1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
|
/* Copyright (C) 2000 MySQL AB & MySQL Finland AB & TCX DataKonsult AB
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public
License as published by the Free Software Foundation; either
version 2 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA */
/*
Code for handling red-black (balanced) binary trees.
key in tree is allocated accrding to following:
1) If free_element function is given to init_tree or size < 0 then tree
will not allocate keys and only a pointer to each key is saved in tree.
key_sizes must be 0 to init and search.
compare and search functions uses and returns key-pointer.
2) if key_size is given to init_tree then each node will continue the
key and calls to insert_key may increase length of key.
if key_size > sizeof(pointer) and key_size is a multiple of 8 (double
allign) then key will be put on a 8 alligned adress. Else
the key will be on adress (element+1). This is transparent for user
compare and search functions uses a pointer to given key-argument.
3) If init_tree - keysize is 0 then key_size must be given to tree_insert
and tree_insert will alloc space for key.
compare and search functions uses a pointer to given key-argument.
The actual key in TREE_ELEMENT is saved as a pointer or after the
TREE_ELEMENT struct.
If one uses only pointers in tree one can use tree_set_pointer() to
change address of data.
Copyright Monty Program KB.
By monty.
*/
#include "mysys_priv.h"
#include <m_string.h>
#include <my_tree.h>
#define BLACK 1
#define RED 0
#define DEFAULT_ALLOC_SIZE (8192-MALLOC_OVERHEAD)
static void delete_tree_element(TREE *,TREE_ELEMENT *);
static int tree_walk_left_root_right(TREE *,TREE_ELEMENT *,
tree_walk_action,void *);
static int tree_walk_right_root_left(TREE *,TREE_ELEMENT *,
tree_walk_action,void *);
static void left_rotate(TREE_ELEMENT **parent,TREE_ELEMENT *leaf);
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf);
static void rb_insert(TREE *tree,TREE_ELEMENT ***parent,
TREE_ELEMENT *leaf);
static void rb_delete_fixup(TREE *tree,TREE_ELEMENT ***parent);
/* The actuall code for handling binary trees */
void init_tree(TREE *tree, uint default_alloc_size, int size,
qsort_cmp2 compare, my_bool with_delete,
void (*free_element) (void *))
{
DBUG_ENTER("init_tree");
DBUG_PRINT("enter",("tree: %lx size: %d",tree,size));
if (!default_alloc_size)
default_alloc_size= DEFAULT_ALLOC_SIZE;
bzero((gptr) &tree->null_element,sizeof(tree->null_element));
tree->root= &tree->null_element;
tree->compare=compare;
tree->size_of_element=size > 0 ? (uint) size : 0;
tree->free=free_element;
tree->elements_in_tree=0;
tree->cmp_arg = 0;
tree->null_element.colour=BLACK;
tree->null_element.left=tree->null_element.right=0;
if (!free_element && size >= 0 &&
((uint) size <= sizeof(void*) || ((uint) size & (sizeof(void*)-1))))
{
tree->offset_to_key=sizeof(TREE_ELEMENT); /* Put key after element */
/* Fix allocation size so that we don't lose any memory */
default_alloc_size/=(sizeof(TREE_ELEMENT)+size);
if (!default_alloc_size)
default_alloc_size=1;
default_alloc_size*=(sizeof(TREE_ELEMENT)+size);
}
else
{
tree->offset_to_key=0; /* use key through pointer */
tree->size_of_element+=sizeof(void*);
}
if (!(tree->with_delete=with_delete))
{
init_alloc_root(&tree->mem_root, default_alloc_size,0);
tree->mem_root.min_malloc=(sizeof(TREE_ELEMENT)+tree->size_of_element);
}
DBUG_VOID_RETURN;
}
static void free_tree(TREE *tree, myf free_flags)
{
DBUG_ENTER("free_tree");
DBUG_PRINT("enter",("tree: %lx",tree));
if (tree->root) /* If initialized */
{
if (tree->with_delete)
delete_tree_element(tree,tree->root);
else
{
if (tree->free)
delete_tree_element(tree,tree->root);
free_root(&tree->mem_root, free_flags);
}
}
tree->root= &tree->null_element;
tree->elements_in_tree=0;
DBUG_VOID_RETURN;
}
void delete_tree(TREE* tree)
{
free_tree(tree, MYF(0)); /* my_free() mem_root if applicable */
