  1. Threads that want to do a resize wait there if in_resize is set.
     This is not used in the server. The server refuses a second resize
     request if one is already active. keycache->in_init is used for the
     synchronization. See set_var.cc.
  2. Threads that want to access blocks during resize wait here during
     the re-initialization phase.
  When the resize is done, all threads on the queue are signalled.
  Hypothetical resizers can compete for resizing, and read/write
  requests will restart to request blocks from the freshly resized
  cache. If the cache has been resized too small, it is disabled and
  'can_be_used' is false. In this case read/write requests bypass the
  cache. Since they increment and decrement 'cnt_for_resize_op', the
  next resizer can wait on the queue 'waiting_for_resize_cnt' until all
  I/O finished.
*/

/* declare structures that is used by st_key_cache */

struct st_block_link;
typedef struct st_block_link BLOCK_LINK;
struct st_keycache_page;
typedef struct st_keycache_page KEYCACHE_PAGE;
struct st_hash_link;
typedef struct st_hash_link HASH_LINK;

/* info about requests in a waiting queue */
typedef struct st_keycache_wqueue
{
  struct st_my_thread_var *last_thread;  /* circular list of waiting threads */
} KEYCACHE_WQUEUE;

/* Default size of hash for changed files */
#define MIN_CHANGED_BLOCKS_HASH_SIZE 128

/* Control block for a simple (non-partitioned) key cache */

typedef struct st_simple_key_cache_cb
{
  my_bool key_cache_inited;      /* <=> control block is allocated           */
  my_bool in_resize;             /* true during resize operation             */
  my_bool resize_in_flush;       /* true during flush of resize operation    */
  my_bool can_be_used;           /* usage of cache for read/write is allowed */
  size_t key_cache_mem_size;     /* specified size of the cache memory       */
  uint key_cache_block_size;     /* size of the page buffer of a cache block */
  ulong min_warm_blocks;         /* min number of warm blocks;               */
  ulong age_threshold;           /* age threshold for hot blocks             */
  ulonglong keycache_time;       /* total number of block link operations    */
  uint hash_entries;             /* max number of entries in the hash table  */
  uint changed_blocks_hash_size;	 /* Number of hash buckets for file blocks   */
  int hash_links;                /* max number of hash links                 */
  int hash_links_used;           /* number of hash links currently used      */
  int disk_blocks;               /* max number of blocks in the cache        */
  ulong blocks_used;           /* maximum number of concurrently used blocks */
  ulong blocks_unused;           /* number of currently unused blocks        */
  ulong blocks_changed;          /* number of currently dirty blocks         */
  ulong warm_blocks;             /* number of blocks in warm sub-chain       */
  ulong cnt_for_resize_op;       /* counter to block resize operation        */
  long blocks_available;      /* number of blocks available in the LRU chain */
  HASH_LINK **hash_root;         /* arr. of entries into hash table buckets  */
  HASH_LINK *hash_link_root;     /* memory for hash table links              */
  HASH_LINK *free_hash_list;     /* list of free hash links                  */
  BLOCK_LINK *free_block_list;   /* list of free blocks                      */
  BLOCK_LINK *block_root;        /* memory for block links                   */
  uchar *block_mem;              /* memory for block buffers                 */
  BLOCK_LINK *used_last;         /* ptr to the last block of the LRU chain   */
  BLOCK_LINK *used_ins;          /* ptr to the insertion block in LRU chain  */
  mysql_mutex_t cache_lock;      /* to lock access to the cache structure    */
  KEYCACHE_WQUEUE resize_queue;  /* threads waiting during resize operation  */
  /*
    Waiting for a zero resize count. Using a queue for symmetry though
    only one thread can wait here.
  */
  KEYCACHE_WQUEUE waiting_for_resize_cnt;
  KEYCACHE_WQUEUE waiting_for_hash_link; /* waiting for a free hash link     */
  KEYCACHE_WQUEUE waiting_for_block;    /* requests waiting for a free block */
  BLOCK_LINK **changed_blocks; 		/* hash for dirty file bl.*/
  BLOCK_LINK **file_blocks;  		/* hash for other file bl.*/

  /* Statistics variables. These are reset in reset_key_cache_counters(). */
  ulong global_blocks_changed;      /* number of currently dirty blocks      */
  ulonglong global_cache_w_requests;/* number of write requests (write hits) */
  ulonglong global_cache_write;     /* number of writes from cache to files  */
  ulonglong global_cache_r_requests;/* number of read requests (read hits)   */
  ulonglong global_cache_read;      /* number of reads from files to cache   */

  int blocks;                   /* max number of blocks in the cache        */
  uint hash_factor;             /* factor used to calculate hash function   */
  my_bool in_init;		/* Set to 1 in MySQL during init/resize     */
} SIMPLE_KEY_CACHE_CB;

/*
  Some compilation flags have been added specifically for this module
  to control the following:
  - not to let a thread to yield the control when reading directly
    from key cache, which might improve performance in many cases;
    to enable this add:
    #define SERIALIZED_READ_FROM_CACHE
  - to set an upper bound for number of threads simultaneously
    using the key cache; this setting helps to determine an optimal
    size for hash table and improve performance when the number of
    blocks in the key cache much less than the number of threads
    accessing it;
    to set this number equal to <N> add
      #define MAX_THREADS <N>
  - to substitute calls of mysql_cond_wait for calls of
    mysql_cond_timedwait (wait with timeout set up);
    this setting should be used only when you want to trap a deadlock
    situation, which theoretically should not happen;
    to set timeout equal to <T> seconds add
      #define KEYCACHE_TIMEOUT <T>
  - to enable the module traps and to send debug information from
    key cache module to a special debug log add:
      #define KEYCACHE_DEBUG
    the name of this debug log file <LOG NAME> can be set through:
      #define KEYCACHE_DEBUG_LOG  <LOG NAME>
    if the name is not defined, it's set by default;
    if the KEYCACHE_DEBUG flag is not set up and we are in a debug
    mode, i.e. when ! defined(DBUG_OFF), the debug information from the
    module is sent to the regular debug log.

  Example of the settings:
    #define SERIALIZED_READ_FROM_CACHE
    #define MAX_THREADS   100
    #define KEYCACHE_TIMEOUT  1
    #define KEYCACHE_DEBUG
    #define KEYCACHE_DEBUG_LOG  "my_key_cache_debug.log"
*/

#define STRUCT_PTR(TYPE, MEMBER, a)                                           \
          (TYPE *) ((char *) (a) - offsetof(TYPE, MEMBER))

/* types of condition variables */
#define  COND_FOR_REQUESTED 0
#define  COND_FOR_SAVED     1
#define  COND_FOR_READERS   2

typedef mysql_cond_t KEYCACHE_CONDVAR;

/* descriptor of the page in the key cache block buffer */
struct st_keycache_page
{
  int file;               /* file to which the page belongs to  */
  my_off_t filepos;       /* position of the page in the file   */
};

/* element in the chain of a hash table bucket */
struct st_hash_link
{
  struct st_hash_link *next, **prev; /* to connect links in the same bucket  */
  struct st_block_link *block;       /* reference to the block for the page: */
  File file;                         /* from such a file                     */
  my_off_t diskpos;                  /* with such an offset                  */
  uint requests;                     /* number of requests for the page      */
};

/* simple states of a block */
#define BLOCK_ERROR           1U/* an error occurred when performing file i/o */
#define BLOCK_READ            2U/* file block is in the block buffer         */
#define BLOCK_IN_SWITCH       4U/* block is preparing to read new page       */
#define BLOCK_REASSIGNED      8U/* blk does not accept requests for old page */
#define BLOCK_IN_FLUSH       16U/* block is selected for flush               */
#define BLOCK_CHANGED        32U/* block buffer contains a dirty page        */
#define BLOCK_IN_USE         64U/* block is not free                         */
#define BLOCK_IN_EVICTION   128U/* block is selected for eviction            */
#define BLOCK_IN_FLUSHWRITE 256U/* block is in write to file                 */
#define BLOCK_FOR_UPDATE    512U/* block is selected for buffer modification */

/* page status, returned by find_key_block */
#define PAGE_READ               0
#define PAGE_TO_BE_READ         1
#define PAGE_WAIT_TO_BE_READ    2

/* block temperature determines in which (sub-)chain the block currently is */
enum BLOCK_TEMPERATURE { BLOCK_COLD /*free*/ , BLOCK_WARM , BLOCK_HOT };

/* key cache block */
struct st_block_link
{
  struct st_block_link
    *next_used, **prev_used;   /* to connect links in the LRU chain (ring)   */
  struct st_block_link
    *next_changed, **prev_changed; /* for lists of file dirty/clean blocks   */
  struct st_hash_link *hash_link; /* backward ptr to referring hash_link     */
  KEYCACHE_WQUEUE wqueue[2]; /* queues on waiting requests for new/old pages */
  uint requests;          /* number of requests for the block                */
  uchar *buffer;           /* buffer for the block page                       */
  uint offset;            /* beginning of modified data in the buffer        */
  uint length;            /* end of data in the buffer                       */
  uint status;            /* state of the block                              */
  enum BLOCK_TEMPERATURE temperature; /* block temperature: cold, warm, hot */
  uint hits_left;         /* number of hits left until promotion             */
  ulonglong last_hit_time; /* timestamp of the last hit                      */
  KEYCACHE_CONDVAR *condvar; /* condition variable for 'no readers' event    */
};

KEY_CACHE dflt_key_cache_var;
KEY_CACHE *dflt_key_cache= &dflt_key_cache_var;

#define FLUSH_CACHE         2000            /* sort this many blocks at once */

static int flush_all_key_blocks(SIMPLE_KEY_CACHE_CB *keycache);
static void end_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, my_bool cleanup);
static void wait_on_queue(KEYCACHE_WQUEUE *wqueue,
                          mysql_mutex_t *mutex);
static void release_whole_queue(KEYCACHE_WQUEUE *wqueue);
static void free_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block);
#ifndef DBUG_OFF
static void test_key_cache(SIMPLE_KEY_CACHE_CB *keycache,
                           const char *where, my_bool lock);
#endif
#define KEYCACHE_BASE_EXPR(f, pos)                                            \
  ((ulong) ((pos) / keycache->key_cache_block_size) +	 (ulong) (f))
#define KEYCACHE_HASH(f, pos)                                                 \
  ((KEYCACHE_BASE_EXPR(f, pos) / keycache->hash_factor) &                     \
      (keycache->hash_entries-1))
#define FILE_HASH(f, cache)  ((uint) (f) & (cache->changed_blocks_hash_size-1))

#define DEFAULT_KEYCACHE_DEBUG_LOG  "keycache_debug.log"

#if defined(KEYCACHE_DEBUG) && ! defined(KEYCACHE_DEBUG_LOG)
#define KEYCACHE_DEBUG_LOG  DEFAULT_KEYCACHE_DEBUG_LOG
#endif

#if defined(KEYCACHE_DEBUG_LOG)
static FILE *keycache_debug_log=NULL;
static void keycache_debug_print(const char *fmt,...);
#define KEYCACHE_DEBUG_OPEN                                                   \
          if (!keycache_debug_log)                                            \
          {                                                                   \
            keycache_debug_log= fopen(KEYCACHE_DEBUG_LOG, "w");               \
            (void) setvbuf(keycache_debug_log, NULL, _IOLBF, BUFSIZ);         \
          }

#define KEYCACHE_DEBUG_CLOSE                                                  \
          if (keycache_debug_log)                                             \
          {                                                                   \
            fclose(keycache_debug_log);                                       \
            keycache_debug_log= 0;                                            \
          }
#else
#define KEYCACHE_DEBUG_OPEN
#define KEYCACHE_DEBUG_CLOSE
#endif /* defined(KEYCACHE_DEBUG_LOG) */

#if defined(KEYCACHE_DEBUG_LOG) && defined(KEYCACHE_DEBUG)
#define KEYCACHE_DBUG_PRINT(l, m)                                             \
            { if (keycache_debug_log) fprintf(keycache_debug_log, "%s: ", l); \
              keycache_debug_print m; }

#define KEYCACHE_DBUG_ASSERT(a)                                               \
            { if (! (a) && keycache_debug_log) fclose(keycache_debug_log);    \
              assert(a); }
#else
#define KEYCACHE_DBUG_PRINT(l, m)  DBUG_PRINT(l, m)
#define KEYCACHE_DBUG_ASSERT(a)    DBUG_ASSERT(a)
#endif /* defined(KEYCACHE_DEBUG_LOG) && defined(KEYCACHE_DEBUG) */

#if defined(KEYCACHE_DEBUG) || !defined(DBUG_OFF)
static long keycache_thread_id;
#define KEYCACHE_THREAD_TRACE(l)                                              \
             KEYCACHE_DBUG_PRINT(l,("|thread %ld",keycache_thread_id))

#define KEYCACHE_THREAD_TRACE_BEGIN(l)                                        \
            { struct st_my_thread_var *thread_var= my_thread_var;             \
              keycache_thread_id= thread_var->id;                             \
              KEYCACHE_DBUG_PRINT(l,("[thread %ld",keycache_thread_id)) }

#define KEYCACHE_THREAD_TRACE_END(l)                                          \
            KEYCACHE_DBUG_PRINT(l,("]thread %ld",keycache_thread_id))
#else
#define KEYCACHE_THREAD_TRACE_BEGIN(l)
#define KEYCACHE_THREAD_TRACE_END(l)
#define KEYCACHE_THREAD_TRACE(l)
#endif /* defined(KEYCACHE_DEBUG) || !defined(DBUG_OFF) */

#define BLOCK_NUMBER(b)                                                       \
  ((uint) (((char*)(b)-(char *) keycache->block_root)/sizeof(BLOCK_LINK)))
#define HASH_LINK_NUMBER(h)                                                   \
  ((uint) (((char*)(h)-(char *) keycache->hash_link_root)/sizeof(HASH_LINK)))

#if (defined(KEYCACHE_TIMEOUT) && !defined(__WIN__)) || defined(KEYCACHE_DEBUG)
static int keycache_pthread_cond_wait(mysql_cond_t *cond,
                                      mysql_mutex_t *mutex);
#else
#define keycache_pthread_cond_wait(C, M) mysql_cond_wait(C, M)
#endif

#if defined(KEYCACHE_DEBUG)
static int keycache_pthread_mutex_lock(mysql_mutex_t *mutex);
static void keycache_pthread_mutex_unlock(mysql_mutex_t *mutex);
static int keycache_pthread_cond_signal(mysql_cond_t *cond);
#else
#define keycache_pthread_mutex_lock(M) mysql_mutex_lock(M)
#define keycache_pthread_mutex_unlock(M) mysql_mutex_unlock(M)
#define keycache_pthread_cond_signal(C) mysql_cond_signal(C)
#endif /* defined(KEYCACHE_DEBUG) */

#if !defined(DBUG_OFF)
#if defined(inline)
#undef inline
#endif
#define inline  /* disabled inline for easier debugging */
static int fail_hlink(HASH_LINK *hlink);
static int cache_empty(SIMPLE_KEY_CACHE_CB *keycache);
#endif
#ifdef DBUG_ASSERT_EXISTS
static int fail_block(BLOCK_LINK *block);
#endif

static inline uint next_power(uint value)
{
  return (uint) my_round_up_to_next_power((uint32) value) << 1;
}


/*
  Initialize a simple key cache

  SYNOPSIS
    init_simple_key_cache()
    keycache                pointer to the control block of a simple key cache 
    key_cache_block_size    size of blocks to keep cached data
    use_mem                 memory to use for the key cache buferrs/structures
    division_limit          division limit (may be zero)
    age_threshold           age threshold (may be zero)

  DESCRIPTION
    This function is the implementation of the init_key_cache interface
    function that is employed by simple (non-partitioned) key caches.
    The function builds a simple key cache and initializes the control block
    structure of the type SIMPLE_KEY_CACHE_CB that is used for this key cache. 
    The parameter keycache is supposed to point to this structure. 
    The parameter key_cache_block_size specifies the size of the blocks in
    the key cache to be built. The parameters division_limit and age_threshold
    determine the initial values of those characteristics of the key cache
    that are used for midpoint insertion strategy. The parameter use_mem
    specifies the total amount of memory to be allocated for key cache blocks
    and auxiliary structures.       

  RETURN VALUE
    number of blocks in the key cache, if successful,
    <= 0 - otherwise.

  NOTES.
    if keycache->key_cache_inited != 0 we assume that the key cache
    is already initialized.  This is for now used by myisamchk, but shouldn't
    be something that a program should rely on!

    It's assumed that no two threads call this function simultaneously
    referring to the same key cache handle.
*/

static
int init_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache,
                          uint key_cache_block_size,
		          size_t use_mem, uint division_limit,
		          uint age_threshold, uint changed_blocks_hash_size)
{
  ulong blocks, hash_links;
  size_t length;
  int error;
  DBUG_ENTER("init_simple_key_cache");
  DBUG_ASSERT(key_cache_block_size >= 512);

  KEYCACHE_DEBUG_OPEN;
  if (keycache->key_cache_inited && keycache->disk_blocks > 0)
  {
    DBUG_PRINT("warning",("key cache already in use"));
    DBUG_RETURN(0);
  }

  keycache->blocks_used= keycache->blocks_unused= 0;
  keycache->global_blocks_changed= 0;
  keycache->global_cache_w_requests= keycache->global_cache_r_requests= 0;
  keycache->global_cache_read= keycache->global_cache_write= 0;
  keycache->disk_blocks= -1;
  if (! keycache->key_cache_inited)
  {
    keycache->key_cache_inited= 1;
    keycache->hash_factor= 1;
    /*
      Initialize these variables once only.
      Their value must survive re-initialization during resizing.
    */
    keycache->in_resize= 0;
    keycache->resize_in_flush= 0;
    keycache->cnt_for_resize_op= 0;
    keycache->waiting_for_resize_cnt.last_thread= NULL;
    keycache->in_init= 0;
    mysql_mutex_init(key_KEY_CACHE_cache_lock,
                     &keycache->cache_lock, MY_MUTEX_INIT_FAST);
    keycache->resize_queue.last_thread= NULL;
  }

  keycache->key_cache_mem_size= use_mem;
  keycache->key_cache_block_size= key_cache_block_size;
  DBUG_PRINT("info", ("key_cache_block_size: %u",
		      key_cache_block_size));

  blocks= (ulong) (use_mem / (sizeof(BLOCK_LINK) + 2 * sizeof(HASH_LINK) +
                              sizeof(HASH_LINK*) * 5/4 + key_cache_block_size));

  /* Changed blocks hash needs to be a power of 2 */
  changed_blocks_hash_size= my_round_up_to_next_power(MY_MAX(changed_blocks_hash_size,
                                                             MIN_CHANGED_BLOCKS_HASH_SIZE));

  /* It doesn't make sense to have too few blocks (less than 8) */
  if (blocks >= 8)
  {
    for ( ; ; )
    {
      /* Set my_hash_entries to the next bigger 2 power */
      if ((keycache->hash_entries= next_power(blocks)) < blocks * 5/4)
        keycache->hash_entries<<= 1;
      hash_links= 2 * blocks;
#if defined(MAX_THREADS)
      if (hash_links < MAX_THREADS + blocks - 1)
        hash_links= MAX_THREADS + blocks - 1;
#endif
      while ((length= (ALIGN_SIZE(blocks * sizeof(BLOCK_LINK)) +
		       ALIGN_SIZE(hash_links * sizeof(HASH_LINK)) +
		       ALIGN_SIZE(sizeof(HASH_LINK*) *
                                  keycache->hash_entries) +
                       sizeof(BLOCK_LINK*)* (changed_blocks_hash_size*2))) +
             ((size_t) blocks * keycache->key_cache_block_size) > use_mem && blocks > 8)
        blocks--;
      /* Allocate memory for cache page buffers */
      if ((keycache->block_mem=
	   my_large_malloc((size_t) blocks * keycache->key_cache_block_size,
			  MYF(0))))
      {
        /*
	  Allocate memory for blocks, hash_links and hash entries;
	  For each block 2 hash links are allocated
        */
        if (my_multi_malloc_large(MYF(MY_ZEROFILL),
                                  &keycache->block_root,
                                  (ulonglong) (blocks * sizeof(BLOCK_LINK)),
                                  &keycache->hash_root,
                                  (ulonglong) (sizeof(HASH_LINK*) *
                                               keycache->hash_entries),
                                  &keycache->hash_link_root,
                                  (ulonglong) (hash_links * sizeof(HASH_LINK)),
                                  &keycache->changed_blocks,
                                  (ulonglong) (sizeof(BLOCK_LINK*) *
                                               changed_blocks_hash_size),
                                  &keycache->file_blocks,
                                  (ulonglong) (sizeof(BLOCK_LINK*) *
                                               changed_blocks_hash_size),
                                  NullS))
          break;
        my_large_free(keycache->block_mem);
        keycache->block_mem= 0;
      }
      if (blocks < 8)
      {
        my_errno= ENOMEM;
        my_error(EE_OUTOFMEMORY, MYF(ME_FATALERROR),
                 blocks * keycache->key_cache_block_size);
        goto err;
      }
      blocks= blocks / 4*3;
    }
    keycache->blocks_unused= blocks;
    keycache->disk_blocks= (int) blocks;
    keycache->hash_links= hash_links;
    keycache->hash_links_used= 0;
    keycache->free_hash_list= NULL;
    keycache->blocks_used= keycache->blocks_changed= 0;

    keycache->global_blocks_changed= 0;
    keycache->blocks_available=0;		/* For debugging */

    /* The LRU chain is empty after initialization */
    keycache->used_last= NULL;
    keycache->used_ins= NULL;
    keycache->free_block_list= NULL;
    keycache->keycache_time= 0;
    keycache->warm_blocks= 0;
    keycache->min_warm_blocks= (division_limit ?
				blocks * division_limit / 100 + 1 :
				blocks);
    keycache->age_threshold= (age_threshold ?
			      blocks * age_threshold / 100 :
			      blocks);
    keycache->changed_blocks_hash_size= changed_blocks_hash_size;
    keycache->can_be_used= 1;

    keycache->waiting_for_hash_link.last_thread= NULL;
    keycache->waiting_for_block.last_thread= NULL;
    DBUG_PRINT("exit",
	       ("disk_blocks: %d  block_root: %p  hash_entries: %d\
 hash_root: %p  hash_links: %d  hash_link_root: %p",
		keycache->disk_blocks,   keycache->block_root,
		keycache->hash_entries,  keycache->hash_root,
		keycache->hash_links,    keycache->hash_link_root));
  }
  else
  {
    /* key_buffer_size is specified too small. Disable the cache. */
    keycache->can_be_used= 0;
  }

  keycache->blocks= keycache->disk_blocks > 0 ? keycache->disk_blocks : 0;
  DBUG_RETURN((int) keycache->disk_blocks);

err:
  error= my_errno;
  keycache->disk_blocks= 0;
  keycache->blocks=  0;
  if (keycache->block_mem)
  {
    my_large_free((uchar*) keycache->block_mem);
    keycache->block_mem= NULL;
  }
  if (keycache->block_root)
  {
    my_free(keycache->block_root);
    keycache->block_root= NULL;
  }
  my_errno= error;
  keycache->can_be_used= 0;
  DBUG_RETURN(0);
}


/*
  Prepare for resizing a simple key cache

  SYNOPSIS
    prepare_resize_simple_key_cache()
    keycache                pointer to the control block of a simple key cache	
    release_lock            <=> release the key cache lock before return

  DESCRIPTION
    This function flushes all dirty pages from a simple key cache and after
    this it destroys the key cache calling end_simple_key_cache. The function 
    takes the parameter keycache as a pointer to the control block 
    structure of the type SIMPLE_KEY_CACHE_CB for this key cache.
    The parameter release_lock says whether the key cache lock must be 
    released before return from the function.

  RETURN VALUE
    0 - on success,
    1 - otherwise.

  NOTES
    This function is the called by resize_simple_key_cache and
    resize_partitioned_key_cache that resize simple and partitioned key caches
    respectively. 
*/

static 
int prepare_resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache,
                                    my_bool release_lock)
{
  int res= 0;
  DBUG_ENTER("prepare_resize_simple_key_cache"); 
 
  keycache_pthread_mutex_lock(&keycache->cache_lock);

  /*
    We may need to wait for another thread which is doing a resize
    already. This cannot happen in the MySQL server though. It allows
    one resizer only. In set_var.cc keycache->in_init is used to block
    multiple attempts.
  */
  while (keycache->in_resize)
  {
    /* purecov: begin inspected */
    wait_on_queue(&keycache->resize_queue, &keycache->cache_lock);
    /* purecov: end */
  }

  /*
    Mark the operation in progress. This blocks other threads from doing
    a resize in parallel. It prohibits new blocks to enter the cache.
    Read/write requests can bypass the cache during the flush phase.
  */
  keycache->in_resize= 1;

  /* Need to flush only if keycache is enabled. */
  if (keycache->can_be_used)
  {
    /* Start the flush phase. */
    keycache->resize_in_flush= 1;

    if (flush_all_key_blocks(keycache))
    {
      /* TODO: if this happens, we should write a warning in the log file ! */
      keycache->resize_in_flush= 0;
      keycache->can_be_used= 0;
      res= 1;
      goto finish;
    }
    DBUG_SLOW_ASSERT(cache_empty(keycache));

    /* End the flush phase. */
    keycache->resize_in_flush= 0;
  }

  /*
    Some direct read/write operations (bypassing the cache) may still be
    unfinished. Wait until they are done. If the key cache can be used,
    direct I/O is done in increments of key_cache_block_size. That is,
    every block is checked if it is in the cache. We need to wait for
    pending I/O before re-initializing the cache, because we may change
    the block size. Otherwise they could check for blocks at file
    positions where the new block division has none. We do also want to
    wait for I/O done when (if) the cache was disabled. It must not
    run in parallel with normal cache operation.
  */
  while (keycache->cnt_for_resize_op)
    wait_on_queue(&keycache->waiting_for_resize_cnt, &keycache->cache_lock);
  
  end_simple_key_cache(keycache, 0);

finish:
  if (release_lock)
    keycache_pthread_mutex_unlock(&keycache->cache_lock);     
  DBUG_RETURN(res);
}


/*
  Finalize resizing a simple key cache

  SYNOPSIS
    finish_resize_simple_key_cache()
    keycache                pointer to the control block of a simple key cache		
    acquire_lock            <=> acquire the key cache lock at start

  DESCRIPTION
    This function performs finalizing actions for the operation of 
    resizing a simple key cache. The function takes the parameter
    keycache as a pointer to the control block structure of the type
    SIMPLE_KEY_CACHE_CB for this key cache. The function sets the flag
    in_resize in this structure to FALSE.
    The parameter acquire_lock says whether the key cache lock must be
    acquired at the start of the function.

