1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
9526
9527
9528
9529
9530
9531
9532
9533
9534
9535
9536
9537
9538
9539
9540
9541
9542
9543
9544
9545
9546
9547
9548
9549
9550
9551
9552
9553
9554
9555
9556
9557
9558
9559
9560
9561
9562
9563
9564
9565
9566
9567
9568
9569
9570
9571
9572
9573
9574
9575
9576
9577
9578
9579
9580
9581
9582
9583
9584
9585
9586
9587
9588
9589
9590
9591
9592
9593
9594
9595
9596
9597
9598
9599
9600
9601
9602
9603
9604
9605
9606
9607
9608
9609
9610
9611
9612
9613
9614
9615
9616
9617
9618
9619
9620
9621
9622
9623
9624
9625
9626
9627
9628
9629
9630
9631
9632
9633
9634
9635
9636
9637
9638
9639
9640
9641
9642
9643
9644
9645
9646
9647
9648
9649
9650
9651
9652
9653
9654
9655
9656
9657
9658
9659
9660
9661
9662
9663
9664
9665
9666
9667
9668
9669
9670
9671
9672
9673
9674
9675
9676
9677
9678
9679
9680
9681
9682
9683
9684
9685
9686
9687
9688
9689
9690
9691
9692
9693
9694
9695
9696
9697
9698
9699
9700
9701
9702
9703
9704
9705
9706
9707
9708
9709
9710
9711
9712
9713
9714
9715
9716
9717
9718
9719
9720
9721
9722
9723
9724
9725
9726
9727
9728
9729
9730
9731
9732
9733
9734
9735
9736
9737
9738
9739
9740
9741
9742
9743
9744
9745
9746
9747
9748
9749
9750
9751
9752
9753
9754
9755
9756
9757
9758
9759
9760
9761
9762
9763
9764
9765
9766
9767
9768
9769
9770
9771
9772
9773
9774
9775
9776
9777
9778
9779
9780
9781
9782
9783
9784
9785
9786
9787
9788
9789
9790
9791
9792
9793
9794
9795
9796
9797
9798
9799
9800
9801
9802
9803
9804
9805
9806
9807
9808
9809
9810
9811
9812
9813
9814
9815
9816
9817
9818
9819
9820
9821
9822
9823
9824
9825
9826
9827
9828
9829
9830
9831
9832
9833
9834
9835
9836
9837
9838
9839
9840
9841
9842
9843
9844
9845
9846
9847
9848
9849
9850
9851
9852
9853
9854
9855
9856
9857
9858
9859
9860
9861
9862
9863
9864
9865
9866
9867
9868
9869
9870
9871
9872
9873
9874
9875
9876
9877
9878
9879
9880
9881
9882
9883
9884
9885
9886
9887
9888
9889
9890
9891
9892
9893
9894
9895
9896
9897
9898
9899
9900
9901
9902
9903
9904
9905
9906
9907
9908
9909
9910
9911
9912
9913
9914
9915
9916
9917
9918
9919
9920
9921
9922
9923
9924
9925
9926
9927
9928
9929
9930
9931
9932
9933
9934
9935
9936
9937
9938
9939
9940
9941
9942
9943
9944
9945
9946
9947
9948
9949
9950
9951
9952
9953
9954
9955
9956
9957
9958
9959
9960
9961
9962
9963
9964
9965
9966
9967
9968
9969
9970
9971
9972
9973
9974
9975
9976
9977
9978
9979
9980
9981
9982
9983
9984
9985
9986
9987
9988
9989
9990
9991
9992
9993
9994
9995
9996
9997
9998
9999
10000
10001
10002
10003
10004
10005
10006
10007
10008
10009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
10100
10101
10102
10103
10104
10105
10106
10107
10108
10109
10110
10111
10112
10113
10114
10115
10116
10117
10118
10119
10120
10121
10122
10123
10124
10125
10126
10127
10128
10129
10130
10131
10132
10133
10134
10135
10136
10137
10138
10139
10140
10141
10142
10143
10144
10145
10146
10147
10148
10149
10150
10151
10152
10153
10154
10155
10156
10157
10158
10159
10160
10161
10162
10163
10164
10165
10166
10167
10168
10169
10170
10171
10172
10173
10174
10175
10176
10177
10178
10179
10180
10181
10182
10183
10184
10185
10186
10187
10188
10189
10190
10191
10192
10193
10194
10195
10196
10197
10198
10199
10200
10201
10202
10203
10204
10205
10206
10207
10208
10209
10210
10211
10212
10213
10214
10215
10216
10217
10218
10219
10220
10221
10222
10223
10224
10225
10226
10227
10228
10229
10230
10231
10232
10233
10234
10235
10236
10237
10238
10239
10240
10241
10242
10243
10244
10245
10246
10247
10248
10249
10250
10251
10252
10253
10254
10255
10256
10257
10258
10259
10260
10261
10262
10263
10264
10265
10266
10267
10268
10269
10270
10271
10272
10273
10274
10275
10276
10277
10278
10279
10280
10281
10282
10283
10284
10285
10286
10287
10288
10289
10290
10291
10292
10293
10294
10295
10296
10297
10298
10299
10300
10301
10302
10303
10304
10305
10306
10307
10308
10309
10310
10311
10312
10313
10314
10315
10316
10317
10318
10319
10320
10321
10322
10323
10324
10325
10326
10327
10328
10329
10330
10331
10332
10333
10334
10335
10336
10337
10338
10339
10340
10341
10342
10343
10344
10345
10346
10347
10348
10349
10350
10351
10352
10353
10354
10355
10356
10357
10358
10359
10360
10361
10362
10363
10364
10365
10366
10367
10368
10369
10370
10371
10372
10373
10374
10375
10376
10377
10378
10379
10380
10381
10382
10383
10384
10385
10386
10387
10388
10389
10390
10391
10392
10393
10394
10395
10396
10397
10398
10399
10400
10401
10402
10403
10404
10405
10406
10407
10408
10409
10410
10411
10412
10413
10414
10415
10416
10417
10418
10419
10420
10421
10422
10423
10424
10425
10426
10427
10428
10429
10430
10431
10432
10433
10434
10435
10436
10437
10438
10439
10440
10441
10442
10443
10444
10445
10446
10447
10448
10449
10450
10451
10452
10453
10454
10455
10456
10457
10458
10459
|
-----------------------------------------------------------------------------
This file contains a concatenation of the PCRE man pages, converted to plain
text format for ease of searching with a text editor, or for use on systems
that do not have a man page processor. The small individual files that give
synopses of each function in the library have not been included. Neither has
the pcredemo program. There are separate text files for the pcregrep and
pcretest commands.
-----------------------------------------------------------------------------
PCRE(3) Library Functions Manual PCRE(3)
NAME
PCRE - Perl-compatible regular expressions (original API)
PLEASE TAKE NOTE
This document relates to PCRE releases that use the original API, with
library names libpcre, libpcre16, and libpcre32. January 2015 saw the
first release of a new API, known as PCRE2, with release numbers start-
ing at 10.00 and library names libpcre2-8, libpcre2-16, and
libpcre2-32. The old libraries (now called PCRE1) are still being main-
tained for bug fixes, but there will be no new development. New
projects are advised to use the new PCRE2 libraries.
INTRODUCTION
The PCRE library is a set of functions that implement regular expres-
sion pattern matching using the same syntax and semantics as Perl, with
just a few differences. Some features that appeared in Python and PCRE
before they appeared in Perl are also available using the Python syn-
tax, there is some support for one or two .NET and Oniguruma syntax
items, and there is an option for requesting some minor changes that
give better JavaScript compatibility.
Starting with release 8.30, it is possible to compile two separate PCRE
libraries: the original, which supports 8-bit character strings
(including UTF-8 strings), and a second library that supports 16-bit
character strings (including UTF-16 strings). The build process allows
either one or both to be built. The majority of the work to make this
possible was done by Zoltan Herczeg.
Starting with release 8.32 it is possible to compile a third separate
PCRE library that supports 32-bit character strings (including UTF-32
strings). The build process allows any combination of the 8-, 16- and
32-bit libraries. The work to make this possible was done by Christian
Persch.
The three libraries contain identical sets of functions, except that
the names in the 16-bit library start with pcre16_ instead of pcre_,
and the names in the 32-bit library start with pcre32_ instead of
pcre_. To avoid over-complication and reduce the documentation mainte-
nance load, most of the documentation describes the 8-bit library, with
the differences for the 16-bit and 32-bit libraries described sepa-
rately in the pcre16 and pcre32 pages. References to functions or
structures of the form pcre[16|32]_xxx should be read as meaning
"pcre_xxx when using the 8-bit library, pcre16_xxx when using the
16-bit library, or pcre32_xxx when using the 32-bit library".
The current implementation of PCRE corresponds approximately with Perl
5.12, including support for UTF-8/16/32 encoded strings and Unicode
general category properties. However, UTF-8/16/32 and Unicode support
has to be explicitly enabled; it is not the default. The Unicode tables
correspond to Unicode release 6.3.0.
In addition to the Perl-compatible matching function, PCRE contains an
alternative function that matches the same compiled patterns in a dif-
ferent way. In certain circumstances, the alternative function has some
advantages. For a discussion of the two matching algorithms, see the
pcrematching page.
PCRE is written in C and released as a C library. A number of people
have written wrappers and interfaces of various kinds. In particular,
Google Inc. have provided a comprehensive C++ wrapper for the 8-bit
library. This is now included as part of the PCRE distribution. The
pcrecpp page has details of this interface. Other people's contribu-
tions can be found in the Contrib directory at the primary FTP site,
which is:
ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre
Details of exactly which Perl regular expression features are and are
not supported by PCRE are given in separate documents. See the pcrepat-
tern and pcrecompat pages. There is a syntax summary in the pcresyntax
page.
Some features of PCRE can be included, excluded, or changed when the
library is built. The pcre_config() function makes it possible for a
client to discover which features are available. The features them-
selves are described in the pcrebuild page. Documentation about build-
ing PCRE for various operating systems can be found in the README and
NON-AUTOTOOLS_BUILD files in the source distribution.
The libraries contains a number of undocumented internal functions and
data tables that are used by more than one of the exported external
functions, but which are not intended for use by external callers.
Their names all begin with "_pcre_" or "_pcre16_" or "_pcre32_", which
hopefully will not provoke any name clashes. In some environments, it
is possible to control which external symbols are exported when a
shared library is built, and in these cases the undocumented symbols
are not exported.
SECURITY CONSIDERATIONS
If you are using PCRE in a non-UTF application that permits users to
supply arbitrary patterns for compilation, you should be aware of a
feature that allows users to turn on UTF support from within a pattern,
provided that PCRE was built with UTF support. For example, an 8-bit
pattern that begins with "(*UTF8)" or "(*UTF)" turns on UTF-8 mode,
which interprets patterns and subjects as strings of UTF-8 characters
instead of individual 8-bit characters. This causes both the pattern
and any data against which it is matched to be checked for UTF-8 valid-
ity. If the data string is very long, such a check might use suffi-
ciently many resources as to cause your application to lose perfor-
mance.
One way of guarding against this possibility is to use the
pcre_fullinfo() function to check the compiled pattern's options for
UTF. Alternatively, from release 8.33, you can set the PCRE_NEVER_UTF
option at compile time. This causes an compile time error if a pattern
contains a UTF-setting sequence.
If your application is one that supports UTF, be aware that validity
checking can take time. If the same data string is to be matched many
times, you can use the PCRE_NO_UTF[8|16|32]_CHECK option for the second
and subsequent matches to save redundant checks.
Another way that performance can be hit is by running a pattern that
has a very large search tree against a string that will never match.
Nested unlimited repeats in a pattern are a common example. PCRE pro-
vides some protection against this: see the PCRE_EXTRA_MATCH_LIMIT fea-
ture in the pcreapi page.
USER DOCUMENTATION
The user documentation for PCRE comprises a number of different sec-
tions. In the "man" format, each of these is a separate "man page". In
the HTML format, each is a separate page, linked from the index page.
In the plain text format, the descriptions of the pcregrep and pcretest
programs are in files called pcregrep.txt and pcretest.txt, respec-
tively. The remaining sections, except for the pcredemo section (which
is a program listing), are concatenated in pcre.txt, for ease of
searching. The sections are as follows:
pcre this document
pcre-config show PCRE installation configuration information
pcre16 details of the 16-bit library
pcre32 details of the 32-bit library
pcreapi details of PCRE's native C API
pcrebuild building PCRE
pcrecallout details of the callout feature
pcrecompat discussion of Perl compatibility
pcrecpp details of the C++ wrapper for the 8-bit library
pcredemo a demonstration C program that uses PCRE
pcregrep description of the pcregrep command (8-bit only)
pcrejit discussion of the just-in-time optimization support
pcrelimits details of size and other limits
pcrematching discussion of the two matching algorithms
pcrepartial details of the partial matching facility
pcrepattern syntax and semantics of supported
regular expressions
pcreperform discussion of performance issues
pcreposix the POSIX-compatible C API for the 8-bit library
pcreprecompile details of saving and re-using precompiled patterns
pcresample discussion of the pcredemo program
pcrestack discussion of stack usage
pcresyntax quick syntax reference
pcretest description of the pcretest testing command
pcreunicode discussion of Unicode and UTF-8/16/32 support
In the "man" and HTML formats, there is also a short page for each C
library function, listing its arguments and results.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
Putting an actual email address here seems to have been a spam magnet,
so I've taken it away. If you want to email me, use my two initials,
followed by the two digits 10, at the domain cam.ac.uk.
REVISION
Last updated: 10 February 2015
Copyright (c) 1997-2015 University of Cambridge.
------------------------------------------------------------------------------
PCRE(3) Library Functions Manual PCRE(3)
NAME
PCRE - Perl-compatible regular expressions
#include <pcre.h>
PCRE 16-BIT API BASIC FUNCTIONS
pcre16 *pcre16_compile(PCRE_SPTR16 pattern, int options,
const char **errptr, int *erroffset,
const unsigned char *tableptr);
pcre16 *pcre16_compile2(PCRE_SPTR16 pattern, int options,
int *errorcodeptr,
const char **errptr, int *erroffset,
const unsigned char *tableptr);
pcre16_extra *pcre16_study(const pcre16 *code, int options,
const char **errptr);
void pcre16_free_study(pcre16_extra *extra);
int pcre16_exec(const pcre16 *code, const pcre16_extra *extra,
PCRE_SPTR16 subject, int length, int startoffset,
int options, int *ovector, int ovecsize);
int pcre16_dfa_exec(const pcre16 *code, const pcre16_extra *extra,
PCRE_SPTR16 subject, int length, int startoffset,
int options, int *ovector, int ovecsize,
int *workspace, int wscount);
PCRE 16-BIT API STRING EXTRACTION FUNCTIONS
int pcre16_copy_named_substring(const pcre16 *code,
PCRE_SPTR16 subject, int *ovector,
int stringcount, PCRE_SPTR16 stringname,
PCRE_UCHAR16 *buffer, int buffersize);
int pcre16_copy_substring(PCRE_SPTR16 subject, int *ovector,
int stringcount, int stringnumber, PCRE_UCHAR16 *buffer,
int buffersize);
int pcre16_get_named_substring(const pcre16 *code,
PCRE_SPTR16 subject, int *ovector,
int stringcount, PCRE_SPTR16 stringname,
PCRE_SPTR16 *stringptr);
int pcre16_get_stringnumber(const pcre16 *code,
PCRE_SPTR16 name);
int pcre16_get_stringtable_entries(const pcre16 *code,
PCRE_SPTR16 name, PCRE_UCHAR16 **first, PCRE_UCHAR16 **last);
int pcre16_get_substring(PCRE_SPTR16 subject, int *ovector,
int stringcount, int stringnumber,
PCRE_SPTR16 *stringptr);
int pcre16_get_substring_list(PCRE_SPTR16 subject,
int *ovector, int stringcount, PCRE_SPTR16 **listptr);
void pcre16_free_substring(PCRE_SPTR16 stringptr);
void pcre16_free_substring_list(PCRE_SPTR16 *stringptr);
PCRE 16-BIT API AUXILIARY FUNCTIONS
pcre16_jit_stack *pcre16_jit_stack_alloc(int startsize, int maxsize);
void pcre16_jit_stack_free(pcre16_jit_stack *stack);
void pcre16_assign_jit_stack(pcre16_extra *extra,
pcre16_jit_callback callback, void *data);
const unsigned char *pcre16_maketables(void);
int pcre16_fullinfo(const pcre16 *code, const pcre16_extra *extra,
int what, void *where);
int pcre16_refcount(pcre16 *code, int adjust);
int pcre16_config(int what, void *where);
const char *pcre16_version(void);
int pcre16_pattern_to_host_byte_order(pcre16 *code,
pcre16_extra *extra, const unsigned char *tables);
PCRE 16-BIT API INDIRECTED FUNCTIONS
void *(*pcre16_malloc)(size_t);
void (*pcre16_free)(void *);
void *(*pcre16_stack_malloc)(size_t);
void (*pcre16_stack_free)(void *);
int (*pcre16_callout)(pcre16_callout_block *);
PCRE 16-BIT API 16-BIT-ONLY FUNCTION
int pcre16_utf16_to_host_byte_order(PCRE_UCHAR16 *output,
PCRE_SPTR16 input, int length, int *byte_order,
int keep_boms);
THE PCRE 16-BIT LIBRARY
Starting with release 8.30, it is possible to compile a PCRE library
that supports 16-bit character strings, including UTF-16 strings, as
well as or instead of the original 8-bit library. The majority of the
work to make this possible was done by Zoltan Herczeg. The two
libraries contain identical sets of functions, used in exactly the same
way. Only the names of the functions and the data types of their argu-
ments and results are different. To avoid over-complication and reduce
the documentation maintenance load, most of the PCRE documentation
describes the 8-bit library, with only occasional references to the
16-bit library. This page describes what is different when you use the
16-bit library.
WARNING: A single application can be linked with both libraries, but
you must take care when processing any particular pattern to use func-
tions from just one library. For example, if you want to study a pat-
tern that was compiled with pcre16_compile(), you must do so with
pcre16_study(), not pcre_study(), and you must free the study data with
pcre16_free_study().
THE HEADER FILE
There is only one header file, pcre.h. It contains prototypes for all
the functions in all libraries, as well as definitions of flags, struc-
tures, error codes, etc.
THE LIBRARY NAME
In Unix-like systems, the 16-bit library is called libpcre16, and can
normally be accesss by adding -lpcre16 to the command for linking an
application that uses PCRE.
STRING TYPES
In the 8-bit library, strings are passed to PCRE library functions as
vectors of bytes with the C type "char *". In the 16-bit library,
strings are passed as vectors of unsigned 16-bit quantities. The macro
PCRE_UCHAR16 specifies an appropriate data type, and PCRE_SPTR16 is
defined as "const PCRE_UCHAR16 *". In very many environments, "short
int" is a 16-bit data type. When PCRE is built, it defines PCRE_UCHAR16
as "unsigned short int", but checks that it really is a 16-bit data
type. If it is not, the build fails with an error message telling the
maintainer to modify the definition appropriately.
STRUCTURE TYPES
The types of the opaque structures that are used for compiled 16-bit
patterns and JIT stacks are pcre16 and pcre16_jit_stack respectively.
The type of the user-accessible structure that is returned by
pcre16_study() is pcre16_extra, and the type of the structure that is
used for passing data to a callout function is pcre16_callout_block.
These structures contain the same fields, with the same names, as their
8-bit counterparts. The only difference is that pointers to character
strings are 16-bit instead of 8-bit types.
16-BIT FUNCTIONS
For every function in the 8-bit library there is a corresponding func-
tion in the 16-bit library with a name that starts with pcre16_ instead
of pcre_. The prototypes are listed above. In addition, there is one
extra function, pcre16_utf16_to_host_byte_order(). This is a utility
function that converts a UTF-16 character string to host byte order if
necessary. The other 16-bit functions expect the strings they are
passed to be in host byte order.
The input and output arguments of pcre16_utf16_to_host_byte_order() may
point to the same address, that is, conversion in place is supported.
The output buffer must be at least as long as the input.
The length argument specifies the number of 16-bit data units in the
input string; a negative value specifies a zero-terminated string.
If byte_order is NULL, it is assumed that the string starts off in host
byte order. This may be changed by byte-order marks (BOMs) anywhere in
the string (commonly as the first character).
If byte_order is not NULL, a non-zero value of the integer to which it
points means that the input starts off in host byte order, otherwise
the opposite order is assumed. Again, BOMs in the string can change
this. The final byte order is passed back at the end of processing.
If keep_boms is not zero, byte-order mark characters (0xfeff) are
copied into the output string. Otherwise they are discarded.
The result of the function is the number of 16-bit units placed into
the output buffer, including the zero terminator if the string was
zero-terminated.
SUBJECT STRING OFFSETS
The lengths and starting offsets of subject strings must be specified
in 16-bit data units, and the offsets within subject strings that are
returned by the matching functions are in also 16-bit units rather than
bytes.
NAMED SUBPATTERNS
The name-to-number translation table that is maintained for named sub-
patterns uses 16-bit characters. The pcre16_get_stringtable_entries()
function returns the length of each entry in the table as the number of
16-bit data units.
OPTION NAMES
There are two new general option names, PCRE_UTF16 and
PCRE_NO_UTF16_CHECK, which correspond to PCRE_UTF8 and
PCRE_NO_UTF8_CHECK in the 8-bit library. In fact, these new options
define the same bits in the options word. There is a discussion about
the validity of UTF-16 strings in the pcreunicode page.
For the pcre16_config() function there is an option PCRE_CONFIG_UTF16
that returns 1 if UTF-16 support is configured, otherwise 0. If this
option is given to pcre_config() or pcre32_config(), or if the
PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF32 option is given to pcre16_con-
fig(), the result is the PCRE_ERROR_BADOPTION error.
CHARACTER CODES
In 16-bit mode, when PCRE_UTF16 is not set, character values are
treated in the same way as in 8-bit, non UTF-8 mode, except, of course,
that they can range from 0 to 0xffff instead of 0 to 0xff. Character
types for characters less than 0xff can therefore be influenced by the
locale in the same way as before. Characters greater than 0xff have
only one case, and no "type" (such as letter or digit).
In UTF-16 mode, the character code is Unicode, in the range 0 to
0x10ffff, with the exception of values in the range 0xd800 to 0xdfff
because those are "surrogate" values that are used in pairs to encode
values greater than 0xffff.
A UTF-16 string can indicate its endianness by special code knows as a
byte-order mark (BOM). The PCRE functions do not handle this, expecting
strings to be in host byte order. A utility function called
pcre16_utf16_to_host_byte_order() is provided to help with this (see
above).
ERROR NAMES
The errors PCRE_ERROR_BADUTF16_OFFSET and PCRE_ERROR_SHORTUTF16 corre-
spond to their 8-bit counterparts. The error PCRE_ERROR_BADMODE is
given when a compiled pattern is passed to a function that processes
patterns in the other mode, for example, if a pattern compiled with
pcre_compile() is passed to pcre16_exec().
There are new error codes whose names begin with PCRE_UTF16_ERR for
invalid UTF-16 strings, corresponding to the PCRE_UTF8_ERR codes for
UTF-8 strings that are described in the section entitled "Reason codes
for invalid UTF-8 strings" in the main pcreapi page. The UTF-16 errors
are:
PCRE_UTF16_ERR1 Missing low surrogate at end of string
PCRE_UTF16_ERR2 Invalid low surrogate follows high surrogate
PCRE_UTF16_ERR3 Isolated low surrogate
PCRE_UTF16_ERR4 Non-character
ERROR TEXTS
If there is an error while compiling a pattern, the error text that is
passed back by pcre16_compile() or pcre16_compile2() is still an 8-bit
character string, zero-terminated.
CALLOUTS
The subject and mark fields in the callout block that is passed to a
callout function point to 16-bit vectors.
TESTING
The pcretest program continues to operate with 8-bit input and output
files, but it can be used for testing the 16-bit library. If it is run
with the command line option -16, patterns and subject strings are con-
verted from 8-bit to 16-bit before being passed to PCRE, and the 16-bit
library functions are used instead of the 8-bit ones. Returned 16-bit
strings are converted to 8-bit for output. If both the 8-bit and the
32-bit libraries were not compiled, pcretest defaults to 16-bit and the
-16 option is ignored.
When PCRE is being built, the RunTest script that is called by "make
check" uses the pcretest -C option to discover which of the 8-bit,
16-bit and 32-bit libraries has been built, and runs the tests appro-
priately.
NOT SUPPORTED IN 16-BIT MODE
Not all the features of the 8-bit library are available with the 16-bit
library. The C++ and POSIX wrapper functions support only the 8-bit
library, and the pcregrep program is at present 8-bit only.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 12 May 2013
Copyright (c) 1997-2013 University of Cambridge.
------------------------------------------------------------------------------
PCRE(3) Library Functions Manual PCRE(3)
NAME
PCRE - Perl-compatible regular expressions
#include <pcre.h>
PCRE 32-BIT API BASIC FUNCTIONS
pcre32 *pcre32_compile(PCRE_SPTR32 pattern, int options,
const char **errptr, int *erroffset,
const unsigned char *tableptr);
pcre32 *pcre32_compile2(PCRE_SPTR32 pattern, int options,
int *errorcodeptr,
const unsigned char *tableptr);
pcre32_extra *pcre32_study(const pcre32 *code, int options,
const char **errptr);
void pcre32_free_study(pcre32_extra *extra);
int pcre32_exec(const pcre32 *code, const pcre32_extra *extra,
PCRE_SPTR32 subject, int length, int startoffset,
int options, int *ovector, int ovecsize);
int pcre32_dfa_exec(const pcre32 *code, const pcre32_extra *extra,
PCRE_SPTR32 subject, int length, int startoffset,
int options, int *ovector, int ovecsize,
int *workspace, int wscount);
PCRE 32-BIT API STRING EXTRACTION FUNCTIONS
int pcre32_copy_named_substring(const pcre32 *code,
PCRE_SPTR32 subject, int *ovector,
int stringcount, PCRE_SPTR32 stringname,
PCRE_UCHAR32 *buffer, int buffersize);
int pcre32_copy_substring(PCRE_SPTR32 subject, int *ovector,
int stringcount, int stringnumber, PCRE_UCHAR32 *buffer,
int buffersize);
int pcre32_get_named_substring(const pcre32 *code,
PCRE_SPTR32 subject, int *ovector,
int stringcount, PCRE_SPTR32 stringname,
PCRE_SPTR32 *stringptr);
int pcre32_get_stringnumber(const pcre32 *code,
PCRE_SPTR32 name);
int pcre32_get_stringtable_entries(const pcre32 *code,
PCRE_SPTR32 name, PCRE_UCHAR32 **first, PCRE_UCHAR32 **last);
int pcre32_get_substring(PCRE_SPTR32 subject, int *ovector,
int stringcount, int stringnumber,
PCRE_SPTR32 *stringptr);
int pcre32_get_substring_list(PCRE_SPTR32 subject,
int *ovector, int stringcount, PCRE_SPTR32 **listptr);
void pcre32_free_substring(PCRE_SPTR32 stringptr);
void pcre32_free_substring_list(PCRE_SPTR32 *stringptr);
PCRE 32-BIT API AUXILIARY FUNCTIONS
pcre32_jit_stack *pcre32_jit_stack_alloc(int startsize, int maxsize);
void pcre32_jit_stack_free(pcre32_jit_stack *stack);
void pcre32_assign_jit_stack(pcre32_extra *extra,
pcre32_jit_callback callback, void *data);
const unsigned char *pcre32_maketables(void);
int pcre32_fullinfo(const pcre32 *code, const pcre32_extra *extra,
int what, void *where);
int pcre32_refcount(pcre32 *code, int adjust);
int pcre32_config(int what, void *where);
const char *pcre32_version(void);
int pcre32_pattern_to_host_byte_order(pcre32 *code,
pcre32_extra *extra, const unsigned char *tables);
PCRE 32-BIT API INDIRECTED FUNCTIONS
void *(*pcre32_malloc)(size_t);
void (*pcre32_free)(void *);
void *(*pcre32_stack_malloc)(size_t);
void (*pcre32_stack_free)(void *);
int (*pcre32_callout)(pcre32_callout_block *);
PCRE 32-BIT API 32-BIT-ONLY FUNCTION
int pcre32_utf32_to_host_byte_order(PCRE_UCHAR32 *output,
PCRE_SPTR32 input, int length, int *byte_order,
int keep_boms);
THE PCRE 32-BIT LIBRARY
Starting with release 8.32, it is possible to compile a PCRE library
that supports 32-bit character strings, including UTF-32 strings, as
well as or instead of the original 8-bit library. This work was done by
Christian Persch, based on the work done by Zoltan Herczeg for the
16-bit library. All three libraries contain identical sets of func-
tions, used in exactly the same way. Only the names of the functions
and the data types of their arguments and results are different. To
avoid over-complication and reduce the documentation maintenance load,
most of the PCRE documentation describes the 8-bit library, with only
occasional references to the 16-bit and 32-bit libraries. This page
describes what is different when you use the 32-bit library.
WARNING: A single application can be linked with all or any of the
three libraries, but you must take care when processing any particular
pattern to use functions from just one library. For example, if you
want to study a pattern that was compiled with pcre32_compile(), you
must do so with pcre32_study(), not pcre_study(), and you must free the
study data with pcre32_free_study().
THE HEADER FILE
There is only one header file, pcre.h. It contains prototypes for all
the functions in all libraries, as well as definitions of flags, struc-
tures, error codes, etc.
THE LIBRARY NAME
In Unix-like systems, the 32-bit library is called libpcre32, and can
normally be accesss by adding -lpcre32 to the command for linking an
application that uses PCRE.
STRING TYPES
In the 8-bit library, strings are passed to PCRE library functions as
vectors of bytes with the C type "char *". In the 32-bit library,
strings are passed as vectors of unsigned 32-bit quantities. The macro
PCRE_UCHAR32 specifies an appropriate data type, and PCRE_SPTR32 is
defined as "const PCRE_UCHAR32 *". In very many environments, "unsigned
int" is a 32-bit data type. When PCRE is built, it defines PCRE_UCHAR32
as "unsigned int", but checks that it really is a 32-bit data type. If
it is not, the build fails with an error message telling the maintainer
to modify the definition appropriately.
STRUCTURE TYPES
The types of the opaque structures that are used for compiled 32-bit
patterns and JIT stacks are pcre32 and pcre32_jit_stack respectively.
The type of the user-accessible structure that is returned by
pcre32_study() is pcre32_extra, and the type of the structure that is
used for passing data to a callout function is pcre32_callout_block.
These structures contain the same fields, with the same names, as their
8-bit counterparts. The only difference is that pointers to character
strings are 32-bit instead of 8-bit types.