}
void reset_tree(TREE* tree)
{
free_tree(tree, MYF(MY_MARK_BLOCKS_FREE));
/* do not my_free() mem_root if applicable, just mark blocks as free */
}
static void delete_tree_element(TREE *tree, TREE_ELEMENT *element)
{
if (element != &tree->null_element)
{
delete_tree_element(tree,element->left);
delete_tree_element(tree,element->right);
if (tree->free)
(*tree->free)(ELEMENT_KEY(tree,element));
if (tree->with_delete)
my_free((void*) element,MYF(0));
}
}
/* Code for insert, search and delete of elements */
/* parent[0] = & parent[-1][0]->left ||
parent[0] = & parent[-1][0]->right */
TREE_ELEMENT *tree_insert(TREE *tree, void *key, uint key_size)
{
int cmp;
TREE_ELEMENT *element,***parent;
parent= tree->parents;
*parent = &tree->root; element= tree->root;
for (;;)
{
if (element == &tree->null_element ||
(cmp=(*tree->compare)(tree->cmp_arg,
ELEMENT_KEY(tree,element),key)) == 0)
break;
if (cmp < 0)
{
*++parent= &element->right; element= element->right;
}
else
{
*++parent = &element->left; element= element->left;
}
}
if (element == &tree->null_element)
{
key_size+=tree->size_of_element;
if (tree->with_delete)
element=(TREE_ELEMENT *) my_malloc(sizeof(TREE_ELEMENT)+key_size,
MYF(MY_WME));
else
element=(TREE_ELEMENT *)
alloc_root(&tree->mem_root,sizeof(TREE_ELEMENT)+key_size);
if (!element)
return(NULL);
**parent=element;
element->left=element->right= &tree->null_element;
if (!tree->offset_to_key)
{
if (key_size == sizeof(void*)) /* no length, save pointer */
*((void**) (element+1))=key;
else
{
*((void**) (element+1))= (void*) ((void **) (element+1)+1);
memcpy((byte*) *((void **) (element+1)),key,
(size_t) (key_size-sizeof(void*)));
}
}
else
memcpy((byte*) element+tree->offset_to_key,key,(size_t) key_size);
element->count=1; /* May give warning in purify */
tree->elements_in_tree++;
rb_insert(tree,parent,element); /* rebalance tree */
}
else
element->count++;
return element;
}
int tree_delete(TREE *tree, void *key)
{
int cmp,remove_colour;
TREE_ELEMENT *element,***parent, ***org_parent, *nod;
if (!tree->with_delete)
return 1; /* not allowed */
parent= tree->parents;
*parent= &tree->root; element= tree->root;
for (;;)
{
if (element == &tree->null_element)
return 1; /* Was not in tree */
if ((cmp=(*tree->compare)(tree->cmp_arg,
ELEMENT_KEY(tree,element),key)) == 0)
break;
if (cmp < 0)
{
*++parent= &element->right; element= element->right;
}
else
{
*++parent = &element->left; element= element->left;
}
}
if (element->left == &tree->null_element)
{
(**parent)=element->right;
remove_colour= element->colour;
}
else if (element->right == &tree->null_element)
{
(**parent)=element->left;
remove_colour= element->colour;
}
else
{
org_parent= parent;
*++parent= &element->right; nod= element->right;
while (nod->left != &tree->null_element)
{
*++parent= &nod->left; nod= nod->left;
}
(**parent)=nod->right; /* unlink nod from tree */
remove_colour= nod->colour;
org_parent[0][0]=nod; /* put y in place of element */
org_parent[1]= &nod->right;
nod->left=element->left;
nod->right=element->right;
nod->colour=element->colour;
}
if (remove_colour == BLACK)
rb_delete_fixup(tree,parent);
my_free((gptr) element,MYF(0));
tree->elements_in_tree--;
return 0;
}
void *tree_search(TREE *tree, void *key)
{
int cmp;
TREE_ELEMENT *element=tree->root;
for (;;)
{
if (element == &tree->null_element)
return (void*) 0;
if ((cmp=(*tree->compare)(tree->cmp_arg,
ELEMENT_KEY(tree,element),key)) == 0)
return ELEMENT_KEY(tree,element);
if (cmp < 0)
element=element->right;
else
element=element->left;
}
}
int tree_walk(TREE *tree, tree_walk_action action, void *argument, TREE_WALK visit)
{
switch (visit) {
case left_root_right:
return tree_walk_left_root_right(tree,tree->root,action,argument);
case right_root_left:
return tree_walk_right_root_left(tree,tree->root,action,argument);
}
return 0; /* Keep gcc happy */
}
static int tree_walk_left_root_right(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