  RETURN VALUE
    none

  NOTES
    This function is the called by resize_simple_key_cache and
    resize_partitioned_key_cache that resize simple and partitioned key caches
    respectively. 
*/

static 
void finish_resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache,
                                    my_bool acquire_lock)
{
  DBUG_ENTER("finish_resize_simple_key_cache");

  if (acquire_lock)
    keycache_pthread_mutex_lock(&keycache->cache_lock); 
  
  mysql_mutex_assert_owner(&keycache->cache_lock);
			   
  /*
    Mark the resize finished. This allows other threads to start a
    resize or to request new cache blocks.
  */
  keycache->in_resize= 0;
  

  /* Signal waiting threads. */
  release_whole_queue(&keycache->resize_queue);


  keycache_pthread_mutex_unlock(&keycache->cache_lock);

  DBUG_VOID_RETURN;
}


/*
  Resize a simple key cache

  SYNOPSIS
    resize_simple_key_cache()
    keycache                pointer to the control block of a simple key cache
    key_cache_block_size    size of blocks to keep cached data
    use_mem                 memory to use for the key cache buffers/structures
    division_limit          new division limit (if not zero)
    age_threshold           new age threshold (if not zero)

  DESCRIPTION
    This function is the implementation of the resize_key_cache interface
    function that is employed by simple (non-partitioned) key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key
    cache to be resized. 
    The parameter key_cache_block_size specifies the new size of the blocks in
    the key cache. The parameters division_limit and age_threshold
    determine the new initial values of those characteristics of the key cache
    that are used for midpoint insertion strategy. The parameter use_mem
    specifies the total amount of memory to be allocated for key cache blocks
    and auxiliary structures in the new key cache.           

  RETURN VALUE
    number of blocks in the key cache, if successful,
    0 - otherwise.

  NOTES.
    The function first calls the function prepare_resize_simple_key_cache
    to flush all dirty blocks from key cache, to free memory used
    for key cache blocks and auxiliary structures. After this the
    function builds a new key cache with new parameters.

    This implementation doesn't block the calls and executions of other
    functions from the key cache interface. However it assumes that the
    calls of resize_simple_key_cache itself are serialized.

    The function starts the operation only when all other threads
    performing operations with the key cache let her to proceed
    (when cnt_for_resize=0).
*/

static
int resize_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache,
                            uint key_cache_block_size,
		            size_t use_mem, uint division_limit,
		            uint age_threshold, uint changed_blocks_hash_size)
{
  int blocks= 0;
  DBUG_ENTER("resize_simple_key_cache");

  if (!keycache->key_cache_inited)
    DBUG_RETURN(blocks);

  /*
    Note that the cache_lock mutex and the resize_queue are left untouched.
    We do not lose the cache_lock and will release it only at the end of 
    this function.
  */
  if (prepare_resize_simple_key_cache(keycache, 0))
    goto finish;

  /* The following will work even if use_mem is 0 */ 
  blocks= init_simple_key_cache(keycache, key_cache_block_size, use_mem,
			        division_limit, age_threshold,
                                changed_blocks_hash_size);

finish:
  finish_resize_simple_key_cache(keycache, 0);

  DBUG_RETURN(blocks);
}


/*
  Increment counter blocking resize key cache operation
*/
static inline void inc_counter_for_resize_op(SIMPLE_KEY_CACHE_CB *keycache)
{
  keycache->cnt_for_resize_op++;
}


/*
  Decrement counter blocking resize key cache operation;
  Signal the operation to proceed when counter becomes equal zero
*/
static inline void dec_counter_for_resize_op(SIMPLE_KEY_CACHE_CB *keycache)
{
  if (!--keycache->cnt_for_resize_op)
    release_whole_queue(&keycache->waiting_for_resize_cnt);
}


/*
  Change key cache parameters of a simple key cache

  SYNOPSIS
    change_simple_key_cache_param()
    keycache                pointer to the control block of a simple key cache	
    division_limit          new division limit (if not zero)
    age_threshold           new age threshold (if not zero)

  DESCRIPTION
    This function is the implementation of the change_key_cache_param interface
    function that is employed by simple (non-partitioned) key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key
    cache where new values of the division limit and the age threshold used
    for midpoint insertion strategy are to be set.  The parameters
    division_limit and age_threshold provide these new values.

  RETURN VALUE
    none

  NOTES.
    Presently the function resets the key cache parameters concerning
    midpoint insertion strategy - division_limit and age_threshold.
    This function changes some parameters of a given key cache without
    reformatting it. The function does not touch the contents the key 
    cache blocks.    
*/

static
void change_simple_key_cache_param(SIMPLE_KEY_CACHE_CB *keycache, uint division_limit,
			           uint age_threshold)
{
  DBUG_ENTER("change_simple_key_cache_param");
  keycache_pthread_mutex_lock(&keycache->cache_lock);
  if (division_limit)
    keycache->min_warm_blocks= (keycache->disk_blocks *
				division_limit / 100 + 1);
  if (age_threshold)
    keycache->age_threshold=   (keycache->disk_blocks *
				age_threshold / 100);
  keycache_pthread_mutex_unlock(&keycache->cache_lock);
  DBUG_VOID_RETURN;
}


/*
  Destroy a simple key cache 

  SYNOPSIS
    end_simple_key_cache()
    keycache                pointer to the control block of a simple key cache
    cleanup                 <=> complete free (free also mutex for key cache)

  DESCRIPTION
    This function is the implementation of the end_key_cache interface
    function that is employed by simple (non-partitioned) key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type SIMPLE_KEY_CACHE_CB for the simple key
    cache to be destroyed.
    The function frees the memory allocated for the key cache blocks and
    auxiliary structures. If the value of the parameter cleanup is TRUE 
    then even the key cache mutex is freed.

  RETURN VALUE
    none
*/

static
void end_simple_key_cache(SIMPLE_KEY_CACHE_CB *keycache, my_bool cleanup)
{
  DBUG_ENTER("end_simple_key_cache");
  DBUG_PRINT("enter", ("key_cache: %p",  keycache));

  if (!keycache->key_cache_inited)
    DBUG_VOID_RETURN;

  if (keycache->disk_blocks > 0)
  {
    if (keycache->block_mem)
    {
      my_large_free((uchar*) keycache->block_mem);
      keycache->block_mem= NULL;
      my_free(keycache->block_root);
      keycache->block_root= NULL;
    }
    keycache->disk_blocks= -1;
    /* Reset blocks_changed to be safe if flush_all_key_blocks is called */
    keycache->blocks_changed= 0;
  }

  DBUG_PRINT("status", ("used: %lu  changed: %lu  w_requests: %lu  "
                        "writes: %lu  r_requests: %lu  reads: %lu",
                        keycache->blocks_used, keycache->global_blocks_changed,
                        (ulong) keycache->global_cache_w_requests,
                        (ulong) keycache->global_cache_write,
                        (ulong) keycache->global_cache_r_requests,
                        (ulong) keycache->global_cache_read));

  /*
    Reset these values to be able to detect a disabled key cache.
    See Bug#44068 (RESTORE can disable the MyISAM Key Cache).
  */
  keycache->blocks_used= 0;
  keycache->blocks_unused= 0;

  if (cleanup)
  {
    mysql_mutex_destroy(&keycache->cache_lock);
    keycache->key_cache_inited= keycache->can_be_used= 0;
    KEYCACHE_DEBUG_CLOSE;
  }
  DBUG_VOID_RETURN;
} /* end_key_cache */


/*
  Link a thread into double-linked queue of waiting threads.

  SYNOPSIS
    link_into_queue()
      wqueue              pointer to the queue structure
      thread              pointer to the thread to be added to the queue

  RETURN VALUE
    none

  NOTES.
    Queue is represented by a circular list of the thread structures
    The list is double-linked of the type (**prev,*next), accessed by
    a pointer to the last element.
*/

static void link_into_queue(KEYCACHE_WQUEUE *wqueue,
                            struct st_my_thread_var *thread)
{
  struct st_my_thread_var *last;
  DBUG_ASSERT(!thread->next && !thread->prev);

  if (! (last= wqueue->last_thread))
  {
    /* Queue is empty */
    thread->next= thread;
    thread->prev= &thread->next;
  }
  else
  {
    DBUG_ASSERT(last->next->prev == &last->next);
    /* Add backlink to previous element */
    thread->prev=      last->next->prev;
    /* Fix first in list to point backwords to current */
    last->next->prev=  &thread->next;
    /* Next should point to the first element in list */
    thread->next=      last->next;
    /* Fix old element to point to new one */
    last->next=        thread;
  }
  wqueue->last_thread= thread;
}

/*
  Unlink a thread from double-linked queue of waiting threads

  SYNOPSIS
    unlink_from_queue()
      wqueue              pointer to the queue structure
      thread              pointer to the thread to be removed from the queue

  RETURN VALUE
    none

  NOTES.
    See NOTES for link_into_queue
*/

static void unlink_from_queue(KEYCACHE_WQUEUE *wqueue,
                              struct st_my_thread_var *thread)
{
  KEYCACHE_DBUG_PRINT("unlink_from_queue", ("thread %ld", (ulong) thread->id));
  DBUG_ASSERT(thread->next && thread->prev);

  if (thread->next == thread)
  {
    /* The queue contains only one member */
    wqueue->last_thread= NULL;
  }
  else
  {
    /* Remove current element from list */
    thread->next->prev= thread->prev;
    *thread->prev=      thread->next;
    /* If first element, change list pointer to point to previous element */
    if (wqueue->last_thread == thread)
      wqueue->last_thread= STRUCT_PTR(struct st_my_thread_var, next,
                                      thread->prev);
  }
  thread->next= NULL;
#ifdef DBUG_ASSERT_EXISTS
  /*
    This makes it easier to see it's not in a chain during debugging.
    And some DBUG_ASSERT() rely on it.
  */
  thread->prev= NULL;
#endif
}


/*
  Add a thread to single-linked queue of waiting threads

  SYNOPSIS
    wait_on_queue()
      wqueue            Pointer to the queue structure.
      mutex             Cache_lock to acquire after awake.

  RETURN VALUE
    none

  NOTES.
    Queue is represented by a circular list of the thread structures
    The list is single-linked of the type (*next), accessed by a pointer
    to the last element.

    The function protects against stray signals by verifying that the
    current thread is unlinked from the queue when awaking. However,
    since several threads can wait for the same event, it might be
    necessary for the caller of the function to check again if the
    condition for awake is indeed matched.
*/

static void wait_on_queue(KEYCACHE_WQUEUE *wqueue,
                          mysql_mutex_t *mutex)
{
  struct st_my_thread_var *last;
  struct st_my_thread_var *thread= my_thread_var;
  DBUG_ASSERT(!thread->next);
  DBUG_ASSERT(!thread->prev); /* Not required, but must be true anyway. */
  mysql_mutex_assert_owner(mutex);

  /* Add to queue. */
  if (! (last= wqueue->last_thread))
    thread->next= thread;
  else
  {
    thread->next= last->next;
    last->next= thread;
  }
  wqueue->last_thread= thread;

  /*
    Wait until thread is removed from queue by the signaling thread.
    The loop protects against stray signals.
  */
  do
  {
    KEYCACHE_DBUG_PRINT("wait", ("suspend thread %ld", (ulong) thread->id));
    keycache_pthread_cond_wait(&thread->suspend, mutex);
  }
  while (thread->next);
}


/*
  Remove all threads from queue signaling them to proceed

  SYNOPSIS
    release_whole_queue()
      wqueue            pointer to the queue structure

  RETURN VALUE
    none

  NOTES.
    See notes for wait_on_queue().
    When removed from the queue each thread is signaled via condition
    variable thread->suspend.
*/

static void release_whole_queue(KEYCACHE_WQUEUE *wqueue)
{
  struct st_my_thread_var *last;
  struct st_my_thread_var *next;
  struct st_my_thread_var *thread;

  /* Queue may be empty. */
  if (!(last= wqueue->last_thread))
    return;

  next= last->next;                             /* First (oldest) element */
  do
  {
    thread=next;
    DBUG_ASSERT(thread && thread->init == 1);
    KEYCACHE_DBUG_PRINT("release_whole_queue: signal",
                        ("thread %ld", (ulong) thread->id));
    /* Take thread from queue. */
    next= thread->next;
    thread->next= NULL;

    /* Signal the thread. */
    keycache_pthread_cond_signal(&thread->suspend);
  }
  while (thread != last);

  /* Now queue is definitely empty. */
  wqueue->last_thread= NULL;
}


/*
  Unlink a block from the chain of dirty/clean blocks
*/

static inline void unlink_changed(BLOCK_LINK *block)
{
  DBUG_ASSERT(block->prev_changed && *block->prev_changed == block);
  if (block->next_changed)
    block->next_changed->prev_changed= block->prev_changed;
  *block->prev_changed= block->next_changed;

#ifdef DBUG_ASSERT_EXISTS
  /*
    This makes it easier to see it's not in a chain during debugging.
    And some DBUG_ASSERT() rely on it.
  */
  block->next_changed= NULL;
  block->prev_changed= NULL;
#endif
}


/*
  Link a block into the chain of dirty/clean blocks
*/

static inline void link_changed(BLOCK_LINK *block, BLOCK_LINK **phead)
{
  DBUG_ASSERT(!block->next_changed);
  DBUG_ASSERT(!block->prev_changed);
  block->prev_changed= phead;
  if ((block->next_changed= *phead))
    (*phead)->prev_changed= &block->next_changed;
  *phead= block;
}


/*
  Link a block in a chain of clean blocks of a file.

  SYNOPSIS
    link_to_file_list()
      keycache		Key cache handle
      block             Block to relink
      file              File to be linked to
      unlink            If to unlink first

  DESCRIPTION
    Unlink a block from whichever chain it is linked in, if it's
    asked for, and link it to the chain of clean blocks of the
    specified file.

  NOTE
    Please do never set/clear BLOCK_CHANGED outside of
    link_to_file_list() or link_to_changed_list().
    You would risk to damage correct counting of changed blocks
    and to find blocks in the wrong hash.

  RETURN
    void
*/

static void link_to_file_list(SIMPLE_KEY_CACHE_CB *keycache,
                              BLOCK_LINK *block, int file,
                              my_bool unlink_block)
{
  DBUG_ASSERT(block->status & BLOCK_IN_USE);
  DBUG_ASSERT(block->hash_link && block->hash_link->block == block);
  DBUG_ASSERT(block->hash_link->file == file);
  if (unlink_block)
    unlink_changed(block);
  link_changed(block, &keycache->file_blocks[FILE_HASH(file, keycache)]);
  if (block->status & BLOCK_CHANGED)
  {
    block->status&= ~BLOCK_CHANGED;
    keycache->blocks_changed--;
    keycache->global_blocks_changed--;
  }
}


/*
  Re-link a block from the clean chain to the dirty chain of a file.

  SYNOPSIS
    link_to_changed_list()
      keycache		key cache handle
      block             block to relink

  DESCRIPTION
    Unlink a block from the chain of clean blocks of a file
    and link it to the chain of dirty blocks of the same file.

  NOTE
    Please do never set/clear BLOCK_CHANGED outside of
    link_to_file_list() or link_to_changed_list().
    You would risk to damage correct counting of changed blocks
    and to find blocks in the wrong hash.

  RETURN
    void
*/

static void link_to_changed_list(SIMPLE_KEY_CACHE_CB *keycache,
                                 BLOCK_LINK *block)
{
  DBUG_ASSERT(block->status & BLOCK_IN_USE);
  DBUG_ASSERT(!(block->status & BLOCK_CHANGED));
  DBUG_ASSERT(block->hash_link && block->hash_link->block == block);

  unlink_changed(block);
  link_changed(block,
               &keycache->changed_blocks[FILE_HASH(block->hash_link->file, keycache)]);
  block->status|=BLOCK_CHANGED;
  keycache->blocks_changed++;
  keycache->global_blocks_changed++;
}


/*
  Link a block to the LRU chain at the beginning or at the end of
  one of two parts.

  SYNOPSIS
    link_block()
      keycache            pointer to a key cache data structure
      block               pointer to the block to link to the LRU chain
      hot                 <-> to link the block into the hot subchain
      at_end              <-> to link the block at the end of the subchain

  RETURN VALUE
    none

  NOTES.
    The LRU ring is represented by a circular list of block structures.
    The list is double-linked of the type (**prev,*next) type.
    The LRU ring is divided into two parts - hot and warm.
    There are two pointers to access the last blocks of these two
    parts. The beginning of the warm part follows right after the
    end of the hot part.
    Only blocks of the warm part can be used for eviction.
    The first block from the beginning of this subchain is always
    taken for eviction (keycache->last_used->next)

    LRU chain:       +------+   H O T    +------+
                +----| end  |----...<----| beg  |----+
                |    +------+last        +------+    |
                v<-link in latest hot (new end)      |
                |     link in latest warm (new end)->^
                |    +------+  W A R M   +------+    |
                +----| beg  |---->...----| end  |----+
                     +------+            +------+ins
                  first for eviction

    It is also possible that the block is selected for eviction and thus
    not linked in the LRU ring.
*/

static void link_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block,
                       my_bool hot, my_bool at_end)
{
  BLOCK_LINK *ins;
  BLOCK_LINK **pins;

  DBUG_ASSERT((block->status & ~BLOCK_CHANGED) == (BLOCK_READ | BLOCK_IN_USE));
  DBUG_ASSERT(block->hash_link); /*backptr to block NULL from free_block()*/
  DBUG_ASSERT(!block->requests);
  DBUG_ASSERT(block->prev_changed && *block->prev_changed == block);
  DBUG_ASSERT(!block->next_used);
  DBUG_ASSERT(!block->prev_used);
  if (!hot && keycache->waiting_for_block.last_thread)
  {
    /* Signal that in the LRU warm sub-chain an available block has appeared */
    struct st_my_thread_var *last_thread=
                               keycache->waiting_for_block.last_thread;
    struct st_my_thread_var *first_thread= last_thread->next;
    struct st_my_thread_var *next_thread= first_thread;
    HASH_LINK *hash_link= (HASH_LINK *) first_thread->keycache_link;
    struct st_my_thread_var *thread;
    do
    {
      thread= next_thread;
      next_thread= thread->next;
      /*
         We notify about the event all threads that ask
         for the same page as the first thread in the queue
      */
      if ((HASH_LINK *) thread->keycache_link == hash_link)
      {
        KEYCACHE_DBUG_PRINT("link_block: signal",
                            ("thread %ld", (ulong) thread->id));
        keycache_pthread_cond_signal(&thread->suspend);
        unlink_from_queue(&keycache->waiting_for_block, thread);
        block->requests++;
      }
    }
    while (thread != last_thread);
    hash_link->block= block;
    /*
      NOTE: We assigned the block to the hash_link and signalled the
      requesting thread(s). But it is possible that other threads runs
      first. These threads see the hash_link assigned to a block which
      is assigned to another hash_link and not marked BLOCK_IN_SWITCH.
      This can be a problem for functions that do not select the block
      via its hash_link: flush and free. They do only see a block which
      is in a "normal" state and don't know that it will be evicted soon.

      We cannot set BLOCK_IN_SWITCH here because only one of the
      requesting threads must handle the eviction. All others must wait
      for it to complete. If we set the flag here, the threads would not
      know who is in charge of the eviction. Without the flag, the first
      thread takes the stick and sets the flag.

      But we need to note in the block that is has been selected for
      eviction. It must not be freed. The evicting thread will not
      expect the block in the free list. Before freeing we could also
      check if block->requests > 1. But I think including another flag
      in the check of block->status is slightly more efficient and
      probably easier to read.
    */
    block->status|= BLOCK_IN_EVICTION;
    KEYCACHE_THREAD_TRACE("link_block: after signaling");
#if defined(KEYCACHE_DEBUG)
    KEYCACHE_DBUG_PRINT("link_block",
        ("linked,unlinked block %u  status=%x  #requests=%u  #available=%u",
         BLOCK_NUMBER(block), block->status,
         block->requests, keycache->blocks_available));
#endif
    return;
  }
  pins= hot ? &keycache->used_ins : &keycache->used_last;
  ins= *pins;
  if (ins)
  {
    ins->next_used->prev_used= &block->next_used;
    block->next_used= ins->next_used;
    block->prev_used= &ins->next_used;
    ins->next_used= block;
    if (at_end)
      *pins= block;
  }
  else
  {
    /* The LRU ring is empty. Let the block point to itself. */
    keycache->used_last= keycache->used_ins= block->next_used= block;
    block->prev_used= &block->next_used;
  }
  KEYCACHE_THREAD_TRACE("link_block");
#if defined(KEYCACHE_DEBUG)
  keycache->blocks_available++;
  KEYCACHE_DBUG_PRINT("link_block",
      ("linked block %u:%1u  status=%x  #requests=%u  #available=%u",
       BLOCK_NUMBER(block), at_end, block->status,
       block->requests, keycache->blocks_available));
  KEYCACHE_DBUG_ASSERT((ulong) keycache->blocks_available <=
                       keycache->blocks_used);
#endif
}


/*
  Unlink a block from the LRU chain

  SYNOPSIS
    unlink_block()
      keycache            pointer to a key cache data structure
      block               pointer to the block to unlink from the LRU chain

  RETURN VALUE
    none

  NOTES.
    See NOTES for link_block
*/

static void unlink_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block)
{
  DBUG_ASSERT((block->status & ~BLOCK_CHANGED) == (BLOCK_READ | BLOCK_IN_USE));
  DBUG_ASSERT(block->hash_link); /*backptr to block NULL from free_block()*/
  DBUG_ASSERT(!block->requests);
  DBUG_ASSERT(block->prev_changed && *block->prev_changed == block);
  DBUG_ASSERT(block->next_used && block->prev_used &&
              (block->next_used->prev_used == &block->next_used) &&
              (*block->prev_used == block));
  if (block->next_used == block)
    /* The list contains only one member */
    keycache->used_last= keycache->used_ins= NULL;
  else
  {
    block->next_used->prev_used= block->prev_used;
    *block->prev_used= block->next_used;
    if (keycache->used_last == block)
      keycache->used_last= STRUCT_PTR(BLOCK_LINK, next_used, block->prev_used);
    if (keycache->used_ins == block)
      keycache->used_ins=STRUCT_PTR(BLOCK_LINK, next_used, block->prev_used);
  }
  block->next_used= NULL;
#ifdef DBUG_ASSERT_EXISTS
  /*
    This makes it easier to see it's not in a chain during debugging.
    And some DBUG_ASSERT() rely on it.
  */
  block->prev_used= NULL;
#endif

  KEYCACHE_THREAD_TRACE("unlink_block");
#if defined(KEYCACHE_DEBUG)
  KEYCACHE_DBUG_ASSERT(keycache->blocks_available != 0);
  keycache->blocks_available--;
  KEYCACHE_DBUG_PRINT("unlink_block",
    ("unlinked block %u  status=%x   #requests=%u  #available=%u",
     BLOCK_NUMBER(block), block->status,
     block->requests, keycache->blocks_available));
#endif
}


/*
  Register requests for a block.

  SYNOPSIS
    reg_requests()
      keycache          Pointer to a key cache data structure.
      block             Pointer to the block to register a request on.
      count             Number of requests. Always 1.

  NOTE
    The first request unlinks the block from the LRU ring. This means
    that it is protected against eveiction.

  RETURN
    void
*/
static void reg_requests(SIMPLE_KEY_CACHE_CB *keycache,
                         BLOCK_LINK *block, int count)
{
  DBUG_ASSERT(block->status & BLOCK_IN_USE);
  DBUG_ASSERT(block->hash_link);

  if (!block->requests)
    unlink_block(keycache, block);
  block->requests+=count;
}


/*
  Unregister request for a block
  linking it to the LRU chain if it's the last request

  SYNOPSIS
    unreg_request()
    keycache            pointer to a key cache data structure
    block               pointer to the block to link to the LRU chain
    at_end              <-> to link the block at the end of the LRU chain

  RETURN VALUE
    none

  NOTES.
    Every linking to the LRU ring decrements by one a special block
    counter (if it's positive). If the at_end parameter is TRUE the block is
    added either at the end of warm sub-chain or at the end of hot sub-chain.
    It is added to the hot subchain if its counter is zero and number of
    blocks in warm sub-chain is not less than some low limit (determined by
    the division_limit parameter). Otherwise the block is added to the warm
    sub-chain. If the at_end parameter is FALSE the block is always added
    at beginning of the warm sub-chain.
    Thus a warm block can be promoted to the hot sub-chain when its counter
    becomes zero for the first time.
    At the same time  the block at the very beginning of the hot subchain
    might be moved to the beginning of the warm subchain if it stays untouched
    for a too long time (this time is determined by parameter age_threshold).

