1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
|
/* Copyright (C) 2003 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*****************************************************************************
* Name: NdbIndexOperation.cpp
* Include:
* Link:
* Author: UABMASD Martin Sköld INN/V Alzato
* Date: 2002-04-01
* Version: 0.1
* Description: Secondary index support
* Documentation:
* Adjust: 2002-04-01 UABMASD First version.
****************************************************************************/
#include <NdbIndexOperation.hpp>
#include <NdbResultSet.hpp>
#include <Ndb.hpp>
#include <NdbConnection.hpp>
#include "NdbApiSignal.hpp"
#include <AttributeHeader.hpp>
#include <signaldata/TcIndx.hpp>
#include <signaldata/TcKeyReq.hpp>
#include <signaldata/IndxKeyInfo.hpp>
#include <signaldata/IndxAttrInfo.hpp>
#define CHECK_NULL(v) assert(v == NULL); v = NULL;
NdbIndexOperation::NdbIndexOperation(Ndb* aNdb) :
NdbOperation(aNdb),
m_theIndex(NULL),
m_theIndexLen(0),
m_theNoOfIndexDefined(0)
{
m_tcReqGSN = GSN_TCINDXREQ;
m_attrInfoGSN = GSN_INDXATTRINFO;
m_keyInfoGSN = GSN_INDXKEYINFO;
/**
* Change receiver type
*/
theReceiver.init(NdbReceiver::NDB_INDEX_OPERATION, this);
}
NdbIndexOperation::~NdbIndexOperation()
{
}
/*****************************************************************************
* int indxInit();
*
* Return Value: Return 0 : init was successful.
* Return -1: In all other case.
* Remark: Initiates operation record after allocation.
*****************************************************************************/
int
NdbIndexOperation::indxInit(NdbIndexImpl * anIndex,
NdbTableImpl * aTable,
NdbConnection* myConnection)
{
NdbOperation::init(aTable, myConnection);
switch (anIndex->m_type) {
case(NdbDictionary::Index::UniqueHashIndex):
break;
case(NdbDictionary::Index::Undefined):
case(NdbDictionary::Index::HashIndex):
case(NdbDictionary::Index::UniqueOrderedIndex):
case(NdbDictionary::Index::OrderedIndex):
setErrorCodeAbort(4003);
return -1;
}
m_theIndex = anIndex;
m_accessTable = anIndex->m_table;
m_theIndexLen = 0;
m_theNoOfIndexDefined = 0;
for (Uint32 i=0; i<MAXNROFTUPLEKEY; i++)
for (int j=0; j<3; j++)
m_theIndexDefined[i][j] = false;
TcIndxReq * const tcIndxReq = CAST_PTR(TcIndxReq, theTCREQ->getDataPtrSend());
tcIndxReq->scanInfo = 0;
theKEYINFOptr = &tcIndxReq->keyInfo[0];
theATTRINFOptr = &tcIndxReq->attrInfo[0];
return 0;
}
int NdbIndexOperation::readTuple()
{
// First check that index is unique
return NdbOperation::readTuple();
}
int NdbIndexOperation::readTupleExclusive()
{
// First check that index is unique
return NdbOperation::readTupleExclusive();
}
int NdbIndexOperation::simpleRead()
{
// First check that index is unique
return NdbOperation::simpleRead();
}
int NdbIndexOperation::dirtyRead()
{
// First check that index is unique
return NdbOperation::dirtyRead();
}
int NdbIndexOperation::committedRead()
{
// First check that index is unique
return NdbOperation::committedRead();
}
int NdbIndexOperation::updateTuple()
{
// First check that index is unique
return NdbOperation::updateTuple();
}
int NdbIndexOperation::deleteTuple()
{
// First check that index is unique
return NdbOperation::deleteTuple();
}
int NdbIndexOperation::dirtyUpdate()
{
// First check that index is unique
return NdbOperation::dirtyUpdate();
}
int NdbIndexOperation::interpretedUpdateTuple()
{
// First check that index is unique
return NdbOperation::interpretedUpdateTuple();
}
int NdbIndexOperation::interpretedDeleteTuple()
{
// First check that index is unique
return NdbOperation::interpretedDeleteTuple();
}
int NdbIndexOperation::equal_impl(const NdbColumnImpl* tAttrInfo,
const char* aValuePassed,
Uint32 aVariableKeyLen)
{
register Uint32 tAttrId;
Uint32 tData;
Uint32 tKeyInfoPosition;
const char* aValue = aValuePassed;
Uint32 tempData[1024];
if ((theStatus == OperationDefined) &&
(aValue != NULL) &&
(tAttrInfo != NULL )) {
/************************************************************************
* Start by checking that the attribute is an index key.