32-BIT FUNCTIONS
For every function in the 8-bit library there is a corresponding func-
tion in the 32-bit library with a name that starts with pcre32_ instead
of pcre_. The prototypes are listed above. In addition, there is one
extra function, pcre32_utf32_to_host_byte_order(). This is a utility
function that converts a UTF-32 character string to host byte order if
necessary. The other 32-bit functions expect the strings they are
passed to be in host byte order.
The input and output arguments of pcre32_utf32_to_host_byte_order() may
point to the same address, that is, conversion in place is supported.
The output buffer must be at least as long as the input.
The length argument specifies the number of 32-bit data units in the
input string; a negative value specifies a zero-terminated string.
If byte_order is NULL, it is assumed that the string starts off in host
byte order. This may be changed by byte-order marks (BOMs) anywhere in
the string (commonly as the first character).
If byte_order is not NULL, a non-zero value of the integer to which it
points means that the input starts off in host byte order, otherwise
the opposite order is assumed. Again, BOMs in the string can change
this. The final byte order is passed back at the end of processing.
If keep_boms is not zero, byte-order mark characters (0xfeff) are
copied into the output string. Otherwise they are discarded.
The result of the function is the number of 32-bit units placed into
the output buffer, including the zero terminator if the string was
zero-terminated.
SUBJECT STRING OFFSETS
The lengths and starting offsets of subject strings must be specified
in 32-bit data units, and the offsets within subject strings that are
returned by the matching functions are in also 32-bit units rather than
bytes.
NAMED SUBPATTERNS
The name-to-number translation table that is maintained for named sub-
patterns uses 32-bit characters. The pcre32_get_stringtable_entries()
function returns the length of each entry in the table as the number of
32-bit data units.
OPTION NAMES
There are two new general option names, PCRE_UTF32 and
PCRE_NO_UTF32_CHECK, which correspond to PCRE_UTF8 and
PCRE_NO_UTF8_CHECK in the 8-bit library. In fact, these new options
define the same bits in the options word. There is a discussion about
the validity of UTF-32 strings in the pcreunicode page.
For the pcre32_config() function there is an option PCRE_CONFIG_UTF32
that returns 1 if UTF-32 support is configured, otherwise 0. If this
option is given to pcre_config() or pcre16_config(), or if the
PCRE_CONFIG_UTF8 or PCRE_CONFIG_UTF16 option is given to pcre32_con-
fig(), the result is the PCRE_ERROR_BADOPTION error.
CHARACTER CODES
In 32-bit mode, when PCRE_UTF32 is not set, character values are
treated in the same way as in 8-bit, non UTF-8 mode, except, of course,
that they can range from 0 to 0x7fffffff instead of 0 to 0xff. Charac-
ter types for characters less than 0xff can therefore be influenced by
the locale in the same way as before. Characters greater than 0xff
have only one case, and no "type" (such as letter or digit).
In UTF-32 mode, the character code is Unicode, in the range 0 to
0x10ffff, with the exception of values in the range 0xd800 to 0xdfff
because those are "surrogate" values that are ill-formed in UTF-32.
A UTF-32 string can indicate its endianness by special code knows as a
byte-order mark (BOM). The PCRE functions do not handle this, expecting
strings to be in host byte order. A utility function called
pcre32_utf32_to_host_byte_order() is provided to help with this (see
above).
ERROR NAMES
The error PCRE_ERROR_BADUTF32 corresponds to its 8-bit counterpart.
The error PCRE_ERROR_BADMODE is given when a compiled pattern is passed
to a function that processes patterns in the other mode, for example,
if a pattern compiled with pcre_compile() is passed to pcre32_exec().
There are new error codes whose names begin with PCRE_UTF32_ERR for
invalid UTF-32 strings, corresponding to the PCRE_UTF8_ERR codes for
UTF-8 strings that are described in the section entitled "Reason codes
for invalid UTF-8 strings" in the main pcreapi page. The UTF-32 errors
are:
PCRE_UTF32_ERR1 Surrogate character (range from 0xd800 to 0xdfff)
PCRE_UTF32_ERR2 Non-character
PCRE_UTF32_ERR3 Character > 0x10ffff
ERROR TEXTS
If there is an error while compiling a pattern, the error text that is
passed back by pcre32_compile() or pcre32_compile2() is still an 8-bit
character string, zero-terminated.
CALLOUTS
The subject and mark fields in the callout block that is passed to a
callout function point to 32-bit vectors.
TESTING
The pcretest program continues to operate with 8-bit input and output
files, but it can be used for testing the 32-bit library. If it is run
with the command line option -32, patterns and subject strings are con-
verted from 8-bit to 32-bit before being passed to PCRE, and the 32-bit
library functions are used instead of the 8-bit ones. Returned 32-bit
strings are converted to 8-bit for output. If both the 8-bit and the
16-bit libraries were not compiled, pcretest defaults to 32-bit and the
-32 option is ignored.
When PCRE is being built, the RunTest script that is called by "make
check" uses the pcretest -C option to discover which of the 8-bit,
16-bit and 32-bit libraries has been built, and runs the tests appro-
priately.
NOT SUPPORTED IN 32-BIT MODE
Not all the features of the 8-bit library are available with the 32-bit
library. The C++ and POSIX wrapper functions support only the 8-bit
library, and the pcregrep program is at present 8-bit only.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 12 May 2013
Copyright (c) 1997-2013 University of Cambridge.
------------------------------------------------------------------------------
PCREBUILD(3) Library Functions Manual PCREBUILD(3)
NAME
PCRE - Perl-compatible regular expressions
BUILDING PCRE
PCRE is distributed with a configure script that can be used to build
the library in Unix-like environments using the applications known as
Autotools. Also in the distribution are files to support building
using CMake instead of configure. The text file README contains general
information about building with Autotools (some of which is repeated
below), and also has some comments about building on various operating
systems. There is a lot more information about building PCRE without
using Autotools (including information about using CMake and building
"by hand") in the text file called NON-AUTOTOOLS-BUILD. You should
consult this file as well as the README file if you are building in a
non-Unix-like environment.
PCRE BUILD-TIME OPTIONS
The rest of this document describes the optional features of PCRE that
can be selected when the library is compiled. It assumes use of the
configure script, where the optional features are selected or dese-
lected by providing options to configure before running the make com-
mand. However, the same options can be selected in both Unix-like and
non-Unix-like environments using the GUI facility of cmake-gui if you
are using CMake instead of configure to build PCRE.
If you are not using Autotools or CMake, option selection can be done
by editing the config.h file, or by passing parameter settings to the
compiler, as described in NON-AUTOTOOLS-BUILD.
The complete list of options for configure (which includes the standard
ones such as the selection of the installation directory) can be
obtained by running
./configure --help
The following sections include descriptions of options whose names
begin with --enable or --disable. These settings specify changes to the
defaults for the configure command. Because of the way that configure
works, --enable and --disable always come in pairs, so the complemen-
tary option always exists as well, but as it specifies the default, it
is not described.
BUILDING 8-BIT, 16-BIT AND 32-BIT LIBRARIES
By default, a library called libpcre is built, containing functions
that take string arguments contained in vectors of bytes, either as
single-byte characters, or interpreted as UTF-8 strings. You can also
build a separate library, called libpcre16, in which strings are con-
tained in vectors of 16-bit data units and interpreted either as sin-
gle-unit characters or UTF-16 strings, by adding
--enable-pcre16
to the configure command. You can also build yet another separate
library, called libpcre32, in which strings are contained in vectors of
32-bit data units and interpreted either as single-unit characters or
UTF-32 strings, by adding
--enable-pcre32
to the configure command. If you do not want the 8-bit library, add
--disable-pcre8
as well. At least one of the three libraries must be built. Note that
the C++ and POSIX wrappers are for the 8-bit library only, and that
pcregrep is an 8-bit program. None of these are built if you select
only the 16-bit or 32-bit libraries.
BUILDING SHARED AND STATIC LIBRARIES
The Autotools PCRE building process uses libtool to build both shared
and static libraries by default. You can suppress one of these by
adding one of
--disable-shared
--disable-static
to the configure command, as required.
C++ SUPPORT
By default, if the 8-bit library is being built, the configure script
will search for a C++ compiler and C++ header files. If it finds them,
it automatically builds the C++ wrapper library (which supports only
8-bit strings). You can disable this by adding
--disable-cpp
to the configure command.
UTF-8, UTF-16 AND UTF-32 SUPPORT
To build PCRE with support for UTF Unicode character strings, add
--enable-utf
to the configure command. This setting applies to all three libraries,
adding support for UTF-8 to the 8-bit library, support for UTF-16 to
the 16-bit library, and support for UTF-32 to the to the 32-bit
library. There are no separate options for enabling UTF-8, UTF-16 and
UTF-32 independently because that would allow ridiculous settings such
as requesting UTF-16 support while building only the 8-bit library. It
is not possible to build one library with UTF support and another with-
out in the same configuration. (For backwards compatibility, --enable-
utf8 is a synonym of --enable-utf.)
Of itself, this setting does not make PCRE treat strings as UTF-8,
UTF-16 or UTF-32. As well as compiling PCRE with this option, you also
have have to set the PCRE_UTF8, PCRE_UTF16 or PCRE_UTF32 option (as
appropriate) when you call one of the pattern compiling functions.
If you set --enable-utf when compiling in an EBCDIC environment, PCRE
expects its input to be either ASCII or UTF-8 (depending on the run-
time option). It is not possible to support both EBCDIC and UTF-8 codes
in the same version of the library. Consequently, --enable-utf and
--enable-ebcdic are mutually exclusive.
UNICODE CHARACTER PROPERTY SUPPORT
UTF support allows the libraries to process character codepoints up to
0x10ffff in the strings that they handle. On its own, however, it does
not provide any facilities for accessing the properties of such charac-
ters. If you want to be able to use the pattern escapes \P, \p, and \X,
which refer to Unicode character properties, you must add
--enable-unicode-properties
to the configure command. This implies UTF support, even if you have
not explicitly requested it.
Including Unicode property support adds around 30K of tables to the
PCRE library. Only the general category properties such as Lu and Nd
are supported. Details are given in the pcrepattern documentation.
JUST-IN-TIME COMPILER SUPPORT
Just-in-time compiler support is included in the build by specifying
--enable-jit
This support is available only for certain hardware architectures. If
this option is set for an unsupported architecture, a compile time
error occurs. See the pcrejit documentation for a discussion of JIT
usage. When JIT support is enabled, pcregrep automatically makes use of
it, unless you add
--disable-pcregrep-jit
to the "configure" command.
CODE VALUE OF NEWLINE
By default, PCRE interprets the linefeed (LF) character as indicating
the end of a line. This is the normal newline character on Unix-like
systems. You can compile PCRE to use carriage return (CR) instead, by
adding
--enable-newline-is-cr
to the configure command. There is also a --enable-newline-is-lf
option, which explicitly specifies linefeed as the newline character.
Alternatively, you can specify that line endings are to be indicated by
the two character sequence CRLF. If you want this, add
--enable-newline-is-crlf
to the configure command. There is a fourth option, specified by
--enable-newline-is-anycrlf
which causes PCRE to recognize any of the three sequences CR, LF, or
CRLF as indicating a line ending. Finally, a fifth option, specified by
--enable-newline-is-any
causes PCRE to recognize any Unicode newline sequence.
Whatever line ending convention is selected when PCRE is built can be
overridden when the library functions are called. At build time it is
conventional to use the standard for your operating system.
WHAT \R MATCHES
By default, the sequence \R in a pattern matches any Unicode newline
sequence, whatever has been selected as the line ending sequence. If
you specify
--enable-bsr-anycrlf
the default is changed so that \R matches only CR, LF, or CRLF. What-
ever is selected when PCRE is built can be overridden when the library
functions are called.
POSIX MALLOC USAGE
When the 8-bit library is called through the POSIX interface (see the
pcreposix documentation), additional working storage is required for
holding the pointers to capturing substrings, because PCRE requires
three integers per substring, whereas the POSIX interface provides only
two. If the number of expected substrings is small, the wrapper func-
tion uses space on the stack, because this is faster than using mal-
loc() for each call. The default threshold above which the stack is no
longer used is 10; it can be changed by adding a setting such as
--with-posix-malloc-threshold=20
to the configure command.
HANDLING VERY LARGE PATTERNS
Within a compiled pattern, offset values are used to point from one
part to another (for example, from an opening parenthesis to an alter-
nation metacharacter). By default, in the 8-bit and 16-bit libraries,
two-byte values are used for these offsets, leading to a maximum size
for a compiled pattern of around 64K. This is sufficient to handle all
but the most gigantic patterns. Nevertheless, some people do want to
process truly enormous patterns, so it is possible to compile PCRE to
use three-byte or four-byte offsets by adding a setting such as
--with-link-size=3
to the configure command. The value given must be 2, 3, or 4. For the
16-bit library, a value of 3 is rounded up to 4. In these libraries,
using longer offsets slows down the operation of PCRE because it has to
load additional data when handling them. For the 32-bit library the
value is always 4 and cannot be overridden; the value of --with-link-
size is ignored.
AVOIDING EXCESSIVE STACK USAGE
When matching with the pcre_exec() function, PCRE implements backtrack-
ing by making recursive calls to an internal function called match().
In environments where the size of the stack is limited, this can se-
verely limit PCRE's operation. (The Unix environment does not usually
suffer from this problem, but it may sometimes be necessary to increase
the maximum stack size. There is a discussion in the pcrestack docu-
mentation.) An alternative approach to recursion that uses memory from
the heap to remember data, instead of using recursive function calls,
has been implemented to work round the problem of limited stack size.
If you want to build a version of PCRE that works this way, add
--disable-stack-for-recursion
to the configure command. With this configuration, PCRE will use the
pcre_stack_malloc and pcre_stack_free variables to call memory manage-
ment functions. By default these point to malloc() and free(), but you
can replace the pointers so that your own functions are used instead.
Separate functions are provided rather than using pcre_malloc and
pcre_free because the usage is very predictable: the block sizes
requested are always the same, and the blocks are always freed in
reverse order. A calling program might be able to implement optimized
functions that perform better than malloc() and free(). PCRE runs
noticeably more slowly when built in this way. This option affects only
the pcre_exec() function; it is not relevant for pcre_dfa_exec().
LIMITING PCRE RESOURCE USAGE
Internally, PCRE has a function called match(), which it calls repeat-
edly (sometimes recursively) when matching a pattern with the
pcre_exec() function. By controlling the maximum number of times this
function may be called during a single matching operation, a limit can
be placed on the resources used by a single call to pcre_exec(). The
limit can be changed at run time, as described in the pcreapi documen-
tation. The default is 10 million, but this can be changed by adding a
setting such as
--with-match-limit=500000
to the configure command. This setting has no effect on the
pcre_dfa_exec() matching function.
In some environments it is desirable to limit the depth of recursive
calls of match() more strictly than the total number of calls, in order
to restrict the maximum amount of stack (or heap, if --disable-stack-
for-recursion is specified) that is used. A second limit controls this;
it defaults to the value that is set for --with-match-limit, which
imposes no additional constraints. However, you can set a lower limit
by adding, for example,
--with-match-limit-recursion=10000
to the configure command. This value can also be overridden at run
time.
CREATING CHARACTER TABLES AT BUILD TIME
PCRE uses fixed tables for processing characters whose code values are
less than 256. By default, PCRE is built with a set of tables that are
distributed in the file pcre_chartables.c.dist. These tables are for
ASCII codes only. If you add
--enable-rebuild-chartables
to the configure command, the distributed tables are no longer used.
Instead, a program called dftables is compiled and run. This outputs
the source for new set of tables, created in the default locale of your
C run-time system. (This method of replacing the tables does not work
if you are cross compiling, because dftables is run on the local host.
If you need to create alternative tables when cross compiling, you will
have to do so "by hand".)
USING EBCDIC CODE
PCRE assumes by default that it will run in an environment where the
character code is ASCII (or Unicode, which is a superset of ASCII).
This is the case for most computer operating systems. PCRE can, how-
ever, be compiled to run in an EBCDIC environment by adding
--enable-ebcdic
to the configure command. This setting implies --enable-rebuild-charta-
bles. You should only use it if you know that you are in an EBCDIC
environment (for example, an IBM mainframe operating system). The
--enable-ebcdic option is incompatible with --enable-utf.
The EBCDIC character that corresponds to an ASCII LF is assumed to have
the value 0x15 by default. However, in some EBCDIC environments, 0x25
is used. In such an environment you should use
--enable-ebcdic-nl25
as well as, or instead of, --enable-ebcdic. The EBCDIC character for CR
has the same value as in ASCII, namely, 0x0d. Whichever of 0x15 and
0x25 is not chosen as LF is made to correspond to the Unicode NEL char-
acter (which, in Unicode, is 0x85).
The options that select newline behaviour, such as --enable-newline-is-
cr, and equivalent run-time options, refer to these character values in
an EBCDIC environment.
PCREGREP OPTIONS FOR COMPRESSED FILE SUPPORT
By default, pcregrep reads all files as plain text. You can build it so
that it recognizes files whose names end in .gz or .bz2, and reads them
with libz or libbz2, respectively, by adding one or both of
--enable-pcregrep-libz
--enable-pcregrep-libbz2
to the configure command. These options naturally require that the rel-
evant libraries are installed on your system. Configuration will fail
if they are not.
PCREGREP BUFFER SIZE
pcregrep uses an internal buffer to hold a "window" on the file it is
scanning, in order to be able to output "before" and "after" lines when
it finds a match. The size of the buffer is controlled by a parameter
whose default value is 20K. The buffer itself is three times this size,
but because of the way it is used for holding "before" lines, the long-
est line that is guaranteed to be processable is the parameter size.
You can change the default parameter value by adding, for example,
--with-pcregrep-bufsize=50K
to the configure command. The caller of pcregrep can, however, override
this value by specifying a run-time option.
PCRETEST OPTION FOR LIBREADLINE SUPPORT
If you add
--enable-pcretest-libreadline
to the configure command, pcretest is linked with the libreadline
library, and when its input is from a terminal, it reads it using the
readline() function. This provides line-editing and history facilities.
Note that libreadline is GPL-licensed, so if you distribute a binary of
pcretest linked in this way, there may be licensing issues.
Setting this option causes the -lreadline option to be added to the
pcretest build. In many operating environments with a sytem-installed
libreadline this is sufficient. However, in some environments (e.g. if
an unmodified distribution version of readline is in use), some extra
configuration may be necessary. The INSTALL file for libreadline says
this:
"Readline uses the termcap functions, but does not link with the
termcap or curses library itself, allowing applications which link
with readline the to choose an appropriate library."
If your environment has not been set up so that an appropriate library
is automatically included, you may need to add something like
LIBS="-ncurses"
immediately before the configure command.
DEBUGGING WITH VALGRIND SUPPORT
By adding the
--enable-valgrind
option to to the configure command, PCRE will use valgrind annotations
to mark certain memory regions as unaddressable. This allows it to
detect invalid memory accesses, and is mostly useful for debugging PCRE
itself.
CODE COVERAGE REPORTING
If your C compiler is gcc, you can build a version of PCRE that can
generate a code coverage report for its test suite. To enable this, you
must install lcov version 1.6 or above. Then specify
--enable-coverage
to the configure command and build PCRE in the usual way.
Note that using ccache (a caching C compiler) is incompatible with code
coverage reporting. If you have configured ccache to run automatically
on your system, you must set the environment variable
CCACHE_DISABLE=1
before running make to build PCRE, so that ccache is not used.
When --enable-coverage is used, the following addition targets are
added to the Makefile:
make coverage
This creates a fresh coverage report for the PCRE test suite. It is
equivalent to running "make coverage-reset", "make coverage-baseline",
"make check", and then "make coverage-report".
make coverage-reset
This zeroes the coverage counters, but does nothing else.
make coverage-baseline
This captures baseline coverage information.
make coverage-report
This creates the coverage report.
make coverage-clean-report
This removes the generated coverage report without cleaning the cover-
age data itself.
make coverage-clean-data
This removes the captured coverage data without removing the coverage
files created at compile time (*.gcno).
make coverage-clean
This cleans all coverage data including the generated coverage report.
For more information about code coverage, see the gcov and lcov docu-
mentation.
SEE ALSO
pcreapi(3), pcre16, pcre32, pcre_config(3).
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 12 May 2013
Copyright (c) 1997-2013 University of Cambridge.
------------------------------------------------------------------------------
PCREMATCHING(3) Library Functions Manual PCREMATCHING(3)
NAME
PCRE - Perl-compatible regular expressions
PCRE MATCHING ALGORITHMS
This document describes the two different algorithms that are available
in PCRE for matching a compiled regular expression against a given sub-
ject string. The "standard" algorithm is the one provided by the
pcre_exec(), pcre16_exec() and pcre32_exec() functions. These work in
the same as as Perl's matching function, and provide a Perl-compatible
matching operation. The just-in-time (JIT) optimization that is
described in the pcrejit documentation is compatible with these func-
tions.
An alternative algorithm is provided by the pcre_dfa_exec(),
pcre16_dfa_exec() and pcre32_dfa_exec() functions; they operate in a
different way, and are not Perl-compatible. This alternative has advan-
tages and disadvantages compared with the standard algorithm, and these
are described below.
When there is only one possible way in which a given subject string can
match a pattern, the two algorithms give the same answer. A difference
arises, however, when there are multiple possibilities. For example, if
the pattern
^<.*>
is matched against the string
<something> <something else> <something further>
there are three possible answers. The standard algorithm finds only one
of them, whereas the alternative algorithm finds all three.
REGULAR EXPRESSIONS AS TREES
The set of strings that are matched by a regular expression can be rep-
resented as a tree structure. An unlimited repetition in the pattern
makes the tree of infinite size, but it is still a tree. Matching the
pattern to a given subject string (from a given starting point) can be
thought of as a search of the tree. There are two ways to search a
tree: depth-first and breadth-first, and these correspond to the two
matching algorithms provided by PCRE.
THE STANDARD MATCHING ALGORITHM
In the terminology of Jeffrey Friedl's book "Mastering Regular Expres-
sions", the standard algorithm is an "NFA algorithm". It conducts a
depth-first search of the pattern tree. That is, it proceeds along a
single path through the tree, checking that the subject matches what is
required. When there is a mismatch, the algorithm tries any alterna-
tives at the current point, and if they all fail, it backs up to the
previous branch point in the tree, and tries the next alternative
branch at that level. This often involves backing up (moving to the
left) in the subject string as well. The order in which repetition
branches are tried is controlled by the greedy or ungreedy nature of
the quantifier.
If a leaf node is reached, a matching string has been found, and at
that point the algorithm stops. Thus, if there is more than one possi-
ble match, this algorithm returns the first one that it finds. Whether
this is the shortest, the longest, or some intermediate length depends
on the way the greedy and ungreedy repetition quantifiers are specified
in the pattern.
Because it ends up with a single path through the tree, it is rela-
tively straightforward for this algorithm to keep track of the sub-
strings that are matched by portions of the pattern in parentheses.
This provides support for capturing parentheses and back references.
THE ALTERNATIVE MATCHING ALGORITHM
This algorithm conducts a breadth-first search of the tree. Starting
from the first matching point in the subject, it scans the subject
string from left to right, once, character by character, and as it does
this, it remembers all the paths through the tree that represent valid
matches. In Friedl's terminology, this is a kind of "DFA algorithm",
though it is not implemented as a traditional finite state machine (it
keeps multiple states active simultaneously).
Although the general principle of this matching algorithm is that it
scans the subject string only once, without backtracking, there is one
exception: when a lookaround assertion is encountered, the characters
following or preceding the current point have to be independently
inspected.
The scan continues until either the end of the subject is reached, or
there are no more unterminated paths. At this point, terminated paths
represent the different matching possibilities (if there are none, the
match has failed). Thus, if there is more than one possible match,
this algorithm finds all of them, and in particular, it finds the long-
est. The matches are returned in decreasing order of length. There is
an option to stop the algorithm after the first match (which is neces-
sarily the shortest) is found.
Note that all the matches that are found start at the same point in the
subject. If the pattern
cat(er(pillar)?)?
is matched against the string "the caterpillar catchment", the result
will be the three strings "caterpillar", "cater", and "cat" that start
at the fifth character of the subject. The algorithm does not automati-
cally move on to find matches that start at later positions.
PCRE's "auto-possessification" optimization usually applies to charac-
ter repeats at the end of a pattern (as well as internally). For exam-
ple, the pattern "a\d+" is compiled as if it were "a\d++" because there
is no point even considering the possibility of backtracking into the
repeated digits. For DFA matching, this means that only one possible
match is found. If you really do want multiple matches in such cases,
either use an ungreedy repeat ("a\d+?") or set the PCRE_NO_AUTO_POSSESS
option when compiling.
There are a number of features of PCRE regular expressions that are not
supported by the alternative matching algorithm. They are as follows:
1. Because the algorithm finds all possible matches, the greedy or
ungreedy nature of repetition quantifiers is not relevant. Greedy and
ungreedy quantifiers are treated in exactly the same way. However, pos-
sessive quantifiers can make a difference when what follows could also
match what is quantified, for example in a pattern like this:
^a++\w!
This pattern matches "aaab!" but not "aaa!", which would be matched by
a non-possessive quantifier. Similarly, if an atomic group is present,
it is matched as if it were a standalone pattern at the current point,
and the longest match is then "locked in" for the rest of the overall
pattern.
2. When dealing with multiple paths through the tree simultaneously, it
is not straightforward to keep track of captured substrings for the
different matching possibilities, and PCRE's implementation of this
algorithm does not attempt to do this. This means that no captured sub-
strings are available.
3. Because no substrings are captured, back references within the pat-
tern are not supported, and cause errors if encountered.
4. For the same reason, conditional expressions that use a backrefer-
ence as the condition or test for a specific group recursion are not
supported.
5. Because many paths through the tree may be active, the \K escape
sequence, which resets the start of the match when encountered (but may
be on some paths and not on others), is not supported. It causes an
error if encountered.
6. Callouts are supported, but the value of the capture_top field is
always 1, and the value of the capture_last field is always -1.
7. The \C escape sequence, which (in the standard algorithm) always
matches a single data unit, even in UTF-8, UTF-16 or UTF-32 modes, is
not supported in these modes, because the alternative algorithm moves
through the subject string one character (not data unit) at a time, for
all active paths through the tree.
8. Except for (*FAIL), the backtracking control verbs such as (*PRUNE)
are not supported. (*FAIL) is supported, and behaves like a failing
negative assertion.
ADVANTAGES OF THE ALTERNATIVE ALGORITHM
Using the alternative matching algorithm provides the following advan-
tages:
1. All possible matches (at a single point in the subject) are automat-
ically found, and in particular, the longest match is found. To find
more than one match using the standard algorithm, you have to do kludgy
things with callouts.
2. Because the alternative algorithm scans the subject string just
once, and never needs to backtrack (except for lookbehinds), it is pos-
sible to pass very long subject strings to the matching function in
several pieces, checking for partial matching each time. Although it is
possible to do multi-segment matching using the standard algorithm by
retaining partially matched substrings, it is more complicated. The
pcrepartial documentation gives details of partial matching and dis-
cusses multi-segment matching.
DISADVANTAGES OF THE ALTERNATIVE ALGORITHM
The alternative algorithm suffers from a number of disadvantages:
1. It is substantially slower than the standard algorithm. This is
partly because it has to search for all possible matches, but is also
because it is less susceptible to optimization.
2. Capturing parentheses and back references are not supported.
3. Although atomic groups are supported, their use does not provide the
performance advantage that it does for the standard algorithm.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 12 November 2013
Copyright (c) 1997-2012 University of Cambridge.
------------------------------------------------------------------------------
PCREAPI(3) Library Functions Manual PCREAPI(3)
NAME
PCRE - Perl-compatible regular expressions
#include <pcre.h>
PCRE NATIVE API BASIC FUNCTIONS
pcre *pcre_compile(const char *pattern, int options,
const char **errptr, int *erroffset,
const unsigned char *tableptr);
pcre *pcre_compile2(const char *pattern, int options,
int *errorcodeptr,
const char **errptr, int *erroffset,
const unsigned char *tableptr);
pcre_extra *pcre_study(const pcre *code, int options,
const char **errptr);
void pcre_free_study(pcre_extra *extra);
int pcre_exec(const pcre *code, const pcre_extra *extra,
const char *subject, int length, int startoffset,
int options, int *ovector, int ovecsize);
int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
const char *subject, int length, int startoffset,
int options, int *ovector, int ovecsize,
int *workspace, int wscount);
PCRE NATIVE API STRING EXTRACTION FUNCTIONS
int pcre_copy_named_substring(const pcre *code,
const char *subject, int *ovector,
int stringcount, const char *stringname,
char *buffer, int buffersize);
int pcre_copy_substring(const char *subject, int *ovector,
int stringcount, int stringnumber, char *buffer,
int buffersize);
int pcre_get_named_substring(const pcre *code,
const char *subject, int *ovector,
int stringcount, const char *stringname,
const char **stringptr);
int pcre_get_stringnumber(const pcre *code,
const char *name);
int pcre_get_stringtable_entries(const pcre *code,
const char *name, char **first, char **last);
int pcre_get_substring(const char *subject, int *ovector,
int stringcount, int stringnumber,
const char **stringptr);
int pcre_get_substring_list(const char *subject,
int *ovector, int stringcount, const char ***listptr);
void pcre_free_substring(const char *stringptr);
void pcre_free_substring_list(const char **stringptr);
PCRE NATIVE API AUXILIARY FUNCTIONS
int pcre_jit_exec(const pcre *code, const pcre_extra *extra,
const char *subject, int length, int startoffset,
int options, int *ovector, int ovecsize,
pcre_jit_stack *jstack);
pcre_jit_stack *pcre_jit_stack_alloc(int startsize, int maxsize);
void pcre_jit_stack_free(pcre_jit_stack *stack);
void pcre_assign_jit_stack(pcre_extra *extra,
pcre_jit_callback callback, void *data);
const unsigned char *pcre_maketables(void);
int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
int what, void *where);
int pcre_refcount(pcre *code, int adjust);
int pcre_config(int what, void *where);
const char *pcre_version(void);
int pcre_pattern_to_host_byte_order(pcre *code,
pcre_extra *extra, const unsigned char *tables);
PCRE NATIVE API INDIRECTED FUNCTIONS
void *(*pcre_malloc)(size_t);
void (*pcre_free)(void *);
void *(*pcre_stack_malloc)(size_t);
void (*pcre_stack_free)(void *);
int (*pcre_callout)(pcre_callout_block *);
int (*pcre_stack_guard)(void);
PCRE 8-BIT, 16-BIT, AND 32-BIT LIBRARIES
As well as support for 8-bit character strings, PCRE also supports
16-bit strings (from release 8.30) and 32-bit strings (from release
8.32), by means of two additional libraries. They can be built as well
as, or instead of, the 8-bit library. To avoid too much complication,
this document describes the 8-bit versions of the functions, with only
occasional references to the 16-bit and 32-bit libraries.