    It is also possible that the block is selected for eviction and thus
    not linked in the LRU ring.
*/

static void unreg_request(SIMPLE_KEY_CACHE_CB *keycache,
                          BLOCK_LINK *block, int at_end)
{
  DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
  DBUG_ASSERT(block->hash_link); /*backptr to block NULL from free_block()*/
  DBUG_ASSERT(block->requests);
  DBUG_ASSERT(block->prev_changed && *block->prev_changed == block);
  DBUG_ASSERT(!block->next_used);
  DBUG_ASSERT(!block->prev_used);
  /*
    Unregister the request, but do not link erroneous blocks into the
    LRU ring.
  */
  if (!--block->requests && !(block->status & BLOCK_ERROR))
  {
    my_bool hot;
    if (block->hits_left)
      block->hits_left--;
    hot= !block->hits_left && at_end &&
      keycache->warm_blocks > keycache->min_warm_blocks;
    if (hot)
    {
      if (block->temperature == BLOCK_WARM)
        keycache->warm_blocks--;
      block->temperature= BLOCK_HOT;
      KEYCACHE_DBUG_PRINT("unreg_request", ("#warm_blocks: %lu",
                           keycache->warm_blocks));
    }
    link_block(keycache, block, hot, (my_bool)at_end);
    block->last_hit_time= keycache->keycache_time;
    keycache->keycache_time++;
    /*
      At this place, the block might be in the LRU ring or not. If an
      evicter was waiting for a block, it was selected for eviction and
      not linked in the LRU ring.
    */

    /*
      Check if we should link a hot block to the warm block sub-chain.
      It is possible that we select the same block as above. But it can
      also be another block. In any case a block from the LRU ring is
      selected. In other words it works even if the above block was
      selected for eviction and not linked in the LRU ring. Since this
      happens only if the LRU ring is empty, the block selected below
      would be NULL and the rest of the function skipped.
    */
    block= keycache->used_ins;
    if (block && keycache->keycache_time - block->last_hit_time >
	keycache->age_threshold)
    {
      unlink_block(keycache, block);
      link_block(keycache, block, 0, 0);
      if (block->temperature != BLOCK_WARM)
      {
        keycache->warm_blocks++;
        block->temperature= BLOCK_WARM;
      }
      KEYCACHE_DBUG_PRINT("unreg_request", ("#warm_blocks: %lu",
                           keycache->warm_blocks));
    }
  }
}

/*
  Remove a reader of the page in block
*/

static void remove_reader(BLOCK_LINK *block)
{
  DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
  DBUG_ASSERT(block->hash_link && block->hash_link->block == block);
  DBUG_ASSERT(block->prev_changed && *block->prev_changed == block);
  DBUG_ASSERT(!block->next_used);
  DBUG_ASSERT(!block->prev_used);
  DBUG_ASSERT(block->hash_link->requests);
  if (! --block->hash_link->requests && block->condvar)
    keycache_pthread_cond_signal(block->condvar);
}


/*
  Wait until the last reader of the page in block
  signals on its termination
*/

static void wait_for_readers(SIMPLE_KEY_CACHE_CB *keycache,
                             BLOCK_LINK *block)
{
  struct st_my_thread_var *thread= my_thread_var;
  DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
  DBUG_ASSERT(!(block->status & (BLOCK_IN_FLUSH | BLOCK_CHANGED)));
  DBUG_ASSERT(block->hash_link);
  DBUG_ASSERT(block->hash_link->block == block);
  /* Linked in file_blocks or changed_blocks hash. */
  DBUG_ASSERT(block->prev_changed && *block->prev_changed == block);
  /* Not linked in LRU ring. */
  DBUG_ASSERT(!block->next_used);
  DBUG_ASSERT(!block->prev_used);
  while (block->hash_link->requests)
  {
    KEYCACHE_DBUG_PRINT("wait_for_readers: wait",
                        ("suspend thread %ld  block %u",
                         (ulong) thread->id, BLOCK_NUMBER(block)));
    /* There must be no other waiter. We have no queue here. */
    DBUG_ASSERT(!block->condvar);
    block->condvar= &thread->suspend;
    keycache_pthread_cond_wait(&thread->suspend, &keycache->cache_lock);
    block->condvar= NULL;
  }
}


/*
  Add a hash link to a bucket in the hash_table
*/

static inline void link_hash(HASH_LINK **start, HASH_LINK *hash_link)
{
  if (*start)
    (*start)->prev= &hash_link->next;
  hash_link->next= *start;
  hash_link->prev= start;
  *start= hash_link;
}


/*
  Remove a hash link from the hash table
*/

static void unlink_hash(SIMPLE_KEY_CACHE_CB *keycache, HASH_LINK *hash_link)
{
  KEYCACHE_DBUG_PRINT("unlink_hash", ("fd: %u  pos_ %lu  #requests=%u",
      (uint) hash_link->file,(ulong) hash_link->diskpos, hash_link->requests));
  KEYCACHE_DBUG_ASSERT(hash_link->requests == 0);
  if ((*hash_link->prev= hash_link->next))
    hash_link->next->prev= hash_link->prev;
  hash_link->block= NULL;
  if (keycache->waiting_for_hash_link.last_thread)
  {
    /* Signal that a free hash link has appeared */
    struct st_my_thread_var *last_thread=
                               keycache->waiting_for_hash_link.last_thread;
    struct st_my_thread_var *first_thread= last_thread->next;
    struct st_my_thread_var *next_thread= first_thread;
    KEYCACHE_PAGE *first_page= (KEYCACHE_PAGE *) (first_thread->keycache_link);
    struct st_my_thread_var *thread;

    hash_link->file= first_page->file;
    hash_link->diskpos= first_page->filepos;
    do
    {
      KEYCACHE_PAGE *page;
      thread= next_thread;
      page= (KEYCACHE_PAGE *) thread->keycache_link;
      next_thread= thread->next;
      /*
         We notify about the event all threads that ask
         for the same page as the first thread in the queue
      */
      if (page->file == hash_link->file && page->filepos == hash_link->diskpos)
      {
        KEYCACHE_DBUG_PRINT("unlink_hash: signal",
                            ("thread %ld", (ulong) thread->id));
        keycache_pthread_cond_signal(&thread->suspend);
        unlink_from_queue(&keycache->waiting_for_hash_link, thread);
      }
    }
    while (thread != last_thread);
    link_hash(&keycache->hash_root[KEYCACHE_HASH(hash_link->file,
					         hash_link->diskpos)],
              hash_link);
    return;
  }
  hash_link->next= keycache->free_hash_list;
  keycache->free_hash_list= hash_link;
}


/*
  Get the hash link for a page
*/

static HASH_LINK *get_hash_link(SIMPLE_KEY_CACHE_CB *keycache,
                                int file, my_off_t filepos)
{
  reg1 HASH_LINK *hash_link, **start;
#if defined(KEYCACHE_DEBUG)
  int cnt;
#endif

  KEYCACHE_DBUG_PRINT("get_hash_link", ("fd: %u  pos: %lu",
                      (uint) file,(ulong) filepos));

restart:
  /*
     Find the bucket in the hash table for the pair (file, filepos);
     start contains the head of the bucket list,
     hash_link points to the first member of the list
  */
  hash_link= *(start= &keycache->hash_root[KEYCACHE_HASH(file, filepos)]);
#if defined(KEYCACHE_DEBUG)
  cnt= 0;
#endif
  /* Look for an element for the pair (file, filepos) in the bucket chain */
  while (hash_link &&
         (hash_link->diskpos != filepos || hash_link->file != file))
  {
    hash_link= hash_link->next;
#if defined(KEYCACHE_DEBUG)
    cnt++;
    if (! (cnt <= keycache->hash_links_used))
    {
      int i;
      for (i=0, hash_link= *start ;
           i < cnt ; i++, hash_link= hash_link->next)
      {
        KEYCACHE_DBUG_PRINT("get_hash_link", ("fd: %u  pos: %lu",
            (uint) hash_link->file,(ulong) hash_link->diskpos));
      }
    }
    KEYCACHE_DBUG_ASSERT(cnt <= keycache->hash_links_used);
#endif
  }
  if (! hash_link)
  {
    /* There is no hash link in the hash table for the pair (file, filepos) */
    if (keycache->free_hash_list)
    {
      hash_link= keycache->free_hash_list;
      keycache->free_hash_list= hash_link->next;
    }
    else if (keycache->hash_links_used < keycache->hash_links)
    {
      hash_link= &keycache->hash_link_root[keycache->hash_links_used++];
    }
    else
    {
      /* Wait for a free hash link */
      struct st_my_thread_var *thread= my_thread_var;
      KEYCACHE_PAGE page;
      KEYCACHE_DBUG_PRINT("get_hash_link", ("waiting"));
      page.file= file;
      page.filepos= filepos;
      thread->keycache_link= (void *) &page;
      link_into_queue(&keycache->waiting_for_hash_link, thread);
      KEYCACHE_DBUG_PRINT("get_hash_link: wait",
                          ("suspend thread %ld", (ulong) thread->id));
      keycache_pthread_cond_wait(&thread->suspend,
                                 &keycache->cache_lock);
      thread->keycache_link= NULL;
      goto restart;
    }
    hash_link->file= file;
    hash_link->diskpos= filepos;
    link_hash(start, hash_link);
  }
  /* Register the request for the page */
  hash_link->requests++;

  return hash_link;
}


/*
  Get a block for the file page requested by a keycache read/write operation;
  If the page is not in the cache return a free block, if there is none
  return the lru block after saving its buffer if the page is dirty.

  SYNOPSIS

    find_key_block()
      keycache            pointer to a key cache data structure
      file                handler for the file to read page from
      filepos             position of the page in the file
      init_hits_left      how initialize the block counter for the page
      wrmode              <-> get for writing
      page_st        out  {PAGE_READ,PAGE_TO_BE_READ,PAGE_WAIT_TO_BE_READ}

  RETURN VALUE
    Pointer to the found block if successful, 0 - otherwise

  NOTES.
    For the page from file positioned at filepos the function checks whether
    the page is in the key cache specified by the first parameter.
    If this is the case it immediately returns the block.
    If not, the function first chooses  a block for this page. If there is
    no not used blocks in the key cache yet, the function takes the block
    at the very beginning of the warm sub-chain. It saves the page in that
    block if it's dirty before returning the pointer to it.
    The function returns in the page_st parameter the following values:
      PAGE_READ         - if page already in the block,
      PAGE_TO_BE_READ   - if it is to be read yet by the current thread
      WAIT_TO_BE_READ   - if it is to be read by another thread
    If an error occurs THE BLOCK_ERROR bit is set in the block status.
    It might happen that there are no blocks in LRU chain (in warm part) -
    all blocks  are unlinked for some read/write operations. Then the function
    waits until first of this operations links any block back.
*/

static BLOCK_LINK *find_key_block(SIMPLE_KEY_CACHE_CB *keycache,
                                  File file, my_off_t filepos,
                                  int init_hits_left,
                                  int wrmode, int *page_st)
{
  HASH_LINK *hash_link;
  BLOCK_LINK *block;
  int error= 0;
  int page_status;

  DBUG_ENTER("find_key_block");
  KEYCACHE_THREAD_TRACE("find_key_block:begin");
  DBUG_PRINT("enter", ("fd: %d  pos: %lu  wrmode: %d",
                       file, (ulong) filepos, wrmode));
  KEYCACHE_DBUG_PRINT("find_key_block", ("fd: %d  pos: %lu  wrmode: %d",
                                         file, (ulong) filepos,
                                         wrmode));
#if !defined(DBUG_OFF) && defined(EXTRA_DEBUG)
  DBUG_EXECUTE("check_keycache2",
               test_key_cache(keycache, "start of find_key_block", 0););
#endif

restart:
  /*
    If the flush phase of a resize operation fails, the cache is left
    unusable. This will be detected only after "goto restart".
  */
  if (!keycache->can_be_used)
    DBUG_RETURN(0);

  /*
    Find the hash_link for the requested file block (file, filepos). We
    do always get a hash_link here. It has registered our request so
    that no other thread can use it for another file block until we
    release the request (which is done by remove_reader() usually). The
    hash_link can have a block assigned to it or not. If there is a
    block, it may be assigned to this hash_link or not. In cases where a
    block is evicted from the cache, it is taken from the LRU ring and
    referenced by the new hash_link. But the block can still be assigned
    to its old hash_link for some time if it needs to be flushed first,
    or if there are other threads still reading it.

    Summary:
      hash_link is always returned.
      hash_link->block can be:
      - NULL or
      - not assigned to this hash_link or
      - assigned to this hash_link. If assigned, the block can have
        - invalid data (when freshly assigned) or
        - valid data. Valid data can be
          - changed over the file contents (dirty) or
          - not changed (clean).
  */
  hash_link= get_hash_link(keycache, file, filepos);
  DBUG_ASSERT((hash_link->file == file) && (hash_link->diskpos == filepos));

  page_status= -1;
  if ((block= hash_link->block) &&
      block->hash_link == hash_link && (block->status & BLOCK_READ))
  {
    /* Assigned block with valid (changed or unchanged) contents. */
    page_status= PAGE_READ;
  }
  /*
    else (page_status == -1)
      - block == NULL or
      - block not assigned to this hash_link or
      - block assigned but not yet read from file (invalid data).
  */

  if (keycache->in_resize)
  {
    /* This is a request during a resize operation */

    if (!block)
    {
      struct st_my_thread_var *thread;

      /*
        The file block is not in the cache. We don't need it in the
        cache: we are going to read or write directly to file. Cancel
        the request. We can simply decrement hash_link->requests because
        we did not release cache_lock since increasing it. So no other
        thread can wait for our request to become released.
      */
      if (hash_link->requests == 1)
      {
        /*
          We are the only one to request this hash_link (this file/pos).
          Free the hash_link.
        */
        hash_link->requests--;
        unlink_hash(keycache, hash_link);
        DBUG_RETURN(0);
      }

      /*
        More requests on the hash_link. Someone tries to evict a block
        for this hash_link (could have started before resizing started).
        This means that the LRU ring is empty. Otherwise a block could
        be assigned immediately. Behave like a thread that wants to
        evict a block for this file/pos. Add to the queue of threads
        waiting for a block. Wait until there is one assigned.

        Refresh the request on the hash-link so that it cannot be reused
        for another file/pos.
      */
      thread= my_thread_var;
      thread->keycache_link= (void *) hash_link;
      link_into_queue(&keycache->waiting_for_block, thread);
      do
      {
        KEYCACHE_DBUG_PRINT("find_key_block: wait",
                            ("suspend thread %ld", (ulong) thread->id));
        keycache_pthread_cond_wait(&thread->suspend,
                                   &keycache->cache_lock);
      } while (thread->next);
      thread->keycache_link= NULL;
      /*
        A block should now be assigned to the hash_link. But it may
        still need to be evicted. Anyway, we should re-check the
        situation. page_status must be set correctly.
      */
      hash_link->requests--;
      goto restart;
    } /* end of if (!block) */

    /*
      There is a block for this file/pos in the cache. Register a
      request on it. This unlinks it from the LRU ring (if it is there)
      and hence protects it against eviction (if not already in
      eviction). We need this for returning the block to the caller, for
      calling remove_reader() (for debugging purposes), and for calling
      free_block(). The only case where we don't need the request is if
      the block is in eviction. In that case we have to unregister the
      request later.
    */
    reg_requests(keycache, block, 1);

    if (page_status != PAGE_READ)
    {
      /*
        - block not assigned to this hash_link or
        - block assigned but not yet read from file (invalid data).

        This must be a block in eviction. It will be read soon. We need
        to wait here until this happened. Otherwise the caller could
        access a wrong block or a block which is in read. While waiting
        we cannot lose hash_link nor block. We have registered a request
        on the hash_link. Everything can happen to the block but changes
        in the hash_link -> block relationship. In other words:
        everything can happen to the block but free or another completed
        eviction.

        Note that we bahave like a secondary requestor here. We just
        cannot return with PAGE_WAIT_TO_BE_READ. This would work for
        read requests and writes on dirty blocks that are not in flush
        only. Waiting here on COND_FOR_REQUESTED works in all
        situations.
      */
      DBUG_ASSERT(((block->hash_link != hash_link) &&
                   (block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))) ||
                  ((block->hash_link == hash_link) &&
                   !(block->status & BLOCK_READ)));
      wait_on_queue(&block->wqueue[COND_FOR_REQUESTED], &keycache->cache_lock);
      /*
        Here we can trust that the block has been assigned to this
        hash_link (block->hash_link == hash_link) and read into the
        buffer (BLOCK_READ). The worst things possible here are that the
        block is in free (BLOCK_REASSIGNED). But the block is still
        assigned to the hash_link. The freeing thread waits until we
        release our request on the hash_link. The block must not be
        again in eviction because we registered an request on it before
        starting to wait.
      */
      DBUG_ASSERT(block->hash_link == hash_link);
      DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
      DBUG_ASSERT(!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH)));
    }
    /*
      The block is in the cache. Assigned to the hash_link. Valid data.
      Note that in case of page_st == PAGE_READ, the block can be marked
      for eviction. In any case it can be marked for freeing.
    */

    if (!wrmode)
    {
      /* A reader can just read the block. */
      *page_st= PAGE_READ;
      DBUG_ASSERT((hash_link->file == file) &&
                  (hash_link->diskpos == filepos) &&
                  (block->hash_link == hash_link));
      DBUG_RETURN(block);
    }

    /*
      This is a writer. No two writers for the same block can exist.
      This must be assured by locks outside of the key cache.
    */
    DBUG_ASSERT(!(block->status & BLOCK_FOR_UPDATE) || fail_block(block));

    while (block->status & BLOCK_IN_FLUSH)
    {
      /*
        Wait until the block is flushed to file. Do not release the
        request on the hash_link yet to prevent that the block is freed
        or reassigned while we wait. While we wait, several things can
        happen to the block, including another flush. But the block
        cannot be reassigned to another hash_link until we release our
        request on it. But it can be marked BLOCK_REASSIGNED from free
        or eviction, while they wait for us to release the hash_link.
      */
      wait_on_queue(&block->wqueue[COND_FOR_SAVED], &keycache->cache_lock);
      /*
        If the flush phase failed, the resize could have finished while
        we waited here.
      */
      if (!keycache->in_resize)
      {
        remove_reader(block);
        unreg_request(keycache, block, 1);
        goto restart;
      }
      DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
      DBUG_ASSERT(!(block->status & BLOCK_FOR_UPDATE) || fail_block(block));
      DBUG_ASSERT(block->hash_link == hash_link);
    }

    if (block->status & BLOCK_CHANGED)
    {
      /*
        We want to write a block with changed contents. If the cache
        block size is bigger than the callers block size (e.g. MyISAM),
        the caller may replace part of the block only. Changes of the
        other part of the block must be preserved. Since the block has
        not yet been selected for flush, we can still add our changes.
      */
      *page_st= PAGE_READ;
      DBUG_ASSERT((hash_link->file == file) &&
                  (hash_link->diskpos == filepos) &&
                  (block->hash_link == hash_link));
      DBUG_RETURN(block);
    }

    /*
      This is a write request for a clean block. We do not want to have
      new dirty blocks in the cache while resizing. We will free the
      block and write directly to file. If the block is in eviction or
      in free, we just let it go.

      Unregister from the hash_link. This must be done before freeing
      the block. And it must be done if not freeing the block. Because
      we could have waited above, we need to call remove_reader(). Other
      threads could wait for us to release our request on the hash_link.
    */
    remove_reader(block);

    /* If the block is not in eviction and not in free, we can free it. */
    if (!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH |
                           BLOCK_REASSIGNED)))
    {
      /*
        Free block as we are going to write directly to file.
        Although we have an exlusive lock for the updated key part,
        the control can be yielded by the current thread as we might
        have unfinished readers of other key parts in the block
        buffer. Still we are guaranteed not to have any readers
        of the key part we are writing into until the block is
        removed from the cache as we set the BLOCK_REASSIGNED
        flag (see the code below that handles reading requests).
      */
      free_block(keycache, block);
    }
    else
    {
      /*
        The block will be evicted/freed soon. Don't touch it in any way.
        Unregister the request that we registered above.
      */
      unreg_request(keycache, block, 1);

      /*
        The block is still assigned to the hash_link (the file/pos that
        we are going to write to). Wait until the eviction/free is
        complete. Otherwise the direct write could complete before all
        readers are done with the block. So they could read outdated
        data.

        Since we released our request on the hash_link, it can be reused
        for another file/pos. Hence we cannot just check for
        block->hash_link == hash_link. As long as the resize is
        proceeding the block cannot be reassigned to the same file/pos
        again. So we can terminate the loop when the block is no longer
        assigned to this file/pos.
      */
      do
      {
        wait_on_queue(&block->wqueue[COND_FOR_SAVED],
                      &keycache->cache_lock);
        /*
          If the flush phase failed, the resize could have finished
          while we waited here.
        */
        if (!keycache->in_resize)
          goto restart;
      } while (block->hash_link &&
               (block->hash_link->file == file) &&
               (block->hash_link->diskpos == filepos));
    }
    DBUG_RETURN(0);
  }

  if (page_status == PAGE_READ &&
      (block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH |
                        BLOCK_REASSIGNED)))
  {
    /*
      This is a request for a block to be removed from cache. The block
      is assigned to this hash_link and contains valid data, but is
      marked for eviction or to be freed. Possible reasons why it has
      not yet been evicted/freed can be a flush before reassignment
      (BLOCK_IN_SWITCH), readers of the block have not finished yet
      (BLOCK_REASSIGNED), or the evicting thread did not yet awake after
      the block has been selected for it (BLOCK_IN_EVICTION).
    */

    KEYCACHE_DBUG_PRINT("find_key_block",
                        ("request for old page in block %u "
                         "wrmode: %d  block->status: %d",
                         BLOCK_NUMBER(block), wrmode, block->status));
    /*
       Only reading requests can proceed until the old dirty page is flushed,
       all others are to be suspended, then resubmitted
    */
    if (!wrmode && !(block->status & BLOCK_REASSIGNED))
    {
      /*
        This is a read request and the block not yet reassigned. We can
        register our request and proceed. This unlinks the block from
        the LRU ring and protects it against eviction.
      */
      reg_requests(keycache, block, 1);
    }
    else
    {
      /*
        Either this is a write request for a block that is in eviction
        or in free. We must not use it any more. Instead we must evict
        another block. But we cannot do this before the eviction/free is
        done. Otherwise we would find the same hash_link + block again
        and again.

        Or this is a read request for a block in eviction/free that does
        not require a flush, but waits for readers to finish with the
        block. We do not read this block to let the eviction/free happen
        as soon as possible. Again we must wait so that we don't find
        the same hash_link + block again and again.
      */
      DBUG_ASSERT(hash_link->requests);
      hash_link->requests--;
      KEYCACHE_DBUG_PRINT("find_key_block",
                          ("request waiting for old page to be saved"));
      wait_on_queue(&block->wqueue[COND_FOR_SAVED], &keycache->cache_lock);
      KEYCACHE_DBUG_PRINT("find_key_block",
                          ("request for old page resubmitted"));
      /*
        The block is no longer assigned to this hash_link.
        Get another one.
      */
      goto restart;
    }
  }
  else
  {
    /*
      This is a request for a new block or for a block not to be removed.
      Either
      - block == NULL or
      - block not assigned to this hash_link or
      - block assigned but not yet read from file,
      or
      - block assigned with valid (changed or unchanged) data and
      - it will not be reassigned/freed.
    */
    if (! block)
    {
      /* No block is assigned to the hash_link yet. */
      if (keycache->blocks_unused)
      {
        if (keycache->free_block_list)
        {
          /* There is a block in the free list. */
          block= keycache->free_block_list;
          keycache->free_block_list= block->next_used;
          block->next_used= NULL;
        }
        else
        {
          size_t block_mem_offset;
          /* There are some never used blocks, take first of them */
          DBUG_ASSERT(keycache->blocks_used <
                      (ulong) keycache->disk_blocks);
          block= &keycache->block_root[keycache->blocks_used];
          block_mem_offset= 
           ((size_t) keycache->blocks_used) * keycache->key_cache_block_size;
          block->buffer= ADD_TO_PTR(keycache->block_mem,
                                    block_mem_offset,
                                    uchar*);
          keycache->blocks_used++;
          DBUG_ASSERT(!block->next_used);
        }
        DBUG_ASSERT(!block->prev_used);
        DBUG_ASSERT(!block->next_changed);
        DBUG_ASSERT(!block->prev_changed);
        DBUG_ASSERT(!block->hash_link);
        DBUG_ASSERT(!block->status);
        DBUG_ASSERT(!block->requests);
        keycache->blocks_unused--;
        block->status= BLOCK_IN_USE;
        block->length= 0;
        block->offset= keycache->key_cache_block_size;
        block->requests= 1;
        block->temperature= BLOCK_COLD;
        block->hits_left= init_hits_left;
        block->last_hit_time= 0;
        block->hash_link= hash_link;
        hash_link->block= block;
        link_to_file_list(keycache, block, file, 0);
        page_status= PAGE_TO_BE_READ;
        KEYCACHE_DBUG_PRINT("find_key_block",
                            ("got free or never used block %u",
                             BLOCK_NUMBER(block)));
      }
      else
      {
	/*
          There are no free blocks and no never used blocks, use a block
          from the LRU ring.
        */

        if (! keycache->used_last)
        {
          /*
            The LRU ring is empty. Wait until a new block is added to
            it. Several threads might wait here for the same hash_link,
            all of them must get the same block. While waiting for a
            block, after a block is selected for this hash_link, other
            threads can run first before this one awakes. During this
            time interval other threads find this hash_link pointing to
            the block, which is still assigned to another hash_link. In
            this case the block is not marked BLOCK_IN_SWITCH yet, but
            it is marked BLOCK_IN_EVICTION.
          */

          struct st_my_thread_var *thread= my_thread_var;
          thread->keycache_link= (void *) hash_link;
          link_into_queue(&keycache->waiting_for_block, thread);
          do
          {
            KEYCACHE_DBUG_PRINT("find_key_block: wait",
                                ("suspend thread %ld", (ulong) thread->id));
            keycache_pthread_cond_wait(&thread->suspend,
                                       &keycache->cache_lock);
          }
          while (thread->next);
          thread->keycache_link= NULL;
          /* Assert that block has a request registered. */
          DBUG_ASSERT(hash_link->block->requests);
          /* Assert that block is not in LRU ring. */
          DBUG_ASSERT(!hash_link->block->next_used);
          DBUG_ASSERT(!hash_link->block->prev_used);
        }
        /*
          If we waited above, hash_link->block has been assigned by
          link_block(). Otherwise it is still NULL. In the latter case
          we need to grab a block from the LRU ring ourselves.
        */
        block= hash_link->block;
        if (! block)
        {
          /* Select the last block from the LRU ring. */
          block= keycache->used_last->next_used;
          block->hits_left= init_hits_left;
          block->last_hit_time= 0;
          hash_link->block= block;
          /*
            Register a request on the block. This unlinks it from the
            LRU ring and protects it against eviction.
          */
          DBUG_ASSERT(!block->requests);
          reg_requests(keycache, block,1);
          /*
            We do not need to set block->status|= BLOCK_IN_EVICTION here
            because we will set block->status|= BLOCK_IN_SWITCH
            immediately without releasing the lock in between. This does
            also support debugging. When looking at the block, one can
            see if the block has been selected by link_block() after the
            LRU ring was empty, or if it was grabbed directly from the
            LRU ring in this branch.
          */
        }

        /*
          If we had to wait above, there is a small chance that another
          thread grabbed this block for the same file block already. But
          in most cases the first condition is true.
        */
        if (block->hash_link != hash_link &&
	    ! (block->status & BLOCK_IN_SWITCH) )
        {
	  /* this is a primary request for a new page */
          block->status|= BLOCK_IN_SWITCH;

          KEYCACHE_DBUG_PRINT("find_key_block",
                        ("got block %u for new page", BLOCK_NUMBER(block)));

          if (block->status & BLOCK_CHANGED)
          {
	    /* The block contains a dirty page - push it out of the cache */

            KEYCACHE_DBUG_PRINT("find_key_block", ("block is dirty"));
            if (block->status & BLOCK_IN_FLUSH)
            {
              /*
                The block is marked for flush. If we do not wait here,
                it could happen that we write the block, reassign it to
                another file block, then, before the new owner can read
                the new file block, the flusher writes the cache block
                (which still has the old contents) to the new file block!
              */
              wait_on_queue(&block->wqueue[COND_FOR_SAVED],
                            &keycache->cache_lock);
              /*
                The block is marked BLOCK_IN_SWITCH. It should be left
                alone except for reading. No free, no write.
              */
              DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
              DBUG_ASSERT(!(block->status & (BLOCK_REASSIGNED |
                                             BLOCK_CHANGED |
                                             BLOCK_FOR_UPDATE)));
            }
            else
            {
              block->status|= BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE;
              /*
                BLOCK_IN_EVICTION may be true or not. Other flags must
                have a fixed value.
              */
              DBUG_ASSERT((block->status & ~BLOCK_IN_EVICTION) ==
                          (BLOCK_READ | BLOCK_IN_SWITCH |
                           BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE |
                           BLOCK_CHANGED | BLOCK_IN_USE));
              DBUG_ASSERT(block->hash_link);

              keycache_pthread_mutex_unlock(&keycache->cache_lock);
              /*
                The call is thread safe because only the current
                thread might change the block->hash_link value
              */
              error= my_pwrite(block->hash_link->file,
                               block->buffer + block->offset,
                               block->length - block->offset,
                               block->hash_link->diskpos + block->offset,
                               MYF(MY_NABP | MY_WAIT_IF_FULL));
              keycache_pthread_mutex_lock(&keycache->cache_lock);

              /* Block status must not have changed. */
              DBUG_ASSERT((block->status & ~BLOCK_IN_EVICTION) ==
                          (BLOCK_READ | BLOCK_IN_SWITCH |
                           BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE |
                           BLOCK_CHANGED | BLOCK_IN_USE) || fail_block(block));
              keycache->global_cache_write++;
            }
          }

          block->status|= BLOCK_REASSIGNED;
          /*
            The block comes from the LRU ring. It must have a hash_link
            assigned.
          */
          DBUG_ASSERT(block->hash_link);
          if (block->hash_link)
          {
            /*
              All pending requests for this page must be resubmitted.
              This must be done before waiting for readers. They could
              wait for the flush to complete. And we must also do it
              after the wait. Flushers might try to free the block while
              we wait. They would wait until the reassignment is
              complete. Also the block status must reflect the correct
              situation: The block is not changed nor in flush any more.
              Note that we must not change the BLOCK_CHANGED flag
              outside of link_to_file_list() so that it is always in the
              correct queue and the *blocks_changed counters are
              correct.
            */
            block->status&= ~(BLOCK_IN_FLUSH | BLOCK_IN_FLUSHWRITE);
            link_to_file_list(keycache, block, block->hash_link->file, 1);
            release_whole_queue(&block->wqueue[COND_FOR_SAVED]);
            /*
              The block is still assigned to its old hash_link.
	      Wait until all pending read requests
	      for this page are executed
	      (we could have avoided this waiting, if we had read
	      a page in the cache in a sweep, without yielding control)
            */
            wait_for_readers(keycache, block);
            DBUG_ASSERT(block->hash_link && block->hash_link->block == block &&
                        block->prev_changed);
            /* The reader must not have been a writer. */
            DBUG_ASSERT(!(block->status & BLOCK_CHANGED));

            /* Wake flushers that might have found the block in between. */
            release_whole_queue(&block->wqueue[COND_FOR_SAVED]);

            /* Remove the hash link for the old file block from the hash. */
            unlink_hash(keycache, block->hash_link);

            /*
              For sanity checks link_to_file_list() asserts that block
              and hash_link refer to each other. Hence we need to assign
              the hash_link first, but then we would not know if it was
              linked before. Hence we would not know if to unlink it. So
              unlink it here and call link_to_file_list(..., FALSE).
            */
            unlink_changed(block);
          }
          block->status= error ? BLOCK_ERROR : BLOCK_IN_USE ;
          block->length= 0;
          block->offset= keycache->key_cache_block_size;
          block->hash_link= hash_link;
          link_to_file_list(keycache, block, file, 0);
          page_status= PAGE_TO_BE_READ;

          KEYCACHE_DBUG_ASSERT(block->hash_link->block == block);
          KEYCACHE_DBUG_ASSERT(hash_link->block->hash_link == hash_link);
        }
        else
        {
          /*
            Either (block->hash_link == hash_link),
	    or     (block->status & BLOCK_IN_SWITCH).