* This value is also the word order in the tuple key of this
* tuple key attribute.
* Then check that this tuple key has not already been defined.
* Finally check if all tuple key attributes have been defined. If
* this is true then set Operation state to tuple key defined.
************************************************************************/
tAttrId = tAttrInfo->m_attrId;
tKeyInfoPosition = tAttrInfo->m_keyInfoPos;
Uint32 i = 0;
// Check that the attribute is part if the index attributes
// by checking if it is a primary key attribute of index table
if (tAttrInfo->m_pk) {
Uint32 tKeyDefined = theTupleKeyDefined[0][2];
Uint32 tKeyAttrId = theTupleKeyDefined[0][0];
do {
if (tKeyDefined == false) {
goto keyEntryFound;
} else {
if (tKeyAttrId != tAttrId) {
/******************************************************************
* We read the key defined variable in advance.
* It could potentially read outside its area when
* i = MAXNROFTUPLEKEY - 1,
* it is not a problem as long as the variable
* theTupleKeyDefined is defined
* in the middle of the object.
* Reading wrong data and not using it causes no problems.
*****************************************************************/
i++;
tKeyAttrId = theTupleKeyDefined[i][0];
tKeyDefined = theTupleKeyDefined[i][2];
continue;
} else {
goto equal_error2;
}//if
}//if
} while (i < MAXNROFTUPLEKEY);
goto equal_error2;
} else {
goto equal_error1;
}
/**************************************************************************
* Now it is time to retrieve the tuple key data from the pointer supplied
* by the application.
* We have to retrieve the size of the attribute in words and bits.
*************************************************************************/
keyEntryFound:
m_theIndexDefined[i][0] = tAttrId;
m_theIndexDefined[i][1] = tKeyInfoPosition;
m_theIndexDefined[i][2] = true;
Uint32 sizeInBytes = tAttrInfo->m_attrSize * tAttrInfo->m_arraySize;
Uint32 bitsInLastWord = 8 * (sizeInBytes & 3) ;
Uint32 totalSizeInWords = (sizeInBytes + 3)/4;// Inc. bits in last word
Uint32 sizeInWords = sizeInBytes / 4; // Exc. bits in last word
if (true){ //tArraySize != 0) {
Uint32 tIndexLen = m_theIndexLen;
m_theIndexLen = tIndexLen + totalSizeInWords;
if ((aVariableKeyLen == sizeInBytes) ||
(aVariableKeyLen == 0)) {
;
} else {
goto equal_error3;
}
}
#if 0
else {
/************************************************************************
* The attribute is a variable array. We need to use the length parameter
* to know the size of this attribute in the key information and
* variable area. A key is however not allowed to be larger than 4
* kBytes and this is checked for variable array attributes
* used as keys.
***********************************************************************/
Uint32 tMaxVariableKeyLenInWord = (MAXTUPLEKEYLENOFATTERIBUTEINWORD -
tKeyInfoPosition);
tAttrSizeInBits = aVariableKeyLen << 3;
tAttrSizeInWords = tAttrSizeInBits >> 5;
tAttrBitsInLastWord = tAttrSizeInBits - (tAttrSizeInWords << 5);
tAttrLenInWords = ((tAttrSizeInBits + 31) >> 5);
if (tAttrLenInWords > tMaxVariableKeyLenInWord) {
setErrorCodeAbort(4207);
return -1;
}//if
m_theIndexLen = m_theIndexLen + tAttrLenInWords;
}//if
#endif
/*************************************************************************
* Check if the pointer of the value passed is aligned on a 4 byte
* boundary. If so only assign the pointer to the internal variable
* aValue. If it is not aligned then we start by copying the value to
* tempData and use this as aValue instead.