The 16-bit and 32-bit functions operate in the same way as their 8-bit
counterparts; they just use different data types for their arguments
and results, and their names start with pcre16_ or pcre32_ instead of
pcre_. For every option that has UTF8 in its name (for example,
PCRE_UTF8), there are corresponding 16-bit and 32-bit names with UTF8
replaced by UTF16 or UTF32, respectively. This facility is in fact just
cosmetic; the 16-bit and 32-bit option names define the same bit val-
ues.
References to bytes and UTF-8 in this document should be read as refer-
ences to 16-bit data units and UTF-16 when using the 16-bit library, or
32-bit data units and UTF-32 when using the 32-bit library, unless
specified otherwise. More details of the specific differences for the
16-bit and 32-bit libraries are given in the pcre16 and pcre32 pages.
PCRE API OVERVIEW
PCRE has its own native API, which is described in this document. There
are also some wrapper functions (for the 8-bit library only) that cor-
respond to the POSIX regular expression API, but they do not give
access to all the functionality. They are described in the pcreposix
documentation. Both of these APIs define a set of C function calls. A
C++ wrapper (again for the 8-bit library only) is also distributed with
PCRE. It is documented in the pcrecpp page.
The native API C function prototypes are defined in the header file
pcre.h, and on Unix-like systems the (8-bit) library itself is called
libpcre. It can normally be accessed by adding -lpcre to the command
for linking an application that uses PCRE. The header file defines the
macros PCRE_MAJOR and PCRE_MINOR to contain the major and minor release
numbers for the library. Applications can use these to include support
for different releases of PCRE.
In a Windows environment, if you want to statically link an application
program against a non-dll pcre.a file, you must define PCRE_STATIC
before including pcre.h or pcrecpp.h, because otherwise the pcre_mal-
loc() and pcre_free() exported functions will be declared
__declspec(dllimport), with unwanted results.
The functions pcre_compile(), pcre_compile2(), pcre_study(), and
pcre_exec() are used for compiling and matching regular expressions in
a Perl-compatible manner. A sample program that demonstrates the sim-
plest way of using them is provided in the file called pcredemo.c in
the PCRE source distribution. A listing of this program is given in the
pcredemo documentation, and the pcresample documentation describes how
to compile and run it.
Just-in-time compiler support is an optional feature of PCRE that can
be built in appropriate hardware environments. It greatly speeds up the
matching performance of many patterns. Simple programs can easily
request that it be used if available, by setting an option that is
ignored when it is not relevant. More complicated programs might need
to make use of the functions pcre_jit_stack_alloc(),
pcre_jit_stack_free(), and pcre_assign_jit_stack() in order to control
the JIT code's memory usage.
From release 8.32 there is also a direct interface for JIT execution,
which gives improved performance. The JIT-specific functions are dis-
cussed in the pcrejit documentation.
A second matching function, pcre_dfa_exec(), which is not Perl-compati-
ble, is also provided. This uses a different algorithm for the match-
ing. The alternative algorithm finds all possible matches (at a given
point in the subject), and scans the subject just once (unless there
are lookbehind assertions). However, this algorithm does not return
captured substrings. A description of the two matching algorithms and
their advantages and disadvantages is given in the pcrematching docu-
mentation.
In addition to the main compiling and matching functions, there are
convenience functions for extracting captured substrings from a subject
string that is matched by pcre_exec(). They are:
pcre_copy_substring()
pcre_copy_named_substring()
pcre_get_substring()
pcre_get_named_substring()
pcre_get_substring_list()
pcre_get_stringnumber()
pcre_get_stringtable_entries()
pcre_free_substring() and pcre_free_substring_list() are also provided,
to free the memory used for extracted strings.
The function pcre_maketables() is used to build a set of character
tables in the current locale for passing to pcre_compile(),
pcre_exec(), or pcre_dfa_exec(). This is an optional facility that is
provided for specialist use. Most commonly, no special tables are
passed, in which case internal tables that are generated when PCRE is
built are used.
The function pcre_fullinfo() is used to find out information about a
compiled pattern. The function pcre_version() returns a pointer to a
string containing the version of PCRE and its date of release.
The function pcre_refcount() maintains a reference count in a data
block containing a compiled pattern. This is provided for the benefit
of object-oriented applications.
The global variables pcre_malloc and pcre_free initially contain the
entry points of the standard malloc() and free() functions, respec-
tively. PCRE calls the memory management functions via these variables,
so a calling program can replace them if it wishes to intercept the
calls. This should be done before calling any PCRE functions.
The global variables pcre_stack_malloc and pcre_stack_free are also
indirections to memory management functions. These special functions
are used only when PCRE is compiled to use the heap for remembering
data, instead of recursive function calls, when running the pcre_exec()
function. See the pcrebuild documentation for details of how to do
this. It is a non-standard way of building PCRE, for use in environ-
ments that have limited stacks. Because of the greater use of memory
management, it runs more slowly. Separate functions are provided so
that special-purpose external code can be used for this case. When
used, these functions always allocate memory blocks of the same size.
There is a discussion about PCRE's stack usage in the pcrestack docu-
mentation.
The global variable pcre_callout initially contains NULL. It can be set
by the caller to a "callout" function, which PCRE will then call at
specified points during a matching operation. Details are given in the
pcrecallout documentation.
The global variable pcre_stack_guard initially contains NULL. It can be
set by the caller to a function that is called by PCRE whenever it
starts to compile a parenthesized part of a pattern. When parentheses
are nested, PCRE uses recursive function calls, which use up the system
stack. This function is provided so that applications with restricted
stacks can force a compilation error if the stack runs out. The func-
tion should return zero if all is well, or non-zero to force an error.
NEWLINES
PCRE supports five different conventions for indicating line breaks in
strings: a single CR (carriage return) character, a single LF (line-
feed) character, the two-character sequence CRLF, any of the three pre-
ceding, or any Unicode newline sequence. The Unicode newline sequences
are the three just mentioned, plus the single characters VT (vertical
tab, U+000B), FF (form feed, U+000C), NEL (next line, U+0085), LS (line
separator, U+2028), and PS (paragraph separator, U+2029).
Each of the first three conventions is used by at least one operating
system as its standard newline sequence. When PCRE is built, a default
can be specified. The default default is LF, which is the Unix stan-
dard. When PCRE is run, the default can be overridden, either when a
pattern is compiled, or when it is matched.
At compile time, the newline convention can be specified by the options
argument of pcre_compile(), or it can be specified by special text at
the start of the pattern itself; this overrides any other settings. See
the pcrepattern page for details of the special character sequences.
In the PCRE documentation the word "newline" is used to mean "the char-
acter or pair of characters that indicate a line break". The choice of
newline convention affects the handling of the dot, circumflex, and
dollar metacharacters, the handling of #-comments in /x mode, and, when
CRLF is a recognized line ending sequence, the match position advance-
ment for a non-anchored pattern. There is more detail about this in the
section on pcre_exec() options below.
The choice of newline convention does not affect the interpretation of
the \n or \r escape sequences, nor does it affect what \R matches,
which is controlled in a similar way, but by separate options.
MULTITHREADING
The PCRE functions can be used in multi-threading applications, with
the proviso that the memory management functions pointed to by
pcre_malloc, pcre_free, pcre_stack_malloc, and pcre_stack_free, and the
callout and stack-checking functions pointed to by pcre_callout and
pcre_stack_guard, are shared by all threads.
The compiled form of a regular expression is not altered during match-
ing, so the same compiled pattern can safely be used by several threads
at once.
If the just-in-time optimization feature is being used, it needs sepa-
rate memory stack areas for each thread. See the pcrejit documentation
for more details.
SAVING PRECOMPILED PATTERNS FOR LATER USE
The compiled form of a regular expression can be saved and re-used at a
later time, possibly by a different program, and even on a host other
than the one on which it was compiled. Details are given in the
pcreprecompile documentation, which includes a description of the
pcre_pattern_to_host_byte_order() function. However, compiling a regu-
lar expression with one version of PCRE for use with a different ver-
sion is not guaranteed to work and may cause crashes.
CHECKING BUILD-TIME OPTIONS
int pcre_config(int what, void *where);
The function pcre_config() makes it possible for a PCRE client to dis-
cover which optional features have been compiled into the PCRE library.
The pcrebuild documentation has more details about these optional fea-
tures.
The first argument for pcre_config() is an integer, specifying which
information is required; the second argument is a pointer to a variable
into which the information is placed. The returned value is zero on
success, or the negative error code PCRE_ERROR_BADOPTION if the value
in the first argument is not recognized. The following information is
available:
PCRE_CONFIG_UTF8
The output is an integer that is set to one if UTF-8 support is avail-
able; otherwise it is set to zero. This value should normally be given
to the 8-bit version of this function, pcre_config(). If it is given to
the 16-bit or 32-bit version of this function, the result is
PCRE_ERROR_BADOPTION.
PCRE_CONFIG_UTF16
The output is an integer that is set to one if UTF-16 support is avail-
able; otherwise it is set to zero. This value should normally be given
to the 16-bit version of this function, pcre16_config(). If it is given
to the 8-bit or 32-bit version of this function, the result is
PCRE_ERROR_BADOPTION.
PCRE_CONFIG_UTF32
The output is an integer that is set to one if UTF-32 support is avail-
able; otherwise it is set to zero. This value should normally be given
to the 32-bit version of this function, pcre32_config(). If it is given
to the 8-bit or 16-bit version of this function, the result is
PCRE_ERROR_BADOPTION.
PCRE_CONFIG_UNICODE_PROPERTIES
The output is an integer that is set to one if support for Unicode
character properties is available; otherwise it is set to zero.
PCRE_CONFIG_JIT
The output is an integer that is set to one if support for just-in-time
compiling is available; otherwise it is set to zero.
PCRE_CONFIG_JITTARGET
The output is a pointer to a zero-terminated "const char *" string. If
JIT support is available, the string contains the name of the architec-
ture for which the JIT compiler is configured, for example "x86 32bit
(little endian + unaligned)". If JIT support is not available, the
result is NULL.
PCRE_CONFIG_NEWLINE
The output is an integer whose value specifies the default character
sequence that is recognized as meaning "newline". The values that are
supported in ASCII/Unicode environments are: 10 for LF, 13 for CR, 3338
for CRLF, -2 for ANYCRLF, and -1 for ANY. In EBCDIC environments, CR,
ANYCRLF, and ANY yield the same values. However, the value for LF is
normally 21, though some EBCDIC environments use 37. The corresponding
values for CRLF are 3349 and 3365. The default should normally corre-
spond to the standard sequence for your operating system.
PCRE_CONFIG_BSR
The output is an integer whose value indicates what character sequences
the \R escape sequence matches by default. A value of 0 means that \R
matches any Unicode line ending sequence; a value of 1 means that \R
matches only CR, LF, or CRLF. The default can be overridden when a pat-
tern is compiled or matched.
PCRE_CONFIG_LINK_SIZE
The output is an integer that contains the number of bytes used for
internal linkage in compiled regular expressions. For the 8-bit
library, the value can be 2, 3, or 4. For the 16-bit library, the value
is either 2 or 4 and is still a number of bytes. For the 32-bit
library, the value is either 2 or 4 and is still a number of bytes. The
default value of 2 is sufficient for all but the most massive patterns,
since it allows the compiled pattern to be up to 64K in size. Larger
values allow larger regular expressions to be compiled, at the expense
of slower matching.
PCRE_CONFIG_POSIX_MALLOC_THRESHOLD
The output is an integer that contains the threshold above which the
POSIX interface uses malloc() for output vectors. Further details are
given in the pcreposix documentation.
PCRE_CONFIG_PARENS_LIMIT
The output is a long integer that gives the maximum depth of nesting of
parentheses (of any kind) in a pattern. This limit is imposed to cap
the amount of system stack used when a pattern is compiled. It is spec-
ified when PCRE is built; the default is 250. This limit does not take
into account the stack that may already be used by the calling applica-
tion. For finer control over compilation stack usage, you can set a
pointer to an external checking function in pcre_stack_guard.
PCRE_CONFIG_MATCH_LIMIT
The output is a long integer that gives the default limit for the num-
ber of internal matching function calls in a pcre_exec() execution.
Further details are given with pcre_exec() below.
PCRE_CONFIG_MATCH_LIMIT_RECURSION
The output is a long integer that gives the default limit for the depth
of recursion when calling the internal matching function in a
pcre_exec() execution. Further details are given with pcre_exec()
below.
PCRE_CONFIG_STACKRECURSE
The output is an integer that is set to one if internal recursion when
running pcre_exec() is implemented by recursive function calls that use
the stack to remember their state. This is the usual way that PCRE is
compiled. The output is zero if PCRE was compiled to use blocks of data
on the heap instead of recursive function calls. In this case,
pcre_stack_malloc and pcre_stack_free are called to manage memory
blocks on the heap, thus avoiding the use of the stack.
COMPILING A PATTERN
pcre *pcre_compile(const char *pattern, int options,
const char **errptr, int *erroffset,
const unsigned char *tableptr);
pcre *pcre_compile2(const char *pattern, int options,
int *errorcodeptr,
const char **errptr, int *erroffset,
const unsigned char *tableptr);
Either of the functions pcre_compile() or pcre_compile2() can be called
to compile a pattern into an internal form. The only difference between
the two interfaces is that pcre_compile2() has an additional argument,
errorcodeptr, via which a numerical error code can be returned. To
avoid too much repetition, we refer just to pcre_compile() below, but
the information applies equally to pcre_compile2().
The pattern is a C string terminated by a binary zero, and is passed in
the pattern argument. A pointer to a single block of memory that is
obtained via pcre_malloc is returned. This contains the compiled code
and related data. The pcre type is defined for the returned block; this
is a typedef for a structure whose contents are not externally defined.
It is up to the caller to free the memory (via pcre_free) when it is no
longer required.
Although the compiled code of a PCRE regex is relocatable, that is, it
does not depend on memory location, the complete pcre data block is not
fully relocatable, because it may contain a copy of the tableptr argu-
ment, which is an address (see below).
The options argument contains various bit settings that affect the com-
pilation. It should be zero if no options are required. The available
options are described below. Some of them (in particular, those that
are compatible with Perl, but some others as well) can also be set and
unset from within the pattern (see the detailed description in the
pcrepattern documentation). For those options that can be different in
different parts of the pattern, the contents of the options argument
specifies their settings at the start of compilation and execution. The
PCRE_ANCHORED, PCRE_BSR_xxx, PCRE_NEWLINE_xxx, PCRE_NO_UTF8_CHECK, and
PCRE_NO_START_OPTIMIZE options can be set at the time of matching as
well as at compile time.
If errptr is NULL, pcre_compile() returns NULL immediately. Otherwise,
if compilation of a pattern fails, pcre_compile() returns NULL, and
sets the variable pointed to by errptr to point to a textual error mes-
sage. This is a static string that is part of the library. You must not
try to free it. Normally, the offset from the start of the pattern to
the data unit that was being processed when the error was discovered is
placed in the variable pointed to by erroffset, which must not be NULL
(if it is, an immediate error is given). However, for an invalid UTF-8
or UTF-16 string, the offset is that of the first data unit of the
failing character.
Some errors are not detected until the whole pattern has been scanned;
in these cases, the offset passed back is the length of the pattern.
Note that the offset is in data units, not characters, even in a UTF
mode. It may sometimes point into the middle of a UTF-8 or UTF-16 char-
acter.
If pcre_compile2() is used instead of pcre_compile(), and the error-
codeptr argument is not NULL, a non-zero error code number is returned
via this argument in the event of an error. This is in addition to the
textual error message. Error codes and messages are listed below.
If the final argument, tableptr, is NULL, PCRE uses a default set of
character tables that are built when PCRE is compiled, using the
default C locale. Otherwise, tableptr must be an address that is the
result of a call to pcre_maketables(). This value is stored with the
compiled pattern, and used again by pcre_exec() and pcre_dfa_exec()
when the pattern is matched. For more discussion, see the section on
locale support below.
This code fragment shows a typical straightforward call to pcre_com-
pile():
pcre *re;
const char *error;
int erroffset;
re = pcre_compile(
"^A.*Z", /* the pattern */
0, /* default options */
&error, /* for error message */
&erroffset, /* for error offset */
NULL); /* use default character tables */
The following names for option bits are defined in the pcre.h header
file:
PCRE_ANCHORED
If this bit is set, the pattern is forced to be "anchored", that is, it
is constrained to match only at the first matching point in the string
that is being searched (the "subject string"). This effect can also be
achieved by appropriate constructs in the pattern itself, which is the
only way to do it in Perl.
PCRE_AUTO_CALLOUT
If this bit is set, pcre_compile() automatically inserts callout items,
all with number 255, before each pattern item. For discussion of the
callout facility, see the pcrecallout documentation.
PCRE_BSR_ANYCRLF
PCRE_BSR_UNICODE
These options (which are mutually exclusive) control what the \R escape
sequence matches. The choice is either to match only CR, LF, or CRLF,
or to match any Unicode newline sequence. The default is specified when
PCRE is built. It can be overridden from within the pattern, or by set-
ting an option when a compiled pattern is matched.
PCRE_CASELESS
If this bit is set, letters in the pattern match both upper and lower
case letters. It is equivalent to Perl's /i option, and it can be
changed within a pattern by a (?i) option setting. In UTF-8 mode, PCRE
always understands the concept of case for characters whose values are
less than 128, so caseless matching is always possible. For characters
with higher values, the concept of case is supported if PCRE is com-
piled with Unicode property support, but not otherwise. If you want to
use caseless matching for characters 128 and above, you must ensure
that PCRE is compiled with Unicode property support as well as with
UTF-8 support.
PCRE_DOLLAR_ENDONLY
If this bit is set, a dollar metacharacter in the pattern matches only
at the end of the subject string. Without this option, a dollar also
matches immediately before a newline at the end of the string (but not
before any other newlines). The PCRE_DOLLAR_ENDONLY option is ignored
if PCRE_MULTILINE is set. There is no equivalent to this option in
Perl, and no way to set it within a pattern.
PCRE_DOTALL
If this bit is set, a dot metacharacter in the pattern matches a char-
acter of any value, including one that indicates a newline. However, it
only ever matches one character, even if newlines are coded as CRLF.
Without this option, a dot does not match when the current position is
at a newline. This option is equivalent to Perl's /s option, and it can
be changed within a pattern by a (?s) option setting. A negative class
such as [^a] always matches newline characters, independent of the set-
ting of this option.
PCRE_DUPNAMES
If this bit is set, names used to identify capturing subpatterns need
not be unique. This can be helpful for certain types of pattern when it
is known that only one instance of the named subpattern can ever be
matched. There are more details of named subpatterns below; see also
the pcrepattern documentation.
PCRE_EXTENDED
If this bit is set, most white space characters in the pattern are
totally ignored except when escaped or inside a character class. How-
ever, white space is not allowed within sequences such as (?> that
introduce various parenthesized subpatterns, nor within a numerical
quantifier such as {1,3}. However, ignorable white space is permitted
between an item and a following quantifier and between a quantifier and
a following + that indicates possessiveness.
White space did not used to include the VT character (code 11), because
Perl did not treat this character as white space. However, Perl changed
at release 5.18, so PCRE followed at release 8.34, and VT is now
treated as white space.
PCRE_EXTENDED also causes characters between an unescaped # outside a
character class and the next newline, inclusive, to be ignored.
PCRE_EXTENDED is equivalent to Perl's /x option, and it can be changed
within a pattern by a (?x) option setting.
Which characters are interpreted as newlines is controlled by the
options passed to pcre_compile() or by a special sequence at the start
of the pattern, as described in the section entitled "Newline conven-
tions" in the pcrepattern documentation. Note that the end of this type
of comment is a literal newline sequence in the pattern; escape
sequences that happen to represent a newline do not count.
This option makes it possible to include comments inside complicated
patterns. Note, however, that this applies only to data characters.
White space characters may never appear within special character
sequences in a pattern, for example within the sequence (?( that intro-
duces a conditional subpattern.
PCRE_EXTRA
This option was invented in order to turn on additional functionality
of PCRE that is incompatible with Perl, but it is currently of very
little use. When set, any backslash in a pattern that is followed by a
letter that has no special meaning causes an error, thus reserving
these combinations for future expansion. By default, as in Perl, a
backslash followed by a letter with no special meaning is treated as a
literal. (Perl can, however, be persuaded to give an error for this, by
running it with the -w option.) There are at present no other features
controlled by this option. It can also be set by a (?X) option setting
within a pattern.
PCRE_FIRSTLINE
If this option is set, an unanchored pattern is required to match
before or at the first newline in the subject string, though the
matched text may continue over the newline.
PCRE_JAVASCRIPT_COMPAT
If this option is set, PCRE's behaviour is changed in some ways so that
it is compatible with JavaScript rather than Perl. The changes are as
follows:
(1) A lone closing square bracket in a pattern causes a compile-time
error, because this is illegal in JavaScript (by default it is treated
as a data character). Thus, the pattern AB]CD becomes illegal when this
option is set.
(2) At run time, a back reference to an unset subpattern group matches
an empty string (by default this causes the current matching alterna-
tive to fail). A pattern such as (\1)(a) succeeds when this option is
set (assuming it can find an "a" in the subject), whereas it fails by
default, for Perl compatibility.
(3) \U matches an upper case "U" character; by default \U causes a com-
pile time error (Perl uses \U to upper case subsequent characters).
(4) \u matches a lower case "u" character unless it is followed by four
hexadecimal digits, in which case the hexadecimal number defines the
code point to match. By default, \u causes a compile time error (Perl
uses it to upper case the following character).
(5) \x matches a lower case "x" character unless it is followed by two
hexadecimal digits, in which case the hexadecimal number defines the
code point to match. By default, as in Perl, a hexadecimal number is
always expected after \x, but it may have zero, one, or two digits (so,
for example, \xz matches a binary zero character followed by z).
PCRE_MULTILINE
By default, for the purposes of matching "start of line" and "end of
line", PCRE treats the subject string as consisting of a single line of
characters, even if it actually contains newlines. The "start of line"
metacharacter (^) matches only at the start of the string, and the "end
of line" metacharacter ($) matches only at the end of the string, or
before a terminating newline (except when PCRE_DOLLAR_ENDONLY is set).
Note, however, that unless PCRE_DOTALL is set, the "any character"
metacharacter (.) does not match at a newline. This behaviour (for ^,
$, and dot) is the same as Perl.
When PCRE_MULTILINE it is set, the "start of line" and "end of line"
constructs match immediately following or immediately before internal
newlines in the subject string, respectively, as well as at the very
start and end. This is equivalent to Perl's /m option, and it can be
changed within a pattern by a (?m) option setting. If there are no new-
lines in a subject string, or no occurrences of ^ or $ in a pattern,
setting PCRE_MULTILINE has no effect.
PCRE_NEVER_UTF
This option locks out interpretation of the pattern as UTF-8 (or UTF-16
or UTF-32 in the 16-bit and 32-bit libraries). In particular, it pre-
vents the creator of the pattern from switching to UTF interpretation
by starting the pattern with (*UTF). This may be useful in applications
that process patterns from external sources. The combination of
PCRE_UTF8 and PCRE_NEVER_UTF also causes an error.
PCRE_NEWLINE_CR
PCRE_NEWLINE_LF
PCRE_NEWLINE_CRLF
PCRE_NEWLINE_ANYCRLF
PCRE_NEWLINE_ANY
These options override the default newline definition that was chosen
when PCRE was built. Setting the first or the second specifies that a
newline is indicated by a single character (CR or LF, respectively).
Setting PCRE_NEWLINE_CRLF specifies that a newline is indicated by the
two-character CRLF sequence. Setting PCRE_NEWLINE_ANYCRLF specifies
that any of the three preceding sequences should be recognized. Setting
PCRE_NEWLINE_ANY specifies that any Unicode newline sequence should be
recognized.
In an ASCII/Unicode environment, the Unicode newline sequences are the
three just mentioned, plus the single characters VT (vertical tab,
U+000B), FF (form feed, U+000C), NEL (next line, U+0085), LS (line sep-
arator, U+2028), and PS (paragraph separator, U+2029). For the 8-bit
library, the last two are recognized only in UTF-8 mode.
When PCRE is compiled to run in an EBCDIC (mainframe) environment, the
code for CR is 0x0d, the same as ASCII. However, the character code for
LF is normally 0x15, though in some EBCDIC environments 0x25 is used.
Whichever of these is not LF is made to correspond to Unicode's NEL
character. EBCDIC codes are all less than 256. For more details, see
the pcrebuild documentation.
The newline setting in the options word uses three bits that are
treated as a number, giving eight possibilities. Currently only six are
used (default plus the five values above). This means that if you set
more than one newline option, the combination may or may not be sensi-
ble. For example, PCRE_NEWLINE_CR with PCRE_NEWLINE_LF is equivalent to
PCRE_NEWLINE_CRLF, but other combinations may yield unused numbers and
cause an error.
The only time that a line break in a pattern is specially recognized
when compiling is when PCRE_EXTENDED is set. CR and LF are white space
characters, and so are ignored in this mode. Also, an unescaped # out-
side a character class indicates a comment that lasts until after the
next line break sequence. In other circumstances, line break sequences
in patterns are treated as literal data.
The newline option that is set at compile time becomes the default that
is used for pcre_exec() and pcre_dfa_exec(), but it can be overridden.
PCRE_NO_AUTO_CAPTURE
If this option is set, it disables the use of numbered capturing paren-
theses in the pattern. Any opening parenthesis that is not followed by
? behaves as if it were followed by ?: but named parentheses can still
be used for capturing (and they acquire numbers in the usual way).
There is no equivalent of this option in Perl.
PCRE_NO_AUTO_POSSESS
If this option is set, it disables "auto-possessification". This is an
optimization that, for example, turns a+b into a++b in order to avoid
backtracks into a+ that can never be successful. However, if callouts
are in use, auto-possessification means that some of them are never
taken. You can set this option if you want the matching functions to do
a full unoptimized search and run all the callouts, but it is mainly
provided for testing purposes.
PCRE_NO_START_OPTIMIZE
This is an option that acts at matching time; that is, it is really an
option for pcre_exec() or pcre_dfa_exec(). If it is set at compile
time, it is remembered with the compiled pattern and assumed at match-
ing time. This is necessary if you want to use JIT execution, because
the JIT compiler needs to know whether or not this option is set. For
details see the discussion of PCRE_NO_START_OPTIMIZE below.
PCRE_UCP
This option changes the way PCRE processes \B, \b, \D, \d, \S, \s, \W,
\w, and some of the POSIX character classes. By default, only ASCII
characters are recognized, but if PCRE_UCP is set, Unicode properties
are used instead to classify characters. More details are given in the
section on generic character types in the pcrepattern page. If you set
PCRE_UCP, matching one of the items it affects takes much longer. The
option is available only if PCRE has been compiled with Unicode prop-
erty support.
PCRE_UNGREEDY
This option inverts the "greediness" of the quantifiers so that they
are not greedy by default, but become greedy if followed by "?". It is
not compatible with Perl. It can also be set by a (?U) option setting
within the pattern.
PCRE_UTF8
This option causes PCRE to regard both the pattern and the subject as
strings of UTF-8 characters instead of single-byte strings. However, it
is available only when PCRE is built to include UTF support. If not,
the use of this option provokes an error. Details of how this option
changes the behaviour of PCRE are given in the pcreunicode page.
PCRE_NO_UTF8_CHECK
When PCRE_UTF8 is set, the validity of the pattern as a UTF-8 string is
automatically checked. There is a discussion about the validity of
UTF-8 strings in the pcreunicode page. If an invalid UTF-8 sequence is
found, pcre_compile() returns an error. If you already know that your
pattern is valid, and you want to skip this check for performance rea-
sons, you can set the PCRE_NO_UTF8_CHECK option. When it is set, the
effect of passing an invalid UTF-8 string as a pattern is undefined. It
may cause your program to crash or loop. Note that this option can also
be passed to pcre_exec() and pcre_dfa_exec(), to suppress the validity
checking of subject strings only. If the same string is being matched
many times, the option can be safely set for the second and subsequent
matchings to improve performance.
COMPILATION ERROR CODES
The following table lists the error codes than may be returned by
pcre_compile2(), along with the error messages that may be returned by
both compiling functions. Note that error messages are always 8-bit
ASCII strings, even in 16-bit or 32-bit mode. As PCRE has developed,
some error codes have fallen out of use. To avoid confusion, they have
not been re-used.
0 no error
1 \ at end of pattern
2 \c at end of pattern
3 unrecognized character follows \
4 numbers out of order in {} quantifier
5 number too big in {} quantifier
6 missing terminating ] for character class
7 invalid escape sequence in character class
8 range out of order in character class
9 nothing to repeat
10 [this code is not in use]
11 internal error: unexpected repeat
12 unrecognized character after (? or (?-
13 POSIX named classes are supported only within a class
14 missing )
15 reference to non-existent subpattern
16 erroffset passed as NULL
17 unknown option bit(s) set
18 missing ) after comment
19 [this code is not in use]
20 regular expression is too large
21 failed to get memory
22 unmatched parentheses
23 internal error: code overflow
24 unrecognized character after (?<
25 lookbehind assertion is not fixed length
26 malformed number or name after (?(
27 conditional group contains more than two branches
28 assertion expected after (?(
29 (?R or (?[+-]digits must be followed by )
30 unknown POSIX class name
31 POSIX collating elements are not supported
32 this version of PCRE is compiled without UTF support
33 [this code is not in use]
34 character value in \x{} or \o{} is too large
35 invalid condition (?(0)
36 \C not allowed in lookbehind assertion
37 PCRE does not support \L, \l, \N{name}, \U, or \u
38 number after (?C is > 255
39 closing ) for (?C expected
40 recursive call could loop indefinitely
41 unrecognized character after (?P
42 syntax error in subpattern name (missing terminator)
43 two named subpatterns have the same name
44 invalid UTF-8 string (specifically UTF-8)
45 support for \P, \p, and \X has not been compiled
46 malformed \P or \p sequence
47 unknown property name after \P or \p
48 subpattern name is too long (maximum 32 characters)
49 too many named subpatterns (maximum 10000)
50 [this code is not in use]
51 octal value is greater than \377 in 8-bit non-UTF-8 mode
52 internal error: overran compiling workspace
53 internal error: previously-checked referenced subpattern
not found
54 DEFINE group contains more than one branch
55 repeating a DEFINE group is not allowed
56 inconsistent NEWLINE options
57 \g is not followed by a braced, angle-bracketed, or quoted
name/number or by a plain number
58 a numbered reference must not be zero
59 an argument is not allowed for (*ACCEPT), (*FAIL), or (*COMMIT)
60 (*VERB) not recognized or malformed
61 number is too big
62 subpattern name expected
63 digit expected after (?+
64 ] is an invalid data character in JavaScript compatibility mode
65 different names for subpatterns of the same number are
not allowed
66 (*MARK) must have an argument
67 this version of PCRE is not compiled with Unicode property
support
68 \c must be followed by an ASCII character
69 \k is not followed by a braced, angle-bracketed, or quoted name
70 internal error: unknown opcode in find_fixedlength()
71 \N is not supported in a class
72 too many forward references
73 disallowed Unicode code point (>= 0xd800 && <= 0xdfff)
74 invalid UTF-16 string (specifically UTF-16)
75 name is too long in (*MARK), (*PRUNE), (*SKIP), or (*THEN)
76 character value in \u.... sequence is too large
77 invalid UTF-32 string (specifically UTF-32)
78 setting UTF is disabled by the application
79 non-hex character in \x{} (closing brace missing?)