{
int error;
if (element->left) /* Not null_element */
{
if ((error=tree_walk_left_root_right(tree,element->left,action,
argument)) == 0 &&
(error=(*action)(ELEMENT_KEY(tree,element),
(element_count) element->count,
argument)) == 0)
error=tree_walk_left_root_right(tree,element->right,action,argument);
return error;
}
return 0;
}
static int tree_walk_right_root_left(TREE *tree, TREE_ELEMENT *element, tree_walk_action action, void *argument)
{
int error;
if (element->right) /* Not null_element */
{
if ((error=tree_walk_right_root_left(tree,element->right,action,
argument)) == 0 &&
(error=(*action)(ELEMENT_KEY(tree,element),
(element_count) element->count,
argument)) == 0)
error=tree_walk_right_root_left(tree,element->left,action,argument);
return error;
}
return 0;
}
/* Functions to fix up the tree after insert and delete */
static void left_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
{
TREE_ELEMENT *y;
y=leaf->right;
leaf->right=y->left;
parent[0]=y;
y->left=leaf;
}
static void right_rotate(TREE_ELEMENT **parent, TREE_ELEMENT *leaf)
{
TREE_ELEMENT *x;
x=leaf->left;
leaf->left=x->right;
parent[0]=x;
x->right=leaf;
}
static void rb_insert(TREE *tree, TREE_ELEMENT ***parent, TREE_ELEMENT *leaf)
{
TREE_ELEMENT *y,*par,*par2;
leaf->colour=RED;
while (leaf != tree->root && (par=parent[-1][0])->colour == RED)
{
if (par == (par2=parent[-2][0])->left)
{
y= par2->right;
if (y->colour == RED)
{
par->colour=BLACK;
y->colour=BLACK;
leaf=par2;
parent-=2;
leaf->colour=RED; /* And the loop continues */
}
else
{
if (leaf == par->right)
{
left_rotate(parent[-1],par);
par=leaf; /* leaf is now parent to old leaf */
}
par->colour=BLACK;
par2->colour=RED;
right_rotate(parent[-2],par2);
break;
}
}
else
{
y= par2->left;
if (y->colour == RED)
{
par->colour=BLACK;
y->colour=BLACK;
leaf=par2;
parent-=2;
leaf->colour=RED; /* And the loop continues */
}
else
{
if (leaf == par->left)
{
right_rotate(parent[-1],par);
par=leaf;
}
par->colour=BLACK;
par2->colour=RED;
left_rotate(parent[-2],par2);
break;
}
}
}
tree->root->colour=BLACK;
}
static void rb_delete_fixup(TREE *tree, TREE_ELEMENT ***parent)
{
TREE_ELEMENT *x,*w,*par;
x= **parent;
while (x != tree->root && x->colour == BLACK)
{
if (x == (par=parent[-1][0])->left)
{
w=par->right;
if (w->colour == RED)
{
w->colour=BLACK;
par->colour=RED;
left_rotate(parent[-1],par);
parent[0]= &w->left;
*++parent= &par->left;
w=par->right;
}
if (w->left->colour == BLACK && w->right->colour == BLACK)
{
w->colour=RED;
x=par;
parent--;
}
else
{
if (w->right->colour == BLACK)
{
w->left->colour=BLACK;
w->colour=RED;
right_rotate(&par->right,w);
w=par->right;
}
w->colour=par->colour;
par->colour=BLACK;
w->right->colour=BLACK;
left_rotate(parent[-1],par);
x=tree->root;
break;
}
}
else
{
w=par->left;
if (w->colour == RED)
{
w->colour=BLACK;
par->colour=RED;
right_rotate(parent[-1],par);
parent[0]= &w->right;
*++parent= &par->right;
w=par->left;
}
if (w->right->colour == BLACK && w->left->colour == BLACK)
{
w->colour=RED;
x=par;
parent--;
}
else
{
if (w->left->colour == BLACK)
{
w->right->colour=BLACK;
w->colour=RED;
left_rotate(&par->left,w);
w=par->left;
}
w->colour=par->colour;
par->colour=BLACK;
w->left->colour=BLACK;
right_rotate(parent[-1],par);
x=tree->root;
break;
}
}
}
x->colour=BLACK;
}
#ifdef TESTING_TREES
/* Test that the proporties for a red-black tree holds */
static int test_rb_tree(TREE_ELEMENT *element)
{
int count_l,count_r;
if (!element->left)
return 0; /* Found end of tree */
if (element->colour == RED &&
(element->left->colour == RED || element->right->colour == RED))
{
printf("Wrong tree: Found two red in a row\n");
return -1;
}
count_l=test_rb_tree(element->left);
count_r=test_rb_tree(element->right);
if (count_l >= 0 && count_r >= 0)
{
if (count_l == count_r)
return count_l+(element->colour == BLACK);
printf("Wrong tree: Incorrect black-count: %d - %d\n",count_l,count_r);
}
return -1;
}
#endif
|