*************************************************************************/
const int attributeSize = sizeInBytes;
const int slack = sizeInBytes & 3;
int tDistrKey = tAttrInfo->m_distributionKey;
int tDistrGroup = tAttrInfo->m_distributionGroup;
if ((((UintPtr)aValue & 3) != 0) || (slack != 0)){
memcpy(&tempData[0], aValue, attributeSize);
aValue = (char*)&tempData[0];
if(slack != 0) {
char * tmp = (char*)&tempData[0];
memset(&tmp[attributeSize], 0, (4 - slack));
}//if
}//if
OperationType tOpType = theOperationType;
if ((tDistrKey != 1) && (tDistrGroup != 1)) {
;
} else if (tDistrKey == 1) {
theDistrKeySize += totalSizeInWords;
theDistrKeyIndicator = 1;
} else {
Uint32 TsizeInBytes = sizeInBytes;
Uint32 TbyteOrderFix = 0;
char* TcharByteOrderFix = (char*)&TbyteOrderFix;
if (tAttrInfo->m_distributionGroupBits == 8) {
char tFirstChar = aValue[TsizeInBytes - 2];
char tSecondChar = aValue[TsizeInBytes - 2];
TcharByteOrderFix[0] = tFirstChar;
TcharByteOrderFix[1] = tSecondChar;
TcharByteOrderFix[2] = 0x30;
TcharByteOrderFix[3] = 0x30;
theDistrGroupType = 0;
} else {
TbyteOrderFix = ((aValue[TsizeInBytes - 2] - 0x30) * 10)
+ (aValue[TsizeInBytes - 1] - 0x30);
theDistrGroupType = 1;
}//if
theDistributionGroup = TbyteOrderFix;
theDistrGroupIndicator = 1;
}//if
/**************************************************************************
* If the operation is an insert request and the attribute is stored then
* we also set the value in the stored part through putting the
* information in the INDXATTRINFO signals.
*************************************************************************/
if ((tOpType == InsertRequest) ||
(tOpType == WriteRequest)) {
if (!tAttrInfo->m_indexOnly){
Uint32 ahValue;
Uint32 sz = totalSizeInWords;
AttributeHeader::init(&ahValue, tAttrId, sz);
insertATTRINFO( ahValue );
insertATTRINFOloop((Uint32*)aValue, sizeInWords);
if (bitsInLastWord != 0) {
tData = *(Uint32*)(aValue + (sizeInWords << 2));
tData = convertEndian(tData);
tData = tData & ((1 << bitsInLastWord) - 1);
tData = convertEndian(tData);
insertATTRINFO( tData );
}//if
}//if
}//if
/**************************************************************************
* Store the Key information in the TCINDXREQ and INDXKEYINFO signals.
*************************************************************************/
if (insertKEYINFO(aValue, tKeyInfoPosition,
totalSizeInWords, bitsInLastWord) != -1) {
/************************************************************************
* Add one to number of tuple key attributes defined.
* If all have been defined then set the operation state to indicate
* that tuple key is defined.
* Thereby no more search conditions are allowed in this version.
***********************************************************************/
Uint32 tNoIndexDef = m_theNoOfIndexDefined;
Uint32 tErrorLine = theErrorLine;
int tNoIndexAttrs = m_theIndex->m_columns.size();
unsigned char tInterpretInd = theInterpretIndicator;
tNoIndexDef++;
m_theNoOfIndexDefined = tNoIndexDef;
tErrorLine++;
theErrorLine = tErrorLine;
if (int(tNoIndexDef) == tNoIndexAttrs) {
if (tOpType == UpdateRequest) {
if (tInterpretInd == 1) {
theStatus = GetValue;
} else {
theStatus = SetValue;
}//if
return 0;
} else if ((tOpType == ReadRequest) || (tOpType == DeleteRequest) ||