80 non-octal character in \o{} (closing brace missing?)
81 missing opening brace after \o
82 parentheses are too deeply nested
83 invalid range in character class
84 group name must start with a non-digit
85 parentheses are too deeply nested (stack check)
The numbers 32 and 10000 in errors 48 and 49 are defaults; different
values may be used if the limits were changed when PCRE was built.
STUDYING A PATTERN
pcre_extra *pcre_study(const pcre *code, int options,
const char **errptr);
If a compiled pattern is going to be used several times, it is worth
spending more time analyzing it in order to speed up the time taken for
matching. The function pcre_study() takes a pointer to a compiled pat-
tern as its first argument. If studying the pattern produces additional
information that will help speed up matching, pcre_study() returns a
pointer to a pcre_extra block, in which the study_data field points to
the results of the study.
The returned value from pcre_study() can be passed directly to
pcre_exec() or pcre_dfa_exec(). However, a pcre_extra block also con-
tains other fields that can be set by the caller before the block is
passed; these are described below in the section on matching a pattern.
If studying the pattern does not produce any useful information,
pcre_study() returns NULL by default. In that circumstance, if the
calling program wants to pass any of the other fields to pcre_exec() or
pcre_dfa_exec(), it must set up its own pcre_extra block. However, if
pcre_study() is called with the PCRE_STUDY_EXTRA_NEEDED option, it
returns a pcre_extra block even if studying did not find any additional
information. It may still return NULL, however, if an error occurs in
pcre_study().
The second argument of pcre_study() contains option bits. There are
three further options in addition to PCRE_STUDY_EXTRA_NEEDED:
PCRE_STUDY_JIT_COMPILE
PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
If any of these are set, and the just-in-time compiler is available,
the pattern is further compiled into machine code that executes much
faster than the pcre_exec() interpretive matching function. If the
just-in-time compiler is not available, these options are ignored. All
undefined bits in the options argument must be zero.
JIT compilation is a heavyweight optimization. It can take some time
for patterns to be analyzed, and for one-off matches and simple pat-
terns the benefit of faster execution might be offset by a much slower
study time. Not all patterns can be optimized by the JIT compiler. For
those that cannot be handled, matching automatically falls back to the
pcre_exec() interpreter. For more details, see the pcrejit documenta-
tion.
The third argument for pcre_study() is a pointer for an error message.
If studying succeeds (even if no data is returned), the variable it
points to is set to NULL. Otherwise it is set to point to a textual
error message. This is a static string that is part of the library. You
must not try to free it. You should test the error pointer for NULL
after calling pcre_study(), to be sure that it has run successfully.
When you are finished with a pattern, you can free the memory used for
the study data by calling pcre_free_study(). This function was added to
the API for release 8.20. For earlier versions, the memory could be
freed with pcre_free(), just like the pattern itself. This will still
work in cases where JIT optimization is not used, but it is advisable
to change to the new function when convenient.
This is a typical way in which pcre_study() is used (except that in a
real application there should be tests for errors):
int rc;
pcre *re;
pcre_extra *sd;
re = pcre_compile("pattern", 0, &error, &erroroffset, NULL);
sd = pcre_study(
re, /* result of pcre_compile() */
0, /* no options */
&error); /* set to NULL or points to a message */
rc = pcre_exec( /* see below for details of pcre_exec() options */
re, sd, "subject", 7, 0, 0, ovector, 30);
...
pcre_free_study(sd);
pcre_free(re);
Studying a pattern does two things: first, a lower bound for the length
of subject string that is needed to match the pattern is computed. This
does not mean that there are any strings of that length that match, but
it does guarantee that no shorter strings match. The value is used to
avoid wasting time by trying to match strings that are shorter than the
lower bound. You can find out the value in a calling program via the
pcre_fullinfo() function.
Studying a pattern is also useful for non-anchored patterns that do not
have a single fixed starting character. A bitmap of possible starting
bytes is created. This speeds up finding a position in the subject at
which to start matching. (In 16-bit mode, the bitmap is used for 16-bit
values less than 256. In 32-bit mode, the bitmap is used for 32-bit
values less than 256.)
These two optimizations apply to both pcre_exec() and pcre_dfa_exec(),
and the information is also used by the JIT compiler. The optimiza-
tions can be disabled by setting the PCRE_NO_START_OPTIMIZE option.
You might want to do this if your pattern contains callouts or (*MARK)
and you want to make use of these facilities in cases where matching
fails.
PCRE_NO_START_OPTIMIZE can be specified at either compile time or exe-
cution time. However, if PCRE_NO_START_OPTIMIZE is passed to
pcre_exec(), (that is, after any JIT compilation has happened) JIT exe-
cution is disabled. For JIT execution to work with PCRE_NO_START_OPTI-
MIZE, the option must be set at compile time.
There is a longer discussion of PCRE_NO_START_OPTIMIZE below.
LOCALE SUPPORT
PCRE handles caseless matching, and determines whether characters are
letters, digits, or whatever, by reference to a set of tables, indexed
by character code point. When running in UTF-8 mode, or in the 16- or
32-bit libraries, this applies only to characters with code points less
than 256. By default, higher-valued code points never match escapes
such as \w or \d. However, if PCRE is built with Unicode property sup-
port, all characters can be tested with \p and \P, or, alternatively,
the PCRE_UCP option can be set when a pattern is compiled; this causes
\w and friends to use Unicode property support instead of the built-in
tables.
The use of locales with Unicode is discouraged. If you are handling
characters with code points greater than 128, you should either use
Unicode support, or use locales, but not try to mix the two.
PCRE contains an internal set of tables that are used when the final
argument of pcre_compile() is NULL. These are sufficient for many
applications. Normally, the internal tables recognize only ASCII char-
acters. However, when PCRE is built, it is possible to cause the inter-
nal tables to be rebuilt in the default "C" locale of the local system,
which may cause them to be different.
The internal tables can always be overridden by tables supplied by the
application that calls PCRE. These may be created in a different locale
from the default. As more and more applications change to using Uni-
code, the need for this locale support is expected to die away.
External tables are built by calling the pcre_maketables() function,
which has no arguments, in the relevant locale. The result can then be
passed to pcre_compile() as often as necessary. For example, to build
and use tables that are appropriate for the French locale (where
accented characters with values greater than 128 are treated as let-
ters), the following code could be used:
setlocale(LC_CTYPE, "fr_FR");
tables = pcre_maketables();
re = pcre_compile(..., tables);
The locale name "fr_FR" is used on Linux and other Unix-like systems;
if you are using Windows, the name for the French locale is "french".
When pcre_maketables() runs, the tables are built in memory that is
obtained via pcre_malloc. It is the caller's responsibility to ensure
that the memory containing the tables remains available for as long as
it is needed.
The pointer that is passed to pcre_compile() is saved with the compiled
pattern, and the same tables are used via this pointer by pcre_study()
and also by pcre_exec() and pcre_dfa_exec(). Thus, for any single pat-
tern, compilation, studying and matching all happen in the same locale,
but different patterns can be processed in different locales.
It is possible to pass a table pointer or NULL (indicating the use of
the internal tables) to pcre_exec() or pcre_dfa_exec() (see the discus-
sion below in the section on matching a pattern). This facility is pro-
vided for use with pre-compiled patterns that have been saved and
reloaded. Character tables are not saved with patterns, so if a non-
standard table was used at compile time, it must be provided again when
the reloaded pattern is matched. Attempting to use this facility to
match a pattern in a different locale from the one in which it was com-
piled is likely to lead to anomalous (usually incorrect) results.
INFORMATION ABOUT A PATTERN
int pcre_fullinfo(const pcre *code, const pcre_extra *extra,
int what, void *where);
The pcre_fullinfo() function returns information about a compiled pat-
tern. It replaces the pcre_info() function, which was removed from the
library at version 8.30, after more than 10 years of obsolescence.
The first argument for pcre_fullinfo() is a pointer to the compiled
pattern. The second argument is the result of pcre_study(), or NULL if
the pattern was not studied. The third argument specifies which piece
of information is required, and the fourth argument is a pointer to a
variable to receive the data. The yield of the function is zero for
success, or one of the following negative numbers:
PCRE_ERROR_NULL the argument code was NULL
the argument where was NULL
PCRE_ERROR_BADMAGIC the "magic number" was not found
PCRE_ERROR_BADENDIANNESS the pattern was compiled with different
endianness
PCRE_ERROR_BADOPTION the value of what was invalid
PCRE_ERROR_UNSET the requested field is not set
The "magic number" is placed at the start of each compiled pattern as
an simple check against passing an arbitrary memory pointer. The endi-
anness error can occur if a compiled pattern is saved and reloaded on a
different host. Here is a typical call of pcre_fullinfo(), to obtain
the length of the compiled pattern:
int rc;
size_t length;
rc = pcre_fullinfo(
re, /* result of pcre_compile() */
sd, /* result of pcre_study(), or NULL */
PCRE_INFO_SIZE, /* what is required */
&length); /* where to put the data */
The possible values for the third argument are defined in pcre.h, and
are as follows:
PCRE_INFO_BACKREFMAX
Return the number of the highest back reference in the pattern. The
fourth argument should point to an int variable. Zero is returned if
there are no back references.
PCRE_INFO_CAPTURECOUNT
Return the number of capturing subpatterns in the pattern. The fourth
argument should point to an int variable.
PCRE_INFO_DEFAULT_TABLES
Return a pointer to the internal default character tables within PCRE.
The fourth argument should point to an unsigned char * variable. This
information call is provided for internal use by the pcre_study() func-
tion. External callers can cause PCRE to use its internal tables by
passing a NULL table pointer.
PCRE_INFO_FIRSTBYTE (deprecated)
Return information about the first data unit of any matched string, for
a non-anchored pattern. The name of this option refers to the 8-bit
library, where data units are bytes. The fourth argument should point
to an int variable. Negative values are used for special cases. How-
ever, this means that when the 32-bit library is in non-UTF-32 mode,
the full 32-bit range of characters cannot be returned. For this rea-
son, this value is deprecated; use PCRE_INFO_FIRSTCHARACTERFLAGS and
PCRE_INFO_FIRSTCHARACTER instead.
If there is a fixed first value, for example, the letter "c" from a
pattern such as (cat|cow|coyote), its value is returned. In the 8-bit
library, the value is always less than 256. In the 16-bit library the
value can be up to 0xffff. In the 32-bit library the value can be up to
0x10ffff.
If there is no fixed first value, and if either
(a) the pattern was compiled with the PCRE_MULTILINE option, and every
branch starts with "^", or
(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not
set (if it were set, the pattern would be anchored),
-1 is returned, indicating that the pattern matches only at the start
of a subject string or after any newline within the string. Otherwise
-2 is returned. For anchored patterns, -2 is returned.
PCRE_INFO_FIRSTCHARACTER
Return the value of the first data unit (non-UTF character) of any
matched string in the situation where PCRE_INFO_FIRSTCHARACTERFLAGS
returns 1; otherwise return 0. The fourth argument should point to an
uint_t variable.
In the 8-bit library, the value is always less than 256. In the 16-bit
library the value can be up to 0xffff. In the 32-bit library in UTF-32
mode the value can be up to 0x10ffff, and up to 0xffffffff when not
using UTF-32 mode.
PCRE_INFO_FIRSTCHARACTERFLAGS
Return information about the first data unit of any matched string, for
a non-anchored pattern. The fourth argument should point to an int
variable.
If there is a fixed first value, for example, the letter "c" from a
pattern such as (cat|cow|coyote), 1 is returned, and the character
value can be retrieved using PCRE_INFO_FIRSTCHARACTER. If there is no
fixed first value, and if either
(a) the pattern was compiled with the PCRE_MULTILINE option, and every
branch starts with "^", or
(b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not
set (if it were set, the pattern would be anchored),
2 is returned, indicating that the pattern matches only at the start of
a subject string or after any newline within the string. Otherwise 0 is
returned. For anchored patterns, 0 is returned.
PCRE_INFO_FIRSTTABLE
If the pattern was studied, and this resulted in the construction of a
256-bit table indicating a fixed set of values for the first data unit
in any matching string, a pointer to the table is returned. Otherwise
NULL is returned. The fourth argument should point to an unsigned char
* variable.
PCRE_INFO_HASCRORLF
Return 1 if the pattern contains any explicit matches for CR or LF
characters, otherwise 0. The fourth argument should point to an int
variable. An explicit match is either a literal CR or LF character, or
\r or \n.
PCRE_INFO_JCHANGED
Return 1 if the (?J) or (?-J) option setting is used in the pattern,
otherwise 0. The fourth argument should point to an int variable. (?J)
and (?-J) set and unset the local PCRE_DUPNAMES option, respectively.
PCRE_INFO_JIT
Return 1 if the pattern was studied with one of the JIT options, and
just-in-time compiling was successful. The fourth argument should point
to an int variable. A return value of 0 means that JIT support is not
available in this version of PCRE, or that the pattern was not studied
with a JIT option, or that the JIT compiler could not handle this par-
ticular pattern. See the pcrejit documentation for details of what can
and cannot be handled.
PCRE_INFO_JITSIZE
If the pattern was successfully studied with a JIT option, return the
size of the JIT compiled code, otherwise return zero. The fourth argu-
ment should point to a size_t variable.
PCRE_INFO_LASTLITERAL
Return the value of the rightmost literal data unit that must exist in
any matched string, other than at its start, if such a value has been
recorded. The fourth argument should point to an int variable. If there
is no such value, -1 is returned. For anchored patterns, a last literal
value is recorded only if it follows something of variable length. For
example, for the pattern /^a\d+z\d+/ the returned value is "z", but for
/^a\dz\d/ the returned value is -1.
Since for the 32-bit library using the non-UTF-32 mode, this function
is unable to return the full 32-bit range of characters, this value is
deprecated; instead the PCRE_INFO_REQUIREDCHARFLAGS and
PCRE_INFO_REQUIREDCHAR values should be used.
PCRE_INFO_MATCH_EMPTY
Return 1 if the pattern can match an empty string, otherwise 0. The
fourth argument should point to an int variable.
PCRE_INFO_MATCHLIMIT
If the pattern set a match limit by including an item of the form
(*LIMIT_MATCH=nnnn) at the start, the value is returned. The fourth
argument should point to an unsigned 32-bit integer. If no such value
has been set, the call to pcre_fullinfo() returns the error
PCRE_ERROR_UNSET.
PCRE_INFO_MAXLOOKBEHIND
Return the number of characters (NB not data units) in the longest
lookbehind assertion in the pattern. This information is useful when
doing multi-segment matching using the partial matching facilities.
Note that the simple assertions \b and \B require a one-character look-
behind. \A also registers a one-character lookbehind, though it does
not actually inspect the previous character. This is to ensure that at
least one character from the old segment is retained when a new segment
is processed. Otherwise, if there are no lookbehinds in the pattern, \A
might match incorrectly at the start of a new segment.
PCRE_INFO_MINLENGTH
If the pattern was studied and a minimum length for matching subject
strings was computed, its value is returned. Otherwise the returned
value is -1. The value is a number of characters, which in UTF mode may
be different from the number of data units. The fourth argument should
point to an int variable. A non-negative value is a lower bound to the
length of any matching string. There may not be any strings of that
length that do actually match, but every string that does match is at
least that long.
PCRE_INFO_NAMECOUNT
PCRE_INFO_NAMEENTRYSIZE
PCRE_INFO_NAMETABLE
PCRE supports the use of named as well as numbered capturing parenthe-
ses. The names are just an additional way of identifying the parenthe-
ses, which still acquire numbers. Several convenience functions such as
pcre_get_named_substring() are provided for extracting captured sub-
strings by name. It is also possible to extract the data directly, by
first converting the name to a number in order to access the correct
pointers in the output vector (described with pcre_exec() below). To do
the conversion, you need to use the name-to-number map, which is
described by these three values.
The map consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT
gives the number of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size
of each entry; both of these return an int value. The entry size
depends on the length of the longest name. PCRE_INFO_NAMETABLE returns
a pointer to the first entry of the table. This is a pointer to char in
the 8-bit library, where the first two bytes of each entry are the num-
ber of the capturing parenthesis, most significant byte first. In the
16-bit library, the pointer points to 16-bit data units, the first of
which contains the parenthesis number. In the 32-bit library, the
pointer points to 32-bit data units, the first of which contains the
parenthesis number. The rest of the entry is the corresponding name,
zero terminated.
The names are in alphabetical order. If (?| is used to create multiple
groups with the same number, as described in the section on duplicate
subpattern numbers in the pcrepattern page, the groups may be given the
same name, but there is only one entry in the table. Different names
for groups of the same number are not permitted. Duplicate names for
subpatterns with different numbers are permitted, but only if PCRE_DUP-
NAMES is set. They appear in the table in the order in which they were
found in the pattern. In the absence of (?| this is the order of
increasing number; when (?| is used this is not necessarily the case
because later subpatterns may have lower numbers.
As a simple example of the name/number table, consider the following
pattern after compilation by the 8-bit library (assume PCRE_EXTENDED is
set, so white space - including newlines - is ignored):
(?<date> (?<year>(\d\d)?\d\d) -
(?<month>\d\d) - (?<day>\d\d) )
There are four named subpatterns, so the table has four entries, and
each entry in the table is eight bytes long. The table is as follows,
with non-printing bytes shows in hexadecimal, and undefined bytes shown
as ??:
00 01 d a t e 00 ??
00 05 d a y 00 ?? ??
00 04 m o n t h 00
00 02 y e a r 00 ??
When writing code to extract data from named subpatterns using the
name-to-number map, remember that the length of the entries is likely
to be different for each compiled pattern.
PCRE_INFO_OKPARTIAL
Return 1 if the pattern can be used for partial matching with
pcre_exec(), otherwise 0. The fourth argument should point to an int
variable. From release 8.00, this always returns 1, because the
restrictions that previously applied to partial matching have been
lifted. The pcrepartial documentation gives details of partial match-
ing.
PCRE_INFO_OPTIONS
Return a copy of the options with which the pattern was compiled. The
fourth argument should point to an unsigned long int variable. These
option bits are those specified in the call to pcre_compile(), modified
by any top-level option settings at the start of the pattern itself. In
other words, they are the options that will be in force when matching
starts. For example, if the pattern /(?im)abc(?-i)d/ is compiled with
the PCRE_EXTENDED option, the result is PCRE_CASELESS, PCRE_MULTILINE,
and PCRE_EXTENDED.
A pattern is automatically anchored by PCRE if all of its top-level
alternatives begin with one of the following:
^ unless PCRE_MULTILINE is set
\A always
\G always
.* if PCRE_DOTALL is set and there are no back
references to the subpattern in which .* appears
For such patterns, the PCRE_ANCHORED bit is set in the options returned
by pcre_fullinfo().
PCRE_INFO_RECURSIONLIMIT
If the pattern set a recursion limit by including an item of the form
(*LIMIT_RECURSION=nnnn) at the start, the value is returned. The fourth
argument should point to an unsigned 32-bit integer. If no such value
has been set, the call to pcre_fullinfo() returns the error
PCRE_ERROR_UNSET.
PCRE_INFO_SIZE
Return the size of the compiled pattern in bytes (for all three
libraries). The fourth argument should point to a size_t variable. This
value does not include the size of the pcre structure that is returned
by pcre_compile(). The value that is passed as the argument to
pcre_malloc() when pcre_compile() is getting memory in which to place
the compiled data is the value returned by this option plus the size of
the pcre structure. Studying a compiled pattern, with or without JIT,
does not alter the value returned by this option.
PCRE_INFO_STUDYSIZE
Return the size in bytes (for all three libraries) of the data block
pointed to by the study_data field in a pcre_extra block. If pcre_extra
is NULL, or there is no study data, zero is returned. The fourth argu-
ment should point to a size_t variable. The study_data field is set by
pcre_study() to record information that will speed up matching (see the
section entitled "Studying a pattern" above). The format of the
study_data block is private, but its length is made available via this
option so that it can be saved and restored (see the pcreprecompile
documentation for details).
PCRE_INFO_REQUIREDCHARFLAGS
Returns 1 if there is a rightmost literal data unit that must exist in
any matched string, other than at its start. The fourth argument should
point to an int variable. If there is no such value, 0 is returned. If
returning 1, the character value itself can be retrieved using
PCRE_INFO_REQUIREDCHAR.
For anchored patterns, a last literal value is recorded only if it fol-
lows something of variable length. For example, for the pattern
/^a\d+z\d+/ the returned value 1 (with "z" returned from
PCRE_INFO_REQUIREDCHAR), but for /^a\dz\d/ the returned value is 0.
PCRE_INFO_REQUIREDCHAR
Return the value of the rightmost literal data unit that must exist in
any matched string, other than at its start, if such a value has been
recorded. The fourth argument should point to an uint32_t variable. If
there is no such value, 0 is returned.
REFERENCE COUNTS
int pcre_refcount(pcre *code, int adjust);
The pcre_refcount() function is used to maintain a reference count in
the data block that contains a compiled pattern. It is provided for the
benefit of applications that operate in an object-oriented manner,
where different parts of the application may be using the same compiled
pattern, but you want to free the block when they are all done.
When a pattern is compiled, the reference count field is initialized to
zero. It is changed only by calling this function, whose action is to
add the adjust value (which may be positive or negative) to it. The
yield of the function is the new value. However, the value of the count
is constrained to lie between 0 and 65535, inclusive. If the new value
is outside these limits, it is forced to the appropriate limit value.
Except when it is zero, the reference count is not correctly preserved
if a pattern is compiled on one host and then transferred to a host
whose byte-order is different. (This seems a highly unlikely scenario.)
MATCHING A PATTERN: THE TRADITIONAL FUNCTION
int pcre_exec(const pcre *code, const pcre_extra *extra,
const char *subject, int length, int startoffset,
int options, int *ovector, int ovecsize);
The function pcre_exec() is called to match a subject string against a
compiled pattern, which is passed in the code argument. If the pattern
was studied, the result of the study should be passed in the extra
argument. You can call pcre_exec() with the same code and extra argu-
ments as many times as you like, in order to match different subject
strings with the same pattern.
This function is the main matching facility of the library, and it
operates in a Perl-like manner. For specialist use there is also an
alternative matching function, which is described below in the section
about the pcre_dfa_exec() function.
In most applications, the pattern will have been compiled (and option-
ally studied) in the same process that calls pcre_exec(). However, it
is possible to save compiled patterns and study data, and then use them
later in different processes, possibly even on different hosts. For a
discussion about this, see the pcreprecompile documentation.
Here is an example of a simple call to pcre_exec():
int rc;
int ovector[30];
rc = pcre_exec(
re, /* result of pcre_compile() */
NULL, /* we didn't study the pattern */
"some string", /* the subject string */
11, /* the length of the subject string */
0, /* start at offset 0 in the subject */
0, /* default options */
ovector, /* vector of integers for substring information */
30); /* number of elements (NOT size in bytes) */
Extra data for pcre_exec()
If the extra argument is not NULL, it must point to a pcre_extra data
block. The pcre_study() function returns such a block (when it doesn't
return NULL), but you can also create one for yourself, and pass addi-
tional information in it. The pcre_extra block contains the following
fields (not necessarily in this order):
unsigned long int flags;
void *study_data;
void *executable_jit;
unsigned long int match_limit;
unsigned long int match_limit_recursion;
void *callout_data;
const unsigned char *tables;
unsigned char **mark;
In the 16-bit version of this structure, the mark field has type
"PCRE_UCHAR16 **".
In the 32-bit version of this structure, the mark field has type
"PCRE_UCHAR32 **".
The flags field is used to specify which of the other fields are set.
The flag bits are:
PCRE_EXTRA_CALLOUT_DATA
PCRE_EXTRA_EXECUTABLE_JIT
PCRE_EXTRA_MARK
PCRE_EXTRA_MATCH_LIMIT
PCRE_EXTRA_MATCH_LIMIT_RECURSION
PCRE_EXTRA_STUDY_DATA
PCRE_EXTRA_TABLES
Other flag bits should be set to zero. The study_data field and some-
times the executable_jit field are set in the pcre_extra block that is
returned by pcre_study(), together with the appropriate flag bits. You
should not set these yourself, but you may add to the block by setting
other fields and their corresponding flag bits.
The match_limit field provides a means of preventing PCRE from using up
a vast amount of resources when running patterns that are not going to
match, but which have a very large number of possibilities in their
search trees. The classic example is a pattern that uses nested unlim-
ited repeats.
Internally, pcre_exec() uses a function called match(), which it calls
repeatedly (sometimes recursively). The limit set by match_limit is
imposed on the number of times this function is called during a match,
which has the effect of limiting the amount of backtracking that can
take place. For patterns that are not anchored, the count restarts from
zero for each position in the subject string.
When pcre_exec() is called with a pattern that was successfully studied
with a JIT option, the way that the matching is executed is entirely
different. However, there is still the possibility of runaway matching
that goes on for a very long time, and so the match_limit value is also
used in this case (but in a different way) to limit how long the match-
ing can continue.
The default value for the limit can be set when PCRE is built; the
default default is 10 million, which handles all but the most extreme
cases. You can override the default by suppling pcre_exec() with a
pcre_extra block in which match_limit is set, and
PCRE_EXTRA_MATCH_LIMIT is set in the flags field. If the limit is
exceeded, pcre_exec() returns PCRE_ERROR_MATCHLIMIT.
A value for the match limit may also be supplied by an item at the
start of a pattern of the form
(*LIMIT_MATCH=d)
where d is a decimal number. However, such a setting is ignored unless
d is less than the limit set by the caller of pcre_exec() or, if no
such limit is set, less than the default.
The match_limit_recursion field is similar to match_limit, but instead
of limiting the total number of times that match() is called, it limits
the depth of recursion. The recursion depth is a smaller number than
the total number of calls, because not all calls to match() are recur-
sive. This limit is of use only if it is set smaller than match_limit.
Limiting the recursion depth limits the amount of machine stack that
can be used, or, when PCRE has been compiled to use memory on the heap
instead of the stack, the amount of heap memory that can be used. This
limit is not relevant, and is ignored, when matching is done using JIT
compiled code.
The default value for match_limit_recursion can be set when PCRE is
built; the default default is the same value as the default for
match_limit. You can override the default by suppling pcre_exec() with
a pcre_extra block in which match_limit_recursion is set, and
PCRE_EXTRA_MATCH_LIMIT_RECURSION is set in the flags field. If the
limit is exceeded, pcre_exec() returns PCRE_ERROR_RECURSIONLIMIT.
A value for the recursion limit may also be supplied by an item at the
start of a pattern of the form
(*LIMIT_RECURSION=d)
where d is a decimal number. However, such a setting is ignored unless
d is less than the limit set by the caller of pcre_exec() or, if no
such limit is set, less than the default.
The callout_data field is used in conjunction with the "callout" fea-
ture, and is described in the pcrecallout documentation.
The tables field is provided for use with patterns that have been pre-
compiled using custom character tables, saved to disc or elsewhere, and
then reloaded, because the tables that were used to compile a pattern
are not saved with it. See the pcreprecompile documentation for a dis-
cussion of saving compiled patterns for later use. If NULL is passed
using this mechanism, it forces PCRE's internal tables to be used.
Warning: The tables that pcre_exec() uses must be the same as those
that were used when the pattern was compiled. If this is not the case,
the behaviour of pcre_exec() is undefined. Therefore, when a pattern is
compiled and matched in the same process, this field should never be
set. In this (the most common) case, the correct table pointer is auto-
matically passed with the compiled pattern from pcre_compile() to
pcre_exec().
If PCRE_EXTRA_MARK is set in the flags field, the mark field must be
set to point to a suitable variable. If the pattern contains any back-
tracking control verbs such as (*MARK:NAME), and the execution ends up
with a name to pass back, a pointer to the name string (zero termi-
nated) is placed in the variable pointed to by the mark field. The
names are within the compiled pattern; if you wish to retain such a
name you must copy it before freeing the memory of a compiled pattern.
If there is no name to pass back, the variable pointed to by the mark
field is set to NULL. For details of the backtracking control verbs,
see the section entitled "Backtracking control" in the pcrepattern doc-
umentation.
Option bits for pcre_exec()
The unused bits of the options argument for pcre_exec() must be zero.
The only bits that may be set are PCRE_ANCHORED, PCRE_NEWLINE_xxx,
PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART,
PCRE_NO_START_OPTIMIZE, PCRE_NO_UTF8_CHECK, PCRE_PARTIAL_HARD, and
PCRE_PARTIAL_SOFT.
If the pattern was successfully studied with one of the just-in-time
(JIT) compile options, the only supported options for JIT execution are
PCRE_NO_UTF8_CHECK, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY,
PCRE_NOTEMPTY_ATSTART, PCRE_PARTIAL_HARD, and PCRE_PARTIAL_SOFT. If an
unsupported option is used, JIT execution is disabled and the normal
interpretive code in pcre_exec() is run.
PCRE_ANCHORED
The PCRE_ANCHORED option limits pcre_exec() to matching at the first
matching position. If a pattern was compiled with PCRE_ANCHORED, or
turned out to be anchored by virtue of its contents, it cannot be made
unachored at matching time.
PCRE_BSR_ANYCRLF
PCRE_BSR_UNICODE
These options (which are mutually exclusive) control what the \R escape
sequence matches. The choice is either to match only CR, LF, or CRLF,
or to match any Unicode newline sequence. These options override the
choice that was made or defaulted when the pattern was compiled.
PCRE_NEWLINE_CR
PCRE_NEWLINE_LF
PCRE_NEWLINE_CRLF
PCRE_NEWLINE_ANYCRLF
PCRE_NEWLINE_ANY
These options override the newline definition that was chosen or
defaulted when the pattern was compiled. For details, see the descrip-
tion of pcre_compile() above. During matching, the newline choice
affects the behaviour of the dot, circumflex, and dollar metacharac-
ters. It may also alter the way the match position is advanced after a
match failure for an unanchored pattern.
When PCRE_NEWLINE_CRLF, PCRE_NEWLINE_ANYCRLF, or PCRE_NEWLINE_ANY is
set, and a match attempt for an unanchored pattern fails when the cur-
rent position is at a CRLF sequence, and the pattern contains no
explicit matches for CR or LF characters, the match position is
advanced by two characters instead of one, in other words, to after the
CRLF.
The above rule is a compromise that makes the most common cases work as
expected. For example, if the pattern is .+A (and the PCRE_DOTALL
option is not set), it does not match the string "\r\nA" because, after
failing at the start, it skips both the CR and the LF before retrying.