            This is for secondary requests for a new file block only.
            Either it is already assigned to the new hash_link meanwhile
            (if we had to wait due to empty LRU), or it is already in
            eviction by another thread. Since this block has been
            grabbed from the LRU ring and attached to this hash_link,
            another thread cannot grab the same block from the LRU ring
            anymore. If the block is in eviction already, it must become
            attached to the same hash_link and as such destined for the
            same file block.
          */
          KEYCACHE_DBUG_PRINT("find_key_block",
                              ("block->hash_link: %p  hash_link: %p  "
                               "block->status: %u", block->hash_link,
                               hash_link, block->status ));
          page_status= (((block->hash_link == hash_link) &&
                         (block->status & BLOCK_READ)) ?
                        PAGE_READ : PAGE_WAIT_TO_BE_READ);
        }
      }
    }
    else
    {
      /*
        Block is not NULL. This hash_link points to a block.
        Either
        - block not assigned to this hash_link (yet) or
        - block assigned but not yet read from file,
        or
        - block assigned with valid (changed or unchanged) data and
        - it will not be reassigned/freed.

        The first condition means hash_link points to a block in
        eviction. This is not necessarily marked by BLOCK_IN_SWITCH yet.
        But then it is marked BLOCK_IN_EVICTION. See the NOTE in
        link_block(). In both cases it is destined for this hash_link
        and its file block address. When this hash_link got its block
        address, the block was removed from the LRU ring and cannot be
        selected for eviction (for another hash_link) again.

        Register a request on the block. This is another protection
        against eviction.
      */
      DBUG_ASSERT(((block->hash_link != hash_link) &&
                   (block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))) ||
                  ((block->hash_link == hash_link) &&
                   !(block->status & BLOCK_READ)) ||
                  ((block->status & BLOCK_READ) &&
                   !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH))));
      reg_requests(keycache, block, 1);
      KEYCACHE_DBUG_PRINT("find_key_block",
                          ("block->hash_link: %p  hash_link: %p  "
                           "block->status: %u", block->hash_link,
                           hash_link, block->status ));
      page_status= (((block->hash_link == hash_link) &&
                     (block->status & BLOCK_READ)) ?
                    PAGE_READ : PAGE_WAIT_TO_BE_READ);
    }
  }

  KEYCACHE_DBUG_ASSERT(page_status != -1);
  /* Same assert basically, but be very sure. */
  KEYCACHE_DBUG_ASSERT(block);
  /* Assert that block has a request and is not in LRU ring. */
  DBUG_ASSERT(block->requests);
  DBUG_ASSERT(!block->next_used);
  DBUG_ASSERT(!block->prev_used);
  /* Assert that we return the correct block. */
  DBUG_ASSERT((page_status == PAGE_WAIT_TO_BE_READ) ||
              ((block->hash_link->file == file) &&
               (block->hash_link->diskpos == filepos)));
  *page_st=page_status;
  KEYCACHE_DBUG_PRINT("find_key_block",
                      ("fd: %d  pos: %lu  block->status: %u  page_status: %d",
                       file, (ulong) filepos, block->status,
                       page_status));

#if !defined(DBUG_OFF) && defined(EXTRA_DEBUG)
  DBUG_EXECUTE("check_keycache2",
               test_key_cache(keycache, "end of find_key_block",0););
#endif
  KEYCACHE_THREAD_TRACE("find_key_block:end");
  DBUG_RETURN(block);
}


/*
  Read into a key cache block buffer from disk.

  SYNOPSIS

    read_block()
      keycache            pointer to a key cache data structure
      block               block to which buffer the data is to be read
      read_length         size of data to be read
      min_length          at least so much data must be read
      primary             <-> the current thread will read the data

  RETURN VALUE
    None

  NOTES.
    The function either reads a page data from file to the block buffer,
    or waits until another thread reads it. What page to read is determined
    by a block parameter - reference to a hash link for this page.
    If an error occurs THE BLOCK_ERROR bit is set in the block status.
    We do not report error when the size of successfully read
    portion is less than read_length, but not less than min_length.
*/

static void read_block(SIMPLE_KEY_CACHE_CB *keycache,
                       BLOCK_LINK *block, uint read_length,
                       uint min_length, my_bool primary)
{
  size_t got_length;

  /* On entry cache_lock is locked */

  KEYCACHE_THREAD_TRACE("read_block");
  if (primary)
  {
    /*
      This code is executed only by threads that submitted primary
      requests. Until block->status contains BLOCK_READ, all other
      request for the block become secondary requests. For a primary
      request the block must be properly initialized.
    */
    DBUG_ASSERT(((block->status & ~BLOCK_FOR_UPDATE) == BLOCK_IN_USE) ||
                fail_block(block));
    DBUG_ASSERT((block->length == 0) || fail_block(block));
    DBUG_ASSERT((block->offset == keycache->key_cache_block_size) ||
                fail_block(block));
    DBUG_ASSERT((block->requests > 0) || fail_block(block));

    KEYCACHE_DBUG_PRINT("read_block",
                        ("page to be read by primary request"));

    keycache->global_cache_read++;
    /* Page is not in buffer yet, is to be read from disk */
    keycache_pthread_mutex_unlock(&keycache->cache_lock);
    /*
      Here other threads may step in and register as secondary readers.
      They will register in block->wqueue[COND_FOR_REQUESTED].
    */
    got_length= my_pread(block->hash_link->file, block->buffer,
                         read_length, block->hash_link->diskpos, MYF(0));
    keycache_pthread_mutex_lock(&keycache->cache_lock);
    /*
      The block can now have been marked for free (in case of
      FLUSH_RELEASE). Otherwise the state must be unchanged.
    */
    DBUG_ASSERT(((block->status & ~(BLOCK_REASSIGNED |
                                    BLOCK_FOR_UPDATE)) == BLOCK_IN_USE) ||
                fail_block(block));
    DBUG_ASSERT((block->length == 0) || fail_block(block));
    DBUG_ASSERT((block->offset == keycache->key_cache_block_size) ||
                fail_block(block));
    DBUG_ASSERT((block->requests > 0) || fail_block(block));

    if (got_length < min_length)
      block->status|= BLOCK_ERROR;
    else
    {
      block->status|= BLOCK_READ;
      block->length= got_length;
      /*
        Do not set block->offset here. If this block is marked
        BLOCK_CHANGED later, we want to flush only the modified part. So
        only a writer may set block->offset down from
        keycache->key_cache_block_size.
      */
    }
    KEYCACHE_DBUG_PRINT("read_block",
                        ("primary request: new page in cache"));
    /* Signal that all pending requests for this page now can be processed */
    release_whole_queue(&block->wqueue[COND_FOR_REQUESTED]);
  }
  else
  {
    /*
      This code is executed only by threads that submitted secondary
      requests. At this point it could happen that the cache block is
      not yet assigned to the hash_link for the requested file block.
      But at awake from the wait this should be the case. Unfortunately
      we cannot assert this here because we do not know the hash_link
      for the requested file block nor the file and position. So we have
      to assert this in the caller.
    */
    KEYCACHE_DBUG_PRINT("read_block",
                      ("secondary request waiting for new page to be read"));
    wait_on_queue(&block->wqueue[COND_FOR_REQUESTED], &keycache->cache_lock);
    KEYCACHE_DBUG_PRINT("read_block",
                        ("secondary request: new page in cache"));
  }
}


/*
  Read a block of data from a simple key cache into a buffer

  SYNOPSIS

    simple_key_cache_read()
    keycache            pointer to the control block of a simple key cache
    file                handler for the file for the block of data to be read
    filepos             position of the block of data in the file
    level               determines the weight of the data
    buff                buffer to where the data must be placed
    length              length of the buffer
    block_length        length of the read data from a key cache block 
    return_buffer       return pointer to the key cache buffer with the data

  DESCRIPTION
    This function is the implementation of the key_cache_read interface
    function that is employed by simple (non-partitioned) key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key
    cache.
    In a general case the function reads a block of data from the key cache
    into the buffer buff of the size specified by the parameter length. The
    beginning of the  block of data to be read is specified by the parameters
    file and filepos. The length of the read data is the same as the length
    of the buffer. The data is read into the buffer in key_cache_block_size
    increments. If the next portion of the data is not found in any key cache
    block, first it is read from file into the key cache.
    If the parameter return_buffer is not ignored and its value is TRUE, and 
    the data to be read of the specified size block_length can be read from one
    key cache buffer, then the function returns a pointer to the data in the
    key cache buffer.
    The function takse into account parameters block_length and return buffer
    only in a single-threaded environment.
    The parameter 'level' is used only by the midpoint insertion strategy 
    when the data or its portion cannot be found in the key cache. 
   
  RETURN VALUE
    Returns address from where the data is placed if successful, 0 - otherwise.

  NOTES
    Filepos must be a multiple of 'block_length', but it doesn't
    have to be a multiple of key_cache_block_size;
*/

uchar *simple_key_cache_read(SIMPLE_KEY_CACHE_CB *keycache,
                             File file, my_off_t filepos, int level,
                             uchar *buff, uint length,
                             uint block_length __attribute__((unused)),
                             int return_buffer __attribute__((unused)))
{
  my_bool locked_and_incremented= FALSE;
  int error=0;
  uchar *start= buff;
  DBUG_ENTER("simple_key_cache_read");
  DBUG_PRINT("enter", ("fd: %u  pos: %lu  length: %u",
               (uint) file, (ulong) filepos, length));

  if (keycache->key_cache_inited)
  {
    /* Key cache is used */
    reg1 BLOCK_LINK *block;
    uint read_length;
    uint offset;
    int page_st;

    if (MYSQL_KEYCACHE_READ_START_ENABLED())
    {
      MYSQL_KEYCACHE_READ_START(my_filename(file), length,
                                (ulong) (keycache->blocks_used *
                                         keycache->key_cache_block_size),
                                (ulong) (keycache->blocks_unused *
                                         keycache->key_cache_block_size));
    }
  
    /*
      When the key cache is once initialized, we use the cache_lock to
      reliably distinguish the cases of normal operation, resizing, and
      disabled cache. We always increment and decrement
      'cnt_for_resize_op' so that a resizer can wait for pending I/O.
    */
    keycache_pthread_mutex_lock(&keycache->cache_lock);
    /*
      Cache resizing has two phases: Flushing and re-initializing. In
      the flush phase read requests are allowed to bypass the cache for
      blocks not in the cache. find_key_block() returns NULL in this
      case.

      After the flush phase new I/O requests must wait until the
      re-initialization is done. The re-initialization can be done only
      if no I/O request is in progress. The reason is that
      key_cache_block_size can change. With enabled cache, I/O is done
      in chunks of key_cache_block_size. Every chunk tries to use a
      cache block first. If the block size changes in the middle, a
      block could be missed and old data could be read.
    */
    while (keycache->in_resize && !keycache->resize_in_flush)
      wait_on_queue(&keycache->resize_queue, &keycache->cache_lock);
    /* Register the I/O for the next resize. */
    inc_counter_for_resize_op(keycache);
    locked_and_incremented= TRUE;
    /* Requested data may not always be aligned to cache blocks. */
    offset= (uint) (filepos % keycache->key_cache_block_size);
    /* Read data in key_cache_block_size increments */
    do
    {
      /* Cache could be disabled in a later iteration. */
      if (!keycache->can_be_used)
      {
        KEYCACHE_DBUG_PRINT("key_cache_read", ("keycache cannot be used"));
        goto no_key_cache;
      }
      /* Start reading at the beginning of the cache block. */
      filepos-= offset;
      /* Do not read beyond the end of the cache block. */
      read_length= length;
      set_if_smaller(read_length, keycache->key_cache_block_size-offset);
      KEYCACHE_DBUG_ASSERT(read_length > 0);

      /* Request the cache block that matches file/pos. */
      keycache->global_cache_r_requests++;

      MYSQL_KEYCACHE_READ_BLOCK(keycache->key_cache_block_size);

      block=find_key_block(keycache, file, filepos, level, 0, &page_st);
      if (!block)
      {
        /*
          This happens only for requests submitted during key cache
          resize. The block is not in the cache and shall not go in.
          Read directly from file.
        */
        keycache->global_cache_read++;
        keycache_pthread_mutex_unlock(&keycache->cache_lock);
        error= (my_pread(file, (uchar*) buff, read_length,
                         filepos + offset, MYF(MY_NABP)) != 0);
        keycache_pthread_mutex_lock(&keycache->cache_lock);
        goto next_block;
      }
      if (!(block->status & BLOCK_ERROR))
      {
        if (page_st != PAGE_READ)
        {
          MYSQL_KEYCACHE_READ_MISS();
          /* The requested page is to be read into the block buffer */
          read_block(keycache, block,
                     keycache->key_cache_block_size, read_length+offset,
                     (my_bool)(page_st == PAGE_TO_BE_READ));
          /*
            A secondary request must now have the block assigned to the
            requested file block. It does not hurt to check it for
            primary requests too.
          */
          DBUG_ASSERT(keycache->can_be_used);
          DBUG_ASSERT(block->hash_link->file == file);
          DBUG_ASSERT(block->hash_link->diskpos == filepos);
          DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
        }
        else if (block->length < read_length + offset)
        {
          /*
            Impossible if nothing goes wrong:
            this could only happen if we are using a file with
            small key blocks and are trying to read outside the file
          */
          my_errno= -1;
          block->status|= BLOCK_ERROR;
        }
        else
        {
          MYSQL_KEYCACHE_READ_HIT();
        }
      }

      /* block status may have added BLOCK_ERROR in the above 'if'. */
      if (!(block->status & BLOCK_ERROR))
      {
        {
          DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
#if !defined(SERIALIZED_READ_FROM_CACHE)
          keycache_pthread_mutex_unlock(&keycache->cache_lock);
#endif

          /* Copy data from the cache buffer */
          memcpy(buff, block->buffer+offset, (size_t) read_length);

#if !defined(SERIALIZED_READ_FROM_CACHE)
          keycache_pthread_mutex_lock(&keycache->cache_lock);
          DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
#endif
        }
      }

      remove_reader(block);

      /* Error injection for coverage testing. */
      DBUG_EXECUTE_IF("key_cache_read_block_error",
                      block->status|= BLOCK_ERROR;);

      /* Do not link erroneous blocks into the LRU ring, but free them. */
      if (!(block->status & BLOCK_ERROR))
      {
        /*
          Link the block into the LRU ring if it's the last submitted
          request for the block. This enables eviction for the block.
        */
        unreg_request(keycache, block, 1);
      }
      else
      {
        free_block(keycache, block);
        error= 1;
        break;
      }

    next_block:
      buff+= read_length;
      filepos+= read_length+offset;
      offset= 0;

    } while ((length-= read_length));
    if (MYSQL_KEYCACHE_READ_DONE_ENABLED())
    {
      MYSQL_KEYCACHE_READ_DONE((ulong) (keycache->blocks_used *
                                        keycache->key_cache_block_size),
                               (ulong) (keycache->blocks_unused *
                                        keycache->key_cache_block_size));
    }
    goto end;
  }
  KEYCACHE_DBUG_PRINT("key_cache_read", ("keycache not initialized"));

no_key_cache:
  /* Key cache is not used */

  keycache->global_cache_r_requests++;
  keycache->global_cache_read++;

  if (locked_and_incremented)
    keycache_pthread_mutex_unlock(&keycache->cache_lock);
  if (my_pread(file, (uchar*) buff, length, filepos, MYF(MY_NABP)))
    error= 1;
  if (locked_and_incremented)
    keycache_pthread_mutex_lock(&keycache->cache_lock);

end:
  if (locked_and_incremented)
  {
    dec_counter_for_resize_op(keycache);
    keycache_pthread_mutex_unlock(&keycache->cache_lock);
  }
  DBUG_PRINT("exit", ("error: %d", error ));
  DBUG_RETURN(error ? (uchar*) 0 : start);
}


/*
  Insert a block of file data from a buffer into a simple key cache

  SYNOPSIS
    simple_key_cache_insert()
    keycache            pointer to the control block of a simple key cache 
    file                handler for the file to insert data from
    filepos             position of the block of data in the file to insert
    level               determines the weight of the data
    buff                buffer to read data from
    length              length of the data in the buffer

  DESCRIPTION
    This function is the implementation of the key_cache_insert interface
    function that is employed by simple (non-partitioned) key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key
    cache.
    The function writes a block of file data from a buffer into the key cache.
    The buffer is specified with the parameters buff and length - the pointer
    to the beginning of the buffer and its size respectively. It's assumed
    the buffer contains the data from 'file' allocated from the position
    filepos. The data is copied from the buffer in key_cache_block_size
    increments.
    The parameter level is used to set one characteristic for the key buffers
    loaded with the data from buff. The characteristic is used only by the
    midpoint insertion strategy.  
   
  RETURN VALUE
    0 if a success, 1 - otherwise.

  NOTES
    The function is used by MyISAM to move all blocks from a index file to 
    the key cache. It can be performed in parallel with reading the file data
    from the key buffers by other threads.

*/

static
int simple_key_cache_insert(SIMPLE_KEY_CACHE_CB *keycache,
                            File file, my_off_t filepos, int level,
                            uchar *buff, uint length)
{
  int error= 0;
  DBUG_ENTER("key_cache_insert");
  DBUG_PRINT("enter", ("fd: %u  pos: %lu  length: %u",
               (uint) file,(ulong) filepos, length));

  if (keycache->key_cache_inited)
  {
    /* Key cache is used */
    reg1 BLOCK_LINK *block;
    uint read_length;
    uint offset;
    int page_st;
    my_bool locked_and_incremented= FALSE;

    /*
      When the keycache is once initialized, we use the cache_lock to
      reliably distinguish the cases of normal operation, resizing, and
      disabled cache. We always increment and decrement
      'cnt_for_resize_op' so that a resizer can wait for pending I/O.
    */
    keycache_pthread_mutex_lock(&keycache->cache_lock);
    /*
      We do not load index data into a disabled cache nor into an
      ongoing resize.
    */
    if (!keycache->can_be_used || keycache->in_resize)
	goto no_key_cache;
    /* Register the pseudo I/O for the next resize. */
    inc_counter_for_resize_op(keycache);
    locked_and_incremented= TRUE;
    /* Loaded data may not always be aligned to cache blocks. */
    offset= (uint) (filepos % keycache->key_cache_block_size);
    /* Load data in key_cache_block_size increments. */
    do
    {
      /* Cache could be disabled or resizing in a later iteration. */
      if (!keycache->can_be_used || keycache->in_resize)
	goto no_key_cache;
      /* Start loading at the beginning of the cache block. */
      filepos-= offset;
      /* Do not load beyond the end of the cache block. */
      read_length= length;
      set_if_smaller(read_length, keycache->key_cache_block_size-offset);
      KEYCACHE_DBUG_ASSERT(read_length > 0);

      /* The block has been read by the caller already. */
      keycache->global_cache_read++;
      /* Request the cache block that matches file/pos. */
      keycache->global_cache_r_requests++;
      block= find_key_block(keycache, file, filepos, level, 0, &page_st);
      if (!block)
      {
        /*
          This happens only for requests submitted during key cache
          resize. The block is not in the cache and shall not go in.
          Stop loading index data.
        */
        goto no_key_cache;
      }
      if (!(block->status & BLOCK_ERROR))
      {
        if ((page_st == PAGE_WAIT_TO_BE_READ) ||
            ((page_st == PAGE_TO_BE_READ) &&
             (offset || (read_length < keycache->key_cache_block_size))))
        {
          /*
            Either

            this is a secondary request for a block to be read into the
            cache. The block is in eviction. It is not yet assigned to
            the requested file block (It does not point to the right
            hash_link). So we cannot call remove_reader() on the block.
            And we cannot access the hash_link directly here. We need to
            wait until the assignment is complete. read_block() executes
            the correct wait when called with primary == FALSE.

            Or

            this is a primary request for a block to be read into the
            cache and the supplied data does not fill the whole block.

            This function is called on behalf of a LOAD INDEX INTO CACHE
            statement, which is a read-only task and allows other
            readers. It is possible that a parallel running reader tries
            to access this block. If it needs more data than has been
            supplied here, it would report an error. To be sure that we
            have all data in the block that is available in the file, we
            read the block ourselves.

            Though reading again what the caller did read already is an
            expensive operation, we need to do this for correctness.
          */
          read_block(keycache, block, keycache->key_cache_block_size,
                     read_length + offset, (page_st == PAGE_TO_BE_READ));
          /*
            A secondary request must now have the block assigned to the
            requested file block. It does not hurt to check it for
            primary requests too.
          */
          DBUG_ASSERT(keycache->can_be_used);
          DBUG_ASSERT(block->hash_link->file == file);
          DBUG_ASSERT(block->hash_link->diskpos == filepos);
          DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
        }
        else if (page_st == PAGE_TO_BE_READ)
        {
          /*
            This is a new block in the cache. If we come here, we have
            data for the whole block.
          */
          DBUG_ASSERT(block->hash_link->requests);
          DBUG_ASSERT(block->status & BLOCK_IN_USE);
          DBUG_ASSERT((page_st == PAGE_TO_BE_READ) ||
                      (block->status & BLOCK_READ));

#if !defined(SERIALIZED_READ_FROM_CACHE)
          keycache_pthread_mutex_unlock(&keycache->cache_lock);
          /*
            Here other threads may step in and register as secondary readers.
            They will register in block->wqueue[COND_FOR_REQUESTED].
          */
#endif

          /* Copy data from buff */
          memcpy(block->buffer+offset, buff, (size_t) read_length);

#if !defined(SERIALIZED_READ_FROM_CACHE)
          keycache_pthread_mutex_lock(&keycache->cache_lock);
          DBUG_ASSERT(block->status & BLOCK_IN_USE);
          DBUG_ASSERT((page_st == PAGE_TO_BE_READ) ||
                      (block->status & BLOCK_READ));
#endif
          /*
            After the data is in the buffer, we can declare the block
            valid. Now other threads do not need to register as
            secondary readers any more. They can immediately access the
            block.
          */
          block->status|= BLOCK_READ;
          block->length= read_length+offset;
          /*
            Do not set block->offset here. If this block is marked
            BLOCK_CHANGED later, we want to flush only the modified part. So
            only a writer may set block->offset down from
            keycache->key_cache_block_size.
          */
          KEYCACHE_DBUG_PRINT("key_cache_insert",
                              ("primary request: new page in cache"));
          /* Signal all pending requests. */
          release_whole_queue(&block->wqueue[COND_FOR_REQUESTED]);
        }
        else
        {
          /*
            page_st == PAGE_READ. The block is in the buffer. All data
            must already be present. Blocks are always read with all
            data available on file. Assert that the block does not have
            less contents than the preloader supplies. If the caller has
            data beyond block->length, it means that a file write has
            been done while this block was in cache and not extended
            with the new data. If the condition is met, we can simply
            ignore the block.
          */
          DBUG_ASSERT((page_st == PAGE_READ) &&
                      (read_length + offset <= block->length));
        }

        /*
          A secondary request must now have the block assigned to the
          requested file block. It does not hurt to check it for primary
          requests too.
        */
        DBUG_ASSERT(block->hash_link->file == file);
        DBUG_ASSERT(block->hash_link->diskpos == filepos);
        DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
      } /* end of if (!(block->status & BLOCK_ERROR)) */

      remove_reader(block);

      /* Error injection for coverage testing. */
      DBUG_EXECUTE_IF("key_cache_insert_block_error",
                      block->status|= BLOCK_ERROR; errno=EIO;);

      /* Do not link erroneous blocks into the LRU ring, but free them. */
      if (!(block->status & BLOCK_ERROR))
      {
        /*
          Link the block into the LRU ring if it's the last submitted
          request for the block. This enables eviction for the block.
        */
        unreg_request(keycache, block, 1);
      }
      else
      {
        free_block(keycache, block);
        error= 1;
        break;
      }

      buff+= read_length;
      filepos+= read_length+offset;
      offset= 0;

    } while ((length-= read_length));

  no_key_cache:
    if (locked_and_incremented)
      dec_counter_for_resize_op(keycache);
    keycache_pthread_mutex_unlock(&keycache->cache_lock);
  }
  DBUG_RETURN(error);
}


/*
  Write a buffer into a simple key cache

  SYNOPSIS

    simple_key_cache_write()
    keycache            pointer to the control block of a simple key cache
    file                handler for the file to write data to
    file_extra          maps of key cache partitions containing 
                        dirty pages from file 
    filepos             position in the file to write data to
    level               determines the weight of the data
    buff                buffer with the data
    length              length of the buffer
    dont_write          if is 0 then all dirty pages involved in writing
                        should have been flushed from key cache

  DESCRIPTION
    This function is the implementation of the key_cache_write interface
    function that is employed by simple (non-partitioned) key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key
    cache.
    In a general case the function copies data from a buffer into the key
    cache. The buffer is specified with the parameters buff and length -
    the pointer to the beginning of the buffer and its size respectively.
    It's assumed the buffer contains the data to be written into 'file'
    starting from the position filepos. The data is copied from the buffer
    in key_cache_block_size increments.
    If the value of the parameter dont_write is FALSE then the function
    also writes the data into file.
    The parameter level is used to set one characteristic for the key buffers
    filled with the data from buff. The characteristic is employed only by
    the midpoint insertion strategy.
    The parameter file_extra currently makes sense only for simple key caches
    that are elements of a partitioned key cache. It provides a pointer to the
    shared bitmap of the partitions that may contains dirty pages for the file.
    This bitmap is used to optimize the function 
    flush_partitioned_key_cache_blocks. 
      