(tOpType == ReadExclusive)) {
theStatus = GetValue;
return 0;
} else if ((tOpType == InsertRequest) || (tOpType == WriteRequest)) {
theStatus = SetValue;
return 0;
} else {
setErrorCodeAbort(4005);
return -1;
}//if
}//if
return 0;
} else {
return -1;
}//if
} else {
if (theStatus != OperationDefined) {
return -1;
}//if
if (aValue == NULL) {
setErrorCodeAbort(4505);
return -1;
}//if
if ( tAttrInfo == NULL ) {
setErrorCodeAbort(4004);
return -1;
}//if
}//if
return -1;
equal_error1:
setErrorCodeAbort(4205);
return -1;
equal_error2:
setErrorCodeAbort(4206);
return -1;
equal_error3:
setErrorCodeAbort(4209);
return -1;
}
int NdbIndexOperation::executeCursor(int aProcessorId)
{
printf("NdbIndexOperation::executeCursor NYI\n");
// NYI
return -1;
}
void
NdbIndexOperation::setLastFlag(NdbApiSignal* signal, Uint32 lastFlag)
{
TcIndxReq * const req = CAST_PTR(TcIndxReq, signal->getDataPtrSend());
TcKeyReq::setExecuteFlag(req->requestInfo, lastFlag);
}
int
NdbIndexOperation::prepareSend(Uint32 aTC_ConnectPtr, Uint64 aTransactionId)
{
Uint32 tTransId1, tTransId2;
Uint32 tReqInfo;
Uint32 tSignalCount = 0;
Uint32 tInterpretInd = theInterpretIndicator;
theErrorLine = 0;
if (tInterpretInd != 1) {
OperationType tOpType = theOperationType;
OperationStatus tStatus = theStatus;
if ((tOpType == UpdateRequest) ||
(tOpType == InsertRequest) ||
(tOpType == WriteRequest)) {
if (tStatus != SetValue) {
setErrorCodeAbort(4506);
return -1;
}//if
} else if ((tOpType == ReadRequest) || (tOpType == ReadExclusive) ||
(tOpType == DeleteRequest)) {
if (tStatus != GetValue) {
setErrorCodeAbort(4506);
return -1;
}//if
} else {
setErrorCodeAbort(4507);
return -1;
}//if
} else {
if (prepareSendInterpreted() == -1) {
return -1;
}//if
}//if
//-------------------------------------------------------------
// We start by filling in the first 8 unconditional words of the
// TCINDXREQ signal.
//-------------------------------------------------------------
TcIndxReq * const tcIndxReq =
CAST_PTR(TcIndxReq, theTCREQ->getDataPtrSend());
Uint32 tTotalCurrAI_Len = theTotalCurrAI_Len;
Uint32 tIndexId = m_theIndex->m_indexId;
Uint32 tSchemaVersion = m_theIndex->m_version;
tcIndxReq->apiConnectPtr = aTC_ConnectPtr;
tcIndxReq->senderData = ptr2int();
tcIndxReq->attrLen = tTotalCurrAI_Len;
tcIndxReq->indexId = tIndexId;
tcIndxReq->indexSchemaVersion = tSchemaVersion;
tTransId1 = (Uint32) aTransactionId;
tTransId2 = (Uint32) (aTransactionId >> 32);
//-------------------------------------------------------------
// Simple is simple if simple or both start and commit is set.
//-------------------------------------------------------------
// Temporarily disable simple stuff
Uint8 tSimpleIndicator = 0;
// Uint8 tSimpleIndicator = theSimpleIndicator;
Uint8 tCommitIndicator = theCommitIndicator;
Uint8 tStartIndicator = theStartIndicator;
// if ((theNdbCon->theLastOpInList == this) && (theCommitIndicator == 0))
// abort();
// Temporarily disable simple stuff
Uint8 tSimpleAlt = 0;
// Uint8 tSimpleAlt = tStartIndicator & tCommitIndicator;
tSimpleIndicator = tSimpleIndicator | tSimpleAlt;
//-------------------------------------------------------------
// Simple state is set if start and commit is set and it is
// a read request. Otherwise it is set to zero.