However, the pattern [\r\n]A does match that string, because it con-
tains an explicit CR or LF reference, and so advances only by one char-
acter after the first failure.
An explicit match for CR of LF is either a literal appearance of one of
those characters, or one of the \r or \n escape sequences. Implicit
matches such as [^X] do not count, nor does \s (which includes CR and
LF in the characters that it matches).
Notwithstanding the above, anomalous effects may still occur when CRLF
is a valid newline sequence and explicit \r or \n escapes appear in the
pattern.
PCRE_NOTBOL
This option specifies that first character of the subject string is not
the beginning of a line, so the circumflex metacharacter should not
match before it. Setting this without PCRE_MULTILINE (at compile time)
causes circumflex never to match. This option affects only the behav-
iour of the circumflex metacharacter. It does not affect \A.
PCRE_NOTEOL
This option specifies that the end of the subject string is not the end
of a line, so the dollar metacharacter should not match it nor (except
in multiline mode) a newline immediately before it. Setting this with-
out PCRE_MULTILINE (at compile time) causes dollar never to match. This
option affects only the behaviour of the dollar metacharacter. It does
not affect \Z or \z.
PCRE_NOTEMPTY
An empty string is not considered to be a valid match if this option is
set. If there are alternatives in the pattern, they are tried. If all
the alternatives match the empty string, the entire match fails. For
example, if the pattern
a?b?
is applied to a string not beginning with "a" or "b", it matches an
empty string at the start of the subject. With PCRE_NOTEMPTY set, this
match is not valid, so PCRE searches further into the string for occur-
rences of "a" or "b".
PCRE_NOTEMPTY_ATSTART
This is like PCRE_NOTEMPTY, except that an empty string match that is
not at the start of the subject is permitted. If the pattern is
anchored, such a match can occur only if the pattern contains \K.
Perl has no direct equivalent of PCRE_NOTEMPTY or
PCRE_NOTEMPTY_ATSTART, but it does make a special case of a pattern
match of the empty string within its split() function, and when using
the /g modifier. It is possible to emulate Perl's behaviour after
matching a null string by first trying the match again at the same off-
set with PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED, and then if that
fails, by advancing the starting offset (see below) and trying an ordi-
nary match again. There is some code that demonstrates how to do this
in the pcredemo sample program. In the most general case, you have to
check to see if the newline convention recognizes CRLF as a newline,
and if so, and the current character is CR followed by LF, advance the
starting offset by two characters instead of one.
PCRE_NO_START_OPTIMIZE
There are a number of optimizations that pcre_exec() uses at the start
of a match, in order to speed up the process. For example, if it is
known that an unanchored match must start with a specific character, it
searches the subject for that character, and fails immediately if it
cannot find it, without actually running the main matching function.
This means that a special item such as (*COMMIT) at the start of a pat-
tern is not considered until after a suitable starting point for the
match has been found. Also, when callouts or (*MARK) items are in use,
these "start-up" optimizations can cause them to be skipped if the pat-
tern is never actually used. The start-up optimizations are in effect a
pre-scan of the subject that takes place before the pattern is run.
The PCRE_NO_START_OPTIMIZE option disables the start-up optimizations,
possibly causing performance to suffer, but ensuring that in cases
where the result is "no match", the callouts do occur, and that items
such as (*COMMIT) and (*MARK) are considered at every possible starting
position in the subject string. If PCRE_NO_START_OPTIMIZE is set at
compile time, it cannot be unset at matching time. The use of
PCRE_NO_START_OPTIMIZE at matching time (that is, passing it to
pcre_exec()) disables JIT execution; in this situation, matching is
always done using interpretively.
Setting PCRE_NO_START_OPTIMIZE can change the outcome of a matching
operation. Consider the pattern
(*COMMIT)ABC
When this is compiled, PCRE records the fact that a match must start
with the character "A". Suppose the subject string is "DEFABC". The
start-up optimization scans along the subject, finds "A" and runs the
first match attempt from there. The (*COMMIT) item means that the pat-
tern must match the current starting position, which in this case, it
does. However, if the same match is run with PCRE_NO_START_OPTIMIZE
set, the initial scan along the subject string does not happen. The
first match attempt is run starting from "D" and when this fails,
(*COMMIT) prevents any further matches being tried, so the overall
result is "no match". If the pattern is studied, more start-up opti-
mizations may be used. For example, a minimum length for the subject
may be recorded. Consider the pattern
(*MARK:A)(X|Y)
The minimum length for a match is one character. If the subject is
"ABC", there will be attempts to match "ABC", "BC", "C", and then
finally an empty string. If the pattern is studied, the final attempt
does not take place, because PCRE knows that the subject is too short,
and so the (*MARK) is never encountered. In this case, studying the
pattern does not affect the overall match result, which is still "no
match", but it does affect the auxiliary information that is returned.
PCRE_NO_UTF8_CHECK
When PCRE_UTF8 is set at compile time, the validity of the subject as a
UTF-8 string is automatically checked when pcre_exec() is subsequently
called. The entire string is checked before any other processing takes
place. The value of startoffset is also checked to ensure that it
points to the start of a UTF-8 character. There is a discussion about
the validity of UTF-8 strings in the pcreunicode page. If an invalid
sequence of bytes is found, pcre_exec() returns the error
PCRE_ERROR_BADUTF8 or, if PCRE_PARTIAL_HARD is set and the problem is a
truncated character at the end of the subject, PCRE_ERROR_SHORTUTF8. In
both cases, information about the precise nature of the error may also
be returned (see the descriptions of these errors in the section enti-
tled Error return values from pcre_exec() below). If startoffset con-
tains a value that does not point to the start of a UTF-8 character (or
to the end of the subject), PCRE_ERROR_BADUTF8_OFFSET is returned.
If you already know that your subject is valid, and you want to skip
these checks for performance reasons, you can set the
PCRE_NO_UTF8_CHECK option when calling pcre_exec(). You might want to
do this for the second and subsequent calls to pcre_exec() if you are
making repeated calls to find all the matches in a single subject
string. However, you should be sure that the value of startoffset
points to the start of a character (or the end of the subject). When
PCRE_NO_UTF8_CHECK is set, the effect of passing an invalid string as a
subject or an invalid value of startoffset is undefined. Your program
may crash or loop.
PCRE_PARTIAL_HARD
PCRE_PARTIAL_SOFT
These options turn on the partial matching feature. For backwards com-
patibility, PCRE_PARTIAL is a synonym for PCRE_PARTIAL_SOFT. A partial
match occurs if the end of the subject string is reached successfully,
but there are not enough subject characters to complete the match. If
this happens when PCRE_PARTIAL_SOFT (but not PCRE_PARTIAL_HARD) is set,
matching continues by testing any remaining alternatives. Only if no
complete match can be found is PCRE_ERROR_PARTIAL returned instead of
PCRE_ERROR_NOMATCH. In other words, PCRE_PARTIAL_SOFT says that the
caller is prepared to handle a partial match, but only if no complete
match can be found.
If PCRE_PARTIAL_HARD is set, it overrides PCRE_PARTIAL_SOFT. In this
case, if a partial match is found, pcre_exec() immediately returns
PCRE_ERROR_PARTIAL, without considering any other alternatives. In
other words, when PCRE_PARTIAL_HARD is set, a partial match is consid-
ered to be more important that an alternative complete match.
In both cases, the portion of the string that was inspected when the
partial match was found is set as the first matching string. There is a
more detailed discussion of partial and multi-segment matching, with
examples, in the pcrepartial documentation.
The string to be matched by pcre_exec()
The subject string is passed to pcre_exec() as a pointer in subject, a
length in length, and a starting offset in startoffset. The units for
length and startoffset are bytes for the 8-bit library, 16-bit data
items for the 16-bit library, and 32-bit data items for the 32-bit
library.
If startoffset is negative or greater than the length of the subject,
pcre_exec() returns PCRE_ERROR_BADOFFSET. When the starting offset is
zero, the search for a match starts at the beginning of the subject,
and this is by far the most common case. In UTF-8 or UTF-16 mode, the
offset must point to the start of a character, or the end of the sub-
ject (in UTF-32 mode, one data unit equals one character, so all off-
sets are valid). Unlike the pattern string, the subject may contain
binary zeroes.
A non-zero starting offset is useful when searching for another match
in the same subject by calling pcre_exec() again after a previous suc-
cess. Setting startoffset differs from just passing over a shortened
string and setting PCRE_NOTBOL in the case of a pattern that begins
with any kind of lookbehind. For example, consider the pattern
\Biss\B
which finds occurrences of "iss" in the middle of words. (\B matches
only if the current position in the subject is not a word boundary.)
When applied to the string "Mississipi" the first call to pcre_exec()
finds the first occurrence. If pcre_exec() is called again with just
the remainder of the subject, namely "issipi", it does not match,
because \B is always false at the start of the subject, which is deemed
to be a word boundary. However, if pcre_exec() is passed the entire
string again, but with startoffset set to 4, it finds the second occur-
rence of "iss" because it is able to look behind the starting point to
discover that it is preceded by a letter.
Finding all the matches in a subject is tricky when the pattern can
match an empty string. It is possible to emulate Perl's /g behaviour by
first trying the match again at the same offset, with the
PCRE_NOTEMPTY_ATSTART and PCRE_ANCHORED options, and then if that
fails, advancing the starting offset and trying an ordinary match
again. There is some code that demonstrates how to do this in the pcre-
demo sample program. In the most general case, you have to check to see
if the newline convention recognizes CRLF as a newline, and if so, and
the current character is CR followed by LF, advance the starting offset
by two characters instead of one.
If a non-zero starting offset is passed when the pattern is anchored,
one attempt to match at the given offset is made. This can only succeed
if the pattern does not require the match to be at the start of the
subject.
How pcre_exec() returns captured substrings
In general, a pattern matches a certain portion of the subject, and in
addition, further substrings from the subject may be picked out by
parts of the pattern. Following the usage in Jeffrey Friedl's book,
this is called "capturing" in what follows, and the phrase "capturing
subpattern" is used for a fragment of a pattern that picks out a sub-
string. PCRE supports several other kinds of parenthesized subpattern
that do not cause substrings to be captured.
Captured substrings are returned to the caller via a vector of integers
whose address is passed in ovector. The number of elements in the vec-
tor is passed in ovecsize, which must be a non-negative number. Note:
this argument is NOT the size of ovector in bytes.
The first two-thirds of the vector is used to pass back captured sub-
strings, each substring using a pair of integers. The remaining third
of the vector is used as workspace by pcre_exec() while matching cap-
turing subpatterns, and is not available for passing back information.
The number passed in ovecsize should always be a multiple of three. If
it is not, it is rounded down.
When a match is successful, information about captured substrings is
returned in pairs of integers, starting at the beginning of ovector,
and continuing up to two-thirds of its length at the most. The first
element of each pair is set to the offset of the first character in a
substring, and the second is set to the offset of the first character
after the end of a substring. These values are always data unit off-
sets, even in UTF mode. They are byte offsets in the 8-bit library,
16-bit data item offsets in the 16-bit library, and 32-bit data item
offsets in the 32-bit library. Note: they are not character counts.
The first pair of integers, ovector[0] and ovector[1], identify the
portion of the subject string matched by the entire pattern. The next
pair is used for the first capturing subpattern, and so on. The value
returned by pcre_exec() is one more than the highest numbered pair that
has been set. For example, if two substrings have been captured, the
returned value is 3. If there are no capturing subpatterns, the return
value from a successful match is 1, indicating that just the first pair
of offsets has been set.
If a capturing subpattern is matched repeatedly, it is the last portion
of the string that it matched that is returned.
If the vector is too small to hold all the captured substring offsets,
it is used as far as possible (up to two-thirds of its length), and the
function returns a value of zero. If neither the actual string matched
nor any captured substrings are of interest, pcre_exec() may be called
with ovector passed as NULL and ovecsize as zero. However, if the pat-
tern contains back references and the ovector is not big enough to
remember the related substrings, PCRE has to get additional memory for
use during matching. Thus it is usually advisable to supply an ovector
of reasonable size.
There are some cases where zero is returned (indicating vector over-
flow) when in fact the vector is exactly the right size for the final
match. For example, consider the pattern
(a)(?:(b)c|bd)
If a vector of 6 elements (allowing for only 1 captured substring) is
given with subject string "abd", pcre_exec() will try to set the second
captured string, thereby recording a vector overflow, before failing to
match "c" and backing up to try the second alternative. The zero
return, however, does correctly indicate that the maximum number of
slots (namely 2) have been filled. In similar cases where there is tem-
porary overflow, but the final number of used slots is actually less
than the maximum, a non-zero value is returned.
The pcre_fullinfo() function can be used to find out how many capturing
subpatterns there are in a compiled pattern. The smallest size for
ovector that will allow for n captured substrings, in addition to the
offsets of the substring matched by the whole pattern, is (n+1)*3.
It is possible for capturing subpattern number n+1 to match some part
of the subject when subpattern n has not been used at all. For example,
if the string "abc" is matched against the pattern (a|(z))(bc) the
return from the function is 4, and subpatterns 1 and 3 are matched, but
2 is not. When this happens, both values in the offset pairs corre-
sponding to unused subpatterns are set to -1.
Offset values that correspond to unused subpatterns at the end of the
expression are also set to -1. For example, if the string "abc" is
matched against the pattern (abc)(x(yz)?)? subpatterns 2 and 3 are not
matched. The return from the function is 2, because the highest used
capturing subpattern number is 1, and the offsets for for the second
and third capturing subpatterns (assuming the vector is large enough,
of course) are set to -1.
Note: Elements in the first two-thirds of ovector that do not corre-
spond to capturing parentheses in the pattern are never changed. That
is, if a pattern contains n capturing parentheses, no more than ovec-
tor[0] to ovector[2n+1] are set by pcre_exec(). The other elements (in
the first two-thirds) retain whatever values they previously had.
Some convenience functions are provided for extracting the captured
substrings as separate strings. These are described below.
Error return values from pcre_exec()
If pcre_exec() fails, it returns a negative number. The following are
defined in the header file:
PCRE_ERROR_NOMATCH (-1)
The subject string did not match the pattern.
PCRE_ERROR_NULL (-2)
Either code or subject was passed as NULL, or ovector was NULL and
ovecsize was not zero.
PCRE_ERROR_BADOPTION (-3)
An unrecognized bit was set in the options argument.
PCRE_ERROR_BADMAGIC (-4)
PCRE stores a 4-byte "magic number" at the start of the compiled code,
to catch the case when it is passed a junk pointer and to detect when a
pattern that was compiled in an environment of one endianness is run in
an environment with the other endianness. This is the error that PCRE
gives when the magic number is not present.
PCRE_ERROR_UNKNOWN_OPCODE (-5)
While running the pattern match, an unknown item was encountered in the
compiled pattern. This error could be caused by a bug in PCRE or by
overwriting of the compiled pattern.
PCRE_ERROR_NOMEMORY (-6)
If a pattern contains back references, but the ovector that is passed
to pcre_exec() is not big enough to remember the referenced substrings,
PCRE gets a block of memory at the start of matching to use for this
purpose. If the call via pcre_malloc() fails, this error is given. The
memory is automatically freed at the end of matching.
This error is also given if pcre_stack_malloc() fails in pcre_exec().
This can happen only when PCRE has been compiled with --disable-stack-
for-recursion.
PCRE_ERROR_NOSUBSTRING (-7)
This error is used by the pcre_copy_substring(), pcre_get_substring(),
and pcre_get_substring_list() functions (see below). It is never
returned by pcre_exec().
PCRE_ERROR_MATCHLIMIT (-8)
The backtracking limit, as specified by the match_limit field in a
pcre_extra structure (or defaulted) was reached. See the description
above.
PCRE_ERROR_CALLOUT (-9)
This error is never generated by pcre_exec() itself. It is provided for
use by callout functions that want to yield a distinctive error code.
See the pcrecallout documentation for details.
PCRE_ERROR_BADUTF8 (-10)
A string that contains an invalid UTF-8 byte sequence was passed as a
subject, and the PCRE_NO_UTF8_CHECK option was not set. If the size of
the output vector (ovecsize) is at least 2, the byte offset to the
start of the the invalid UTF-8 character is placed in the first ele-
ment, and a reason code is placed in the second element. The reason
codes are listed in the following section. For backward compatibility,
if PCRE_PARTIAL_HARD is set and the problem is a truncated UTF-8 char-
acter at the end of the subject (reason codes 1 to 5),
PCRE_ERROR_SHORTUTF8 is returned instead of PCRE_ERROR_BADUTF8.
PCRE_ERROR_BADUTF8_OFFSET (-11)
The UTF-8 byte sequence that was passed as a subject was checked and
found to be valid (the PCRE_NO_UTF8_CHECK option was not set), but the
value of startoffset did not point to the beginning of a UTF-8 charac-
ter or the end of the subject.
PCRE_ERROR_PARTIAL (-12)
The subject string did not match, but it did match partially. See the
pcrepartial documentation for details of partial matching.
PCRE_ERROR_BADPARTIAL (-13)
This code is no longer in use. It was formerly returned when the
PCRE_PARTIAL option was used with a compiled pattern containing items
that were not supported for partial matching. From release 8.00
onwards, there are no restrictions on partial matching.
PCRE_ERROR_INTERNAL (-14)
An unexpected internal error has occurred. This error could be caused
by a bug in PCRE or by overwriting of the compiled pattern.
PCRE_ERROR_BADCOUNT (-15)
This error is given if the value of the ovecsize argument is negative.
PCRE_ERROR_RECURSIONLIMIT (-21)
The internal recursion limit, as specified by the match_limit_recursion
field in a pcre_extra structure (or defaulted) was reached. See the
description above.
PCRE_ERROR_BADNEWLINE (-23)
An invalid combination of PCRE_NEWLINE_xxx options was given.
PCRE_ERROR_BADOFFSET (-24)
The value of startoffset was negative or greater than the length of the
subject, that is, the value in length.
PCRE_ERROR_SHORTUTF8 (-25)
This error is returned instead of PCRE_ERROR_BADUTF8 when the subject
string ends with a truncated UTF-8 character and the PCRE_PARTIAL_HARD
option is set. Information about the failure is returned as for
PCRE_ERROR_BADUTF8. It is in fact sufficient to detect this case, but
this special error code for PCRE_PARTIAL_HARD precedes the implementa-
tion of returned information; it is retained for backwards compatibil-
ity.
PCRE_ERROR_RECURSELOOP (-26)
This error is returned when pcre_exec() detects a recursion loop within
the pattern. Specifically, it means that either the whole pattern or a
subpattern has been called recursively for the second time at the same
position in the subject string. Some simple patterns that might do this
are detected and faulted at compile time, but more complicated cases,
in particular mutual recursions between two different subpatterns, can-
not be detected until run time.
PCRE_ERROR_JIT_STACKLIMIT (-27)
This error is returned when a pattern that was successfully studied
using a JIT compile option is being matched, but the memory available
for the just-in-time processing stack is not large enough. See the
pcrejit documentation for more details.
PCRE_ERROR_BADMODE (-28)
This error is given if a pattern that was compiled by the 8-bit library
is passed to a 16-bit or 32-bit library function, or vice versa.
PCRE_ERROR_BADENDIANNESS (-29)
This error is given if a pattern that was compiled and saved is
reloaded on a host with different endianness. The utility function
pcre_pattern_to_host_byte_order() can be used to convert such a pattern
so that it runs on the new host.
PCRE_ERROR_JIT_BADOPTION
This error is returned when a pattern that was successfully studied
using a JIT compile option is being matched, but the matching mode
(partial or complete match) does not correspond to any JIT compilation
mode. When the JIT fast path function is used, this error may be also
given for invalid options. See the pcrejit documentation for more
details.
PCRE_ERROR_BADLENGTH (-32)
This error is given if pcre_exec() is called with a negative value for
the length argument.
Error numbers -16 to -20, -22, and 30 are not used by pcre_exec().
Reason codes for invalid UTF-8 strings
This section applies only to the 8-bit library. The corresponding
information for the 16-bit and 32-bit libraries is given in the pcre16
and pcre32 pages.
When pcre_exec() returns either PCRE_ERROR_BADUTF8 or PCRE_ERROR_SHORT-
UTF8, and the size of the output vector (ovecsize) is at least 2, the
offset of the start of the invalid UTF-8 character is placed in the
first output vector element (ovector[0]) and a reason code is placed in
the second element (ovector[1]). The reason codes are given names in
the pcre.h header file:
PCRE_UTF8_ERR1
PCRE_UTF8_ERR2
PCRE_UTF8_ERR3
PCRE_UTF8_ERR4
PCRE_UTF8_ERR5
The string ends with a truncated UTF-8 character; the code specifies
how many bytes are missing (1 to 5). Although RFC 3629 restricts UTF-8
characters to be no longer than 4 bytes, the encoding scheme (origi-
nally defined by RFC 2279) allows for up to 6 bytes, and this is
checked first; hence the possibility of 4 or 5 missing bytes.
PCRE_UTF8_ERR6
PCRE_UTF8_ERR7
PCRE_UTF8_ERR8
PCRE_UTF8_ERR9
PCRE_UTF8_ERR10
The two most significant bits of the 2nd, 3rd, 4th, 5th, or 6th byte of
the character do not have the binary value 0b10 (that is, either the
most significant bit is 0, or the next bit is 1).
PCRE_UTF8_ERR11
PCRE_UTF8_ERR12
A character that is valid by the RFC 2279 rules is either 5 or 6 bytes
long; these code points are excluded by RFC 3629.
PCRE_UTF8_ERR13
A 4-byte character has a value greater than 0x10fff; these code points
are excluded by RFC 3629.
PCRE_UTF8_ERR14
A 3-byte character has a value in the range 0xd800 to 0xdfff; this
range of code points are reserved by RFC 3629 for use with UTF-16, and
so are excluded from UTF-8.
PCRE_UTF8_ERR15
PCRE_UTF8_ERR16
PCRE_UTF8_ERR17
PCRE_UTF8_ERR18
PCRE_UTF8_ERR19
A 2-, 3-, 4-, 5-, or 6-byte character is "overlong", that is, it codes
for a value that can be represented by fewer bytes, which is invalid.
For example, the two bytes 0xc0, 0xae give the value 0x2e, whose cor-
rect coding uses just one byte.
PCRE_UTF8_ERR20
The two most significant bits of the first byte of a character have the
binary value 0b10 (that is, the most significant bit is 1 and the sec-
ond is 0). Such a byte can only validly occur as the second or subse-
quent byte of a multi-byte character.
PCRE_UTF8_ERR21
The first byte of a character has the value 0xfe or 0xff. These values
can never occur in a valid UTF-8 string.
PCRE_UTF8_ERR22
This error code was formerly used when the presence of a so-called
"non-character" caused an error. Unicode corrigendum #9 makes it clear
that such characters should not cause a string to be rejected, and so
this code is no longer in use and is never returned.
EXTRACTING CAPTURED SUBSTRINGS BY NUMBER
int pcre_copy_substring(const char *subject, int *ovector,
int stringcount, int stringnumber, char *buffer,
int buffersize);
int pcre_get_substring(const char *subject, int *ovector,
int stringcount, int stringnumber,
const char **stringptr);
int pcre_get_substring_list(const char *subject,
int *ovector, int stringcount, const char ***listptr);
Captured substrings can be accessed directly by using the offsets
returned by pcre_exec() in ovector. For convenience, the functions
pcre_copy_substring(), pcre_get_substring(), and pcre_get_sub-
string_list() are provided for extracting captured substrings as new,
separate, zero-terminated strings. These functions identify substrings
by number. The next section describes functions for extracting named
substrings.
A substring that contains a binary zero is correctly extracted and has
a further zero added on the end, but the result is not, of course, a C
string. However, you can process such a string by referring to the
length that is returned by pcre_copy_substring() and pcre_get_sub-
string(). Unfortunately, the interface to pcre_get_substring_list() is
not adequate for handling strings containing binary zeros, because the
end of the final string is not independently indicated.
The first three arguments are the same for all three of these func-
tions: subject is the subject string that has just been successfully
matched, ovector is a pointer to the vector of integer offsets that was
passed to pcre_exec(), and stringcount is the number of substrings that
were captured by the match, including the substring that matched the
entire regular expression. This is the value returned by pcre_exec() if
it is greater than zero. If pcre_exec() returned zero, indicating that
it ran out of space in ovector, the value passed as stringcount should
be the number of elements in the vector divided by three.
The functions pcre_copy_substring() and pcre_get_substring() extract a
single substring, whose number is given as stringnumber. A value of
zero extracts the substring that matched the entire pattern, whereas
higher values extract the captured substrings. For pcre_copy_sub-
string(), the string is placed in buffer, whose length is given by
buffersize, while for pcre_get_substring() a new block of memory is
obtained via pcre_malloc, and its address is returned via stringptr.
The yield of the function is the length of the string, not including
the terminating zero, or one of these error codes:
PCRE_ERROR_NOMEMORY (-6)
The buffer was too small for pcre_copy_substring(), or the attempt to
get memory failed for pcre_get_substring().
PCRE_ERROR_NOSUBSTRING (-7)
There is no substring whose number is stringnumber.
The pcre_get_substring_list() function extracts all available sub-
strings and builds a list of pointers to them. All this is done in a
single block of memory that is obtained via pcre_malloc. The address of
the memory block is returned via listptr, which is also the start of
the list of string pointers. The end of the list is marked by a NULL
pointer. The yield of the function is zero if all went well, or the
error code
PCRE_ERROR_NOMEMORY (-6)
if the attempt to get the memory block failed.
When any of these functions encounter a substring that is unset, which
can happen when capturing subpattern number n+1 matches some part of
the subject, but subpattern n has not been used at all, they return an
empty string. This can be distinguished from a genuine zero-length sub-
string by inspecting the appropriate offset in ovector, which is nega-
tive for unset substrings.
The two convenience functions pcre_free_substring() and pcre_free_sub-
string_list() can be used to free the memory returned by a previous
call of pcre_get_substring() or pcre_get_substring_list(), respec-
tively. They do nothing more than call the function pointed to by
pcre_free, which of course could be called directly from a C program.
However, PCRE is used in some situations where it is linked via a spe-
cial interface to another programming language that cannot use
pcre_free directly; it is for these cases that the functions are pro-
vided.
EXTRACTING CAPTURED SUBSTRINGS BY NAME
int pcre_get_stringnumber(const pcre *code,
const char *name);
int pcre_copy_named_substring(const pcre *code,
const char *subject, int *ovector,
int stringcount, const char *stringname,
char *buffer, int buffersize);
int pcre_get_named_substring(const pcre *code,
const char *subject, int *ovector,
int stringcount, const char *stringname,
const char **stringptr);
To extract a substring by name, you first have to find associated num-
ber. For example, for this pattern
(a+)b(?<xxx>\d+)...
the number of the subpattern called "xxx" is 2. If the name is known to
be unique (PCRE_DUPNAMES was not set), you can find the number from the
name by calling pcre_get_stringnumber(). The first argument is the com-
piled pattern, and the second is the name. The yield of the function is
the subpattern number, or PCRE_ERROR_NOSUBSTRING (-7) if there is no
subpattern of that name.
Given the number, you can extract the substring directly, or use one of
the functions described in the previous section. For convenience, there
are also two functions that do the whole job.
Most of the arguments of pcre_copy_named_substring() and
pcre_get_named_substring() are the same as those for the similarly
named functions that extract by number. As these are described in the
previous section, they are not re-described here. There are just two
differences:
First, instead of a substring number, a substring name is given. Sec-
ond, there is an extra argument, given at the start, which is a pointer
to the compiled pattern. This is needed in order to gain access to the
name-to-number translation table.
These functions call pcre_get_stringnumber(), and if it succeeds, they
then call pcre_copy_substring() or pcre_get_substring(), as appropri-
ate. NOTE: If PCRE_DUPNAMES is set and there are duplicate names, the
behaviour may not be what you want (see the next section).
Warning: If the pattern uses the (?| feature to set up multiple subpat-
terns with the same number, as described in the section on duplicate
subpattern numbers in the pcrepattern page, you cannot use names to
distinguish the different subpatterns, because names are not included
in the compiled code. The matching process uses only numbers. For this
reason, the use of different names for subpatterns of the same number
causes an error at compile time.
DUPLICATE SUBPATTERN NAMES
int pcre_get_stringtable_entries(const pcre *code,
const char *name, char **first, char **last);
When a pattern is compiled with the PCRE_DUPNAMES option, names for
subpatterns are not required to be unique. (Duplicate names are always
allowed for subpatterns with the same number, created by using the (?|
feature. Indeed, if such subpatterns are named, they are required to
use the same names.)
Normally, patterns with duplicate names are such that in any one match,
only one of the named subpatterns participates. An example is shown in
the pcrepattern documentation.
When duplicates are present, pcre_copy_named_substring() and
pcre_get_named_substring() return the first substring corresponding to
the given name that is set. If none are set, PCRE_ERROR_NOSUBSTRING
(-7) is returned; no data is returned. The pcre_get_stringnumber()
function returns one of the numbers that are associated with the name,
but it is not defined which it is.
If you want to get full details of all captured substrings for a given
name, you must use the pcre_get_stringtable_entries() function. The
first argument is the compiled pattern, and the second is the name. The
third and fourth are pointers to variables which are updated by the
function. After it has run, they point to the first and last entries in
the name-to-number table for the given name. The function itself
returns the length of each entry, or PCRE_ERROR_NOSUBSTRING (-7) if
there are none. The format of the table is described above in the sec-
tion entitled Information about a pattern above. Given all the rele-
vant entries for the name, you can extract each of their numbers, and
hence the captured data, if any.
FINDING ALL POSSIBLE MATCHES
The traditional matching function uses a similar algorithm to Perl,
which stops when it finds the first match, starting at a given point in
the subject. If you want to find all possible matches, or the longest
possible match, consider using the alternative matching function (see
below) instead. If you cannot use the alternative function, but still
need to find all possible matches, you can kludge it up by making use
of the callout facility, which is described in the pcrecallout documen-
tation.
What you have to do is to insert a callout right at the end of the pat-
tern. When your callout function is called, extract and save the cur-
rent matched substring. Then return 1, which forces pcre_exec() to
backtrack and try other alternatives. Ultimately, when it runs out of
matches, pcre_exec() will yield PCRE_ERROR_NOMATCH.
OBTAINING AN ESTIMATE OF STACK USAGE
Matching certain patterns using pcre_exec() can use a lot of process
stack, which in certain environments can be rather limited in size.
Some users find it helpful to have an estimate of the amount of stack
that is used by pcre_exec(), to help them set recursion limits, as
described in the pcrestack documentation. The estimate that is output
by pcretest when called with the -m and -C options is obtained by call-
ing pcre_exec with the values NULL, NULL, NULL, -999, and -999 for its
first five arguments.