  RETURN VALUE
    0 if a success, 1 - otherwise.

  NOTES
    This implementation exploits the fact that the function is called only
    when a thread has got an exclusive lock for the key file.
*/

static
int simple_key_cache_write(SIMPLE_KEY_CACHE_CB *keycache,
                           File file, void *file_extra __attribute__((unused)),                       
                           my_off_t filepos, int level,
                           uchar *buff, uint length,
                           uint block_length  __attribute__((unused)),
                           int dont_write)
{
  my_bool locked_and_incremented= FALSE;
  int error=0;
  DBUG_ENTER("simple_key_cache_write");
  DBUG_PRINT("enter",
             ("fd: %u  pos: %lu  length: %u  block_length: %u"
              "  key_block_length: %u",
              (uint) file, (ulong) filepos, length, block_length,
              keycache ? keycache->key_cache_block_size : 0));

  if (!dont_write)
  {
    /* purecov: begin inspected */
    /* Not used in the server. */
    /* Force writing from buff into disk. */
    keycache->global_cache_w_requests++;
    keycache->global_cache_write++;
    if (my_pwrite(file, buff, length, filepos, MYF(MY_NABP | MY_WAIT_IF_FULL)))
      DBUG_RETURN(1);
    /* purecov: end */
  }

#if !defined(DBUG_OFF) && defined(EXTRA_DEBUG)
  DBUG_EXECUTE("check_keycache",
               test_key_cache(keycache, "start of key_cache_write", 1););
#endif

  if (keycache->key_cache_inited)
  {
    /* Key cache is used */
    reg1 BLOCK_LINK *block;
    uint read_length;
    uint offset;
    int page_st;

    if (MYSQL_KEYCACHE_WRITE_START_ENABLED())
    {
      MYSQL_KEYCACHE_WRITE_START(my_filename(file), length,
                                 (ulong) (keycache->blocks_used *
                                          keycache->key_cache_block_size),
                                 (ulong) (keycache->blocks_unused *
                                          keycache->key_cache_block_size));
    }

    /*
      When the key cache is once initialized, we use the cache_lock to
      reliably distinguish the cases of normal operation, resizing, and
      disabled cache. We always increment and decrement
      'cnt_for_resize_op' so that a resizer can wait for pending I/O.
    */
    keycache_pthread_mutex_lock(&keycache->cache_lock);
    /*
      Cache resizing has two phases: Flushing and re-initializing. In
      the flush phase write requests can modify dirty blocks that are
      not yet in flush. Otherwise they are allowed to bypass the cache.
      find_key_block() returns NULL in both cases (clean blocks and
      non-cached blocks).

      After the flush phase new I/O requests must wait until the
      re-initialization is done. The re-initialization can be done only
      if no I/O request is in progress. The reason is that
      key_cache_block_size can change. With enabled cache I/O is done in
      chunks of key_cache_block_size. Every chunk tries to use a cache
      block first. If the block size changes in the middle, a block
      could be missed and data could be written below a cached block.
    */
    while (keycache->in_resize && !keycache->resize_in_flush)
      wait_on_queue(&keycache->resize_queue, &keycache->cache_lock);
    /* Register the I/O for the next resize. */
    inc_counter_for_resize_op(keycache);
    locked_and_incremented= TRUE;
    /* Requested data may not always be aligned to cache blocks. */
    offset= (uint) (filepos % keycache->key_cache_block_size);
    /* Write data in key_cache_block_size increments. */
    do
    {
      /* Cache could be disabled in a later iteration. */
      if (!keycache->can_be_used)
	goto no_key_cache;

      MYSQL_KEYCACHE_WRITE_BLOCK(keycache->key_cache_block_size);
      /* Start writing at the beginning of the cache block. */
      filepos-= offset;
      /* Do not write beyond the end of the cache block. */
      read_length= length;
      set_if_smaller(read_length, keycache->key_cache_block_size-offset);
      KEYCACHE_DBUG_ASSERT(read_length > 0);

      /* Request the cache block that matches file/pos. */
      keycache->global_cache_w_requests++;
      block= find_key_block(keycache, file, filepos, level, 1, &page_st);
      if (!block)
      {
        /*
          This happens only for requests submitted during key cache
          resize. The block is not in the cache and shall not go in.
          Write directly to file.
        */
        if (dont_write)
        {
          /* Used in the server. */
          keycache->global_cache_write++;
          keycache_pthread_mutex_unlock(&keycache->cache_lock);
          if (my_pwrite(file, (uchar*) buff, read_length, filepos + offset,
                        MYF(MY_NABP | MY_WAIT_IF_FULL)))
            error=1;
          keycache_pthread_mutex_lock(&keycache->cache_lock);
        }
        goto next_block;
      }
      /*
        Prevent block from flushing and from being selected for to be
        freed. This must be set when we release the cache_lock.
        However, we must not set the status of the block before it is
        assigned to this file/pos.
      */
      if (page_st != PAGE_WAIT_TO_BE_READ)
        block->status|= BLOCK_FOR_UPDATE;
      /*
        We must read the file block first if it is not yet in the cache
        and we do not replace all of its contents.

        In cases where the cache block is big enough to contain (parts
        of) index blocks of different indexes, our request can be
        secondary (PAGE_WAIT_TO_BE_READ). In this case another thread is
        reading the file block. If the read completes after us, it
        overwrites our new contents with the old contents. So we have to
        wait for the other thread to complete the read of this block.
        read_block() takes care for the wait.
      */
      if (!(block->status & BLOCK_ERROR) &&
          ((page_st == PAGE_TO_BE_READ &&
            (offset || read_length < keycache->key_cache_block_size)) ||
           (page_st == PAGE_WAIT_TO_BE_READ)))
      {
        read_block(keycache, block,
                   offset + read_length >= keycache->key_cache_block_size?
                   offset : keycache->key_cache_block_size,
                   offset, (page_st == PAGE_TO_BE_READ));
        DBUG_ASSERT(keycache->can_be_used);
        DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
        /*
          Prevent block from flushing and from being selected for to be
          freed. This must be set when we release the cache_lock.
          Here we set it in case we could not set it above.
        */
        block->status|= BLOCK_FOR_UPDATE;
      }
      /*
        The block should always be assigned to the requested file block
        here. It need not be BLOCK_READ when overwriting the whole block.
      */
      DBUG_ASSERT(block->hash_link->file == file);
      DBUG_ASSERT(block->hash_link->diskpos == filepos);
      DBUG_ASSERT(block->status & BLOCK_IN_USE);
      DBUG_ASSERT((page_st == PAGE_TO_BE_READ) || (block->status & BLOCK_READ));
      /*
        The block to be written must not be marked BLOCK_REASSIGNED.
        Otherwise it could be freed in dirty state or reused without
        another flush during eviction. It must also not be in flush.
        Otherwise the old contens may have been flushed already and
        the flusher could clear BLOCK_CHANGED without flushing the
        new changes again.
      */
      DBUG_ASSERT(!(block->status & BLOCK_REASSIGNED));

      while (block->status & BLOCK_IN_FLUSHWRITE)
      {
        /*
          Another thread is flushing the block. It was dirty already.
          Wait until the block is flushed to file. Otherwise we could
          modify the buffer contents just while it is written to file.
          An unpredictable file block contents would be the result.
          While we wait, several things can happen to the block,
          including another flush. But the block cannot be reassigned to
          another hash_link until we release our request on it.
        */
        wait_on_queue(&block->wqueue[COND_FOR_SAVED], &keycache->cache_lock);
        DBUG_ASSERT(keycache->can_be_used);
        DBUG_ASSERT(block->status & (BLOCK_READ | BLOCK_IN_USE));
        /* Still must not be marked for free. */
        DBUG_ASSERT(!(block->status & BLOCK_REASSIGNED));
        DBUG_ASSERT(block->hash_link && (block->hash_link->block == block));
      }

      /*
        We could perhaps release the cache_lock during access of the
        data like in the other functions. Locks outside of the key cache
        assure that readers and a writer do not access the same range of
        data. Parallel accesses should happen only if the cache block
        contains multiple index block(fragment)s. So different parts of
        the buffer would be read/written. An attempt to flush during
        memcpy() is prevented with BLOCK_FOR_UPDATE.
      */
      if (!(block->status & BLOCK_ERROR))
      {
#if !defined(SERIALIZED_READ_FROM_CACHE)
        keycache_pthread_mutex_unlock(&keycache->cache_lock);
#endif
        memcpy(block->buffer+offset, buff, (size_t) read_length);

#if !defined(SERIALIZED_READ_FROM_CACHE)
        keycache_pthread_mutex_lock(&keycache->cache_lock);
#endif
      }

      if (!dont_write)
      {
        /* Not used in the server. buff has been written to disk at start. */
        if ((block->status & BLOCK_CHANGED) &&
            (!offset && read_length >= keycache->key_cache_block_size))
             link_to_file_list(keycache, block, block->hash_link->file, 1);
      }
      else if (! (block->status & BLOCK_CHANGED))
        link_to_changed_list(keycache, block);
      block->status|=BLOCK_READ;
      /*
        Allow block to be selected for to be freed. Since it is marked
        BLOCK_CHANGED too, it won't be selected for to be freed without
        a flush.
      */
      block->status&= ~BLOCK_FOR_UPDATE;
      set_if_smaller(block->offset, offset);
      set_if_bigger(block->length, read_length+offset);

      /* Threads may be waiting for the changes to be complete. */
      release_whole_queue(&block->wqueue[COND_FOR_REQUESTED]);

      /*
        If only a part of the cache block is to be replaced, and the
        rest has been read from file, then the cache lock has been
        released for I/O and it could be possible that another thread
        wants to evict or free the block and waits for it to be
        released. So we must not just decrement hash_link->requests, but
        also wake a waiting thread.
      */
      remove_reader(block);

      /* Error injection for coverage testing. */
      DBUG_EXECUTE_IF("key_cache_write_block_error",
                      block->status|= BLOCK_ERROR;);

      /* Do not link erroneous blocks into the LRU ring, but free them. */
      if (!(block->status & BLOCK_ERROR))
      {
        /*
          Link the block into the LRU ring if it's the last submitted
          request for the block. This enables eviction for the block.
        */
        unreg_request(keycache, block, 1);
      }
      else
      {
        /* Pretend a "clean" block to avoid complications. */
        block->status&= ~(BLOCK_CHANGED);
        free_block(keycache, block);
        error= 1;
        break;
      }

    next_block:
      buff+= read_length;
      filepos+= read_length+offset;
      offset= 0;

    } while ((length-= read_length));
    goto end;
  }

no_key_cache:
  /* Key cache is not used */
  if (dont_write)
  {
    /* Used in the server. */
    keycache->global_cache_w_requests++;
    keycache->global_cache_write++;
    if (locked_and_incremented)
      keycache_pthread_mutex_unlock(&keycache->cache_lock);
    if (my_pwrite(file, (uchar*) buff, length, filepos,
		  MYF(MY_NABP | MY_WAIT_IF_FULL)))
      error=1;
    if (locked_and_incremented)
      keycache_pthread_mutex_lock(&keycache->cache_lock);
  }

end:
  if (locked_and_incremented)
  {
    dec_counter_for_resize_op(keycache);
    keycache_pthread_mutex_unlock(&keycache->cache_lock);
  }
  
  if (MYSQL_KEYCACHE_WRITE_DONE_ENABLED())
  {
    MYSQL_KEYCACHE_WRITE_DONE((ulong) (keycache->blocks_used *
                                       keycache->key_cache_block_size),
                              (ulong) (keycache->blocks_unused *
                                       keycache->key_cache_block_size));
  }
  
#if !defined(DBUG_OFF) && defined(EXTRA_DEBUG)
  DBUG_EXECUTE("exec",
               test_key_cache(keycache, "end of key_cache_write", 1););
#endif
  DBUG_RETURN(error);
}


/*
  Free block.

  SYNOPSIS
    free_block()
      keycache          Pointer to a key cache data structure
      block             Pointer to the block to free

  DESCRIPTION
    Remove reference to block from hash table.
    Remove block from the chain of clean blocks.
    Add block to the free list.

  NOTE
    Block must not be free (status == 0).
    Block must not be in free_block_list.
    Block must not be in the LRU ring.
    Block must not be in eviction (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH).
    Block must not be in free (BLOCK_REASSIGNED).
    Block must not be in flush (BLOCK_IN_FLUSH).
    Block must not be dirty (BLOCK_CHANGED).
    Block must not be in changed_blocks (dirty) hash.
    Block must be in file_blocks (clean) hash.
    Block must refer to a hash_link.
    Block must have a request registered on it.
*/

static void free_block(SIMPLE_KEY_CACHE_CB *keycache, BLOCK_LINK *block)
{
  KEYCACHE_THREAD_TRACE("free block");
  KEYCACHE_DBUG_PRINT("free_block",
                      ("block %u to be freed, hash_link %p  status: %u",
                       BLOCK_NUMBER(block), block->hash_link,
                       block->status));
  /*
    Assert that the block is not free already. And that it is in a clean
    state. Note that the block might just be assigned to a hash_link and
    not yet read (BLOCK_READ may not be set here). In this case a reader
    is registered in the hash_link and free_block() will wait for it
    below.
  */
  DBUG_ASSERT((block->status & BLOCK_IN_USE) &&
              !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH |
                                 BLOCK_REASSIGNED | BLOCK_IN_FLUSH |
                                 BLOCK_CHANGED | BLOCK_FOR_UPDATE)));
  /* Assert that the block is in a file_blocks chain. */
  DBUG_ASSERT(block->prev_changed && *block->prev_changed == block);
  /* Assert that the block is not in the LRU ring. */
  DBUG_ASSERT(!block->next_used && !block->prev_used);
  /*
    IMHO the below condition (if()) makes no sense. I can't see how it
    could be possible that free_block() is entered with a NULL hash_link
    pointer. The only place where it can become NULL is in free_block()
    (or before its first use ever, but for those blocks free_block() is
    not called). I don't remove the conditional as it cannot harm, but
    place an DBUG_ASSERT to confirm my hypothesis. Eventually the
    condition (if()) can be removed.
  */
  DBUG_ASSERT(block->hash_link && block->hash_link->block == block);
  if (block->hash_link)
  {
    /*
      While waiting for readers to finish, new readers might request the
      block. But since we set block->status|= BLOCK_REASSIGNED, they
      will wait on block->wqueue[COND_FOR_SAVED]. They must be signalled
      later.
    */
    block->status|= BLOCK_REASSIGNED;
    wait_for_readers(keycache, block);
    /*
      The block must not have been freed by another thread. Repeat some
      checks. An additional requirement is that it must be read now
      (BLOCK_READ).
    */
    DBUG_ASSERT(block->hash_link && block->hash_link->block == block);
    DBUG_ASSERT((block->status & (BLOCK_READ | BLOCK_IN_USE |
                                  BLOCK_REASSIGNED)) &&
                !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH |
                                   BLOCK_IN_FLUSH | BLOCK_CHANGED |
                                   BLOCK_FOR_UPDATE)));
    DBUG_ASSERT(block->prev_changed && *block->prev_changed == block);
    DBUG_ASSERT(!block->prev_used);
    /*
      Unset BLOCK_REASSIGNED again. If we hand the block to an evicting
      thread (through unreg_request() below), other threads must not see
      this flag. They could become confused.
    */
    block->status&= ~BLOCK_REASSIGNED;
    /*
      Do not release the hash_link until the block is off all lists.
      At least not if we hand it over for eviction in unreg_request().
    */
  }

  /*
    Unregister the block request and link the block into the LRU ring.
    This enables eviction for the block. If the LRU ring was empty and
    threads are waiting for a block, then the block wil be handed over
    for eviction immediately. Otherwise we will unlink it from the LRU
    ring again, without releasing the lock in between. So decrementing
    the request counter and updating statistics are the only relevant
    operation in this case. Assert that there are no other requests
    registered.
  */
  DBUG_ASSERT(block->requests == 1);
  unreg_request(keycache, block, 0);
  /*
    Note that even without releasing the cache lock it is possible that
    the block is immediately selected for eviction by link_block() and
    thus not added to the LRU ring. In this case we must not touch the
    block any more.
  */
  if (block->status & BLOCK_IN_EVICTION)
    return;

  /* Error blocks are not put into the LRU ring. */
  if (!(block->status & BLOCK_ERROR))
  {
    /* Here the block must be in the LRU ring. Unlink it again. */
    DBUG_ASSERT(block->next_used && block->prev_used &&
                *block->prev_used == block);
    unlink_block(keycache, block);
  }
  if (block->temperature == BLOCK_WARM)
    keycache->warm_blocks--;
  block->temperature= BLOCK_COLD;

  /* Remove from file_blocks hash. */
  unlink_changed(block);

  /* Remove reference to block from hash table. */
  unlink_hash(keycache, block->hash_link);
  block->hash_link= NULL;

  block->status= 0;
  block->length= 0;
  block->offset= keycache->key_cache_block_size;
  KEYCACHE_THREAD_TRACE("free block");
  KEYCACHE_DBUG_PRINT("free_block", ("block is freed"));

  /* Enforced by unlink_changed(), but just to be sure. */
  DBUG_ASSERT(!block->next_changed && !block->prev_changed);
  /* Enforced by unlink_block(): not in LRU ring nor in free_block_list. */
  DBUG_ASSERT(!block->next_used && !block->prev_used);
  /* Insert the free block in the free list. */
  block->next_used= keycache->free_block_list;
  keycache->free_block_list= block;
  /* Keep track of the number of currently unused blocks. */
  keycache->blocks_unused++;

  /* All pending requests for this page must be resubmitted. */
  release_whole_queue(&block->wqueue[COND_FOR_SAVED]);
}


static int cmp_sec_link(BLOCK_LINK **a, BLOCK_LINK **b)
{
  return (((*a)->hash_link->diskpos < (*b)->hash_link->diskpos) ? -1 :
      ((*a)->hash_link->diskpos > (*b)->hash_link->diskpos) ? 1 : 0);
}


/*
  Flush a portion of changed blocks to disk,
  free used blocks if requested
*/

static int flush_cached_blocks(SIMPLE_KEY_CACHE_CB *keycache,
                               File file, BLOCK_LINK **cache,
                               BLOCK_LINK **end,
                               enum flush_type type)
{
  int error;
  int last_errno= 0;
  uint count= (uint) (end-cache);

  /* Don't lock the cache during the flush */
  keycache_pthread_mutex_unlock(&keycache->cache_lock);
  /*
     As all blocks referred in 'cache' are marked by BLOCK_IN_FLUSH
     we are guarunteed no thread will change them
  */
  my_qsort((uchar*) cache, count, sizeof(*cache), (qsort_cmp) cmp_sec_link);

  keycache_pthread_mutex_lock(&keycache->cache_lock);
  /*
    Note: Do not break the loop. We have registered a request on every
    block in 'cache'. These must be unregistered by free_block() or
    unreg_request().
  */
  for ( ; cache != end ; cache++)
  {
    BLOCK_LINK *block= *cache;

    KEYCACHE_DBUG_PRINT("flush_cached_blocks",
                        ("block %u to be flushed", BLOCK_NUMBER(block)));
    /*
      If the block contents is going to be changed, we abandon the flush
      for this block. flush_key_blocks_int() will restart its search and
      handle the block properly.
    */
    if (!(block->status & BLOCK_FOR_UPDATE))
    {
      /* Blocks coming here must have a certain status. */
      DBUG_ASSERT(block->hash_link);
      DBUG_ASSERT(block->hash_link->block == block);
      DBUG_ASSERT(block->hash_link->file == file);
      DBUG_ASSERT((block->status & ~BLOCK_IN_EVICTION) ==
                  (BLOCK_READ | BLOCK_IN_FLUSH | BLOCK_CHANGED | BLOCK_IN_USE));
      block->status|= BLOCK_IN_FLUSHWRITE;
      keycache_pthread_mutex_unlock(&keycache->cache_lock);
      error= my_pwrite(file, block->buffer + block->offset,
                       block->length - block->offset,
                       block->hash_link->diskpos + block->offset,
                       MYF(MY_NABP | MY_WAIT_IF_FULL));
      keycache_pthread_mutex_lock(&keycache->cache_lock);
      keycache->global_cache_write++;
      if (error)
      {
        block->status|= BLOCK_ERROR;
        if (!last_errno)
          last_errno= errno ? errno : -1;
      }
      block->status&= ~BLOCK_IN_FLUSHWRITE;
      /* Block must not have changed status except BLOCK_FOR_UPDATE. */
      DBUG_ASSERT(block->hash_link);
      DBUG_ASSERT(block->hash_link->block == block);
      DBUG_ASSERT(block->hash_link->file == file);
      DBUG_ASSERT((block->status & ~(BLOCK_FOR_UPDATE | BLOCK_IN_EVICTION)) ==
                  (BLOCK_READ | BLOCK_IN_FLUSH | BLOCK_CHANGED | BLOCK_IN_USE));
      /*
        Set correct status and link in right queue for free or later use.
        free_block() must not see BLOCK_CHANGED and it may need to wait
        for readers of the block. These should not see the block in the
        wrong hash. If not freeing the block, we need to have it in the
        right queue anyway.
      */
      link_to_file_list(keycache, block, file, 1);
    }
    block->status&= ~BLOCK_IN_FLUSH;
    /*
      Let to proceed for possible waiting requests to write to the block page.
      It might happen only during an operation to resize the key cache.
    */
    release_whole_queue(&block->wqueue[COND_FOR_SAVED]);
    /* type will never be FLUSH_IGNORE_CHANGED here */
    if (!(type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE) &&
        !(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH |
                           BLOCK_FOR_UPDATE)))
    {
      /*
        Note that a request has been registered against the block in
        flush_key_blocks_int().
      */
      free_block(keycache, block);
    }
    else
    {
      /*
        Link the block into the LRU ring if it's the last submitted
        request for the block. This enables eviction for the block.
        Note that a request has been registered against the block in
        flush_key_blocks_int().
      */
      unreg_request(keycache, block, 1);
    }

  } /* end of for ( ; cache != end ; cache++) */
  return last_errno;
}


/*
  Flush all key blocks for a file to disk, but don't do any mutex locks

  SYNOPSIS
    flush_key_blocks_int()
      keycache            pointer to a key cache data structure
      file                handler for the file to flush to
      flush_type          type of the flush

  NOTES
    This function doesn't do any mutex locks because it needs to be called both
    from flush_key_blocks and flush_all_key_blocks (the later one does the
    mutex lock in the resize_key_cache() function).

    We do only care about changed blocks that exist when the function is
    entered. We do not guarantee that all changed blocks of the file are
    flushed if more blocks change while this function is running.

  RETURN
    0   ok
    1  error
*/

static int flush_key_blocks_int(SIMPLE_KEY_CACHE_CB *keycache,
				File file, enum flush_type type)
{
  BLOCK_LINK *cache_buff[FLUSH_CACHE],**cache;
  int last_errno= 0;
  int last_errcnt= 0;
  DBUG_ENTER("flush_key_blocks_int");
  DBUG_PRINT("enter",("file: %d  blocks_used: %lu  blocks_changed: %lu",
              file, keycache->blocks_used, keycache->blocks_changed));

#if !defined(DBUG_OFF) && defined(EXTRA_DEBUG)
  DBUG_EXECUTE("check_keycache",
               test_key_cache(keycache, "start of flush_key_blocks", 0););
#endif

  DBUG_ASSERT(type != FLUSH_KEEP_LAZY);
  cache= cache_buff;
  if (keycache->disk_blocks > 0 &&
      (!my_disable_flush_key_blocks || type != FLUSH_KEEP))
  {
    /* Key cache exists and flush is not disabled */
    int error= 0;
    uint count= FLUSH_CACHE;
    BLOCK_LINK **pos,**end;
    BLOCK_LINK *first_in_switch= NULL;
    BLOCK_LINK *last_in_flush;
    BLOCK_LINK *last_for_update;
    BLOCK_LINK *block, *next;
#if defined(KEYCACHE_DEBUG)
    uint cnt=0;
#endif

    if (type != FLUSH_IGNORE_CHANGED)
    {
      /*
         Count how many key blocks we have to cache to be able
         to flush all dirty pages with minimum seek moves
      */
      count= 0;
      for (block= keycache->changed_blocks[FILE_HASH(file, keycache)] ;
           block ;
           block= block->next_changed)
      {
        if ((block->hash_link->file == file) &&
            !(block->status & BLOCK_IN_FLUSH))
        {
          count++;
          KEYCACHE_DBUG_ASSERT(count<= keycache->blocks_used);
        }
      }
      /*
        Allocate a new buffer only if its bigger than the one we have.
        Assure that we always have some entries for the case that new
        changed blocks appear while we need to wait for something.
      */
      if ((count > FLUSH_CACHE) &&
          !(cache= (BLOCK_LINK**) my_malloc(sizeof(BLOCK_LINK*)*count,
                                            MYF(0))))
        cache= cache_buff;
      /*
        After a restart there could be more changed blocks than now.
        So we should not let count become smaller than the fixed buffer.
      */
      if (cache == cache_buff)
        count= FLUSH_CACHE;
    }

    /* Retrieve the blocks and write them to a buffer to be flushed */
restart:
    last_in_flush= NULL;
    last_for_update= NULL;
    end= (pos= cache)+count;
    for (block= keycache->changed_blocks[FILE_HASH(file, keycache)] ;
         block ;
         block= next)
    {
#if defined(KEYCACHE_DEBUG)
      cnt++;
      KEYCACHE_DBUG_ASSERT(cnt <= keycache->blocks_used);
#endif
      next= block->next_changed;
      if (block->hash_link->file == file)
      {
        if (!(block->status & (BLOCK_IN_FLUSH | BLOCK_FOR_UPDATE)))
        {
          /*
            Note: The special handling of BLOCK_IN_SWITCH is obsolete
            since we set BLOCK_IN_FLUSH if the eviction includes a
            flush. It can be removed in a later version.
          */
          if (!(block->status & BLOCK_IN_SWITCH))
          {
            /*
              We care only for the blocks for which flushing was not
              initiated by another thread and which are not in eviction.
              Registering a request on the block unlinks it from the LRU
              ring and protects against eviction.
            */
            reg_requests(keycache, block, 1);
            if (type != FLUSH_IGNORE_CHANGED)
            {
              /* It's not a temporary file */
              if (pos == end)
              {
                /*
                  This should happen relatively seldom. Remove the
                  request because we won't do anything with the block
                  but restart and pick it again in the next iteration.
                */
                unreg_request(keycache, block, 0);
                /*
                  This happens only if there is not enough
                  memory for the big block
                */
                if ((error= flush_cached_blocks(keycache, file, cache,
                                                end,type)))
                {
                  /* Do not loop infinitely trying to flush in vain. */
                  if ((last_errno == error) && (++last_errcnt > 5))
                    goto err;
                  last_errno= error;
                }
                /*
                  Restart the scan as some other thread might have changed
                  the changed blocks chain: the blocks that were in switch
                  state before the flush started have to be excluded
                */
                goto restart;
              }
              /*
                Mark the block with BLOCK_IN_FLUSH in order not to let
                other threads to use it for new pages and interfere with
                our sequence of flushing dirty file pages. We must not
                set this flag before actually putting the block on the
                write burst array called 'cache'.
              */
              block->status|= BLOCK_IN_FLUSH;
              /* Add block to the array for a write burst. */
              *pos++= block;
            }
            else
            {
              /* It's a temporary file */
              DBUG_ASSERT(!(block->status & BLOCK_REASSIGNED));
              /*
                free_block() must not be called with BLOCK_CHANGED. Note
                that we must not change the BLOCK_CHANGED flag outside of
                link_to_file_list() so that it is always in the correct
                queue and the *blocks_changed counters are correct.
              */
              link_to_file_list(keycache, block, file, 1);
              if (!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH)))
              {
                /* A request has been registered against the block above. */
                free_block(keycache, block);
              }
              else
              {
                /*
                  Link the block into the LRU ring if it's the last
                  submitted request for the block. This enables eviction
                  for the block. A request has been registered against
                  the block above.
                */
                unreg_request(keycache, block, 1);
              }
            }
          }
          else
          {
            /*
              Link the block into a list of blocks 'in switch'.