//-------------------------------------------------------------
Uint8 tReadInd = (theOperationType == ReadRequest);
Uint8 tSimpleState = tReadInd & tSimpleAlt;
theNdbCon->theSimpleState = tSimpleState;
tcIndxReq->transId1 = tTransId1;
tcIndxReq->transId2 = tTransId2;
tReqInfo = 0;
if (tTotalCurrAI_Len <= TcIndxReq::MaxAttrInfo) {
tcIndxReq->setAIInTcIndxReq(tReqInfo, tTotalCurrAI_Len);
} else {
tcIndxReq->setAIInTcIndxReq(tReqInfo, TcIndxReq::MaxAttrInfo);
}//if
tcIndxReq->setSimpleFlag(tReqInfo, tSimpleIndicator);
tcIndxReq->setCommitFlag(tReqInfo, tCommitIndicator);
tcIndxReq->setStartFlag(tReqInfo, tStartIndicator);
const Uint8 tInterpretIndicator = theInterpretIndicator;
tcIndxReq->setInterpretedFlag(tReqInfo, tInterpretIndicator);
Uint8 tDirtyIndicator = theDirtyIndicator;
OperationType tOperationType = theOperationType;
Uint32 tIndexLen = m_theIndexLen;
Uint8 abortOption = theNdbCon->m_abortOption;
tcIndxReq->setDirtyFlag(tReqInfo, tDirtyIndicator);
tcIndxReq->setOperationType(tReqInfo, tOperationType);
tcIndxReq->setIndexLength(tReqInfo, tIndexLen);
tcIndxReq->setCommitType(tReqInfo, abortOption);
Uint8 tDistrKeyIndicator = theDistrKeyIndicator;
Uint8 tDistrGroupIndicator = theDistrGroupIndicator;
Uint8 tDistrGroupType = theDistrGroupType;
Uint8 tScanIndicator = theScanInfo & 1;
tcIndxReq->setDistributionGroupFlag(tReqInfo, tDistrGroupIndicator);
tcIndxReq->setDistributionGroupTypeFlag(tReqInfo, tDistrGroupType);
tcIndxReq->setDistributionKeyFlag(tReqInfo, tDistrKeyIndicator);
tcIndxReq->setScanIndFlag(tReqInfo, tScanIndicator);
tcIndxReq->requestInfo = tReqInfo;
//-------------------------------------------------------------
// The next step is to fill in the upto three conditional words.
//-------------------------------------------------------------
Uint32* tOptionalDataPtr = &tcIndxReq->scanInfo;
Uint32 tDistrGHIndex = tScanIndicator;
Uint32 tDistrKeyIndex = tDistrGHIndex + tDistrGroupIndicator;
Uint32 tScanInfo = theScanInfo;
Uint32 tDistributionGroup = theDistributionGroup;
Uint32 tDistrKeySize = theDistrKeySize;
tOptionalDataPtr[0] = tScanInfo;
tOptionalDataPtr[tDistrGHIndex] = tDistributionGroup;
tOptionalDataPtr[tDistrKeyIndex] = tDistrKeySize;
//-------------------------------------------------------------
// The next is step is to compress the key data part of the
// TCKEYREQ signal.
//-------------------------------------------------------------
Uint32 tKeyIndex = tDistrKeyIndex + tDistrKeyIndicator;
Uint32* tKeyDataPtr = &tOptionalDataPtr[tKeyIndex];
Uint32 Tdata1 = tcIndxReq->keyInfo[0];
Uint32 Tdata2 = tcIndxReq->keyInfo[1];
Uint32 Tdata3 = tcIndxReq->keyInfo[2];
Uint32 Tdata4 = tcIndxReq->keyInfo[3];
Uint32 Tdata5;
tKeyDataPtr[0] = Tdata1;
tKeyDataPtr[1] = Tdata2;
tKeyDataPtr[2] = Tdata3;
tKeyDataPtr[3] = Tdata4;
if (tIndexLen > 4) {
Tdata1 = tcIndxReq->keyInfo[4];
Tdata2 = tcIndxReq->keyInfo[5];
Tdata3 = tcIndxReq->keyInfo[6];
Tdata4 = tcIndxReq->keyInfo[7];
tKeyDataPtr[4] = Tdata1;
tKeyDataPtr[5] = Tdata2;
tKeyDataPtr[6] = Tdata3;
tKeyDataPtr[7] = Tdata4;
}//if
//-------------------------------------------------------------
// Finally we also compress the INDXATTRINFO part of the signal.
// We optimise by using the if-statement for sending INDXKEYINFO
// signals to calculating the new Attrinfo Index.