Normally, if its first argument is NULL, pcre_exec() immediately
returns the negative error code PCRE_ERROR_NULL, but with this special
combination of arguments, it returns instead a negative number whose
absolute value is the approximate stack frame size in bytes. (A nega-
tive number is used so that it is clear that no match has happened.)
The value is approximate because in some cases, recursive calls to
pcre_exec() occur when there are one or two additional variables on the
stack.
If PCRE has been compiled to use the heap instead of the stack for
recursion, the value returned is the size of each block that is
obtained from the heap.
MATCHING A PATTERN: THE ALTERNATIVE FUNCTION
int pcre_dfa_exec(const pcre *code, const pcre_extra *extra,
const char *subject, int length, int startoffset,
int options, int *ovector, int ovecsize,
int *workspace, int wscount);
The function pcre_dfa_exec() is called to match a subject string
against a compiled pattern, using a matching algorithm that scans the
subject string just once, and does not backtrack. This has different
characteristics to the normal algorithm, and is not compatible with
Perl. Some of the features of PCRE patterns are not supported. Never-
theless, there are times when this kind of matching can be useful. For
a discussion of the two matching algorithms, and a list of features
that pcre_dfa_exec() does not support, see the pcrematching documenta-
tion.
The arguments for the pcre_dfa_exec() function are the same as for
pcre_exec(), plus two extras. The ovector argument is used in a differ-
ent way, and this is described below. The other common arguments are
used in the same way as for pcre_exec(), so their description is not
repeated here.
The two additional arguments provide workspace for the function. The
workspace vector should contain at least 20 elements. It is used for
keeping track of multiple paths through the pattern tree. More
workspace will be needed for patterns and subjects where there are a
lot of potential matches.
Here is an example of a simple call to pcre_dfa_exec():
int rc;
int ovector[10];
int wspace[20];
rc = pcre_dfa_exec(
re, /* result of pcre_compile() */
NULL, /* we didn't study the pattern */
"some string", /* the subject string */
11, /* the length of the subject string */
0, /* start at offset 0 in the subject */
0, /* default options */
ovector, /* vector of integers for substring information */
10, /* number of elements (NOT size in bytes) */
wspace, /* working space vector */
20); /* number of elements (NOT size in bytes) */
Option bits for pcre_dfa_exec()
The unused bits of the options argument for pcre_dfa_exec() must be
zero. The only bits that may be set are PCRE_ANCHORED, PCRE_NEW-
LINE_xxx, PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY,
PCRE_NOTEMPTY_ATSTART, PCRE_NO_UTF8_CHECK, PCRE_BSR_ANYCRLF,
PCRE_BSR_UNICODE, PCRE_NO_START_OPTIMIZE, PCRE_PARTIAL_HARD, PCRE_PAR-
TIAL_SOFT, PCRE_DFA_SHORTEST, and PCRE_DFA_RESTART. All but the last
four of these are exactly the same as for pcre_exec(), so their
description is not repeated here.
PCRE_PARTIAL_HARD
PCRE_PARTIAL_SOFT
These have the same general effect as they do for pcre_exec(), but the
details are slightly different. When PCRE_PARTIAL_HARD is set for
pcre_dfa_exec(), it returns PCRE_ERROR_PARTIAL if the end of the sub-
ject is reached and there is still at least one matching possibility
that requires additional characters. This happens even if some complete
matches have also been found. When PCRE_PARTIAL_SOFT is set, the return
code PCRE_ERROR_NOMATCH is converted into PCRE_ERROR_PARTIAL if the end
of the subject is reached, there have been no complete matches, but
there is still at least one matching possibility. The portion of the
string that was inspected when the longest partial match was found is
set as the first matching string in both cases. There is a more
detailed discussion of partial and multi-segment matching, with exam-
ples, in the pcrepartial documentation.
PCRE_DFA_SHORTEST
Setting the PCRE_DFA_SHORTEST option causes the matching algorithm to
stop as soon as it has found one match. Because of the way the alterna-
tive algorithm works, this is necessarily the shortest possible match
at the first possible matching point in the subject string.
PCRE_DFA_RESTART
When pcre_dfa_exec() returns a partial match, it is possible to call it
again, with additional subject characters, and have it continue with
the same match. The PCRE_DFA_RESTART option requests this action; when
it is set, the workspace and wscount options must reference the same
vector as before because data about the match so far is left in them
after a partial match. There is more discussion of this facility in the
pcrepartial documentation.
Successful returns from pcre_dfa_exec()
When pcre_dfa_exec() succeeds, it may have matched more than one sub-
string in the subject. Note, however, that all the matches from one run
of the function start at the same point in the subject. The shorter
matches are all initial substrings of the longer matches. For example,
if the pattern
<.*>
is matched against the string
This is <something> <something else> <something further> no more
the three matched strings are
<something>
<something> <something else>
<something> <something else> <something further>
On success, the yield of the function is a number greater than zero,
which is the number of matched substrings. The substrings themselves
are returned in ovector. Each string uses two elements; the first is
the offset to the start, and the second is the offset to the end. In
fact, all the strings have the same start offset. (Space could have
been saved by giving this only once, but it was decided to retain some
compatibility with the way pcre_exec() returns data, even though the
meaning of the strings is different.)
The strings are returned in reverse order of length; that is, the long-
est matching string is given first. If there were too many matches to
fit into ovector, the yield of the function is zero, and the vector is
filled with the longest matches. Unlike pcre_exec(), pcre_dfa_exec()
can use the entire ovector for returning matched strings.
NOTE: PCRE's "auto-possessification" optimization usually applies to
character repeats at the end of a pattern (as well as internally). For
example, the pattern "a\d+" is compiled as if it were "a\d++" because
there is no point even considering the possibility of backtracking into
the repeated digits. For DFA matching, this means that only one possi-
ble match is found. If you really do want multiple matches in such
cases, either use an ungreedy repeat ("a\d+?") or set the
PCRE_NO_AUTO_POSSESS option when compiling.
Error returns from pcre_dfa_exec()
The pcre_dfa_exec() function returns a negative number when it fails.
Many of the errors are the same as for pcre_exec(), and these are
described above. There are in addition the following errors that are
specific to pcre_dfa_exec():
PCRE_ERROR_DFA_UITEM (-16)
This return is given if pcre_dfa_exec() encounters an item in the pat-
tern that it does not support, for instance, the use of \C or a back
reference.
PCRE_ERROR_DFA_UCOND (-17)
This return is given if pcre_dfa_exec() encounters a condition item
that uses a back reference for the condition, or a test for recursion
in a specific group. These are not supported.
PCRE_ERROR_DFA_UMLIMIT (-18)
This return is given if pcre_dfa_exec() is called with an extra block
that contains a setting of the match_limit or match_limit_recursion
fields. This is not supported (these fields are meaningless for DFA
matching).
PCRE_ERROR_DFA_WSSIZE (-19)
This return is given if pcre_dfa_exec() runs out of space in the
workspace vector.
PCRE_ERROR_DFA_RECURSE (-20)
When a recursive subpattern is processed, the matching function calls
itself recursively, using private vectors for ovector and workspace.
This error is given if the output vector is not large enough. This
should be extremely rare, as a vector of size 1000 is used.
PCRE_ERROR_DFA_BADRESTART (-30)
When pcre_dfa_exec() is called with the PCRE_DFA_RESTART option, some
plausibility checks are made on the contents of the workspace, which
should contain data about the previous partial match. If any of these
checks fail, this error is given.
SEE ALSO
pcre16(3), pcre32(3), pcrebuild(3), pcrecallout(3), pcrecpp(3)(3),
pcrematching(3), pcrepartial(3), pcreposix(3), pcreprecompile(3), pcre-
sample(3), pcrestack(3).
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 18 December 2015
Copyright (c) 1997-2015 University of Cambridge.
------------------------------------------------------------------------------
PCRECALLOUT(3) Library Functions Manual PCRECALLOUT(3)
NAME
PCRE - Perl-compatible regular expressions
SYNOPSIS
#include <pcre.h>
int (*pcre_callout)(pcre_callout_block *);
int (*pcre16_callout)(pcre16_callout_block *);
int (*pcre32_callout)(pcre32_callout_block *);
DESCRIPTION
PCRE provides a feature called "callout", which is a means of temporar-
ily passing control to the caller of PCRE in the middle of pattern
matching. The caller of PCRE provides an external function by putting
its entry point in the global variable pcre_callout (pcre16_callout for
the 16-bit library, pcre32_callout for the 32-bit library). By default,
this variable contains NULL, which disables all calling out.
Within a regular expression, (?C) indicates the points at which the
external function is to be called. Different callout points can be
identified by putting a number less than 256 after the letter C. The
default value is zero. For example, this pattern has two callout
points:
(?C1)abc(?C2)def
If the PCRE_AUTO_CALLOUT option bit is set when a pattern is compiled,
PCRE automatically inserts callouts, all with number 255, before each
item in the pattern. For example, if PCRE_AUTO_CALLOUT is used with the
pattern
A(\d{2}|--)
it is processed as if it were
(?C255)A(?C255)((?C255)\d{2}(?C255)|(?C255)-(?C255)-(?C255))(?C255)
Notice that there is a callout before and after each parenthesis and
alternation bar. If the pattern contains a conditional group whose con-
dition is an assertion, an automatic callout is inserted immediately
before the condition. Such a callout may also be inserted explicitly,
for example:
(?(?C9)(?=a)ab|de)
This applies only to assertion conditions (because they are themselves
independent groups).
Automatic callouts can be used for tracking the progress of pattern
matching. The pcretest program has a pattern qualifier (/C) that sets
automatic callouts; when it is used, the output indicates how the pat-
tern is being matched. This is useful information when you are trying
to optimize the performance of a particular pattern.
MISSING CALLOUTS
You should be aware that, because of optimizations in the way PCRE com-
piles and matches patterns, callouts sometimes do not happen exactly as
you might expect.
At compile time, PCRE "auto-possessifies" repeated items when it knows
that what follows cannot be part of the repeat. For example, a+[bc] is
compiled as if it were a++[bc]. The pcretest output when this pattern
is anchored and then applied with automatic callouts to the string
"aaaa" is:
--->aaaa
+0 ^ ^
+1 ^ a+
+3 ^ ^ [bc]
No match
This indicates that when matching [bc] fails, there is no backtracking
into a+ and therefore the callouts that would be taken for the back-
tracks do not occur. You can disable the auto-possessify feature by
passing PCRE_NO_AUTO_POSSESS to pcre_compile(), or starting the pattern
with (*NO_AUTO_POSSESS). If this is done in pcretest (using the /O
qualifier), the output changes to this:
--->aaaa
+0 ^ ^
+1 ^ a+
+3 ^ ^ [bc]
+3 ^ ^ [bc]
+3 ^ ^ [bc]
+3 ^^ [bc]
No match
This time, when matching [bc] fails, the matcher backtracks into a+ and
tries again, repeatedly, until a+ itself fails.
Other optimizations that provide fast "no match" results also affect
callouts. For example, if the pattern is
ab(?C4)cd
PCRE knows that any matching string must contain the letter "d". If the
subject string is "abyz", the lack of "d" means that matching doesn't
ever start, and the callout is never reached. However, with "abyd",
though the result is still no match, the callout is obeyed.
If the pattern is studied, PCRE knows the minimum length of a matching
string, and will immediately give a "no match" return without actually
running a match if the subject is not long enough, or, for unanchored
patterns, if it has been scanned far enough.
You can disable these optimizations by passing the PCRE_NO_START_OPTI-
MIZE option to the matching function, or by starting the pattern with
(*NO_START_OPT). This slows down the matching process, but does ensure
that callouts such as the example above are obeyed.
THE CALLOUT INTERFACE
During matching, when PCRE reaches a callout point, the external func-
tion defined by pcre_callout or pcre[16|32]_callout is called (if it is
set). This applies to both normal and DFA matching. The only argument
to the callout function is a pointer to a pcre_callout or
pcre[16|32]_callout block. These structures contains the following
fields:
int version;
int callout_number;
int *offset_vector;
const char *subject; (8-bit version)
PCRE_SPTR16 subject; (16-bit version)
PCRE_SPTR32 subject; (32-bit version)
int subject_length;
int start_match;
int current_position;
int capture_top;
int capture_last;
void *callout_data;
int pattern_position;
int next_item_length;
const unsigned char *mark; (8-bit version)
const PCRE_UCHAR16 *mark; (16-bit version)
const PCRE_UCHAR32 *mark; (32-bit version)
The version field is an integer containing the version number of the
block format. The initial version was 0; the current version is 2. The
version number will change again in future if additional fields are
added, but the intention is never to remove any of the existing fields.
The callout_number field contains the number of the callout, as com-
piled into the pattern (that is, the number after ?C for manual call-
outs, and 255 for automatically generated callouts).
The offset_vector field is a pointer to the vector of offsets that was
passed by the caller to the matching function. When pcre_exec() or
pcre[16|32]_exec() is used, the contents can be inspected, in order to
extract substrings that have been matched so far, in the same way as
for extracting substrings after a match has completed. For the DFA
matching functions, this field is not useful.
The subject and subject_length fields contain copies of the values that
were passed to the matching function.
The start_match field normally contains the offset within the subject
at which the current match attempt started. However, if the escape
sequence \K has been encountered, this value is changed to reflect the
modified starting point. If the pattern is not anchored, the callout
function may be called several times from the same point in the pattern
for different starting points in the subject.
The current_position field contains the offset within the subject of
the current match pointer.
When the pcre_exec() or pcre[16|32]_exec() is used, the capture_top
field contains one more than the number of the highest numbered cap-
tured substring so far. If no substrings have been captured, the value
of capture_top is one. This is always the case when the DFA functions
are used, because they do not support captured substrings.
The capture_last field contains the number of the most recently cap-
tured substring. However, when a recursion exits, the value reverts to
what it was outside the recursion, as do the values of all captured
substrings. If no substrings have been captured, the value of cap-
ture_last is -1. This is always the case for the DFA matching func-
tions.
The callout_data field contains a value that is passed to a matching
function specifically so that it can be passed back in callouts. It is
passed in the callout_data field of a pcre_extra or pcre[16|32]_extra
data structure. If no such data was passed, the value of callout_data
in a callout block is NULL. There is a description of the pcre_extra
structure in the pcreapi documentation.
The pattern_position field is present from version 1 of the callout
structure. It contains the offset to the next item to be matched in the
pattern string.
The next_item_length field is present from version 1 of the callout
structure. It contains the length of the next item to be matched in the
pattern string. When the callout immediately precedes an alternation
bar, a closing parenthesis, or the end of the pattern, the length is
zero. When the callout precedes an opening parenthesis, the length is
that of the entire subpattern.
The pattern_position and next_item_length fields are intended to help
in distinguishing between different automatic callouts, which all have
the same callout number. However, they are set for all callouts.
The mark field is present from version 2 of the callout structure. In
callouts from pcre_exec() or pcre[16|32]_exec() it contains a pointer
to the zero-terminated name of the most recently passed (*MARK),
(*PRUNE), or (*THEN) item in the match, or NULL if no such items have
been passed. Instances of (*PRUNE) or (*THEN) without a name do not
obliterate a previous (*MARK). In callouts from the DFA matching func-
tions this field always contains NULL.
RETURN VALUES
The external callout function returns an integer to PCRE. If the value
is zero, matching proceeds as normal. If the value is greater than
zero, matching fails at the current point, but the testing of other
matching possibilities goes ahead, just as if a lookahead assertion had
failed. If the value is less than zero, the match is abandoned, the
matching function returns the negative value.
Negative values should normally be chosen from the set of
PCRE_ERROR_xxx values. In particular, PCRE_ERROR_NOMATCH forces a stan-
dard "no match" failure. The error number PCRE_ERROR_CALLOUT is
reserved for use by callout functions; it will never be used by PCRE
itself.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 12 November 2013
Copyright (c) 1997-2013 University of Cambridge.
------------------------------------------------------------------------------
PCRECOMPAT(3) Library Functions Manual PCRECOMPAT(3)
NAME
PCRE - Perl-compatible regular expressions
DIFFERENCES BETWEEN PCRE AND PERL
This document describes the differences in the ways that PCRE and Perl
handle regular expressions. The differences described here are with
respect to Perl versions 5.10 and above.
1. PCRE has only a subset of Perl's Unicode support. Details of what it
does have are given in the pcreunicode page.
2. PCRE allows repeat quantifiers only on parenthesized assertions, but
they do not mean what you might think. For example, (?!a){3} does not
assert that the next three characters are not "a". It just asserts that
the next character is not "a" three times (in principle: PCRE optimizes
this to run the assertion just once). Perl allows repeat quantifiers on
other assertions such as \b, but these do not seem to have any use.
3. Capturing subpatterns that occur inside negative lookahead asser-
tions are counted, but their entries in the offsets vector are never
set. Perl sometimes (but not always) sets its numerical variables from
inside negative assertions.
4. Though binary zero characters are supported in the subject string,
they are not allowed in a pattern string because it is passed as a nor-
mal C string, terminated by zero. The escape sequence \0 can be used in
the pattern to represent a binary zero.
5. The following Perl escape sequences are not supported: \l, \u, \L,
\U, and \N when followed by a character name or Unicode value. (\N on
its own, matching a non-newline character, is supported.) In fact these
are implemented by Perl's general string-handling and are not part of
its pattern matching engine. If any of these are encountered by PCRE,
an error is generated by default. However, if the PCRE_JAVASCRIPT_COM-
PAT option is set, \U and \u are interpreted as JavaScript interprets
them.
6. The Perl escape sequences \p, \P, and \X are supported only if PCRE
is built with Unicode character property support. The properties that
can be tested with \p and \P are limited to the general category prop-
erties such as Lu and Nd, script names such as Greek or Han, and the
derived properties Any and L&. PCRE does support the Cs (surrogate)
property, which Perl does not; the Perl documentation says "Because
Perl hides the need for the user to understand the internal representa-
tion of Unicode characters, there is no need to implement the somewhat
messy concept of surrogates."
7. PCRE does support the \Q...\E escape for quoting substrings. Charac-
ters in between are treated as literals. This is slightly different
from Perl in that $ and @ are also handled as literals inside the
quotes. In Perl, they cause variable interpolation (but of course PCRE
does not have variables). Note the following examples:
Pattern PCRE matches Perl matches
\Qabc$xyz\E abc$xyz abc followed by the
contents of $xyz
\Qabc\$xyz\E abc\$xyz abc\$xyz
\Qabc\E\$\Qxyz\E abc$xyz abc$xyz
The \Q...\E sequence is recognized both inside and outside character
classes.
8. Fairly obviously, PCRE does not support the (?{code}) and (??{code})
constructions. However, there is support for recursive patterns. This
is not available in Perl 5.8, but it is in Perl 5.10. Also, the PCRE
"callout" feature allows an external function to be called during pat-
tern matching. See the pcrecallout documentation for details.
9. Subpatterns that are called as subroutines (whether or not recur-
sively) are always treated as atomic groups in PCRE. This is like
Python, but unlike Perl. Captured values that are set outside a sub-
routine call can be reference from inside in PCRE, but not in Perl.
There is a discussion that explains these differences in more detail in
the section on recursion differences from Perl in the pcrepattern page.
10. If any of the backtracking control verbs are used in a subpattern
that is called as a subroutine (whether or not recursively), their
effect is confined to that subpattern; it does not extend to the sur-
rounding pattern. This is not always the case in Perl. In particular,
if (*THEN) is present in a group that is called as a subroutine, its
action is limited to that group, even if the group does not contain any
| characters. Note that such subpatterns are processed as anchored at
the point where they are tested.
11. If a pattern contains more than one backtracking control verb, the
first one that is backtracked onto acts. For example, in the pattern
A(*COMMIT)B(*PRUNE)C a failure in B triggers (*COMMIT), but a failure
in C triggers (*PRUNE). Perl's behaviour is more complex; in many cases
it is the same as PCRE, but there are examples where it differs.
12. Most backtracking verbs in assertions have their normal actions.
They are not confined to the assertion.
13. There are some differences that are concerned with the settings of
captured strings when part of a pattern is repeated. For example,
matching "aba" against the pattern /^(a(b)?)+$/ in Perl leaves $2
unset, but in PCRE it is set to "b".
14. PCRE's handling of duplicate subpattern numbers and duplicate sub-
pattern names is not as general as Perl's. This is a consequence of the
fact the PCRE works internally just with numbers, using an external ta-
ble to translate between numbers and names. In particular, a pattern
such as (?|(?<a>A)|(?<b>B), where the two capturing parentheses have
the same number but different names, is not supported, and causes an
error at compile time. If it were allowed, it would not be possible to
distinguish which parentheses matched, because both names map to cap-
turing subpattern number 1. To avoid this confusing situation, an error
is given at compile time.
15. Perl recognizes comments in some places that PCRE does not, for
example, between the ( and ? at the start of a subpattern. If the /x
modifier is set, Perl allows white space between ( and ? (though cur-
rent Perls warn that this is deprecated) but PCRE never does, even if
the PCRE_EXTENDED option is set.
16. Perl, when in warning mode, gives warnings for character classes
such as [A-\d] or [a-[:digit:]]. It then treats the hyphens as liter-
als. PCRE has no warning features, so it gives an error in these cases
because they are almost certainly user mistakes.
17. In PCRE, the upper/lower case character properties Lu and Ll are
not affected when case-independent matching is specified. For example,
\p{Lu} always matches an upper case letter. I think Perl has changed in
this respect; in the release at the time of writing (5.16), \p{Lu} and
\p{Ll} match all letters, regardless of case, when case independence is
specified.
18. PCRE provides some extensions to the Perl regular expression facil-
ities. Perl 5.10 includes new features that are not in earlier ver-
sions of Perl, some of which (such as named parentheses) have been in
PCRE for some time. This list is with respect to Perl 5.10:
(a) Although lookbehind assertions in PCRE must match fixed length
strings, each alternative branch of a lookbehind assertion can match a
different length of string. Perl requires them all to have the same
length.
(b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $
meta-character matches only at the very end of the string.
(c) If PCRE_EXTRA is set, a backslash followed by a letter with no spe-
cial meaning is faulted. Otherwise, like Perl, the backslash is quietly
ignored. (Perl can be made to issue a warning.)
(d) If PCRE_UNGREEDY is set, the greediness of the repetition quanti-
fiers is inverted, that is, by default they are not greedy, but if fol-
lowed by a question mark they are.
(e) PCRE_ANCHORED can be used at matching time to force a pattern to be
tried only at the first matching position in the subject string.
(f) The PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART,
and PCRE_NO_AUTO_CAPTURE options for pcre_exec() have no Perl equiva-
lents.
(g) The \R escape sequence can be restricted to match only CR, LF, or
CRLF by the PCRE_BSR_ANYCRLF option.
(h) The callout facility is PCRE-specific.
(i) The partial matching facility is PCRE-specific.
(j) Patterns compiled by PCRE can be saved and re-used at a later time,
even on different hosts that have the other endianness. However, this
does not apply to optimized data created by the just-in-time compiler.
(k) The alternative matching functions (pcre_dfa_exec(),
pcre16_dfa_exec() and pcre32_dfa_exec(),) match in a different way and
are not Perl-compatible.
(l) PCRE recognizes some special sequences such as (*CR) at the start
of a pattern that set overall options that cannot be changed within the
pattern.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 10 November 2013
Copyright (c) 1997-2013 University of Cambridge.
------------------------------------------------------------------------------
PCREPATTERN(3) Library Functions Manual PCREPATTERN(3)
NAME
PCRE - Perl-compatible regular expressions
PCRE REGULAR EXPRESSION DETAILS
The syntax and semantics of the regular expressions that are supported
by PCRE are described in detail below. There is a quick-reference syn-
tax summary in the pcresyntax page. PCRE tries to match Perl syntax and
semantics as closely as it can. PCRE also supports some alternative
regular expression syntax (which does not conflict with the Perl syn-
tax) in order to provide some compatibility with regular expressions in
Python, .NET, and Oniguruma.
Perl's regular expressions are described in its own documentation, and
regular expressions in general are covered in a number of books, some
of which have copious examples. Jeffrey Friedl's "Mastering Regular
Expressions", published by O'Reilly, covers regular expressions in
great detail. This description of PCRE's regular expressions is
intended as reference material.
This document discusses the patterns that are supported by PCRE when
one its main matching functions, pcre_exec() (8-bit) or
pcre[16|32]_exec() (16- or 32-bit), is used. PCRE also has alternative
matching functions, pcre_dfa_exec() and pcre[16|32_dfa_exec(), which
match using a different algorithm that is not Perl-compatible. Some of
the features discussed below are not available when DFA matching is
used. The advantages and disadvantages of the alternative functions,
and how they differ from the normal functions, are discussed in the
pcrematching page.
SPECIAL START-OF-PATTERN ITEMS
A number of options that can be passed to pcre_compile() can also be
set by special items at the start of a pattern. These are not Perl-com-
patible, but are provided to make these options accessible to pattern
writers who are not able to change the program that processes the pat-
tern. Any number of these items may appear, but they must all be
together right at the start of the pattern string, and the letters must
be in upper case.
UTF support
The original operation of PCRE was on strings of one-byte characters.
However, there is now also support for UTF-8 strings in the original
library, an extra library that supports 16-bit and UTF-16 character
strings, and a third library that supports 32-bit and UTF-32 character
strings. To use these features, PCRE must be built to include appropri-
ate support. When using UTF strings you must either call the compiling
function with the PCRE_UTF8, PCRE_UTF16, or PCRE_UTF32 option, or the
pattern must start with one of these special sequences:
(*UTF8)
(*UTF16)
(*UTF32)
(*UTF)
(*UTF) is a generic sequence that can be used with any of the
libraries. Starting a pattern with such a sequence is equivalent to
setting the relevant option. How setting a UTF mode affects pattern
matching is mentioned in several places below. There is also a summary
of features in the pcreunicode page.
Some applications that allow their users to supply patterns may wish to
restrict them to non-UTF data for security reasons. If the
PCRE_NEVER_UTF option is set at compile time, (*UTF) etc. are not
allowed, and their appearance causes an error.
Unicode property support
Another special sequence that may appear at the start of a pattern is
(*UCP). This has the same effect as setting the PCRE_UCP option: it
causes sequences such as \d and \w to use Unicode properties to deter-
mine character types, instead of recognizing only characters with codes
less than 128 via a lookup table.
Disabling auto-possessification
If a pattern starts with (*NO_AUTO_POSSESS), it has the same effect as
setting the PCRE_NO_AUTO_POSSESS option at compile time. This stops
PCRE from making quantifiers possessive when what follows cannot match
the repeated item. For example, by default a+b is treated as a++b. For
more details, see the pcreapi documentation.
Disabling start-up optimizations
If a pattern starts with (*NO_START_OPT), it has the same effect as
setting the PCRE_NO_START_OPTIMIZE option either at compile or matching
time. This disables several optimizations for quickly reaching "no
match" results. For more details, see the pcreapi documentation.
Newline conventions
PCRE supports five different conventions for indicating line breaks in
strings: a single CR (carriage return) character, a single LF (line-
feed) character, the two-character sequence CRLF, any of the three pre-
ceding, or any Unicode newline sequence. The pcreapi page has further
discussion about newlines, and shows how to set the newline convention
in the options arguments for the compiling and matching functions.
It is also possible to specify a newline convention by starting a pat-
tern string with one of the following five sequences:
(*CR) carriage return
(*LF) linefeed
(*CRLF) carriage return, followed by linefeed
(*ANYCRLF) any of the three above
(*ANY) all Unicode newline sequences
These override the default and the options given to the compiling func-
tion. For example, on a Unix system where LF is the default newline
sequence, the pattern
(*CR)a.b
changes the convention to CR. That pattern matches "a\nb" because LF is
no longer a newline. If more than one of these settings is present, the
last one is used.
The newline convention affects where the circumflex and dollar asser-
tions are true. It also affects the interpretation of the dot metachar-
acter when PCRE_DOTALL is not set, and the behaviour of \N. However, it
does not affect what the \R escape sequence matches. By default, this
is any Unicode newline sequence, for Perl compatibility. However, this
can be changed; see the description of \R in the section entitled "New-
line sequences" below. A change of \R setting can be combined with a
change of newline convention.
Setting match and recursion limits
The caller of pcre_exec() can set a limit on the number of times the
internal match() function is called and on the maximum depth of recur-
sive calls. These facilities are provided to catch runaway matches that
are provoked by patterns with huge matching trees (a typical example is
a pattern with nested unlimited repeats) and to avoid running out of
system stack by too much recursion. When one of these limits is
reached, pcre_exec() gives an error return. The limits can also be set
by items at the start of the pattern of the form
(*LIMIT_MATCH=d)
(*LIMIT_RECURSION=d)
where d is any number of decimal digits. However, the value of the set-
ting must be less than the value set (or defaulted) by the caller of
pcre_exec() for it to have any effect. In other words, the pattern
writer can lower the limits set by the programmer, but not raise them.
If there is more than one setting of one of these limits, the lower
value is used.
EBCDIC CHARACTER CODES
PCRE can be compiled to run in an environment that uses EBCDIC as its
character code rather than ASCII or Unicode (typically a mainframe sys-
tem). In the sections below, character code values are ASCII or Uni-
code; in an EBCDIC environment these characters may have different code
values, and there are no code points greater than 255.
CHARACTERS AND METACHARACTERS
A regular expression is a pattern that is matched against a subject
string from left to right. Most characters stand for themselves in a
pattern, and match the corresponding characters in the subject. As a
trivial example, the pattern
The quick brown fox
matches a portion of a subject string that is identical to itself. When
caseless matching is specified (the PCRE_CASELESS option), letters are
matched independently of case. In a UTF mode, PCRE always understands
the concept of case for characters whose values are less than 128, so
caseless matching is always possible. For characters with higher val-
ues, the concept of case is supported if PCRE is compiled with Unicode
property support, but not otherwise. If you want to use caseless
matching for characters 128 and above, you must ensure that PCRE is
compiled with Unicode property support as well as with UTF support.
The power of regular expressions comes from the ability to include
alternatives and repetitions in the pattern. These are encoded in the
pattern by the use of metacharacters, which do not stand for themselves
but instead are interpreted in some special way.
There are two different sets of metacharacters: those that are recog-
nized anywhere in the pattern except within square brackets, and those
that are recognized within square brackets. Outside square brackets,
the metacharacters are as follows:
\ general escape character with several uses
^ assert start of string (or line, in multiline mode)
$ assert end of string (or line, in multiline mode)
. match any character except newline (by default)
[ start character class definition
| start of alternative branch
( start subpattern
) end subpattern
? extends the meaning of (
also 0 or 1 quantifier
also quantifier minimizer
* 0 or more quantifier
+ 1 or more quantifier
also "possessive quantifier"
{ start min/max quantifier
Part of a pattern that is in square brackets is called a "character
class". In a character class the only metacharacters are:
\ general escape character
^ negate the class, but only if the first character
- indicates character range
[ POSIX character class (only if followed by POSIX
syntax)
] terminates the character class
The following sections describe the use of each of the metacharacters.