              WARNING: Here we introduce a place where a changed block
              is not in the changed_blocks hash! This is acceptable for
              a BLOCK_IN_SWITCH. Never try this for another situation.
              Other parts of the key cache code rely on changed blocks
              being in the changed_blocks hash.
            */
            unlink_changed(block);
            link_changed(block, &first_in_switch);
          }
        }
        else if (type != FLUSH_KEEP)
        {
          /*
            During the normal flush at end of statement (FLUSH_KEEP) we
            do not need to ensure that blocks in flush or update by
            other threads are flushed. They will be flushed by them
            later. In all other cases we must assure that we do not have
            any changed block of this file in the cache when this
            function returns.
          */
          if (block->status & BLOCK_IN_FLUSH)
          {
            /* Remember the last block found to be in flush. */
            last_in_flush= block;
          }
          else
          {
            /* Remember the last block found to be selected for update. */
            last_for_update= block;
          }
        }
      }
    }
    if (pos != cache)
    {
      if ((error= flush_cached_blocks(keycache, file, cache, pos, type)))
      {
        /* Do not loop inifnitely trying to flush in vain. */
        if ((last_errno == error) && (++last_errcnt > 5))
          goto err;
        last_errno= error;
      }
      /*
        Do not restart here during the normal flush at end of statement
        (FLUSH_KEEP). We have now flushed at least all blocks that were
        changed when entering this function. In all other cases we must
        assure that we do not have any changed block of this file in the
        cache when this function returns.
      */
      if (type != FLUSH_KEEP)
        goto restart;
    }
    if (last_in_flush)
    {
      /*
        There are no blocks to be flushed by this thread, but blocks in
        flush by other threads. Wait until one of the blocks is flushed.
        Re-check the condition for last_in_flush. We may have unlocked
        the cache_lock in flush_cached_blocks(). The state of the block
        could have changed.
      */
      if (last_in_flush->status & BLOCK_IN_FLUSH)
        wait_on_queue(&last_in_flush->wqueue[COND_FOR_SAVED],
                      &keycache->cache_lock);
      /* Be sure not to lose a block. They may be flushed in random order. */
      goto restart;
    }
    if (last_for_update)
    {
      /*
        There are no blocks to be flushed by this thread, but blocks for
        update by other threads. Wait until one of the blocks is updated.
        Re-check the condition for last_for_update. We may have unlocked
        the cache_lock in flush_cached_blocks(). The state of the block
        could have changed.
      */
      if (last_for_update->status & BLOCK_FOR_UPDATE)
        wait_on_queue(&last_for_update->wqueue[COND_FOR_REQUESTED],
                      &keycache->cache_lock);
      /* The block is now changed. Flush it. */
      goto restart;
    }

    /*
      Wait until the list of blocks in switch is empty. The threads that
      are switching these blocks will relink them to clean file chains
      while we wait and thus empty the 'first_in_switch' chain.
    */
    while (first_in_switch)
    {
#if defined(KEYCACHE_DEBUG)
      cnt= 0;
#endif
      wait_on_queue(&first_in_switch->wqueue[COND_FOR_SAVED],
                    &keycache->cache_lock);
#if defined(KEYCACHE_DEBUG)
      cnt++;
      KEYCACHE_DBUG_ASSERT(cnt <= keycache->blocks_used);
#endif
      /*
        Do not restart here. We have flushed all blocks that were
        changed when entering this function and were not marked for
        eviction. Other threads have now flushed all remaining blocks in
        the course of their eviction.
      */
    }

    if (! (type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE))
    {
      BLOCK_LINK *last_in_switch= NULL;
      uint total_found= 0;
      uint found;
      last_for_update= NULL;

      /*
        Finally free all clean blocks for this file.
        During resize this may be run by two threads in parallel.
      */
      do
      {
        found= 0;
        for (block= keycache->file_blocks[FILE_HASH(file, keycache)] ;
             block ;
             block= next)
        {
          /* Remember the next block. After freeing we cannot get at it. */
          next= block->next_changed;

          /* Changed blocks cannot appear in the file_blocks hash. */
          DBUG_ASSERT(!(block->status & BLOCK_CHANGED));
          if (block->hash_link->file == file)
          {
            /* We must skip blocks that will be changed. */
            if (block->status & BLOCK_FOR_UPDATE)
            {
              last_for_update= block;
              continue;
            }

            /*
              We must not free blocks in eviction (BLOCK_IN_EVICTION |
              BLOCK_IN_SWITCH) or blocks intended to be freed
              (BLOCK_REASSIGNED).
            */
            if (!(block->status & (BLOCK_IN_EVICTION | BLOCK_IN_SWITCH |
                                   BLOCK_REASSIGNED)))
            {
              struct st_hash_link *UNINIT_VAR(next_hash_link);
              my_off_t UNINIT_VAR(next_diskpos);
              File UNINIT_VAR(next_file);
              uint UNINIT_VAR(next_status);
              uint UNINIT_VAR(hash_requests);

              total_found++;
              found++;
              KEYCACHE_DBUG_ASSERT(found <= keycache->blocks_used);

              /*
                Register a request. This unlinks the block from the LRU
                ring and protects it against eviction. This is required
                by free_block().
              */
              reg_requests(keycache, block, 1);

              /*
                free_block() may need to wait for readers of the block.
                This is the moment where the other thread can move the
                'next' block from the chain. free_block() needs to wait
                if there are requests for the block pending.
              */
              if (next && (hash_requests= block->hash_link->requests))
              {
                /* Copy values from the 'next' block and its hash_link. */
                next_status=    next->status;
                next_hash_link= next->hash_link;
                next_diskpos=   next_hash_link->diskpos;
                next_file=      next_hash_link->file;
                DBUG_ASSERT(next == next_hash_link->block);
              }

              free_block(keycache, block);
              /*
                If we had to wait and the state of the 'next' block
                changed, break the inner loop. 'next' may no longer be
                part of the current chain.

                We do not want to break the loop after every free_block(),
                not even only after waits. The chain might be quite long
                and contain blocks for many files. Traversing it again and
                again to find more blocks for this file could become quite
                inefficient.
              */
              if (next && hash_requests &&
                  ((next_status    != next->status) ||
                   (next_hash_link != next->hash_link) ||
                   (next_file      != next_hash_link->file) ||
                   (next_diskpos   != next_hash_link->diskpos) ||
                   (next           != next_hash_link->block)))
                break;
            }
            else
            {
              last_in_switch= block;
            }
          }
        } /* end for block in file_blocks */
      } while (found);

      /*
        If any clean block has been found, we may have waited for it to
        become free. In this case it could be possible that another clean
        block became dirty. This is possible if the write request existed
        before the flush started (BLOCK_FOR_UPDATE). Re-check the hashes.
      */
      if (total_found)
        goto restart;

      /*
        To avoid an infinite loop, wait until one of the blocks marked
        for update is updated.
      */
      if (last_for_update)
      {
        /* We did not wait. Block must not have changed status. */
        DBUG_ASSERT(last_for_update->status & BLOCK_FOR_UPDATE);
        wait_on_queue(&last_for_update->wqueue[COND_FOR_REQUESTED],
                      &keycache->cache_lock);
        goto restart;
      }

      /*
        To avoid an infinite loop wait until one of the blocks marked
        for eviction is switched.
      */
      if (last_in_switch)
      {
        /* We did not wait. Block must not have changed status. */
        DBUG_ASSERT(last_in_switch->status & (BLOCK_IN_EVICTION |
                                              BLOCK_IN_SWITCH |
                                              BLOCK_REASSIGNED));
        wait_on_queue(&last_in_switch->wqueue[COND_FOR_SAVED],
                      &keycache->cache_lock);
        goto restart;
      }

    } /* if (! (type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE)) */

  } /* if (keycache->disk_blocks > 0 */

  DBUG_EXECUTE("check_keycache",
               test_key_cache(keycache, "end of flush_key_blocks", 0););
err:
  if (cache != cache_buff)
    my_free(cache);
  if (last_errno)
    errno=last_errno;                /* Return first error */
  DBUG_RETURN(last_errno != 0);
}


/*
  Flush all blocks for a file from key buffers of a simple key cache 

  SYNOPSIS

    flush_simple_key_blocks()
    keycache            pointer to the control block of a simple key cache
    file                handler for the file to flush to
    file_extra          maps of key cache partitions containing 
                        dirty pages from file (not used)         
    flush_type          type of the flush operation

  DESCRIPTION
    This function is the implementation of the flush_key_blocks interface
    function that is employed by simple (non-partitioned) key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type S_KEY_CACHE_CB for a simple key
    cache.
    In a general case the function flushes the data from all dirty key
    buffers related to the file 'file' into this file. The function does
    exactly this if the value of the parameter type is FLUSH_KEEP. If the
    value of this parameter is FLUSH_RELEASE, the function additionally 
    releases the key buffers containing data from 'file' for new usage.
    If the value of the parameter type is FLUSH_IGNORE_CHANGED the function
    just releases the key buffers containing data from 'file'.  
    The parameter file_extra currently is not used by this function.
      
  RETURN
    0   ok
    1  error

  NOTES
    This implementation exploits the fact that the function is called only
    when a thread has got an exclusive lock for the key file.
*/

static
int flush_simple_key_cache_blocks(SIMPLE_KEY_CACHE_CB *keycache,
                                  File file,
                                  void *file_extra __attribute__((unused)),
                                  enum flush_type type)
{
  int res= 0;
  DBUG_ENTER("flush_key_blocks");
  DBUG_PRINT("enter", ("keycache: %p",  keycache));

  if (!keycache->key_cache_inited)
    DBUG_RETURN(0);

  keycache_pthread_mutex_lock(&keycache->cache_lock);
  /* While waiting for lock, keycache could have been ended. */
  if (keycache->disk_blocks > 0)
  {
    inc_counter_for_resize_op(keycache);
    res= flush_key_blocks_int(keycache, file, type);
    dec_counter_for_resize_op(keycache);
  }
  keycache_pthread_mutex_unlock(&keycache->cache_lock);
  DBUG_RETURN(res);
}


/*
  Flush all blocks in the key cache to disk.

  SYNOPSIS
    flush_all_key_blocks()
      keycache                  pointer to key cache root structure

  DESCRIPTION

    Flushing of the whole key cache is done in two phases.

    1. Flush all changed blocks, waiting for them if necessary. Loop
    until there is no changed block left in the cache.

    2. Free all clean blocks. Normally this means free all blocks. The
    changed blocks were flushed in phase 1 and became clean. However we
    may need to wait for blocks that are read by other threads. While we
    wait, a clean block could become changed if that operation started
    before the resize operation started. To be safe we must restart at
    phase 1.

    When we can run through the changed_blocks and file_blocks hashes
    without finding a block any more, then we are done.

    Note that we hold keycache->cache_lock all the time unless we need
    to wait for something.

  RETURN
    0           OK
    != 0        Error
*/

static int flush_all_key_blocks(SIMPLE_KEY_CACHE_CB *keycache)
{
  BLOCK_LINK    *block;
  uint          total_found;
  uint          found;
  uint          idx;
  uint          changed_blocks_hash_size= keycache->changed_blocks_hash_size;
  DBUG_ENTER("flush_all_key_blocks");

  do
  {
    mysql_mutex_assert_owner(&keycache->cache_lock);
    total_found= 0;

    /*
      Phase1: Flush all changed blocks, waiting for them if necessary.
      Loop until there is no changed block left in the cache.
    */
    do
    {
      found= 0;
      /* Step over the whole changed_blocks hash array. */
      for (idx= 0; idx < changed_blocks_hash_size; idx++)
      {
        /*
          If an array element is non-empty, use the first block from its
          chain to find a file for flush. All changed blocks for this
          file are flushed. So the same block will not appear at this
          place again with the next iteration. New writes for blocks are
          not accepted during the flush. If multiple files share the
          same hash bucket, one of them will be flushed per iteration
          of the outer loop of phase 1.
        */
        while ((block= keycache->changed_blocks[idx]))
        {
          found++;
          /*
            Flush dirty blocks but do not free them yet. They can be used
            for reading until all other blocks are flushed too.
          */
          if (flush_key_blocks_int(keycache, block->hash_link->file,
                                   FLUSH_FORCE_WRITE))
            DBUG_RETURN(1);
        }
      }
    } while (found);

    /*
      Phase 2: Free all clean blocks. Normally this means free all
      blocks. The changed blocks were flushed in phase 1 and became
      clean. However we may need to wait for blocks that are read by
      other threads. While we wait, a clean block could become changed
      if that operation started before the resize operation started. To
      be safe we must restart at phase 1.
    */
    do
    {
      found= 0;
      /* Step over the whole file_blocks hash array. */
      for (idx= 0; idx < changed_blocks_hash_size; idx++)
      {
        /*
          If an array element is non-empty, use the first block from its
          chain to find a file for flush. All blocks for this file are
          freed. So the same block will not appear at this place again
          with the next iteration. If multiple files share the
          same hash bucket, one of them will be flushed per iteration
          of the outer loop of phase 2.
        */
        while ((block= keycache->file_blocks[idx]))
        {
          total_found++;
          found++;
          if (flush_key_blocks_int(keycache, block->hash_link->file,
                                   FLUSH_RELEASE))
            DBUG_RETURN(1);
        }
      }
    } while (found);

    /*
      If any clean block has been found, we may have waited for it to
      become free. In this case it could be possible that another clean
      block became dirty. This is possible if the write request existed
      before the resize started (BLOCK_FOR_UPDATE). Re-check the hashes.
    */
  } while (total_found);

#ifndef DBUG_OFF
  /* Now there should not exist any block any more. */
  for (idx= 0; idx < changed_blocks_hash_size; idx++)
  {
    DBUG_ASSERT(!keycache->changed_blocks[idx]);
    DBUG_ASSERT(!keycache->file_blocks[idx]);
  }
#endif

  DBUG_RETURN(0);
}


/*
  Reset the counters of a simple key cache

  SYNOPSIS
    reset_simple_key_cache_counters()
    name                the name of a key cache
    keycache            pointer to the control block of a simple key cache

  DESCRIPTION
    This function is the implementation of the reset_key_cache_counters
    interface function that is employed by simple (non-partitioned) key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type S_KEY_CACHE_CB for a simple key cache.
    This function resets the values of all statistical counters for the key
    cache to 0.
    The parameter name is currently not used.

  RETURN
    0 on success (always because it can't fail)
*/

static
int reset_simple_key_cache_counters(const char *name __attribute__((unused)),
                                    SIMPLE_KEY_CACHE_CB *keycache)
{
  DBUG_ENTER("reset_simple_key_cache_counters");
  if (!keycache->key_cache_inited)
  {
    DBUG_PRINT("info", ("Key cache %s not initialized.", name));
    DBUG_RETURN(0);
  }
  DBUG_PRINT("info", ("Resetting counters for key cache %s.", name));

  keycache->global_blocks_changed= 0;   /* Key_blocks_not_flushed */
  keycache->global_cache_r_requests= 0; /* Key_read_requests */
  keycache->global_cache_read= 0;       /* Key_reads */
  keycache->global_cache_w_requests= 0; /* Key_write_requests */
  keycache->global_cache_write= 0;      /* Key_writes */
  DBUG_RETURN(0);
}


#ifndef DBUG_OFF
/*
  Test if disk-cache is ok
*/
static
void test_key_cache(SIMPLE_KEY_CACHE_CB *keycache __attribute__((unused)),
                    const char *where __attribute__((unused)),
                    my_bool lock __attribute__((unused)))
{
  /* TODO */
}
#endif

#if defined(KEYCACHE_TIMEOUT)

#define KEYCACHE_DUMP_FILE  "keycache_dump.txt"
#define MAX_QUEUE_LEN  100


static void keycache_dump(SIMPLE_KEY_CACHE_CB *keycache)
{
  FILE *keycache_dump_file=fopen(KEYCACHE_DUMP_FILE, "w");
  struct st_my_thread_var *last;
  struct st_my_thread_var *thread;
  BLOCK_LINK *block;
  HASH_LINK *hash_link;
  KEYCACHE_PAGE *page;
  uint i;

  fprintf(keycache_dump_file, "thread:%lu\n", (ulong) thread->id);

  i=0;
  thread=last=waiting_for_hash_link.last_thread;
  fprintf(keycache_dump_file, "queue of threads waiting for hash link\n");
  if (thread)
    do
    {
      thread=thread->next;
      page= (KEYCACHE_PAGE *) thread->keycache_link;
      fprintf(keycache_dump_file,
              "thread:%lu, (file,filepos)=(%u,%lu)\n",
              (ulong) thread->id,(uint) page->file,(ulong) page->filepos);
      if (++i == MAX_QUEUE_LEN)
        break;
    }
    while (thread != last);

  i=0;
  thread=last=waiting_for_block.last_thread;
  fprintf(keycache_dump_file, "queue of threads waiting for block\n");
  if (thread)
    do
    {
      thread=thread->next;
      hash_link= (HASH_LINK *) thread->keycache_link;
      fprintf(keycache_dump_file,
              "thread:%lu hash_link:%u (file,filepos)=(%u,%lu)\n",
              (ulong) thread->id, (uint) HASH_LINK_NUMBER(hash_link),
        (uint) hash_link->file,(ulong) hash_link->diskpos);
      if (++i == MAX_QUEUE_LEN)
        break;
    }
    while (thread != last);

  for (i=0 ; i< keycache->blocks_used ; i++)
  {
    int j;
    block= &keycache->block_root[i];
    hash_link= block->hash_link;
    fprintf(keycache_dump_file,
            "block:%u hash_link:%d status:%x #requests=%u waiting_for_readers:%d\n",
            i, (int) (hash_link ? HASH_LINK_NUMBER(hash_link) : -1),
            block->status, block->requests, block->condvar ? 1 : 0);
    for (j=0 ; j < 2; j++)
    {
      KEYCACHE_WQUEUE *wqueue=&block->wqueue[j];
      thread= last= wqueue->last_thread;
      fprintf(keycache_dump_file, "queue #%d\n", j);
      if (thread)
      {
        do
        {
          thread=thread->next;
          fprintf(keycache_dump_file,
                  "thread:%lu\n", (ulong) thread->id);
          if (++i == MAX_QUEUE_LEN)
            break;
        }
        while (thread != last);
      }
    }
  }
  fprintf(keycache_dump_file, "LRU chain:");
  block= keycache= used_last;
  if (block)
  {
    do
    {
      block= block->next_used;
      fprintf(keycache_dump_file,
              "block:%u, ", BLOCK_NUMBER(block));
    }
    while (block != keycache->used_last);
  }
  fprintf(keycache_dump_file, "\n");

  fclose(keycache_dump_file);
}

#endif /* defined(KEYCACHE_TIMEOUT) */

#if defined(KEYCACHE_TIMEOUT) && !defined(__WIN__)


static int keycache_pthread_cond_wait(mysql_cond_t *cond,
                                      mysql_mutex_t *mutex)
{
  int rc;
  struct timeval  now;            /* time when we started waiting        */
  struct timespec timeout;        /* timeout value for the wait function */
  struct timezone tz;
#if defined(KEYCACHE_DEBUG)
  int cnt=0;
#endif

  /* Get current time */
  gettimeofday(&now, &tz);
  /* Prepare timeout value */
  timeout.tv_sec= now.tv_sec + KEYCACHE_TIMEOUT;
 /*
   timeval uses microseconds.
   timespec uses nanoseconds.
   1 nanosecond = 1000 micro seconds
 */
  timeout.tv_nsec= now.tv_usec * 1000;
  KEYCACHE_THREAD_TRACE_END("started waiting");
#if defined(KEYCACHE_DEBUG)
  cnt++;
  if (cnt % 100 == 0)
    fprintf(keycache_debug_log, "waiting...\n");
    fflush(keycache_debug_log);
#endif
  rc= mysql_cond_timedwait(cond, mutex, &timeout);
  KEYCACHE_THREAD_TRACE_BEGIN("finished waiting");
  if (rc == ETIMEDOUT || rc == ETIME)
  {
#if defined(KEYCACHE_DEBUG)
    fprintf(keycache_debug_log,"aborted by keycache timeout\n");
    fclose(keycache_debug_log);
    abort();
#endif
    keycache_dump();
  }

#if defined(KEYCACHE_DEBUG)
  KEYCACHE_DBUG_ASSERT(rc != ETIMEDOUT);
#else
  assert(rc != ETIMEDOUT);
#endif
  return rc;
}
#else
#if defined(KEYCACHE_DEBUG)
static int keycache_pthread_cond_wait(mysql_cond_t *cond,
                                      mysql_mutex_t *mutex)
{
  int rc;
  KEYCACHE_THREAD_TRACE_END("started waiting");
  rc= mysql_cond_wait(cond, mutex);
  KEYCACHE_THREAD_TRACE_BEGIN("finished waiting");
  return rc;
}
#endif
#endif /* defined(KEYCACHE_TIMEOUT) && !defined(__WIN__) */

#if defined(KEYCACHE_DEBUG)


static int keycache_pthread_mutex_lock(mysql_mutex_t *mutex)
{
  int rc;
  rc= mysql_mutex_lock(mutex);
  KEYCACHE_THREAD_TRACE_BEGIN("");
  return rc;
}


static void keycache_pthread_mutex_unlock(mysql_mutex_t *mutex)
{
  KEYCACHE_THREAD_TRACE_END("");
  mysql_mutex_unlock(mutex);
}


static int keycache_pthread_cond_signal(mysql_cond_t *cond)
{
  int rc;
  KEYCACHE_THREAD_TRACE("signal");
  rc= mysql_cond_signal(cond);
  return rc;
}


#if defined(KEYCACHE_DEBUG_LOG)


static void keycache_debug_print(const char * fmt,...)
{
  va_list args;
  va_start(args,fmt);
  if (keycache_debug_log)
  {
    (void) vfprintf(keycache_debug_log, fmt, args);
    (void) fputc('\n',keycache_debug_log);
  }
  va_end(args);
}
#endif /* defined(KEYCACHE_DEBUG_LOG) */

#if defined(KEYCACHE_DEBUG_LOG)


void keycache_debug_log_close(void)
{
  if (keycache_debug_log)
    fclose(keycache_debug_log);
}
#endif /* defined(KEYCACHE_DEBUG_LOG) */

#endif /* defined(KEYCACHE_DEBUG) */

#ifdef DBUG_ASSERT_EXISTS 
#define F_B_PRT(_f_, _v_) DBUG_PRINT("assert_fail", (_f_, _v_))

static int fail_block(BLOCK_LINK *block  __attribute__((unused)))
{
#ifndef DBUG_OFF
  F_B_PRT("block->next_used:    %p\n", block->next_used);
  F_B_PRT("block->prev_used:    %p\n", block->prev_used);
  F_B_PRT("block->next_changed: %p\n", block->next_changed);
  F_B_PRT("block->prev_changed: %p\n", block->prev_changed);
  F_B_PRT("block->hash_link:    %p\n", block->hash_link);
  F_B_PRT("block->status:       %u\n", block->status);
  F_B_PRT("block->length:       %u\n", block->length);
  F_B_PRT("block->offset:       %u\n", block->offset);
  F_B_PRT("block->requests:     %u\n", block->requests);
  F_B_PRT("block->temperature:  %u\n", block->temperature);
#endif
  return 0; /* Let the assert fail. */
}
#endif

#ifndef DBUG_OFF
static int fail_hlink(HASH_LINK *hlink  __attribute__((unused)))
{
  F_B_PRT("hlink->next:    %p\n", hlink->next);
  F_B_PRT("hlink->prev:    %p\n", hlink->prev);
  F_B_PRT("hlink->block:   %p\n", hlink->block);
  F_B_PRT("hlink->diskpos: %lu\n", (ulong) hlink->diskpos);
  F_B_PRT("hlink->file:    %d\n", hlink->file);
  return 0; /* Let the assert fail. */
}

static int cache_empty(SIMPLE_KEY_CACHE_CB *keycache)
{
  int errcnt= 0;
  int idx;
  if (keycache->disk_blocks <= 0)
    return 1;
  for (idx= 0; idx < keycache->disk_blocks; idx++)
  {
    BLOCK_LINK *block= keycache->block_root + idx;
    if (block->status || block->requests || block->hash_link)
    {
      fprintf(stderr, "block index: %u\n", idx);
      fail_block(block);
      errcnt++;
    }
  }
  for (idx= 0; idx < keycache->hash_links; idx++)
  {
    HASH_LINK *hash_link= keycache->hash_link_root + idx;
    if (hash_link->requests || hash_link->block)
    {
      fprintf(stderr, "hash_link index: %u\n", idx);
      fail_hlink(hash_link);
      errcnt++;
    }
  }
  if (errcnt)
  {
    fprintf(stderr, "blocks: %d  used: %lu\n",
            keycache->disk_blocks, keycache->blocks_used);
    fprintf(stderr, "hash_links: %d  used: %d\n",
            keycache->hash_links, keycache->hash_links_used);
    fprintf(stderr, "\n");
  }
  return !errcnt;
}
#endif


/*
  Get statistics for a simple key cache

  SYNOPSIS
    get_simple_key_cache_statistics()
    keycache            pointer to the control block of a simple key cache
    partition_no        partition number (not used)
    key_cache_stats OUT pointer to the structure for the returned statistics

  DESCRIPTION
    This function is the implementation of the get_key_cache_statistics
    interface function that is employed by simple (non-partitioned) key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type SIMPLE_KEY_CACHE_CB for a simple key
    cache. This function returns the statistical data for the key cache.
    The parameter partition_no is not used by this function.

  RETURN
    none
*/

static
void get_simple_key_cache_statistics(SIMPLE_KEY_CACHE_CB *keycache, 
                                     uint partition_no __attribute__((unused)), 
                                     KEY_CACHE_STATISTICS *keycache_stats)
{
  DBUG_ENTER("simple_get_key_cache_statistics");

  keycache_stats->mem_size= (longlong) keycache->key_cache_mem_size;
  keycache_stats->block_size= (longlong) keycache->key_cache_block_size;
  keycache_stats->blocks_used= keycache->blocks_used;
  keycache_stats->blocks_unused= keycache->blocks_unused;
  keycache_stats->blocks_changed= keycache->global_blocks_changed;
  keycache_stats->blocks_warm= keycache->warm_blocks;
  keycache_stats->read_requests= keycache->global_cache_r_requests;
  keycache_stats->reads= keycache->global_cache_read;
  keycache_stats->write_requests= keycache->global_cache_w_requests;
  keycache_stats->writes= keycache->global_cache_write;
  DBUG_VOID_RETURN;  
}


/* 
  The array of pointer to the key cache interface functions used for simple
  key caches. Any simple key cache objects including those incorporated into
  partitioned keys caches exploit this array.