//-------------------------------------------------------------
Uint32 tAttrInfoIndex;
if (tIndexLen > TcIndxReq::MaxKeyInfo) {
/**
* Set transid and TC connect ptr in the INDXKEYINFO signals
*/
NdbApiSignal* tSignal = theFirstKEYINFO;
Uint32 remainingKey = tIndexLen - TcIndxReq::MaxKeyInfo;
do {
Uint32* tSigDataPtr = tSignal->getDataPtrSend();
NdbApiSignal* tnextSignal = tSignal->next();
tSignalCount++;
tSigDataPtr[0] = aTC_ConnectPtr;
tSigDataPtr[1] = tTransId1;
tSigDataPtr[2] = tTransId2;
if (remainingKey > IndxKeyInfo::DataLength) {
// The signal is full
tSignal->setLength(IndxKeyInfo::MaxSignalLength);
remainingKey -= IndxKeyInfo::DataLength;
}
else {
// Last signal
tSignal->setLength(IndxKeyInfo::HeaderLength + remainingKey);
remainingKey = 0;
}
tSignal = tnextSignal;
} while (tSignal != NULL);
tAttrInfoIndex = tKeyIndex + TcIndxReq::MaxKeyInfo;
} else {
tAttrInfoIndex = tKeyIndex + tIndexLen;
}//if
//-------------------------------------------------------------
// Perform the Attrinfo packing in the TCKEYREQ signal started
// above.
//-------------------------------------------------------------
Uint32* tAIDataPtr = &tOptionalDataPtr[tAttrInfoIndex];
Tdata1 = tcIndxReq->attrInfo[0];
Tdata2 = tcIndxReq->attrInfo[1];
Tdata3 = tcIndxReq->attrInfo[2];
Tdata4 = tcIndxReq->attrInfo[3];
Tdata5 = tcIndxReq->attrInfo[4];
theTCREQ->setLength(tcIndxReq->getAIInTcIndxReq(tReqInfo) +
tAttrInfoIndex + TcIndxReq::StaticLength);
tAIDataPtr[0] = Tdata1;
tAIDataPtr[1] = Tdata2;
tAIDataPtr[2] = Tdata3;
tAIDataPtr[3] = Tdata4;
tAIDataPtr[4] = Tdata5;
/***************************************************
* Send the INDXATTRINFO signals.
***************************************************/
if (tTotalCurrAI_Len > 5) {
// Set the last signal's length.
NdbApiSignal* tSignal = theFirstATTRINFO;
theCurrentATTRINFO->setLength(theAI_LenInCurrAI);
do {
Uint32* tSigDataPtr = tSignal->getDataPtrSend();
NdbApiSignal* tnextSignal = tSignal->next();
tSignalCount++;
tSigDataPtr[0] = aTC_ConnectPtr;
tSigDataPtr[1] = tTransId1;
tSigDataPtr[2] = tTransId2;
tSignal = tnextSignal;
} while (tSignal != NULL);
}//if
NdbRecAttr* tRecAttrObject = theFirstRecAttr;
theStatus = WaitResponse;
theCurrentRecAttr = tRecAttrObject;
return 0;
}
void NdbIndexOperation::closeScan()
{
printf("NdbIndexOperation::closeScan NYI\n");
}
/***************************************************************************
int receiveTCINDXREF( NdbApiSignal* aSignal)
Return Value: Return 0 : send was succesful.
Return -1: In all other case.
Parameters: aSignal: the signal object that contains the TCINDXREF signal from TC.
Remark: Handles the reception of the TCKEYREF signal.
***************************************************************************/
int
NdbIndexOperation::receiveTCINDXREF( NdbApiSignal* aSignal)
{
const TcIndxRef * const tcIndxRef = CAST_CONSTPTR(TcIndxRef, aSignal->getDataPtr());
if (checkState_TransId(aSignal) == -1) {
return -1;
}//if
theStatus = Finished;
theNdbCon->theReturnStatus = ReturnFailure;
//--------------------------------------------------------------------------//
// If the transaction this operation belongs to consists only of simple reads
// we set the error code on the transaction object.
// If the transaction consists of other types of operations we set
// the error code only on the operation since the simple read is not really
// part of this transaction and we can not decide the status of the whole
// transaction based on this operation.
//--------------------------------------------------------------------------//
Uint32 errorCode = tcIndxRef->errorCode;
if (theNdbCon->theSimpleState == 0) {
theError.code = errorCode;
theNdbCon->setOperationErrorCodeAbort(errorCode);
return theNdbCon->OpCompleteFailure();
} else {
theError.code = errorCode;
return theNdbCon->OpCompleteSuccess();
}
}//NdbIndexOperation::receiveTCINDXREF()
|