BACKSLASH
The backslash character has several uses. Firstly, if it is followed by
a character that is not a number or a letter, it takes away any special
meaning that character may have. This use of backslash as an escape
character applies both inside and outside character classes.
For example, if you want to match a * character, you write \* in the
pattern. This escaping action applies whether or not the following
character would otherwise be interpreted as a metacharacter, so it is
always safe to precede a non-alphanumeric with backslash to specify
that it stands for itself. In particular, if you want to match a back-
slash, you write \\.
In a UTF mode, only ASCII numbers and letters have any special meaning
after a backslash. All other characters (in particular, those whose
codepoints are greater than 127) are treated as literals.
If a pattern is compiled with the PCRE_EXTENDED option, most white
space in the pattern (other than in a character class), and characters
between a # outside a character class and the next newline, inclusive,
are ignored. An escaping backslash can be used to include a white space
or # character as part of the pattern.
If you want to remove the special meaning from a sequence of charac-
ters, you can do so by putting them between \Q and \E. This is differ-
ent from Perl in that $ and @ are handled as literals in \Q...\E
sequences in PCRE, whereas in Perl, $ and @ cause variable interpola-
tion. Note the following examples:
Pattern PCRE matches Perl matches
\Qabc$xyz\E abc$xyz abc followed by the
contents of $xyz
\Qabc\$xyz\E abc\$xyz abc\$xyz
\Qabc\E\$\Qxyz\E abc$xyz abc$xyz
The \Q...\E sequence is recognized both inside and outside character
classes. An isolated \E that is not preceded by \Q is ignored. If \Q
is not followed by \E later in the pattern, the literal interpretation
continues to the end of the pattern (that is, \E is assumed at the
end). If the isolated \Q is inside a character class, this causes an
error, because the character class is not terminated.
Non-printing characters
A second use of backslash provides a way of encoding non-printing char-
acters in patterns in a visible manner. There is no restriction on the
appearance of non-printing characters, apart from the binary zero that
terminates a pattern, but when a pattern is being prepared by text
editing, it is often easier to use one of the following escape
sequences than the binary character it represents. In an ASCII or Uni-
code environment, these escapes are as follows:
\a alarm, that is, the BEL character (hex 07)
\cx "control-x", where x is any ASCII character
\e escape (hex 1B)
\f form feed (hex 0C)
\n linefeed (hex 0A)
\r carriage return (hex 0D)
\t tab (hex 09)
\0dd character with octal code 0dd
\ddd character with octal code ddd, or back reference
\o{ddd..} character with octal code ddd..
\xhh character with hex code hh
\x{hhh..} character with hex code hhh.. (non-JavaScript mode)
\uhhhh character with hex code hhhh (JavaScript mode only)
The precise effect of \cx on ASCII characters is as follows: if x is a
lower case letter, it is converted to upper case. Then bit 6 of the
character (hex 40) is inverted. Thus \cA to \cZ become hex 01 to hex 1A
(A is 41, Z is 5A), but \c{ becomes hex 3B ({ is 7B), and \c; becomes
hex 7B (; is 3B). If the data item (byte or 16-bit value) following \c
has a value greater than 127, a compile-time error occurs. This locks
out non-ASCII characters in all modes.
When PCRE is compiled in EBCDIC mode, \a, \e, \f, \n, \r, and \t gener-
ate the appropriate EBCDIC code values. The \c escape is processed as
specified for Perl in the perlebcdic document. The only characters that
are allowed after \c are A-Z, a-z, or one of @, [, \, ], ^, _, or ?.
Any other character provokes a compile-time error. The sequence \c@
encodes character code 0; after \c the letters (in either case) encode
characters 1-26 (hex 01 to hex 1A); [, \, ], ^, and _ encode characters
27-31 (hex 1B to hex 1F), and \c? becomes either 255 (hex FF) or 95
(hex 5F).
Thus, apart from \c?, these escapes generate the same character code
values as they do in an ASCII environment, though the meanings of the
values mostly differ. For example, \cG always generates code value 7,
which is BEL in ASCII but DEL in EBCDIC.
The sequence \c? generates DEL (127, hex 7F) in an ASCII environment,
but because 127 is not a control character in EBCDIC, Perl makes it
generate the APC character. Unfortunately, there are several variants
of EBCDIC. In most of them the APC character has the value 255 (hex
FF), but in the one Perl calls POSIX-BC its value is 95 (hex 5F). If
certain other characters have POSIX-BC values, PCRE makes \c? generate
95; otherwise it generates 255.
After \0 up to two further octal digits are read. If there are fewer
than two digits, just those that are present are used. Thus the
sequence \0\x\015 specifies two binary zeros followed by a CR character
(code value 13). Make sure you supply two digits after the initial zero
if the pattern character that follows is itself an octal digit.
The escape \o must be followed by a sequence of octal digits, enclosed
in braces. An error occurs if this is not the case. This escape is a
recent addition to Perl; it provides way of specifying character code
points as octal numbers greater than 0777, and it also allows octal
numbers and back references to be unambiguously specified.
For greater clarity and unambiguity, it is best to avoid following \ by
a digit greater than zero. Instead, use \o{} or \x{} to specify charac-
ter numbers, and \g{} to specify back references. The following para-
graphs describe the old, ambiguous syntax.
The handling of a backslash followed by a digit other than 0 is compli-
cated, and Perl has changed in recent releases, causing PCRE also to
change. Outside a character class, PCRE reads the digit and any follow-
ing digits as a decimal number. If the number is less than 8, or if
there have been at least that many previous capturing left parentheses
in the expression, the entire sequence is taken as a back reference. A
description of how this works is given later, following the discussion
of parenthesized subpatterns.
Inside a character class, or if the decimal number following \ is
greater than 7 and there have not been that many capturing subpatterns,
PCRE handles \8 and \9 as the literal characters "8" and "9", and oth-
erwise re-reads up to three octal digits following the backslash, using
them to generate a data character. Any subsequent digits stand for
themselves. For example:
\040 is another way of writing an ASCII space
\40 is the same, provided there are fewer than 40
previous capturing subpatterns
\7 is always a back reference
\11 might be a back reference, or another way of
writing a tab
\011 is always a tab
\0113 is a tab followed by the character "3"
\113 might be a back reference, otherwise the
character with octal code 113
\377 might be a back reference, otherwise
the value 255 (decimal)
\81 is either a back reference, or the two
characters "8" and "1"
Note that octal values of 100 or greater that are specified using this
syntax must not be introduced by a leading zero, because no more than
three octal digits are ever read.
By default, after \x that is not followed by {, from zero to two hexa-
decimal digits are read (letters can be in upper or lower case). Any
number of hexadecimal digits may appear between \x{ and }. If a charac-
ter other than a hexadecimal digit appears between \x{ and }, or if
there is no terminating }, an error occurs.
If the PCRE_JAVASCRIPT_COMPAT option is set, the interpretation of \x
is as just described only when it is followed by two hexadecimal dig-
its. Otherwise, it matches a literal "x" character. In JavaScript
mode, support for code points greater than 256 is provided by \u, which
must be followed by four hexadecimal digits; otherwise it matches a
literal "u" character.
Characters whose value is less than 256 can be defined by either of the
two syntaxes for \x (or by \u in JavaScript mode). There is no differ-
ence in the way they are handled. For example, \xdc is exactly the same
as \x{dc} (or \u00dc in JavaScript mode).
Constraints on character values
Characters that are specified using octal or hexadecimal numbers are
limited to certain values, as follows:
8-bit non-UTF mode less than 0x100
8-bit UTF-8 mode less than 0x10ffff and a valid codepoint
16-bit non-UTF mode less than 0x10000
16-bit UTF-16 mode less than 0x10ffff and a valid codepoint
32-bit non-UTF mode less than 0x100000000
32-bit UTF-32 mode less than 0x10ffff and a valid codepoint
Invalid Unicode codepoints are the range 0xd800 to 0xdfff (the so-
called "surrogate" codepoints), and 0xffef.
Escape sequences in character classes
All the sequences that define a single character value can be used both
inside and outside character classes. In addition, inside a character
class, \b is interpreted as the backspace character (hex 08).
\N is not allowed in a character class. \B, \R, and \X are not special
inside a character class. Like other unrecognized escape sequences,
they are treated as the literal characters "B", "R", and "X" by
default, but cause an error if the PCRE_EXTRA option is set. Outside a
character class, these sequences have different meanings.
Unsupported escape sequences
In Perl, the sequences \l, \L, \u, and \U are recognized by its string
handler and used to modify the case of following characters. By
default, PCRE does not support these escape sequences. However, if the
PCRE_JAVASCRIPT_COMPAT option is set, \U matches a "U" character, and
\u can be used to define a character by code point, as described in the
previous section.
Absolute and relative back references
The sequence \g followed by an unsigned or a negative number, option-
ally enclosed in braces, is an absolute or relative back reference. A
named back reference can be coded as \g{name}. Back references are dis-
cussed later, following the discussion of parenthesized subpatterns.
Absolute and relative subroutine calls
For compatibility with Oniguruma, the non-Perl syntax \g followed by a
name or a number enclosed either in angle brackets or single quotes, is
an alternative syntax for referencing a subpattern as a "subroutine".
Details are discussed later. Note that \g{...} (Perl syntax) and
\g<...> (Oniguruma syntax) are not synonymous. The former is a back
reference; the latter is a subroutine call.
Generic character types
Another use of backslash is for specifying generic character types:
\d any decimal digit
\D any character that is not a decimal digit
\h any horizontal white space character
\H any character that is not a horizontal white space character
\s any white space character
\S any character that is not a white space character
\v any vertical white space character
\V any character that is not a vertical white space character
\w any "word" character
\W any "non-word" character
There is also the single sequence \N, which matches a non-newline char-
acter. This is the same as the "." metacharacter when PCRE_DOTALL is
not set. Perl also uses \N to match characters by name; PCRE does not
support this.
Each pair of lower and upper case escape sequences partitions the com-
plete set of characters into two disjoint sets. Any given character
matches one, and only one, of each pair. The sequences can appear both
inside and outside character classes. They each match one character of
the appropriate type. If the current matching point is at the end of
the subject string, all of them fail, because there is no character to
match.
For compatibility with Perl, \s did not used to match the VT character
(code 11), which made it different from the the POSIX "space" class.
However, Perl added VT at release 5.18, and PCRE followed suit at
release 8.34. The default \s characters are now HT (9), LF (10), VT
(11), FF (12), CR (13), and space (32), which are defined as white
space in the "C" locale. This list may vary if locale-specific matching
is taking place. For example, in some locales the "non-breaking space"
character (\xA0) is recognized as white space, and in others the VT
character is not.
A "word" character is an underscore or any character that is a letter
or digit. By default, the definition of letters and digits is con-
trolled by PCRE's low-valued character tables, and may vary if locale-
specific matching is taking place (see "Locale support" in the pcreapi
page). For example, in a French locale such as "fr_FR" in Unix-like
systems, or "french" in Windows, some character codes greater than 127
are used for accented letters, and these are then matched by \w. The
use of locales with Unicode is discouraged.
By default, characters whose code points are greater than 127 never
match \d, \s, or \w, and always match \D, \S, and \W, although this may
vary for characters in the range 128-255 when locale-specific matching
is happening. These escape sequences retain their original meanings
from before Unicode support was available, mainly for efficiency rea-
sons. If PCRE is compiled with Unicode property support, and the
PCRE_UCP option is set, the behaviour is changed so that Unicode prop-
erties are used to determine character types, as follows:
\d any character that matches \p{Nd} (decimal digit)
\s any character that matches \p{Z} or \h or \v
\w any character that matches \p{L} or \p{N}, plus underscore
The upper case escapes match the inverse sets of characters. Note that
\d matches only decimal digits, whereas \w matches any Unicode digit,
as well as any Unicode letter, and underscore. Note also that PCRE_UCP
affects \b, and \B because they are defined in terms of \w and \W.
Matching these sequences is noticeably slower when PCRE_UCP is set.
The sequences \h, \H, \v, and \V are features that were added to Perl
at release 5.10. In contrast to the other sequences, which match only
ASCII characters by default, these always match certain high-valued
code points, whether or not PCRE_UCP is set. The horizontal space char-
acters are:
U+0009 Horizontal tab (HT)
U+0020 Space
U+00A0 Non-break space
U+1680 Ogham space mark
U+180E Mongolian vowel separator
U+2000 En quad
U+2001 Em quad
U+2002 En space
U+2003 Em space
U+2004 Three-per-em space
U+2005 Four-per-em space
U+2006 Six-per-em space
U+2007 Figure space
U+2008 Punctuation space
U+2009 Thin space
U+200A Hair space
U+202F Narrow no-break space
U+205F Medium mathematical space
U+3000 Ideographic space
The vertical space characters are:
U+000A Linefeed (LF)
U+000B Vertical tab (VT)
U+000C Form feed (FF)
U+000D Carriage return (CR)
U+0085 Next line (NEL)
U+2028 Line separator
U+2029 Paragraph separator
In 8-bit, non-UTF-8 mode, only the characters with codepoints less than
256 are relevant.
Newline sequences
Outside a character class, by default, the escape sequence \R matches
any Unicode newline sequence. In 8-bit non-UTF-8 mode \R is equivalent
to the following:
(?>\r\n|\n|\x0b|\f|\r|\x85)
This is an example of an "atomic group", details of which are given
below. This particular group matches either the two-character sequence
CR followed by LF, or one of the single characters LF (linefeed,
U+000A), VT (vertical tab, U+000B), FF (form feed, U+000C), CR (car-
riage return, U+000D), or NEL (next line, U+0085). The two-character
sequence is treated as a single unit that cannot be split.
In other modes, two additional characters whose codepoints are greater
than 255 are added: LS (line separator, U+2028) and PS (paragraph sepa-
rator, U+2029). Unicode character property support is not needed for
these characters to be recognized.
It is possible to restrict \R to match only CR, LF, or CRLF (instead of
the complete set of Unicode line endings) by setting the option
PCRE_BSR_ANYCRLF either at compile time or when the pattern is matched.
(BSR is an abbrevation for "backslash R".) This can be made the default
when PCRE is built; if this is the case, the other behaviour can be
requested via the PCRE_BSR_UNICODE option. It is also possible to
specify these settings by starting a pattern string with one of the
following sequences:
(*BSR_ANYCRLF) CR, LF, or CRLF only
(*BSR_UNICODE) any Unicode newline sequence
These override the default and the options given to the compiling func-
tion, but they can themselves be overridden by options given to a
matching function. Note that these special settings, which are not
Perl-compatible, are recognized only at the very start of a pattern,
and that they must be in upper case. If more than one of them is
present, the last one is used. They can be combined with a change of
newline convention; for example, a pattern can start with:
(*ANY)(*BSR_ANYCRLF)
They can also be combined with the (*UTF8), (*UTF16), (*UTF32), (*UTF)
or (*UCP) special sequences. Inside a character class, \R is treated as
an unrecognized escape sequence, and so matches the letter "R" by
default, but causes an error if PCRE_EXTRA is set.
Unicode character properties
When PCRE is built with Unicode character property support, three addi-
tional escape sequences that match characters with specific properties
are available. When in 8-bit non-UTF-8 mode, these sequences are of
course limited to testing characters whose codepoints are less than
256, but they do work in this mode. The extra escape sequences are:
\p{xx} a character with the xx property
\P{xx} a character without the xx property
\X a Unicode extended grapheme cluster
The property names represented by xx above are limited to the Unicode
script names, the general category properties, "Any", which matches any
character (including newline), and some special PCRE properties
(described in the next section). Other Perl properties such as "InMu-
sicalSymbols" are not currently supported by PCRE. Note that \P{Any}
does not match any characters, so always causes a match failure.
Sets of Unicode characters are defined as belonging to certain scripts.
A character from one of these sets can be matched using a script name.
For example:
\p{Greek}
\P{Han}
Those that are not part of an identified script are lumped together as
"Common". The current list of scripts is:
Arabic, Armenian, Avestan, Balinese, Bamum, Bassa_Vah, Batak, Bengali,
Bopomofo, Brahmi, Braille, Buginese, Buhid, Canadian_Aboriginal, Car-
ian, Caucasian_Albanian, Chakma, Cham, Cherokee, Common, Coptic, Cunei-
form, Cypriot, Cyrillic, Deseret, Devanagari, Duployan, Egyptian_Hiero-
glyphs, Elbasan, Ethiopic, Georgian, Glagolitic, Gothic, Grantha,
Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana,
Imperial_Aramaic, Inherited, Inscriptional_Pahlavi, Inscrip-
tional_Parthian, Javanese, Kaithi, Kannada, Katakana, Kayah_Li,
Kharoshthi, Khmer, Khojki, Khudawadi, Lao, Latin, Lepcha, Limbu, Lin-
ear_A, Linear_B, Lisu, Lycian, Lydian, Mahajani, Malayalam, Mandaic,
Manichaean, Meetei_Mayek, Mende_Kikakui, Meroitic_Cursive,
Meroitic_Hieroglyphs, Miao, Modi, Mongolian, Mro, Myanmar, Nabataean,
New_Tai_Lue, Nko, Ogham, Ol_Chiki, Old_Italic, Old_North_Arabian,
Old_Permic, Old_Persian, Old_South_Arabian, Old_Turkic, Oriya, Osmanya,
Pahawh_Hmong, Palmyrene, Pau_Cin_Hau, Phags_Pa, Phoenician,
Psalter_Pahlavi, Rejang, Runic, Samaritan, Saurashtra, Sharada, Sha-
vian, Siddham, Sinhala, Sora_Sompeng, Sundanese, Syloti_Nagri, Syriac,
Tagalog, Tagbanwa, Tai_Le, Tai_Tham, Tai_Viet, Takri, Tamil, Telugu,
Thaana, Thai, Tibetan, Tifinagh, Tirhuta, Ugaritic, Vai, Warang_Citi,
Yi.
Each character has exactly one Unicode general category property, spec-
ified by a two-letter abbreviation. For compatibility with Perl, nega-
tion can be specified by including a circumflex between the opening
brace and the property name. For example, \p{^Lu} is the same as
\P{Lu}.
If only one letter is specified with \p or \P, it includes all the gen-
eral category properties that start with that letter. In this case, in
the absence of negation, the curly brackets in the escape sequence are
optional; these two examples have the same effect:
\p{L}
\pL
The following general category property codes are supported:
C Other
Cc Control
Cf Format
Cn Unassigned
Co Private use
Cs Surrogate
L Letter
Ll Lower case letter
Lm Modifier letter
Lo Other letter
Lt Title case letter
Lu Upper case letter
M Mark
Mc Spacing mark
Me Enclosing mark
Mn Non-spacing mark
N Number
Nd Decimal number
Nl Letter number
No Other number
P Punctuation
Pc Connector punctuation
Pd Dash punctuation
Pe Close punctuation
Pf Final punctuation
Pi Initial punctuation
Po Other punctuation
Ps Open punctuation
S Symbol
Sc Currency symbol
Sk Modifier symbol
Sm Mathematical symbol
So Other symbol
Z Separator
Zl Line separator
Zp Paragraph separator
Zs Space separator
The special property L& is also supported: it matches a character that
has the Lu, Ll, or Lt property, in other words, a letter that is not
classified as a modifier or "other".
The Cs (Surrogate) property applies only to characters in the range
U+D800 to U+DFFF. Such characters are not valid in Unicode strings and
so cannot be tested by PCRE, unless UTF validity checking has been
turned off (see the discussion of PCRE_NO_UTF8_CHECK,
PCRE_NO_UTF16_CHECK and PCRE_NO_UTF32_CHECK in the pcreapi page). Perl
does not support the Cs property.
The long synonyms for property names that Perl supports (such as
\p{Letter}) are not supported by PCRE, nor is it permitted to prefix
any of these properties with "Is".
No character that is in the Unicode table has the Cn (unassigned) prop-
erty. Instead, this property is assumed for any code point that is not
in the Unicode table.
Specifying caseless matching does not affect these escape sequences.
For example, \p{Lu} always matches only upper case letters. This is
different from the behaviour of current versions of Perl.
Matching characters by Unicode property is not fast, because PCRE has
to do a multistage table lookup in order to find a character's prop-
erty. That is why the traditional escape sequences such as \d and \w do
not use Unicode properties in PCRE by default, though you can make them
do so by setting the PCRE_UCP option or by starting the pattern with
(*UCP).
Extended grapheme clusters
The \X escape matches any number of Unicode characters that form an
"extended grapheme cluster", and treats the sequence as an atomic group
(see below). Up to and including release 8.31, PCRE matched an ear-
lier, simpler definition that was equivalent to
(?>\PM\pM*)
That is, it matched a character without the "mark" property, followed
by zero or more characters with the "mark" property. Characters with
the "mark" property are typically non-spacing accents that affect the
preceding character.
This simple definition was extended in Unicode to include more compli-
cated kinds of composite character by giving each character a grapheme
breaking property, and creating rules that use these properties to
define the boundaries of extended grapheme clusters. In releases of
PCRE later than 8.31, \X matches one of these clusters.
\X always matches at least one character. Then it decides whether to
add additional characters according to the following rules for ending a
cluster:
1. End at the end of the subject string.
2. Do not end between CR and LF; otherwise end after any control char-
acter.
3. Do not break Hangul (a Korean script) syllable sequences. Hangul
characters are of five types: L, V, T, LV, and LVT. An L character may
be followed by an L, V, LV, or LVT character; an LV or V character may
be followed by a V or T character; an LVT or T character may be follwed
only by a T character.
4. Do not end before extending characters or spacing marks. Characters
with the "mark" property always have the "extend" grapheme breaking
property.
5. Do not end after prepend characters.
6. Otherwise, end the cluster.
PCRE's additional properties
As well as the standard Unicode properties described above, PCRE sup-
ports four more that make it possible to convert traditional escape
sequences such as \w and \s to use Unicode properties. PCRE uses these
non-standard, non-Perl properties internally when PCRE_UCP is set. How-
ever, they may also be used explicitly. These properties are:
Xan Any alphanumeric character
Xps Any POSIX space character
Xsp Any Perl space character
Xwd Any Perl "word" character
Xan matches characters that have either the L (letter) or the N (num-
ber) property. Xps matches the characters tab, linefeed, vertical tab,
form feed, or carriage return, and any other character that has the Z
(separator) property. Xsp is the same as Xps; it used to exclude ver-
tical tab, for Perl compatibility, but Perl changed, and so PCRE fol-
lowed at release 8.34. Xwd matches the same characters as Xan, plus
underscore.
There is another non-standard property, Xuc, which matches any charac-
ter that can be represented by a Universal Character Name in C++ and
other programming languages. These are the characters $, @, ` (grave
accent), and all characters with Unicode code points greater than or
equal to U+00A0, except for the surrogates U+D800 to U+DFFF. Note that
most base (ASCII) characters are excluded. (Universal Character Names
are of the form \uHHHH or \UHHHHHHHH where H is a hexadecimal digit.
Note that the Xuc property does not match these sequences but the char-
acters that they represent.)
Resetting the match start
The escape sequence \K causes any previously matched characters not to
be included in the final matched sequence. For example, the pattern:
foo\Kbar
matches "foobar", but reports that it has matched "bar". This feature
is similar to a lookbehind assertion (described below). However, in
this case, the part of the subject before the real match does not have
to be of fixed length, as lookbehind assertions do. The use of \K does
not interfere with the setting of captured substrings. For example,
when the pattern
(foo)\Kbar
matches "foobar", the first substring is still set to "foo".
Perl documents that the use of \K within assertions is "not well
defined". In PCRE, \K is acted upon when it occurs inside positive
assertions, but is ignored in negative assertions. Note that when a
pattern such as (?=ab\K) matches, the reported start of the match can
be greater than the end of the match.
Simple assertions
The final use of backslash is for certain simple assertions. An asser-
tion specifies a condition that has to be met at a particular point in
a match, without consuming any characters from the subject string. The
use of subpatterns for more complicated assertions is described below.
The backslashed assertions are:
\b matches at a word boundary
\B matches when not at a word boundary
\A matches at the start of the subject
\Z matches at the end of the subject
also matches before a newline at the end of the subject
\z matches only at the end of the subject
\G matches at the first matching position in the subject
Inside a character class, \b has a different meaning; it matches the
backspace character. If any other of these assertions appears in a
character class, by default it matches the corresponding literal char-
acter (for example, \B matches the letter B). However, if the
PCRE_EXTRA option is set, an "invalid escape sequence" error is gener-
ated instead.
A word boundary is a position in the subject string where the current
character and the previous character do not both match \w or \W (i.e.
one matches \w and the other matches \W), or the start or end of the
string if the first or last character matches \w, respectively. In a
UTF mode, the meanings of \w and \W can be changed by setting the
PCRE_UCP option. When this is done, it also affects \b and \B. Neither
PCRE nor Perl has a separate "start of word" or "end of word" metase-
quence. However, whatever follows \b normally determines which it is.
For example, the fragment \ba matches "a" at the start of a word.
The \A, \Z, and \z assertions differ from the traditional circumflex
and dollar (described in the next section) in that they only ever match
at the very start and end of the subject string, whatever options are
set. Thus, they are independent of multiline mode. These three asser-
tions are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options, which
affect only the behaviour of the circumflex and dollar metacharacters.
However, if the startoffset argument of pcre_exec() is non-zero, indi-
cating that matching is to start at a point other than the beginning of
the subject, \A can never match. The difference between \Z and \z is
that \Z matches before a newline at the end of the string as well as at
the very end, whereas \z matches only at the end.
The \G assertion is true only when the current matching position is at
the start point of the match, as specified by the startoffset argument
of pcre_exec(). It differs from \A when the value of startoffset is
non-zero. By calling pcre_exec() multiple times with appropriate argu-
ments, you can mimic Perl's /g option, and it is in this kind of imple-
mentation where \G can be useful.
Note, however, that PCRE's interpretation of \G, as the start of the
current match, is subtly different from Perl's, which defines it as the
end of the previous match. In Perl, these can be different when the
previously matched string was empty. Because PCRE does just one match
at a time, it cannot reproduce this behaviour.
If all the alternatives of a pattern begin with \G, the expression is
anchored to the starting match position, and the "anchored" flag is set
in the compiled regular expression.
CIRCUMFLEX AND DOLLAR
The circumflex and dollar metacharacters are zero-width assertions.
That is, they test for a particular condition being true without con-
suming any characters from the subject string.
Outside a character class, in the default matching mode, the circumflex
character is an assertion that is true only if the current matching
point is at the start of the subject string. If the startoffset argu-
ment of pcre_exec() is non-zero, circumflex can never match if the
PCRE_MULTILINE option is unset. Inside a character class, circumflex
has an entirely different meaning (see below).
Circumflex need not be the first character of the pattern if a number
of alternatives are involved, but it should be the first thing in each
alternative in which it appears if the pattern is ever to match that
branch. If all possible alternatives start with a circumflex, that is,
if the pattern is constrained to match only at the start of the sub-
ject, it is said to be an "anchored" pattern. (There are also other
constructs that can cause a pattern to be anchored.)
The dollar character is an assertion that is true only if the current
matching point is at the end of the subject string, or immediately
before a newline at the end of the string (by default). Note, however,
that it does not actually match the newline. Dollar need not be the
last character of the pattern if a number of alternatives are involved,
but it should be the last item in any branch in which it appears. Dol-
lar has no special meaning in a character class.
The meaning of dollar can be changed so that it matches only at the
very end of the string, by setting the PCRE_DOLLAR_ENDONLY option at
compile time. This does not affect the \Z assertion.
The meanings of the circumflex and dollar characters are changed if the
PCRE_MULTILINE option is set. When this is the case, a circumflex
matches immediately after internal newlines as well as at the start of
the subject string. It does not match after a newline that ends the
string. A dollar matches before any newlines in the string, as well as
at the very end, when PCRE_MULTILINE is set. When newline is specified
as the two-character sequence CRLF, isolated CR and LF characters do
not indicate newlines.
For example, the pattern /^abc$/ matches the subject string "def\nabc"
(where \n represents a newline) in multiline mode, but not otherwise.
Consequently, patterns that are anchored in single line mode because
all branches start with ^ are not anchored in multiline mode, and a
match for circumflex is possible when the startoffset argument of
pcre_exec() is non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if
PCRE_MULTILINE is set.
Note that the sequences \A, \Z, and \z can be used to match the start
and end of the subject in both modes, and if all branches of a pattern
start with \A it is always anchored, whether or not PCRE_MULTILINE is
set.
FULL STOP (PERIOD, DOT) AND \N
Outside a character class, a dot in the pattern matches any one charac-
ter in the subject string except (by default) a character that signi-
fies the end of a line.
When a line ending is defined as a single character, dot never matches
that character; when the two-character sequence CRLF is used, dot does
not match CR if it is immediately followed by LF, but otherwise it
matches all characters (including isolated CRs and LFs). When any Uni-
code line endings are being recognized, dot does not match CR or LF or
any of the other line ending characters.
The behaviour of dot with regard to newlines can be changed. If the
PCRE_DOTALL option is set, a dot matches any one character, without
exception. If the two-character sequence CRLF is present in the subject
string, it takes two dots to match it.
The handling of dot is entirely independent of the handling of circum-
flex and dollar, the only relationship being that they both involve
newlines. Dot has no special meaning in a character class.
The escape sequence \N behaves like a dot, except that it is not
affected by the PCRE_DOTALL option. In other words, it matches any
character except one that signifies the end of a line. Perl also uses
\N to match characters by name; PCRE does not support this.
MATCHING A SINGLE DATA UNIT
Outside a character class, the escape sequence \C matches any one data
unit, whether or not a UTF mode is set. In the 8-bit library, one data
unit is one byte; in the 16-bit library it is a 16-bit unit; in the
32-bit library it is a 32-bit unit. Unlike a dot, \C always matches
line-ending characters. The feature is provided in Perl in order to
match individual bytes in UTF-8 mode, but it is unclear how it can use-
fully be used. Because \C breaks up characters into individual data
units, matching one unit with \C in a UTF mode means that the rest of
the string may start with a malformed UTF character. This has undefined
results, because PCRE assumes that it is dealing with valid UTF strings
(and by default it checks this at the start of processing unless the
PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK or PCRE_NO_UTF32_CHECK option
is used).
PCRE does not allow \C to appear in lookbehind assertions (described
below) in a UTF mode, because this would make it impossible to calcu-
late the length of the lookbehind.
In general, the \C escape sequence is best avoided. However, one way of
using it that avoids the problem of malformed UTF characters is to use
a lookahead to check the length of the next character, as in this pat-
tern, which could be used with a UTF-8 string (ignore white space and
line breaks):
(?| (?=[\x00-\x7f])(\C) |
(?=[\x80-\x{7ff}])(\C)(\C) |
(?=[\x{800}-\x{ffff}])(\C)(\C)(\C) |
(?=[\x{10000}-\x{1fffff}])(\C)(\C)(\C)(\C))
A group that starts with (?| resets the capturing parentheses numbers
in each alternative (see "Duplicate Subpattern Numbers" below). The
assertions at the start of each branch check the next UTF-8 character
for values whose encoding uses 1, 2, 3, or 4 bytes, respectively. The
character's individual bytes are then captured by the appropriate num-
ber of groups.