  The current implementation of these functions allows to call them from 
  the MySQL server code directly. We don't do it though. 
*/
   
static KEY_CACHE_FUNCS simple_key_cache_funcs =
{
  (INIT_KEY_CACHE) init_simple_key_cache,
  (RESIZE_KEY_CACHE) resize_simple_key_cache,
  (CHANGE_KEY_CACHE_PARAM) change_simple_key_cache_param,      
  (KEY_CACHE_READ) simple_key_cache_read,
  (KEY_CACHE_INSERT) simple_key_cache_insert,
  (KEY_CACHE_WRITE) simple_key_cache_write,
  (FLUSH_KEY_BLOCKS) flush_simple_key_cache_blocks, 
  (RESET_KEY_CACHE_COUNTERS) reset_simple_key_cache_counters, 
  (END_KEY_CACHE) end_simple_key_cache, 
  (GET_KEY_CACHE_STATISTICS) get_simple_key_cache_statistics,
};


/****************************************************************************** 
  Partitioned Key Cache Module

  The module contains implementations of all key cache interface functions
  employed by partitioned key caches. 

  A partitioned key cache is a collection of structures for simple key caches
  called key cache partitions. Any page from a file can be placed into a buffer
  of only one partition. The number of the partition is calculated from
  the file number and the position of the page in the file, and it's always the
  same for the page. The function that maps pages into partitions takes care
  of even distribution of pages among partitions.

  Partition key cache mitigate one of the major problem of simple key cache:
  thread contention for key cache lock (mutex). Every call of a key cache 
  interface function must acquire this lock. So threads compete for this lock
  even in the case when they have acquired shared locks for the file and
  pages they want read from are in the key cache buffers.
  When working with a partitioned key cache any key cache interface function
  that needs only one page has to acquire the key cache lock only for the
  partition the page is ascribed to. This makes the chances for threads not
  compete for the same key cache lock better. Unfortunately if we use a
  partitioned key cache with N partitions for B-tree indexes we can't say
  that the chances becomes N times less. The fact is that any index lookup
  operation requires reading from the root page that, for any index, is always
  ascribed to the same partition. To resolve this problem we should have
  employed more sophisticated mechanisms of working with root pages.

  Currently the number of partitions in a partitioned key cache is limited 
  by 64. We could increase this limit. Simultaneously we would have to increase
  accordingly the size of the bitmap dirty_part_map from the MYISAM_SHARE
  structure.
     
******************************************************************************/

/* Control block for a partitioned key cache */

typedef struct st_partitioned_key_cache_cb
{
  my_bool key_cache_inited;     /*<=> control block is allocated            */ 
  SIMPLE_KEY_CACHE_CB **partition_array; /* the key cache partitions        */  
  size_t key_cache_mem_size;    /* specified size of the cache memory       */
  uint key_cache_block_size;    /* size of the page buffer of a cache block */ 
  uint partitions;              /* number of partitions in the key cache    */
} PARTITIONED_KEY_CACHE_CB;

static
void end_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache,
                               my_bool cleanup);

static int
reset_partitioned_key_cache_counters(const char *name,
                                     PARTITIONED_KEY_CACHE_CB *keycache);

/*
  Determine the partition to which the index block to read is ascribed

  SYNOPSIS
    get_key_cache_partition()
    keycache            pointer to the control block of a partitioned key cache
    file                handler for the file for the block of data to be read
    filepos             position of the block of data in the file

  DESCRIPTION
    The function determines the number of the partition in whose buffer the 
    block from 'file' at the position filepos has to be placed for reading.
    The function returns the control block of the simple key cache for this
    partition to the caller.

  RETURN VALUE
    The pointer to the control block of the partition to which the specified
    file block is ascribed.
*/

static 
SIMPLE_KEY_CACHE_CB *
get_key_cache_partition(PARTITIONED_KEY_CACHE_CB *keycache, 
                        File file, my_off_t filepos)
{
  uint i= KEYCACHE_BASE_EXPR(file, filepos) % keycache->partitions;
  return keycache->partition_array[i];
}


/*
  Determine the partition to which the index block to write is ascribed

  SYNOPSIS
    get_key_cache_partition()
    keycache            pointer to the control block of a partitioned key cache
    file                handler for the file for the block of data to be read
    filepos             position of the block of data in the file
    dirty_part_map      pointer to the bitmap of dirty partitions for the file

  DESCRIPTION
    The function determines the number of the partition in whose buffer the 
    block from 'file' at the position filepos has to be placed for writing and
    marks the partition as dirty in the dirty_part_map bitmap.
    The function returns the control block of the simple key cache for this
    partition to the caller.

  RETURN VALUE
    The pointer to the control block of the partition to which the specified
    file block is ascribed.
*/

static SIMPLE_KEY_CACHE_CB 
*get_key_cache_partition_for_write(PARTITIONED_KEY_CACHE_CB *keycache, 
                                   File file, my_off_t filepos,
                                   ulonglong* dirty_part_map)
{
  uint i= KEYCACHE_BASE_EXPR( file, filepos) % keycache->partitions;
  *dirty_part_map|= 1ULL << i; 
  return keycache->partition_array[i];
}


/*
  Initialize a partitioned key cache

  SYNOPSIS
    init_partitioned_key_cache()
    keycache            pointer to the control block of a partitioned key cache
    key_cache_block_size    size of blocks to keep cached data
    use_mem             total memory to use for all key cache partitions 
    division_limit      division limit (may be zero)
    age_threshold       age threshold (may be zero)

  DESCRIPTION
    This function is the implementation of the init_key_cache
    interface function that is employed by partitioned key caches.

    The function builds and initializes an array of simple key caches,
    and then initializes the control block structure of the type
    PARTITIONED_KEY_CACHE_CB that is used for a partitioned key
    cache. The parameter keycache is supposed to point to this
    structure. The number of partitions in the partitioned key cache
    to be built must be passed through the field 'partitions' of this
    structure.
    The parameter key_cache_block_size specifies the size of the
    blocks in the the simple key caches to be built.
    The parameters division_limit and  age_threshold determine the initial
    values of those characteristics of the simple key caches that are used for
    midpoint insertion strategy. The parameter use_mem specifies the total
    amount of memory to be allocated for the key cache blocks in all simple key
    caches and for all auxiliary structures.       

  RETURN VALUE
    total number of blocks in key cache partitions, if successful,
    <= 0 - otherwise.

  NOTES
    If keycache->key_cache_inited != 0 then we assume that the memory for
    the array of partitions has been already allocated.

    It's assumed that no two threads call this function simultaneously
    referring to the same key cache handle.
*/

static
int init_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache,
                               uint key_cache_block_size,
                               size_t use_mem, uint division_limit,
                               uint age_threshold, uint changed_blocks_hash_size)
{
  int i;
  size_t mem_per_cache;
  size_t mem_decr;
  int cnt;
  SIMPLE_KEY_CACHE_CB *partition;
  SIMPLE_KEY_CACHE_CB **partition_ptr;
  uint partitions= keycache->partitions;
  int blocks= 0;
  DBUG_ENTER("partitioned_init_key_cache");

  keycache->key_cache_block_size = key_cache_block_size;

  if (keycache->key_cache_inited)
    partition_ptr= keycache->partition_array;
  else
  {
    if(!(partition_ptr=
       (SIMPLE_KEY_CACHE_CB **) my_malloc(sizeof(SIMPLE_KEY_CACHE_CB *) *
                                          partitions, MYF(MY_WME))))
      DBUG_RETURN(-1);
    bzero(partition_ptr, sizeof(SIMPLE_KEY_CACHE_CB *) * partitions);
    keycache->partition_array= partition_ptr;
  }

  mem_per_cache = use_mem / partitions;
  mem_decr= mem_per_cache / 5;

  for (i= 0; i < (int) partitions; i++)
  {
    my_bool key_cache_inited= keycache->key_cache_inited;
    if (key_cache_inited)
      partition= *partition_ptr;
    else
    {
      if (!(partition=
              (SIMPLE_KEY_CACHE_CB *)  my_malloc(sizeof(SIMPLE_KEY_CACHE_CB),
						 MYF(MY_WME))))
        continue;
      partition->key_cache_inited= 0;
    }

    cnt= init_simple_key_cache(partition, key_cache_block_size, mem_per_cache, 
			       division_limit, age_threshold,
                               changed_blocks_hash_size);
    if (cnt <= 0)
    {
      end_simple_key_cache(partition, 1);
      if (!key_cache_inited)
      {
        my_free(partition);
        partition= 0;
      }
      if ((i == 0 && cnt < 0) || i > 0)
      {
        /* 
          Here we have two cases: 
            1. i == 0 and cnt < 0
            cnt < 0 => mem_per_cache is not big enough to allocate minimal
            number of key blocks in the key cache of the partition.
            Decrease the the number of the partitions by 1 and start again.
            2. i > 0 
            There is not enough memory for one of the succeeding partitions.
            Just skip this partition decreasing the number of partitions in
            the key cache by one.
          Do not change the value of mem_per_cache in both cases.
	*/
        if (key_cache_inited)
	{
          my_free(partition);
          partition= 0;
          if(key_cache_inited) 
            memmove(partition_ptr, partition_ptr+1, 
                    sizeof(partition_ptr)*(partitions-i-1));
	}
        if (!--partitions)
          break;
      }
      else
      {
        /*
          We come here when i == 0 && cnt == 0.
          cnt == 0 => the memory allocator fails to allocate a block of
          memory of the size mem_per_cache. Decrease the value of
          mem_per_cache  without changing the current number of partitions
          and start again. Make sure that such a decrease may happen not
          more than 5 times in total.
	*/
        if (use_mem <= mem_decr)
          break;
        use_mem-= mem_decr;
      }
      i--;
      mem_per_cache= use_mem/partitions;
      continue;
    }
    else
    {
      blocks+= cnt;
      *partition_ptr++= partition;
    }
  } 

  keycache->partitions= partitions= (uint) (partition_ptr-keycache->partition_array);
  keycache->key_cache_mem_size= mem_per_cache * partitions;
  for (i= 0; i < (int) partitions; i++)
    keycache->partition_array[i]->hash_factor= partitions;
  
  keycache->key_cache_inited= 1;

  if (!partitions)
    blocks= -1;

  DBUG_RETURN(blocks);
} 


/*
  Resize a partitioned key cache

  SYNOPSIS
    resize_partitioned_key_cache()
    keycache            pointer to the control block of a partitioned key cache
    key_cache_block_size    size of blocks to keep cached data
    use_mem             total memory to use for the new key cache
    division_limit      new division limit (if not zero)
    age_threshold       new age threshold (if not zero)

  DESCRIPTION
    This function is the implementation of the resize_key_cache interface
    function that is employed by partitioned key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type PARTITIONED_KEY_CACHE_CB for the
    partitioned key cache to be resized. 
    The parameter key_cache_block_size specifies the new size of the blocks in
    the simple key caches that comprise the partitioned key cache.
    The parameters division_limit and age_threshold determine the new initial
    values of those characteristics of the simple key cache that are used for
    midpoint insertion strategy. The parameter use-mem specifies the total
    amount of  memory to be allocated for the key cache blocks in all new
    simple key caches and for all auxiliary structures.

  RETURN VALUE
    number of blocks in the key cache, if successful,
    0 - otherwise.

  NOTES.
    The function first calls prepare_resize_simple_key_cache for each simple
    key cache effectively flushing all dirty pages from it and destroying
    the key cache. Then init_partitioned_key_cache is called. This call builds
    a new array of simple key caches containing the same number of elements
    as the old one. After this the function calls the function
    finish_resize_simple_key_cache for each simple key cache from this array. 

    This implementation doesn't block the calls and executions of other
    functions from the key cache interface. However it assumes that the
    calls of resize_partitioned_key_cache itself are serialized.
*/

static
int resize_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache, 
                                 uint key_cache_block_size,
		                 size_t use_mem, uint division_limit,
		                 uint age_threshold,
                                 uint changed_blocks_hash_size)
{
  uint i;
  uint partitions= keycache->partitions;
  my_bool cleanup= use_mem == 0;
  int blocks= -1;
  int err= 0;
  DBUG_ENTER("partitioned_resize_key_cache");
  if (cleanup)
  {
    end_partitioned_key_cache(keycache, 0);
    DBUG_RETURN(-1);
  }
  for (i= 0; i < partitions; i++)
  {
    err|= prepare_resize_simple_key_cache(keycache->partition_array[i], 1);
  }
  if (!err) 
    blocks= init_partitioned_key_cache(keycache, key_cache_block_size,
                                       use_mem, division_limit, age_threshold,
                                       changed_blocks_hash_size);
  if (blocks > 0)
  {
    for (i= 0; i < partitions; i++)
    {
      finish_resize_simple_key_cache(keycache->partition_array[i], 1);
    }
  }
  DBUG_RETURN(blocks);
}


/*
  Change key cache parameters of a partitioned key cache

  SYNOPSIS
    partitioned_change_key_cache_param()
    keycache            pointer to the control block of a partitioned key cache
    division_limit      new division limit (if not zero)
    age_threshold       new age threshold (if not zero)

  DESCRIPTION
    This function is the implementation of the change_key_cache_param interface
    function that is employed by partitioned key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type PARTITIONED_KEY_CACHE_CB for the simple
    key cache where new values of the division limit and the age threshold used
    for midpoint insertion strategy are to be set.  The parameters
    division_limit and age_threshold provide these new values.

  RETURN VALUE
    none

  NOTES
    The function just calls change_simple_key_cache_param for each element from
    the array of simple caches that comprise the partitioned key cache. 
*/

static
void change_partitioned_key_cache_param(PARTITIONED_KEY_CACHE_CB *keycache,
                                        uint division_limit,
                                        uint age_threshold)
{
  uint i;
  uint partitions= keycache->partitions;
  DBUG_ENTER("partitioned_change_key_cache_param");
  for (i= 0; i < partitions; i++)
  {
    change_simple_key_cache_param(keycache->partition_array[i], division_limit,
                                  age_threshold);
  }
  DBUG_VOID_RETURN;
}


/*
  Destroy a partitioned key cache 

  SYNOPSIS
    end_partitioned_key_cache()
    keycache            pointer to the control block of a partitioned key cache
    cleanup             <=> complete free (free also control block structures
                            for all simple key caches)

  DESCRIPTION
    This function is the implementation of the end_key_cache interface
    function that is employed by partitioned key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type PARTITIONED_KEY_CACHE_CB for the
    partitioned key cache to be destroyed.
    The function frees the memory allocated for the cache blocks and
    auxiliary structures used by simple key caches that comprise the
    partitioned key cache. If the value of the parameter cleanup is TRUE 
    then even the memory used for control blocks of the simple key caches
    and the array of pointers to them are freed.

  RETURN VALUE
    none
*/

static
void end_partitioned_key_cache(PARTITIONED_KEY_CACHE_CB *keycache,
                               my_bool cleanup)
{
  uint i;
  uint partitions= keycache->partitions;
  DBUG_ENTER("partitioned_end_key_cache");
  DBUG_PRINT("enter", ("key_cache: %p",  keycache));

  for (i= 0; i < partitions; i++)
  {
    end_simple_key_cache(keycache->partition_array[i], cleanup);
  }
  if (cleanup)
  {
    for (i= 0; i < partitions; i++)
      my_free(keycache->partition_array[i]);
    my_free(keycache->partition_array);
    keycache->key_cache_inited= 0;
  }
  DBUG_VOID_RETURN;
}


/*
  Read a block of data from a partitioned key cache into a buffer

  SYNOPSIS

    partitioned_key_cache_read()
    keycache            pointer to the control block of a partitioned key cache  
    file                handler for the file for the block of data to be read
    filepos             position of the block of data in the file
    level               determines the weight of the data
    buff                buffer to where the data must be placed
    length              length of the buffer
    block_length        length of the read data from a key cache block 
    return_buffer       return pointer to the key cache buffer with the data

  DESCRIPTION
    This function is the implementation of the key_cache_read interface
    function that is employed by partitioned key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type PARTITIONED_KEY_CACHE_CB for a
    partitioned key cache.
    In a general case the function reads a block of data from the key cache
    into the buffer buff of the size specified by the parameter length. The
    beginning of the  block of data to be read is  specified by the parameters
    file and filepos. The length of the read data is the same as the length
    of the buffer. The data is read into the buffer in key_cache_block_size
    increments. To read each portion the function first finds out in what
    partition of the key cache this portion(page) is to be saved, and calls
    simple_key_cache_read with the pointer to the corresponding simple key as
    its first parameter. 
    If the parameter return_buffer is not ignored and its value is TRUE, and 
    the data to be read of the specified size block_length can be read from one
    key cache buffer, then the function returns a pointer to the data in the
    key cache buffer.
    The function takes into account parameters block_length and return buffer
    only in a single-threaded environment.
    The parameter 'level' is used only by the midpoint insertion strategy 
    when the data or its portion cannot be found in the key cache. 
   
  RETURN VALUE
    Returns address from where the data is placed if successful, 0 - otherwise.
*/

static
uchar *partitioned_key_cache_read(PARTITIONED_KEY_CACHE_CB *keycache,
                                  File file, my_off_t filepos, int level,
                                  uchar *buff, uint length,
                                  uint block_length __attribute__((unused)),
                                  int return_buffer __attribute__((unused)))
{
  uint r_length;
  uint offset= (uint) (filepos % keycache->key_cache_block_size);
  uchar *start= buff;
  DBUG_ENTER("partitioned_key_cache_read");
  DBUG_PRINT("enter", ("fd: %u  pos: %lu  length: %u",
               (uint) file, (ulong) filepos, length));


  /* Read data in key_cache_block_size increments */
  do
  {
    SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition(keycache, 
                                                            file, filepos);
    uchar *ret_buff= 0;
    r_length= length;
    set_if_smaller(r_length, keycache->key_cache_block_size - offset);
    ret_buff= simple_key_cache_read((void *) partition, 
                                    file, filepos, level,
                                    buff, r_length,
                                    block_length, return_buffer);
    if (ret_buff == 0) 
      DBUG_RETURN(0);
    filepos+= r_length;
    buff+= r_length;
    offset= 0;
  } while ((length-= r_length));
  
  DBUG_RETURN(start);
}


/*
  Insert a block of file data from a buffer into a partitioned key cache

  SYNOPSIS
    partitioned_key_cache_insert()
    keycache            pointer to the control block of a partitioned key cache 
    file                handler for the file to insert data from
    filepos             position of the block of data in the file to insert
    level               determines the weight of the data
    buff                buffer to read data from
    length              length of the data in the buffer

  DESCRIPTION
    This function is the implementation of the key_cache_insert interface
    function that is employed by partitioned key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type PARTITIONED_KEY_CACHE_CB for a
    partitioned key cache.
    The function writes a block of file data from a buffer into the key cache.
    The buffer is specified with the parameters buff and length - the pointer
    to the beginning of the buffer and its size respectively. It's assumed
    that the buffer contains the data from 'file' allocated from the position
    filepos. The data is copied from the buffer in key_cache_block_size 
    increments. For every portion of data the function finds out in what simple
    key cache from the array of partitions the data must be stored, and after
    this calls simple_key_cache_insert to copy the data into a key buffer of
    this simple key cache.
    The parameter level is used to set one characteristic for the key buffers
    loaded with the data from buff. The characteristic is used only by the
    midpoint insertion strategy. 
   
  RETURN VALUE
    0 if a success, 1 - otherwise.

  NOTES
    The function is used by MyISAM to move all blocks from a index file to 
    the key cache. It can be performed in parallel with reading the file data
    from the key buffers by other threads.
*/

static
int partitioned_key_cache_insert(PARTITIONED_KEY_CACHE_CB *keycache,
                                 File file, my_off_t filepos, int level,
                                 uchar *buff, uint length)
{
  uint w_length;
  uint offset= (uint) (filepos % keycache->key_cache_block_size);
  DBUG_ENTER("partitioned_key_cache_insert");
  DBUG_PRINT("enter", ("fd: %u  pos: %lu  length: %u",
               (uint) file,(ulong) filepos, length));


  /* Write data in key_cache_block_size increments */
  do
  {
    SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition(keycache, 
                                                            file, filepos);
    w_length= length;
    set_if_smaller(w_length, keycache->key_cache_block_size - offset);
    if (simple_key_cache_insert((void *) partition,
                                file, filepos, level,
                                buff, w_length)) 
      DBUG_RETURN(1);

    filepos+= w_length;
    buff+= w_length;
    offset = 0;
  } while ((length-= w_length));
  
  DBUG_RETURN(0);
}


/*
  Write data from a buffer into a partitioned key cache

  SYNOPSIS

    partitioned_key_cache_write()
    keycache            pointer to the control block of a partitioned key cache
    file                handler for the file to write data to
    filepos             position in the file to write data to
    level               determines the weight of the data
    buff                buffer with the data
    length              length of the buffer
    dont_write          if is 0 then all dirty pages involved in writing
                        should have been flushed from key cache
    file_extra          maps of key cache partitions containing 
                        dirty pages from file 

  DESCRIPTION
    This function is the implementation of the key_cache_write interface
    function that is employed by partitioned key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type PARTITIONED_KEY_CACHE_CB for a
    partitioned key cache.
    In a general case the function copies data from a buffer into the key
    cache. The buffer is specified with the parameters buff and length -
    the pointer to the beginning of the buffer and its size respectively.
    It's assumed the buffer contains the data to be written into 'file'
    starting from the position filepos. The data is copied from the buffer
    in key_cache_block_size increments. For every portion of data the
    function finds out in what simple key cache from the array of partitions
    the data must be stored, and after this calls simple_key_cache_write to
    copy the data into a key buffer of this simple key cache.
    If the value of the parameter dont_write is FALSE then the function
    also writes the data into file.
    The parameter level is used to set one characteristic for the key buffers
    filled with the data from buff. The characteristic is employed only by
    the midpoint insertion strategy.
    The parameter file_expra provides a pointer to the shared bitmap of
    the partitions that may contains dirty pages for the file. This bitmap
    is used to optimize the function flush_partitioned_key_cache_blocks. 

  RETURN VALUE
    0 if a success, 1 - otherwise.

  NOTES
    This implementation exploits the fact that the function is called only
    when a thread has got an exclusive lock for the key file.
*/

static
int partitioned_key_cache_write(PARTITIONED_KEY_CACHE_CB *keycache,
                                File file, void *file_extra,
                                my_off_t filepos, int level,
                                uchar *buff, uint length,
                                uint block_length  __attribute__((unused)),
                                int dont_write)
{
  uint w_length;
  ulonglong *part_map= (ulonglong *) file_extra;
  uint offset= (uint) (filepos % keycache->key_cache_block_size);
  DBUG_ENTER("partitioned_key_cache_write");
  DBUG_PRINT("enter",
             ("fd: %u  pos: %lu  length: %u  block_length: %u"
              "  key_block_length: %u",
              (uint) file, (ulong) filepos, length, block_length,
              keycache ? keycache->key_cache_block_size : 0));


  /* Write data in key_cache_block_size increments */
  do
  {
    SIMPLE_KEY_CACHE_CB *partition= get_key_cache_partition_for_write(keycache, 
                                                                      file,
                                                                      filepos,
                                                                      part_map);
    w_length = length;
    set_if_smaller(w_length, keycache->key_cache_block_size - offset );
    if (simple_key_cache_write(partition,
                               file, 0, filepos, level,
                               buff, w_length, block_length,
                               dont_write))
      DBUG_RETURN(1);

    filepos+= w_length;
    buff+= w_length;
    offset= 0;
  } while ((length-= w_length));

  DBUG_RETURN(0);
}


/*
  Flush all blocks for a file from key buffers of a partitioned key cache 

  SYNOPSIS

    flush_partitioned_key_cache_blocks()
    keycache            pointer to the control block of a partitioned key cache
    file                handler for the file to flush to
    file_extra          maps of key cache partitions containing 
                        dirty pages from file (not used)         
    flush_type          type of the flush operation

  DESCRIPTION
    This function is the implementation of the flush_key_blocks interface
    function that is employed by partitioned key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type PARTITIONED_KEY_CACHE_CB for a
    partitioned key cache.
    In a general case the function flushes the data from all dirty key
    buffers related to the file 'file' into this file. The function does
    exactly this if the value of the parameter type is FLUSH_KEEP. If the
    value of this parameter is FLUSH_RELEASE, the function additionally 
    releases the key buffers containing data from 'file' for new usage.
    If the value of the parameter type is FLUSH_IGNORE_CHANGED the function
    just releases the key buffers containing data from 'file'.
    The function performs the operation by calling the function 
    flush_simple_key_cache_blocks for the elements of the array of the
    simple key caches that comprise the partitioned key_cache. If the value
    of the parameter type is FLUSH_KEEP s_flush_key_blocks is called only
    for the partitions with possibly dirty pages marked in the bitmap
    pointed to by the parameter file_extra.    
      
  RETURN
    0   ok
    1  error

  NOTES
    This implementation exploits the fact that the function is called only
    when a thread has got an exclusive lock for the key file.
*/

static
int flush_partitioned_key_cache_blocks(PARTITIONED_KEY_CACHE_CB *keycache,
                                       File file, void *file_extra,
                                       enum flush_type type)
{
  uint i;
  uint partitions= keycache->partitions;
  int err= 0;
  ulonglong *dirty_part_map= (ulonglong *) file_extra;
  DBUG_ENTER("partitioned_flush_key_blocks");
  DBUG_PRINT("enter", ("keycache: %p",  keycache));

  for (i= 0; i < partitions; i++)
  {
    SIMPLE_KEY_CACHE_CB *partition= keycache->partition_array[i];
    if ((type == FLUSH_KEEP || type == FLUSH_FORCE_WRITE) &&
        !((*dirty_part_map) & ((ulonglong) 1 << i)))
      continue;
    err|= MY_TEST(flush_simple_key_cache_blocks(partition, file, 0, type));
  }
  *dirty_part_map= 0;

  DBUG_RETURN(err);
}


/*
  Reset the counters of a partitioned key cache

  SYNOPSIS
    reset_partitioned_key_cache_counters()
    name                the name of a key cache
    keycache            pointer to the control block of a partitioned key cache

  DESCRIPTION
    This function is the implementation of the reset_key_cache_counters
    interface function that is employed by partitioned key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type PARTITIONED_KEY_CACHE_CB for a partitioned
    key cache.
    This function resets the values of the statistical counters of the simple
    key caches comprising partitioned key cache to 0. It does it by calling 
    reset_simple_key_cache_counters for each key  cache partition. 
    The parameter name is currently not used.

  RETURN
    0 on success (always because it can't fail)
*/

static int
reset_partitioned_key_cache_counters(const char *name __attribute__((unused)),
                                     PARTITIONED_KEY_CACHE_CB *keycache)
{
  uint i;
  uint partitions= keycache->partitions;
  DBUG_ENTER("partitioned_reset_key_cache_counters");

  for (i = 0; i < partitions; i++)
  {
    reset_simple_key_cache_counters(name,  keycache->partition_array[i]);
  }
  DBUG_RETURN(0);
}


/*
  Get statistics for a partition key cache 

  SYNOPSIS
    get_partitioned_key_cache_statistics()
    keycache            pointer to the control block of a partitioned key cache
    partition_no        partition number to get statistics for
    key_cache_stats OUT pointer to the structure for the returned statistics

  DESCRIPTION
    This function is the implementation of the get_key_cache_statistics
    interface function that is employed by partitioned key caches.
    The function takes the parameter keycache as a pointer to the
    control block structure of the type PARTITIONED_KEY_CACHE_CB for
    a partitioned key cache.
    If the value of the parameter partition_no is equal to 0 then aggregated
    statistics for all partitions is returned in the fields of the
    structure key_cache_stat of the type KEY_CACHE_STATISTICS . Otherwise
    the function returns data for the partition number partition_no of the
    key cache in the structure key_cache_stat. (Here partitions are numbered
    starting from 1.)

  RETURN
    none
*/

static
void
get_partitioned_key_cache_statistics(PARTITIONED_KEY_CACHE_CB *keycache,
                                     uint partition_no, 
                                     KEY_CACHE_STATISTICS *keycache_stats)
{
  uint i;
  SIMPLE_KEY_CACHE_CB *partition;
  uint partitions= keycache->partitions;
  DBUG_ENTER("get_partitioned_key_cache_statistics");

  if (partition_no != 0)
  { 
    partition= keycache->partition_array[partition_no-1];
    get_simple_key_cache_statistics((void *) partition, 0, keycache_stats);
    DBUG_VOID_RETURN;
  }
  bzero(keycache_stats, sizeof(KEY_CACHE_STATISTICS));  
  keycache_stats->mem_size= (longlong) keycache->key_cache_mem_size;
  keycache_stats->block_size= (longlong) keycache->key_cache_block_size;
  for (i = 0; i < partitions; i++)
  {
    partition= keycache->partition_array[i];
    keycache_stats->blocks_used+= partition->blocks_used;
    keycache_stats->blocks_unused+= partition->blocks_unused;
    keycache_stats->blocks_changed+= partition->global_blocks_changed;
    keycache_stats->blocks_warm+= partition->warm_blocks;
    keycache_stats->read_requests+= partition->global_cache_r_requests;
    keycache_stats->reads+= partition->global_cache_read;
    keycache_stats->write_requests+= partition->global_cache_w_requests;
    keycache_stats->writes+= partition->global_cache_write;
  }
  DBUG_VOID_RETURN;  
}

/* 
  The array of pointers to the key cache interface functions used by 
  partitioned key caches. Any partitioned key cache object caches exploits
  this array.
 
  The current implementation of these functions does not allow to call
  them from the MySQL server code directly. The key cache interface
  wrappers must be used for this purpose. 
*/

static KEY_CACHE_FUNCS partitioned_key_cache_funcs =
{
  (INIT_KEY_CACHE) init_partitioned_key_cache,
  (RESIZE_KEY_CACHE) resize_partitioned_key_cache,
  (CHANGE_KEY_CACHE_PARAM) change_partitioned_key_cache_param,      
  (KEY_CACHE_READ) partitioned_key_cache_read,
  (KEY_CACHE_INSERT) partitioned_key_cache_insert,
  (KEY_CACHE_WRITE) partitioned_key_cache_write,
  (FLUSH_KEY_BLOCKS) flush_partitioned_key_cache_blocks, 
  (RESET_KEY_CACHE_COUNTERS) reset_partitioned_key_cache_counters, 
  (END_KEY_CACHE) end_partitioned_key_cache, 
  (GET_KEY_CACHE_STATISTICS) get_partitioned_key_cache_statistics,
};


/****************************************************************************** 
  Key Cache Interface Module

  The module contains wrappers for all key cache interface functions. 
  
  Currently there are key caches of two types: simple key caches and
  partitioned key caches. Each type (class) has its own implementation of the
  basic key cache operations used the MyISAM storage engine. The pointers
  to the implementation functions are stored in two static structures of the
  type KEY_CACHE_FUNC: simple_key_cache_funcs - for simple key caches, and
  partitioned_key_cache_funcs - for partitioned key caches. When a key cache
  object is created the constructor procedure init_key_cache places a pointer
  to the corresponding table into one of its fields. The procedure also
  initializes a control block for the key cache oject and saves the pointer
  to this block in another field of the key cache object.
  When a key cache wrapper function is invoked for a key cache object to
  perform a basic key cache operation it looks into the interface table
  associated with the key cache oject and calls the corresponding
  implementation of the operation. It passes the saved key cache control
  block to this implementation. If, for some reasons, the control block
  has not been fully initialized yet, the wrapper function either does not
  do anything or, in the case when it perform a read/write operation, the
  function do it directly through the system i/o functions.

  As we can see the model with which the key cache interface is supported
  as quite conventional for interfaces in general.
          
******************************************************************************/

static
int repartition_key_cache_internal(KEY_CACHE *keycache,
                                   uint key_cache_block_size, size_t use_mem,
                                   uint division_limit, uint age_threshold,
                                   uint changed_blocks_hash_size,
                                   uint partitions, my_bool use_op_lock);

/*
  Initialize a key cache : internal

  SYNOPSIS
    init_key_cache_internal()
    keycache           pointer to the key cache to be initialized
    key_cache_block_size    size of blocks to keep cached data
    use_mem             total memory to use for cache buffers/structures 
    division_limit      division limit (may be zero)
    age_threshold       age threshold (may be zero)
    changed_blocks_hash_size Number of hash buckets to hold a link of different
                        files. Should be proportional to number of different
                        files sused.
    partitions          Number of partitions in the key cache
    use_op_lock         if TRUE use keycache->op_lock, otherwise - ignore it

  DESCRIPTION
    The function performs the actions required from init_key_cache().
    It has an additional parameter: use_op_lock. When the parameter
    is TRUE than the function initializes keycache->op_lock if needed,
    then locks it, and unlocks it before the return. Otherwise the actions
    with the lock are omitted. 

  RETURN VALUE
    total number of blocks in key cache partitions, if successful,
    <= 0 - otherwise.

  NOTES
    if keycache->key_cache_inited != 0 we assume that the memory
    for the control block of the key cache has been already allocated.
*/

static
int init_key_cache_internal(KEY_CACHE *keycache, uint key_cache_block_size,
		            size_t use_mem, uint division_limit,
		            uint age_threshold, uint changed_blocks_hash_size,
                            uint partitions,
                            my_bool use_op_lock)
{
  void *keycache_cb;
  int blocks;
  if (keycache->key_cache_inited)
  {
    if (use_op_lock)
      pthread_mutex_lock(&keycache->op_lock);
    keycache_cb= keycache->keycache_cb;
  }
  else
  {
    if (partitions == 0)
    {
      if (!(keycache_cb= (void *)  my_malloc(sizeof(SIMPLE_KEY_CACHE_CB),
                                             MYF(0)))) 
        return 0;
      ((SIMPLE_KEY_CACHE_CB *) keycache_cb)->key_cache_inited= 0;
      keycache->key_cache_type= SIMPLE_KEY_CACHE;
      keycache->interface_funcs= &simple_key_cache_funcs;
    }
    else
    {
      if (!(keycache_cb= (void *)  my_malloc(sizeof(PARTITIONED_KEY_CACHE_CB),
                                             MYF(0)))) 
        return 0;
      ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->key_cache_inited= 0;
      keycache->key_cache_type= PARTITIONED_KEY_CACHE;
      keycache->interface_funcs= &partitioned_key_cache_funcs;
    }
    /*
      Initialize op_lock if it's not initialized before. 
      The mutex may have been initialized before if we are being called
      from repartition_key_cache_internal().
    */
    if (use_op_lock)
      pthread_mutex_init(&keycache->op_lock, MY_MUTEX_INIT_FAST);      
    keycache->keycache_cb= keycache_cb;
    keycache->key_cache_inited= 1;
    if (use_op_lock)
      pthread_mutex_lock(&keycache->op_lock);
  }

  if (partitions != 0)
  {
    ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->partitions= partitions;
  }
  keycache->can_be_used= 0;
  blocks= keycache->interface_funcs->init(keycache_cb, key_cache_block_size,
                                          use_mem, division_limit,
                                          age_threshold, changed_blocks_hash_size);
  keycache->partitions= partitions ? 
                        ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->partitions :
                        0;
  DBUG_ASSERT(partitions <= MAX_KEY_CACHE_PARTITIONS);
  keycache->key_cache_mem_size=
    keycache->partitions ?
    ((PARTITIONED_KEY_CACHE_CB *) keycache_cb)->key_cache_mem_size :
    ((SIMPLE_KEY_CACHE_CB *) keycache_cb)->key_cache_mem_size;
  if (blocks > 0)
    keycache->can_be_used= 1;
  if (use_op_lock)
    pthread_mutex_unlock(&keycache->op_lock);
  return blocks;
}


/*
  Initialize a key cache

  SYNOPSIS
    init_key_cache()
    keycache           pointer to the key cache to be initialized
    key_cache_block_size    size of blocks to keep cached data
    use_mem             total memory to use for cache buffers/structures 
    division_limit      division limit (may be zero)
    age_threshold       age threshold (may be zero)
    partitions          number of partitions in the key cache

  DESCRIPTION
    The function creates a control block structure for a key cache and
    places the pointer to this block in the structure keycache. 
    If the value of the parameter 'partitions' is 0 then a simple key cache
    is created. Otherwise a partitioned key cache with the specified number
    of partitions is created.  
    The parameter key_cache_block_size specifies the size of the blocks in
    the key cache to be created. The parameters division_limit and
    age_threshold determine the initial values of those characteristics of
    the key cache that are used for midpoint insertion strategy. The parameter
    use_mem  specifies the total amount of memory to be allocated for the
    key cache buffers and for all auxiliary structures.  
    The function calls init_key_cache_internal() to perform all these actions
    with the last parameter set to TRUE.     

  RETURN VALUE
    total number of blocks in key cache partitions, if successful,
    <= 0 - otherwise.

  NOTES
    It's assumed that no two threads call this function simultaneously
    referring to the same key cache handle.
*/

int init_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
		   size_t use_mem, uint division_limit,
		   uint age_threshold, uint changed_blocks_hash_size,
                   uint partitions)
{
  return init_key_cache_internal(keycache,  key_cache_block_size, use_mem,
				 division_limit, age_threshold, 
                                 changed_blocks_hash_size, partitions, 1);
}


/*
  Resize a key cache

  SYNOPSIS
    resize_key_cache()
    keycache            pointer to the key cache to be resized
    key_cache_block_size    size of blocks to keep cached data
    use_mem             total memory to use for the new key cache
    division_limit      new division limit (if not zero)
    age_threshold       new age threshold (if not zero)

  DESCRIPTION
    The function operates over the key cache key cache.
    The parameter key_cache_block_size specifies the new size of the block
    buffers in the key cache. The parameters division_limit and age_threshold
    determine the new initial values of those characteristics of the key cache
    that are used for midpoint insertion strategy. The parameter use_mem
    specifies the total amount of  memory to be allocated for the key cache
    buffers and for all auxiliary structures.

  RETURN VALUE
    number of blocks in the key cache, if successful,
    0 - otherwise.

  NOTES
    The function does not block the calls and executions of other functions
    from the key cache interface. However it assumes that the calls of 
    resize_key_cache itself are serialized.

    Currently the function is called when the values of the variables
    key_buffer_size and/or key_cache_block_size are being reset for
    the key cache keycache.
*/

int resize_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
		     size_t use_mem, uint division_limit, uint age_threshold,
                     uint changed_blocks_hash_size)
{
  int blocks= -1;
  if (keycache->key_cache_inited)
  {
    pthread_mutex_lock(&keycache->op_lock);
    if ((uint) keycache->param_partitions != keycache->partitions && use_mem)
      blocks= repartition_key_cache_internal(keycache,
                                             key_cache_block_size, use_mem,
                                             division_limit, age_threshold, 
                                             changed_blocks_hash_size,
                                             (uint) keycache->param_partitions,
                                             0);
    else
    {
      blocks= keycache->interface_funcs->resize(keycache->keycache_cb,
                                                key_cache_block_size,
                                                use_mem, division_limit,
                                                age_threshold,
                                                changed_blocks_hash_size);

      if (keycache->partitions)
        keycache->partitions=
          ((PARTITIONED_KEY_CACHE_CB *)(keycache->keycache_cb))->partitions;
    }

    keycache->key_cache_mem_size=
    keycache->partitions ?
    ((PARTITIONED_KEY_CACHE_CB *)(keycache->keycache_cb))->key_cache_mem_size :
    ((SIMPLE_KEY_CACHE_CB *)(keycache->keycache_cb))->key_cache_mem_size;

    keycache->can_be_used= (blocks >= 0);
    pthread_mutex_unlock(&keycache->op_lock);
  } 
  return blocks;
}


/*
  Change key cache parameters of a key cache

  SYNOPSIS
    change_key_cache_param()
    keycache            pointer to the key cache to change parameters for
    division_limit      new division limit (if not zero)
    age_threshold       new age threshold (if not zero)

  DESCRIPTION
    The function sets new values of the division limit and the age threshold 
    used when the key cache keycach employs midpoint insertion strategy.
    The parameters division_limit and age_threshold provide these new values.

  RETURN VALUE
    none

  NOTES
    Currently the function is called when the values of the variables
    key_cache_division_limit and/or key_cache_age_threshold are being reset
    for the key cache keycache.
*/

void change_key_cache_param(KEY_CACHE *keycache, uint division_limit,
			    uint age_threshold)
{
  if (keycache->key_cache_inited)
  {
    pthread_mutex_lock(&keycache->op_lock);    
    keycache->interface_funcs->change_param(keycache->keycache_cb,
                                            division_limit,
                                            age_threshold);    
    pthread_mutex_unlock(&keycache->op_lock);
  }
}


/*
  Destroy a key cache : internal

  SYNOPSIS
    end_key_cache_internal()
    keycache            pointer to the key cache to be destroyed
    cleanup             <=> complete free 
    use_op_lock         if TRUE use keycache->op_lock, otherwise - ignore it

  DESCRIPTION
    The function performs the actions required from end_key_cache().
    It has an additional parameter: use_op_lock. When the parameter
    is TRUE than the function destroys keycache->op_lock if cleanup is true.
    Otherwise the action with the lock is omitted. 

  RETURN VALUE
    none
*/

static
void end_key_cache_internal(KEY_CACHE *keycache, my_bool cleanup,
                            my_bool use_op_lock)
{
  if (keycache->key_cache_inited)
  {
    keycache->interface_funcs->end(keycache->keycache_cb, cleanup);
    if (cleanup)
    {
      if (keycache->keycache_cb)
      {
        my_free(keycache->keycache_cb);
        keycache->keycache_cb= 0;
      }
      /*
        We do not destroy op_lock if we are going to reuse the same key cache.
        This happens if we are called from  repartition_key_cache_internal().
      */
      if (use_op_lock)
        pthread_mutex_destroy(&keycache->op_lock);
      keycache->key_cache_inited= 0;
    }
    keycache->can_be_used= 0;
  }
}


/*
  Destroy a key cache 

  SYNOPSIS
    end_key_cache()
    keycache            pointer to the key cache to be destroyed
    cleanup             <=> complete free 

  DESCRIPTION
    The function frees the memory allocated for the cache blocks and
    auxiliary structures used by the key cache keycache. If the value
    of the parameter cleanup is TRUE then all resources used by the key
    cache are to be freed.
    The function calls end_key_cache_internal() to perform all these actions
    with the last parameter set to TRUE.     

  RETURN VALUE
    none
*/

void end_key_cache(KEY_CACHE *keycache, my_bool cleanup)
{
  end_key_cache_internal(keycache, cleanup, 1);
}


/*
  Read a block of data from a key cache into a buffer

  SYNOPSIS

    key_cache_read()
    keycache            pointer to the key cache to read data from  
    file                handler for the file for the block of data to be read
    filepos             position of the block of data in the file
    level               determines the weight of the data
    buff                buffer to where the data must be placed
    length              length of the buffer
    block_length        length of the data read from a key cache block 
    return_buffer       return pointer to the key cache buffer with the data

  DESCRIPTION
    The function operates over buffers of the key cache keycache.
    In a general case the function reads a block of data from the key cache
    into the buffer buff of the size specified by the parameter length. The
    beginning of the block of data to be read is specified by the parameters
    file and filepos. The length of the read data is the same as the length
    of the buffer.
    If the parameter return_buffer is not ignored and its value is TRUE, and 
    the data to be read of the specified size block_length can be read from one
    key cache buffer, then the function returns a pointer to the data in the
    key cache buffer.
    The parameter 'level' is used only by the midpoint insertion strategy 
    when the data or its portion cannot be found in the key cache.
    The function reads data into the buffer directly from file if the control
    block of the key cache has not been initialized yet. 
   
  RETURN VALUE
    Returns address from where the data is placed if successful, 0 - otherwise.

  NOTES.
    Filepos must be a multiple of 'block_length', but it doesn't
    have to be a multiple of key_cache_block_size;
*/

uchar *key_cache_read(KEY_CACHE *keycache, 
                      File file, my_off_t filepos, int level,
                      uchar *buff, uint length,
		      uint block_length, int return_buffer)
{
  if (keycache->can_be_used)
    return keycache->interface_funcs->read(keycache->keycache_cb,
                                           file, filepos, level,
                                           buff, length,
                                           block_length, return_buffer);
 
  /* We can't use mutex here as the key cache may not be initialized */

  if (my_pread(file, (uchar*) buff, length, filepos, MYF(MY_NABP)))
    return (uchar *) 0;
  
  return buff;
}


/*
  Insert a block of file data from a buffer into a key cache

  SYNOPSIS
    key_cache_insert()
    keycache            pointer to the key cache to insert data into 
    file                handler for the file to insert data from
    filepos             position of the block of data in the file to insert
    level               determines the weight of the data
    buff                buffer to read data from
    length              length of the data in the buffer

  DESCRIPTION
    The function operates over buffers of the key cache keycache.
    The function writes a block of file data from a buffer into the key cache.
    The buffer is specified with the parameters buff and length - the pointer
    to the beginning of the buffer and its size respectively. It's assumed
    that the buffer contains the data from 'file' allocated from the position
    filepos.
    The parameter level is used to set one characteristic for the key buffers
    loaded with the data from buff. The characteristic is used only by the
    midpoint insertion strategy. 
   
  RETURN VALUE
    0 if a success, 1 - otherwise.

  NOTES
    The function is used by MyISAM to move all blocks from a index file to 
    the key cache. 
    It is assumed that it may be performed in parallel with reading the file
    data from the key buffers by other threads.
*/

int key_cache_insert(KEY_CACHE *keycache,
                     File file, my_off_t filepos, int level,
                     uchar *buff, uint length)
{
  if (keycache->can_be_used)
    return keycache->interface_funcs->insert(keycache->keycache_cb,
                                             file, filepos, level,
                                             buff, length);
  return 0;
}


/*
  Write data from a buffer into a key cache

  SYNOPSIS

    key_cache_write()
    keycache            pointer to the key cache to write data to
    file                handler for the file to write data to
    filepos             position in the file to write data to
    level               determines the weight of the data
    buff                buffer with the data
    length              length of the buffer
    dont_write          if is 0 then all dirty pages involved in writing
                        should have been flushed from key cache
    file_extra          pointer to optional file attributes

  DESCRIPTION
    The function operates over buffers of the key cache keycache.
    In a general case the function writes data from a buffer into the key
    cache. The buffer is specified with the parameters buff and length -
    the pointer to the beginning of the buffer and its size respectively.
    It's assumed the buffer contains the data to be written into 'file'
    starting from the position filepos. 
    If the value of the parameter dont_write is FALSE then the function
    also writes the data into file.
    The parameter level is used to set one characteristic for the key buffers
    filled with the data from buff. The characteristic is employed only by
    the midpoint insertion strategy.
    The parameter file_expra may point to additional file attributes used
    for optimization or other purposes.
    The function writes data from the buffer directly into file if the control
    block of the key cache has not been initialized yet.      

  RETURN VALUE
    0 if a success, 1 - otherwise.

  NOTES
    This implementation may exploit the fact that the function is called only
    when a thread has got an exclusive lock for the key file.
*/

int key_cache_write(KEY_CACHE *keycache,
                    File file, void *file_extra,
                    my_off_t filepos, int level,
                    uchar *buff, uint length,
		    uint block_length, int force_write)
{
  if (keycache->can_be_used)
    return keycache->interface_funcs->write(keycache->keycache_cb,
                                            file, file_extra,
                                            filepos, level,
                                            buff, length,
                                            block_length, force_write);
  
  /* We can't use mutex here as the key cache may not be initialized */
  if (my_pwrite(file, buff, length, filepos, MYF(MY_NABP | MY_WAIT_IF_FULL)))
    return 1;

  return 0;
}


/*
  Flush all blocks for a file from key buffers of a key cache 

  SYNOPSIS

    flush_key_blocks()
    keycache            pointer to the key cache whose blocks are to be flushed
    file                handler for the file to flush to
    file_extra          maps of key cache (used for partitioned key caches)
    flush_type          type of the flush operation

  DESCRIPTION
    The function operates over buffers of the key cache keycache.
    In a general case the function flushes the data from all dirty key
    buffers related to the file 'file' into this file. The function does
    exactly this if the value of the parameter type is FLUSH_KEEP. If the
    value of this parameter is FLUSH_RELEASE, the function additionally 
    releases the key buffers containing data from 'file' for new usage.
    If the value of the parameter type is FLUSH_IGNORE_CHANGED the function
    just releases the key buffers containing data from 'file'.
    If the value of the parameter type is FLUSH_KEEP the function may use
    the value of the parameter file_extra pointing to possibly dirty
    partitions to optimize the operation for partitioned key caches.
      
  RETURN
    0   ok
    1  error

  NOTES
    Any implementation of the function may exploit the fact that the function
    is called only when a thread has got an exclusive lock for the key file.
*/

int flush_key_blocks(KEY_CACHE *keycache,
                     int file, void *file_extra,
                     enum flush_type type)
{
  if (keycache->can_be_used)
    return keycache->interface_funcs->flush(keycache->keycache_cb,
                                            file, file_extra, type);
  return 0;  
}


/*
  Reset the counters of a key cache

  SYNOPSIS
    reset_key_cache_counters()
    name          the name of a key cache (unused)
    keycache      pointer to the key cache for which to reset counters

  DESCRIPTION
    This function resets the values of the statistical counters for the key
    cache keycache.
    The parameter name is currently not used.

  RETURN
    0 on success (always because it can't fail)

  NOTES
   This procedure is used by process_key_caches() to reset the counters of all
   currently used key caches, both the default one and the named ones.
*/

int reset_key_cache_counters(const char *name __attribute__((unused)),
                             KEY_CACHE *keycache,
                             void *unused __attribute__((unused)))
{
  int rc= 0;
  if (keycache->key_cache_inited)
  {
    pthread_mutex_lock(&keycache->op_lock);
    rc= keycache->interface_funcs->reset_counters(name,
                                                  keycache->keycache_cb);
    pthread_mutex_unlock(&keycache->op_lock);
  }
  return rc;
}


/*
  Get statistics for a key cache

  SYNOPSIS
    get_key_cache_statistics()
    keycache            pointer to the key cache to get statistics for
    partition_no        partition number to get statistics for
    key_cache_stats OUT pointer to the structure for the returned statistics

  DESCRIPTION
    If the value of the parameter partition_no is equal to 0 then statistics
    for the whole key cache keycache (aggregated statistics) is returned in the
    fields of the structure key_cache_stat of the type KEY_CACHE_STATISTICS.
    Otherwise the value of the parameter partition_no makes sense only for
    a partitioned key cache. In this case the function returns statistics
    for the partition with the specified number partition_no.   
  
  RETURN
    none
*/

void get_key_cache_statistics(KEY_CACHE *keycache, uint partition_no, 
                              KEY_CACHE_STATISTICS *key_cache_stats)
{
  if (keycache->key_cache_inited)
  {    
    pthread_mutex_lock(&keycache->op_lock);
    keycache->interface_funcs->get_stats(keycache->keycache_cb,
                                         partition_no, key_cache_stats);
    pthread_mutex_unlock(&keycache->op_lock);
  }
}


/*
  Repartition a key cache : internal

  SYNOPSIS
    repartition_key_cache_internal()
    keycache           pointer to the key cache to be repartitioned
    key_cache_block_size    size of blocks to keep cached data
    use_mem             total memory to use for the new key cache
    division_limit      new division limit (if not zero)
    age_threshold       new age threshold (if not zero)
    partitions          new number of partitions in the key cache 
    use_op_lock         if TRUE use keycache->op_lock, otherwise - ignore it

  DESCRIPTION
    The function performs the actions required from repartition_key_cache().
    It has an additional parameter: use_op_lock. When the parameter
    is TRUE then the function locks keycache->op_lock at start and
    unlocks it before the return. Otherwise the actions with the lock
    are omitted. 

  RETURN VALUE
    number of blocks in the key cache, if successful,
    0 - otherwise.
*/

static
int repartition_key_cache_internal(KEY_CACHE *keycache,
                                   uint key_cache_block_size, size_t use_mem,
                                   uint division_limit, uint age_threshold,
                                   uint changed_blocks_hash_size,
                                   uint partitions, my_bool use_op_lock)
{
  uint blocks= -1;
  if (keycache->key_cache_inited)
  {
    if (use_op_lock)
      pthread_mutex_lock(&keycache->op_lock);
    keycache->interface_funcs->resize(keycache->keycache_cb,
                                      key_cache_block_size, 0,
                                      division_limit, age_threshold,
                                      changed_blocks_hash_size);
    end_key_cache_internal(keycache, 1, 0);
    blocks= init_key_cache_internal(keycache, key_cache_block_size, use_mem,
                                    division_limit, age_threshold,
                                    changed_blocks_hash_size, partitions,
                                    0);
    if (use_op_lock)
      pthread_mutex_unlock(&keycache->op_lock);
  } 
  return blocks;
}

/*
  Repartition a key cache

  SYNOPSIS
    repartition_key_cache()
    keycache           pointer to the key cache to be repartitioned
    key_cache_block_size    size of blocks to keep cached data
    use_mem             total memory to use for the new key cache
    division_limit      new division limit (if not zero)
    age_threshold       new age threshold (if not zero)
    partitions          new number of partitions in the key cache 

  DESCRIPTION
    The function operates over the key cache keycache.
    The parameter partitions specifies the number of partitions in the key
    cache after repartitioning. If the value of this parameter is 0 then
    a simple key cache must be created instead of the old one. 
    The parameter key_cache_block_size specifies the new size of the block
    buffers in the key cache. The parameters division_limit and age_threshold
    determine the new initial values of those characteristics of the key cache
    that are used for midpoint insertion strategy. The parameter use_mem
    specifies the total amount of  memory to be allocated for the new key
    cache buffers and for all auxiliary structures.
    The function calls repartition_key_cache_internal() to perform all these
    actions with the last parameter set to TRUE.     

  RETURN VALUE
    number of blocks in the key cache, if successful,
    0 - otherwise.

  NOTES
    Currently the function is called when the value of the variable
    key_cache_partitions is being reset for the key cache keycache.
*/

int repartition_key_cache(KEY_CACHE *keycache, uint key_cache_block_size,
		          size_t use_mem, uint division_limit,
                          uint age_threshold, uint changed_blocks_hash_size,
                          uint partitions)
{
  return repartition_key_cache_internal(keycache, key_cache_block_size, use_mem,
			                division_limit, age_threshold,
                                        changed_blocks_hash_size,
                                        partitions, 1);
}