SQUARE BRACKETS AND CHARACTER CLASSES
An opening square bracket introduces a character class, terminated by a
closing square bracket. A closing square bracket on its own is not spe-
cial by default. However, if the PCRE_JAVASCRIPT_COMPAT option is set,
a lone closing square bracket causes a compile-time error. If a closing
square bracket is required as a member of the class, it should be the
first data character in the class (after an initial circumflex, if
present) or escaped with a backslash.
A character class matches a single character in the subject. In a UTF
mode, the character may be more than one data unit long. A matched
character must be in the set of characters defined by the class, unless
the first character in the class definition is a circumflex, in which
case the subject character must not be in the set defined by the class.
If a circumflex is actually required as a member of the class, ensure
it is not the first character, or escape it with a backslash.
For example, the character class [aeiou] matches any lower case vowel,
while [^aeiou] matches any character that is not a lower case vowel.
Note that a circumflex is just a convenient notation for specifying the
characters that are in the class by enumerating those that are not. A
class that starts with a circumflex is not an assertion; it still con-
sumes a character from the subject string, and therefore it fails if
the current pointer is at the end of the string.
In UTF-8 (UTF-16, UTF-32) mode, characters with values greater than 255
(0xffff) can be included in a class as a literal string of data units,
or by using the \x{ escaping mechanism.
When caseless matching is set, any letters in a class represent both
their upper case and lower case versions, so for example, a caseless
[aeiou] matches "A" as well as "a", and a caseless [^aeiou] does not
match "A", whereas a caseful version would. In a UTF mode, PCRE always
understands the concept of case for characters whose values are less
than 128, so caseless matching is always possible. For characters with
higher values, the concept of case is supported if PCRE is compiled
with Unicode property support, but not otherwise. If you want to use
caseless matching in a UTF mode for characters 128 and above, you must
ensure that PCRE is compiled with Unicode property support as well as
with UTF support.
Characters that might indicate line breaks are never treated in any
special way when matching character classes, whatever line-ending
sequence is in use, and whatever setting of the PCRE_DOTALL and
PCRE_MULTILINE options is used. A class such as [^a] always matches one
of these characters.
The minus (hyphen) character can be used to specify a range of charac-
ters in a character class. For example, [d-m] matches any letter
between d and m, inclusive. If a minus character is required in a
class, it must be escaped with a backslash or appear in a position
where it cannot be interpreted as indicating a range, typically as the
first or last character in the class, or immediately after a range. For
example, [b-d-z] matches letters in the range b to d, a hyphen charac-
ter, or z.
It is not possible to have the literal character "]" as the end charac-
ter of a range. A pattern such as [W-]46] is interpreted as a class of
two characters ("W" and "-") followed by a literal string "46]", so it
would match "W46]" or "-46]". However, if the "]" is escaped with a
backslash it is interpreted as the end of range, so [W-\]46] is inter-
preted as a class containing a range followed by two other characters.
The octal or hexadecimal representation of "]" can also be used to end
a range.
An error is generated if a POSIX character class (see below) or an
escape sequence other than one that defines a single character appears
at a point where a range ending character is expected. For example,
[z-\xff] is valid, but [A-\d] and [A-[:digit:]] are not.
Ranges operate in the collating sequence of character values. They can
also be used for characters specified numerically, for example
[\000-\037]. Ranges can include any characters that are valid for the
current mode.
If a range that includes letters is used when caseless matching is set,
it matches the letters in either case. For example, [W-c] is equivalent
to [][\\^_`wxyzabc], matched caselessly, and in a non-UTF mode, if
character tables for a French locale are in use, [\xc8-\xcb] matches
accented E characters in both cases. In UTF modes, PCRE supports the
concept of case for characters with values greater than 128 only when
it is compiled with Unicode property support.
The character escape sequences \d, \D, \h, \H, \p, \P, \s, \S, \v, \V,
\w, and \W may appear in a character class, and add the characters that
they match to the class. For example, [\dABCDEF] matches any hexadeci-
mal digit. In UTF modes, the PCRE_UCP option affects the meanings of
\d, \s, \w and their upper case partners, just as it does when they
appear outside a character class, as described in the section entitled
"Generic character types" above. The escape sequence \b has a different
meaning inside a character class; it matches the backspace character.
The sequences \B, \N, \R, and \X are not special inside a character
class. Like any other unrecognized escape sequences, they are treated
as the literal characters "B", "N", "R", and "X" by default, but cause
an error if the PCRE_EXTRA option is set.
A circumflex can conveniently be used with the upper case character
types to specify a more restricted set of characters than the matching
lower case type. For example, the class [^\W_] matches any letter or
digit, but not underscore, whereas [\w] includes underscore. A positive
character class should be read as "something OR something OR ..." and a
negative class as "NOT something AND NOT something AND NOT ...".
The only metacharacters that are recognized in character classes are
backslash, hyphen (only where it can be interpreted as specifying a
range), circumflex (only at the start), opening square bracket (only
when it can be interpreted as introducing a POSIX class name, or for a
special compatibility feature - see the next two sections), and the
terminating closing square bracket. However, escaping other non-
alphanumeric characters does no harm.
POSIX CHARACTER CLASSES
Perl supports the POSIX notation for character classes. This uses names
enclosed by [: and :] within the enclosing square brackets. PCRE also
supports this notation. For example,
[01[:alpha:]%]
matches "0", "1", any alphabetic character, or "%". The supported class
names are:
alnum letters and digits
alpha letters
ascii character codes 0 - 127
blank space or tab only
cntrl control characters
digit decimal digits (same as \d)
graph printing characters, excluding space
lower lower case letters
print printing characters, including space
punct printing characters, excluding letters and digits and space
space white space (the same as \s from PCRE 8.34)
upper upper case letters
word "word" characters (same as \w)
xdigit hexadecimal digits
The default "space" characters are HT (9), LF (10), VT (11), FF (12),
CR (13), and space (32). If locale-specific matching is taking place,
the list of space characters may be different; there may be fewer or
more of them. "Space" used to be different to \s, which did not include
VT, for Perl compatibility. However, Perl changed at release 5.18, and
PCRE followed at release 8.34. "Space" and \s now match the same set
of characters.
The name "word" is a Perl extension, and "blank" is a GNU extension
from Perl 5.8. Another Perl extension is negation, which is indicated
by a ^ character after the colon. For example,
[12[:^digit:]]
matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the
POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but
these are not supported, and an error is given if they are encountered.
By default, characters with values greater than 128 do not match any of
the POSIX character classes. However, if the PCRE_UCP option is passed
to pcre_compile(), some of the classes are changed so that Unicode
character properties are used. This is achieved by replacing certain
POSIX classes by other sequences, as follows:
[:alnum:] becomes \p{Xan}
[:alpha:] becomes \p{L}
[:blank:] becomes \h
[:digit:] becomes \p{Nd}
[:lower:] becomes \p{Ll}
[:space:] becomes \p{Xps}
[:upper:] becomes \p{Lu}
[:word:] becomes \p{Xwd}
Negated versions, such as [:^alpha:] use \P instead of \p. Three other
POSIX classes are handled specially in UCP mode:
[:graph:] This matches characters that have glyphs that mark the page
when printed. In Unicode property terms, it matches all char-
acters with the L, M, N, P, S, or Cf properties, except for:
U+061C Arabic Letter Mark
U+180E Mongolian Vowel Separator
U+2066 - U+2069 Various "isolate"s
[:print:] This matches the same characters as [:graph:] plus space
characters that are not controls, that is, characters with
the Zs property.
[:punct:] This matches all characters that have the Unicode P (punctua-
tion) property, plus those characters whose code points are
less than 128 that have the S (Symbol) property.
The other POSIX classes are unchanged, and match only characters with
code points less than 128.
COMPATIBILITY FEATURE FOR WORD BOUNDARIES
In the POSIX.2 compliant library that was included in 4.4BSD Unix, the
ugly syntax [[:<:]] and [[:>:]] is used for matching "start of word"
and "end of word". PCRE treats these items as follows:
[[:<:]] is converted to \b(?=\w)
[[:>:]] is converted to \b(?<=\w)
Only these exact character sequences are recognized. A sequence such as
[a[:<:]b] provokes error for an unrecognized POSIX class name. This
support is not compatible with Perl. It is provided to help migrations
from other environments, and is best not used in any new patterns. Note
that \b matches at the start and the end of a word (see "Simple asser-
tions" above), and in a Perl-style pattern the preceding or following
character normally shows which is wanted, without the need for the
assertions that are used above in order to give exactly the POSIX be-
haviour.
VERTICAL BAR
Vertical bar characters are used to separate alternative patterns. For
example, the pattern
gilbert|sullivan
matches either "gilbert" or "sullivan". Any number of alternatives may
appear, and an empty alternative is permitted (matching the empty
string). The matching process tries each alternative in turn, from left
to right, and the first one that succeeds is used. If the alternatives
are within a subpattern (defined below), "succeeds" means matching the
rest of the main pattern as well as the alternative in the subpattern.
INTERNAL OPTION SETTING
The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and
PCRE_EXTENDED options (which are Perl-compatible) can be changed from
within the pattern by a sequence of Perl option letters enclosed
between "(?" and ")". The option letters are
i for PCRE_CASELESS
m for PCRE_MULTILINE
s for PCRE_DOTALL
x for PCRE_EXTENDED
For example, (?im) sets caseless, multiline matching. It is also possi-
ble to unset these options by preceding the letter with a hyphen, and a
combined setting and unsetting such as (?im-sx), which sets PCRE_CASE-
LESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED,
is also permitted. If a letter appears both before and after the
hyphen, the option is unset.
The PCRE-specific options PCRE_DUPNAMES, PCRE_UNGREEDY, and PCRE_EXTRA
can be changed in the same way as the Perl-compatible options by using
the characters J, U and X respectively.
When one of these option changes occurs at top level (that is, not
inside subpattern parentheses), the change applies to the remainder of
the pattern that follows. An option change within a subpattern (see
below for a description of subpatterns) affects only that part of the
subpattern that follows it, so
(a(?i)b)c
matches abc and aBc and no other strings (assuming PCRE_CASELESS is not
used). By this means, options can be made to have different settings
in different parts of the pattern. Any changes made in one alternative
do carry on into subsequent branches within the same subpattern. For
example,
(a(?i)b|c)
matches "ab", "aB", "c", and "C", even though when matching "C" the
first branch is abandoned before the option setting. This is because
the effects of option settings happen at compile time. There would be
some very weird behaviour otherwise.
Note: There are other PCRE-specific options that can be set by the
application when the compiling or matching functions are called. In
some cases the pattern can contain special leading sequences such as
(*CRLF) to override what the application has set or what has been
defaulted. Details are given in the section entitled "Newline
sequences" above. There are also the (*UTF8), (*UTF16),(*UTF32), and
(*UCP) leading sequences that can be used to set UTF and Unicode prop-
erty modes; they are equivalent to setting the PCRE_UTF8, PCRE_UTF16,
PCRE_UTF32 and the PCRE_UCP options, respectively. The (*UTF) sequence
is a generic version that can be used with any of the libraries. How-
ever, the application can set the PCRE_NEVER_UTF option, which locks
out the use of the (*UTF) sequences.
SUBPATTERNS
Subpatterns are delimited by parentheses (round brackets), which can be
nested. Turning part of a pattern into a subpattern does two things:
1. It localizes a set of alternatives. For example, the pattern
cat(aract|erpillar|)
matches "cataract", "caterpillar", or "cat". Without the parentheses,
it would match "cataract", "erpillar" or an empty string.
2. It sets up the subpattern as a capturing subpattern. This means
that, when the whole pattern matches, that portion of the subject
string that matched the subpattern is passed back to the caller via the
ovector argument of the matching function. (This applies only to the
traditional matching functions; the DFA matching functions do not sup-
port capturing.)
Opening parentheses are counted from left to right (starting from 1) to
obtain numbers for the capturing subpatterns. For example, if the
string "the red king" is matched against the pattern
the ((red|white) (king|queen))
the captured substrings are "red king", "red", and "king", and are num-
bered 1, 2, and 3, respectively.
The fact that plain parentheses fulfil two functions is not always
helpful. There are often times when a grouping subpattern is required
without a capturing requirement. If an opening parenthesis is followed
by a question mark and a colon, the subpattern does not do any captur-
ing, and is not counted when computing the number of any subsequent
capturing subpatterns. For example, if the string "the white queen" is
matched against the pattern
the ((?:red|white) (king|queen))
the captured substrings are "white queen" and "queen", and are numbered
1 and 2. The maximum number of capturing subpatterns is 65535.
As a convenient shorthand, if any option settings are required at the
start of a non-capturing subpattern, the option letters may appear
between the "?" and the ":". Thus the two patterns
(?i:saturday|sunday)
(?:(?i)saturday|sunday)
match exactly the same set of strings. Because alternative branches are
tried from left to right, and options are not reset until the end of
the subpattern is reached, an option setting in one branch does affect
subsequent branches, so the above patterns match "SUNDAY" as well as
"Saturday".
DUPLICATE SUBPATTERN NUMBERS
Perl 5.10 introduced a feature whereby each alternative in a subpattern
uses the same numbers for its capturing parentheses. Such a subpattern
starts with (?| and is itself a non-capturing subpattern. For example,
consider this pattern:
(?|(Sat)ur|(Sun))day
Because the two alternatives are inside a (?| group, both sets of cap-
turing parentheses are numbered one. Thus, when the pattern matches,
you can look at captured substring number one, whichever alternative
matched. This construct is useful when you want to capture part, but
not all, of one of a number of alternatives. Inside a (?| group, paren-
theses are numbered as usual, but the number is reset at the start of
each branch. The numbers of any capturing parentheses that follow the
subpattern start after the highest number used in any branch. The fol-
lowing example is taken from the Perl documentation. The numbers under-
neath show in which buffer the captured content will be stored.
# before ---------------branch-reset----------- after
/ ( a ) (?| x ( y ) z | (p (q) r) | (t) u (v) ) ( z ) /x
# 1 2 2 3 2 3 4
A back reference to a numbered subpattern uses the most recent value
that is set for that number by any subpattern. The following pattern
matches "abcabc" or "defdef":
/(?|(abc)|(def))\1/
In contrast, a subroutine call to a numbered subpattern always refers
to the first one in the pattern with the given number. The following
pattern matches "abcabc" or "defabc":
/(?|(abc)|(def))(?1)/
If a condition test for a subpattern's having matched refers to a non-
unique number, the test is true if any of the subpatterns of that num-
ber have matched.
An alternative approach to using this "branch reset" feature is to use
duplicate named subpatterns, as described in the next section.
NAMED SUBPATTERNS
Identifying capturing parentheses by number is simple, but it can be
very hard to keep track of the numbers in complicated regular expres-
sions. Furthermore, if an expression is modified, the numbers may
change. To help with this difficulty, PCRE supports the naming of sub-
patterns. This feature was not added to Perl until release 5.10. Python
had the feature earlier, and PCRE introduced it at release 4.0, using
the Python syntax. PCRE now supports both the Perl and the Python syn-
tax. Perl allows identically numbered subpatterns to have different
names, but PCRE does not.
In PCRE, a subpattern can be named in one of three ways: (?<name>...)
or (?'name'...) as in Perl, or (?P<name>...) as in Python. References
to capturing parentheses from other parts of the pattern, such as back
references, recursion, and conditions, can be made by name as well as
by number.
Names consist of up to 32 alphanumeric characters and underscores, but
must start with a non-digit. Named capturing parentheses are still
allocated numbers as well as names, exactly as if the names were not
present. The PCRE API provides function calls for extracting the name-
to-number translation table from a compiled pattern. There is also a
convenience function for extracting a captured substring by name.
By default, a name must be unique within a pattern, but it is possible
to relax this constraint by setting the PCRE_DUPNAMES option at compile
time. (Duplicate names are also always permitted for subpatterns with
the same number, set up as described in the previous section.) Dupli-
cate names can be useful for patterns where only one instance of the
named parentheses can match. Suppose you want to match the name of a
weekday, either as a 3-letter abbreviation or as the full name, and in
both cases you want to extract the abbreviation. This pattern (ignoring
the line breaks) does the job:
(?<DN>Mon|Fri|Sun)(?:day)?|
(?<DN>Tue)(?:sday)?|
(?<DN>Wed)(?:nesday)?|
(?<DN>Thu)(?:rsday)?|
(?<DN>Sat)(?:urday)?
There are five capturing substrings, but only one is ever set after a
match. (An alternative way of solving this problem is to use a "branch
reset" subpattern, as described in the previous section.)
The convenience function for extracting the data by name returns the
substring for the first (and in this example, the only) subpattern of
that name that matched. This saves searching to find which numbered
subpattern it was.
If you make a back reference to a non-unique named subpattern from
elsewhere in the pattern, the subpatterns to which the name refers are
checked in the order in which they appear in the overall pattern. The
first one that is set is used for the reference. For example, this pat-
tern matches both "foofoo" and "barbar" but not "foobar" or "barfoo":
(?:(?<n>foo)|(?<n>bar))\k<n>
If you make a subroutine call to a non-unique named subpattern, the one
that corresponds to the first occurrence of the name is used. In the
absence of duplicate numbers (see the previous section) this is the one
with the lowest number.
If you use a named reference in a condition test (see the section about
conditions below), either to check whether a subpattern has matched, or
to check for recursion, all subpatterns with the same name are tested.
If the condition is true for any one of them, the overall condition is
true. This is the same behaviour as testing by number. For further
details of the interfaces for handling named subpatterns, see the
pcreapi documentation.
Warning: You cannot use different names to distinguish between two sub-
patterns with the same number because PCRE uses only the numbers when
matching. For this reason, an error is given at compile time if differ-
ent names are given to subpatterns with the same number. However, you
can always give the same name to subpatterns with the same number, even
when PCRE_DUPNAMES is not set.
REPETITION
Repetition is specified by quantifiers, which can follow any of the
following items:
a literal data character
the dot metacharacter
the \C escape sequence
the \X escape sequence
the \R escape sequence
an escape such as \d or \pL that matches a single character
a character class
a back reference (see next section)
a parenthesized subpattern (including assertions)
a subroutine call to a subpattern (recursive or otherwise)
The general repetition quantifier specifies a minimum and maximum num-
ber of permitted matches, by giving the two numbers in curly brackets
(braces), separated by a comma. The numbers must be less than 65536,
and the first must be less than or equal to the second. For example:
z{2,4}
matches "zz", "zzz", or "zzzz". A closing brace on its own is not a
special character. If the second number is omitted, but the comma is
present, there is no upper limit; if the second number and the comma
are both omitted, the quantifier specifies an exact number of required
matches. Thus
[aeiou]{3,}
matches at least 3 successive vowels, but may match many more, while
\d{8}
matches exactly 8 digits. An opening curly bracket that appears in a
position where a quantifier is not allowed, or one that does not match
the syntax of a quantifier, is taken as a literal character. For exam-
ple, {,6} is not a quantifier, but a literal string of four characters.
In UTF modes, quantifiers apply to characters rather than to individual
data units. Thus, for example, \x{100}{2} matches two characters, each
of which is represented by a two-byte sequence in a UTF-8 string. Simi-
larly, \X{3} matches three Unicode extended grapheme clusters, each of
which may be several data units long (and they may be of different
lengths).
The quantifier {0} is permitted, causing the expression to behave as if
the previous item and the quantifier were not present. This may be use-
ful for subpatterns that are referenced as subroutines from elsewhere
in the pattern (but see also the section entitled "Defining subpatterns
for use by reference only" below). Items other than subpatterns that
have a {0} quantifier are omitted from the compiled pattern.
For convenience, the three most common quantifiers have single-charac-
ter abbreviations:
* is equivalent to {0,}
+ is equivalent to {1,}
? is equivalent to {0,1}
It is possible to construct infinite loops by following a subpattern
that can match no characters with a quantifier that has no upper limit,
for example:
(a?)*
Earlier versions of Perl and PCRE used to give an error at compile time
for such patterns. However, because there are cases where this can be
useful, such patterns are now accepted, but if any repetition of the
subpattern does in fact match no characters, the loop is forcibly bro-
ken.
By default, the quantifiers are "greedy", that is, they match as much
as possible (up to the maximum number of permitted times), without
causing the rest of the pattern to fail. The classic example of where
this gives problems is in trying to match comments in C programs. These
appear between /* and */ and within the comment, individual * and /
characters may appear. An attempt to match C comments by applying the
pattern
/\*.*\*/
to the string
/* first comment */ not comment /* second comment */
fails, because it matches the entire string owing to the greediness of
the .* item.
However, if a quantifier is followed by a question mark, it ceases to
be greedy, and instead matches the minimum number of times possible, so
the pattern
/\*.*?\*/
does the right thing with the C comments. The meaning of the various
quantifiers is not otherwise changed, just the preferred number of
matches. Do not confuse this use of question mark with its use as a
quantifier in its own right. Because it has two uses, it can sometimes
appear doubled, as in
\d??\d
which matches one digit by preference, but can match two if that is the
only way the rest of the pattern matches.
If the PCRE_UNGREEDY option is set (an option that is not available in
Perl), the quantifiers are not greedy by default, but individual ones
can be made greedy by following them with a question mark. In other
words, it inverts the default behaviour.
When a parenthesized subpattern is quantified with a minimum repeat
count that is greater than 1 or with a limited maximum, more memory is
required for the compiled pattern, in proportion to the size of the
minimum or maximum.
If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equiv-
alent to Perl's /s) is set, thus allowing the dot to match newlines,
the pattern is implicitly anchored, because whatever follows will be
tried against every character position in the subject string, so there
is no point in retrying the overall match at any position after the
first. PCRE normally treats such a pattern as though it were preceded
by \A.
In cases where it is known that the subject string contains no new-
lines, it is worth setting PCRE_DOTALL in order to obtain this opti-
mization, or alternatively using ^ to indicate anchoring explicitly.
However, there are some cases where the optimization cannot be used.
When .* is inside capturing parentheses that are the subject of a back
reference elsewhere in the pattern, a match at the start may fail where
a later one succeeds. Consider, for example:
(.*)abc\1
If the subject is "xyz123abc123" the match point is the fourth charac-
ter. For this reason, such a pattern is not implicitly anchored.
Another case where implicit anchoring is not applied is when the lead-
ing .* is inside an atomic group. Once again, a match at the start may
fail where a later one succeeds. Consider this pattern:
(?>.*?a)b
It matches "ab" in the subject "aab". The use of the backtracking con-
trol verbs (*PRUNE) and (*SKIP) also disable this optimization.
When a capturing subpattern is repeated, the value captured is the sub-
string that matched the final iteration. For example, after
(tweedle[dume]{3}\s*)+
has matched "tweedledum tweedledee" the value of the captured substring
is "tweedledee". However, if there are nested capturing subpatterns,
the corresponding captured values may have been set in previous itera-
tions. For example, after
/(a|(b))+/
matches "aba" the value of the second captured substring is "b".
ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS
With both maximizing ("greedy") and minimizing ("ungreedy" or "lazy")
repetition, failure of what follows normally causes the repeated item
to be re-evaluated to see if a different number of repeats allows the
rest of the pattern to match. Sometimes it is useful to prevent this,
either to change the nature of the match, or to cause it fail earlier
than it otherwise might, when the author of the pattern knows there is
no point in carrying on.
Consider, for example, the pattern \d+foo when applied to the subject
line
123456bar
After matching all 6 digits and then failing to match "foo", the normal
action of the matcher is to try again with only 5 digits matching the
\d+ item, and then with 4, and so on, before ultimately failing.
"Atomic grouping" (a term taken from Jeffrey Friedl's book) provides
the means for specifying that once a subpattern has matched, it is not
to be re-evaluated in this way.
If we use atomic grouping for the previous example, the matcher gives
up immediately on failing to match "foo" the first time. The notation
is a kind of special parenthesis, starting with (?> as in this example:
(?>\d+)foo
This kind of parenthesis "locks up" the part of the pattern it con-
tains once it has matched, and a failure further into the pattern is
prevented from backtracking into it. Backtracking past it to previous
items, however, works as normal.
An alternative description is that a subpattern of this type matches
the string of characters that an identical standalone pattern would
match, if anchored at the current point in the subject string.
Atomic grouping subpatterns are not capturing subpatterns. Simple cases
such as the above example can be thought of as a maximizing repeat that
must swallow everything it can. So, while both \d+ and \d+? are pre-
pared to adjust the number of digits they match in order to make the
rest of the pattern match, (?>\d+) can only match an entire sequence of
digits.
Atomic groups in general can of course contain arbitrarily complicated
subpatterns, and can be nested. However, when the subpattern for an
atomic group is just a single repeated item, as in the example above, a
simpler notation, called a "possessive quantifier" can be used. This
consists of an additional + character following a quantifier. Using
this notation, the previous example can be rewritten as
\d++foo
Note that a possessive quantifier can be used with an entire group, for
example:
(abc|xyz){2,3}+
Possessive quantifiers are always greedy; the setting of the
PCRE_UNGREEDY option is ignored. They are a convenient notation for the
simpler forms of atomic group. However, there is no difference in the
meaning of a possessive quantifier and the equivalent atomic group,
though there may be a performance difference; possessive quantifiers
should be slightly faster.
The possessive quantifier syntax is an extension to the Perl 5.8 syn-
tax. Jeffrey Friedl originated the idea (and the name) in the first
edition of his book. Mike McCloskey liked it, so implemented it when he
built Sun's Java package, and PCRE copied it from there. It ultimately
found its way into Perl at release 5.10.
PCRE has an optimization that automatically "possessifies" certain sim-
ple pattern constructs. For example, the sequence A+B is treated as
A++B because there is no point in backtracking into a sequence of A's
when B must follow.
When a pattern contains an unlimited repeat inside a subpattern that
can itself be repeated an unlimited number of times, the use of an
atomic group is the only way to avoid some failing matches taking a
very long time indeed. The pattern
(\D+|<\d+>)*[!?]
matches an unlimited number of substrings that either consist of non-
digits, or digits enclosed in <>, followed by either ! or ?. When it
matches, it runs quickly. However, if it is applied to
aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
it takes a long time before reporting failure. This is because the
string can be divided between the internal \D+ repeat and the external
* repeat in a large number of ways, and all have to be tried. (The
example uses [!?] rather than a single character at the end, because
both PCRE and Perl have an optimization that allows for fast failure
when a single character is used. They remember the last single charac-
ter that is required for a match, and fail early if it is not present
in the string.) If the pattern is changed so that it uses an atomic
group, like this:
((?>\D+)|<\d+>)*[!?]
sequences of non-digits cannot be broken, and failure happens quickly.
BACK REFERENCES
Outside a character class, a backslash followed by a digit greater than
0 (and possibly further digits) is a back reference to a capturing sub-
pattern earlier (that is, to its left) in the pattern, provided there
have been that many previous capturing left parentheses.
However, if the decimal number following the backslash is less than 10,
it is always taken as a back reference, and causes an error only if
there are not that many capturing left parentheses in the entire pat-
tern. In other words, the parentheses that are referenced need not be
to the left of the reference for numbers less than 10. A "forward back
reference" of this type can make sense when a repetition is involved
and the subpattern to the right has participated in an earlier itera-
tion.
It is not possible to have a numerical "forward back reference" to a
subpattern whose number is 10 or more using this syntax because a
sequence such as \50 is interpreted as a character defined in octal.
See the subsection entitled "Non-printing characters" above for further
details of the handling of digits following a backslash. There is no
such problem when named parentheses are used. A back reference to any
subpattern is possible using named parentheses (see below).
Another way of avoiding the ambiguity inherent in the use of digits
following a backslash is to use the \g escape sequence. This escape
must be followed by an unsigned number or a negative number, optionally
enclosed in braces. These examples are all identical:
(ring), \1
(ring), \g1
(ring), \g{1}
An unsigned number specifies an absolute reference without the ambigu-
ity that is present in the older syntax. It is also useful when literal
digits follow the reference. A negative number is a relative reference.
Consider this example:
(abc(def)ghi)\g{-1}
The sequence \g{-1} is a reference to the most recently started captur-
ing subpattern before \g, that is, is it equivalent to \2 in this exam-
ple. Similarly, \g{-2} would be equivalent to \1. The use of relative
references can be helpful in long patterns, and also in patterns that
are created by joining together fragments that contain references
within themselves.
A back reference matches whatever actually matched the capturing sub-
pattern in the current subject string, rather than anything matching
the subpattern itself (see "Subpatterns as subroutines" below for a way
of doing that). So the pattern
(sens|respons)e and \1ibility
matches "sense and sensibility" and "response and responsibility", but
not "sense and responsibility". If caseful matching is in force at the
time of the back reference, the case of letters is relevant. For exam-
ple,
((?i)rah)\s+\1
matches "rah rah" and "RAH RAH", but not "RAH rah", even though the
original capturing subpattern is matched caselessly.
There are several different ways of writing back references to named
subpatterns. The .NET syntax \k{name} and the Perl syntax \k<name> or
\k'name' are supported, as is the Python syntax (?P=name). Perl 5.10's
unified back reference syntax, in which \g can be used for both numeric
and named references, is also supported. We could rewrite the above
example in any of the following ways:
(?<p1>(?i)rah)\s+\k<p1>
(?'p1'(?i)rah)\s+\k{p1}
(?P<p1>(?i)rah)\s+(?P=p1)
(?<p1>(?i)rah)\s+\g{p1}
A subpattern that is referenced by name may appear in the pattern
before or after the reference.
There may be more than one back reference to the same subpattern. If a
subpattern has not actually been used in a particular match, any back
references to it always fail by default. For example, the pattern
(a|(bc))\2
always fails if it starts to match "a" rather than "bc". However, if
the PCRE_JAVASCRIPT_COMPAT option is set at compile time, a back refer-
ence to an unset value matches an empty string.
Because there may be many capturing parentheses in a pattern, all dig-
its following a backslash are taken as part of a potential back refer-
ence number. If the pattern continues with a digit character, some
delimiter must be used to terminate the back reference. If the
PCRE_EXTENDED option is set, this can be white space. Otherwise, the
\g{ syntax or an empty comment (see "Comments" below) can be used.
Recursive back references
A back reference that occurs inside the parentheses to which it refers
fails when the subpattern is first used, so, for example, (a\1) never
matches. However, such references can be useful inside repeated sub-
patterns. For example, the pattern
(a|b\1)+
matches any number of "a"s and also "aba", "ababbaa" etc. At each iter-
ation of the subpattern, the back reference matches the character
string corresponding to the previous iteration. In order for this to
work, the pattern must be such that the first iteration does not need
to match the back reference. This can be done using alternation, as in
the example above, or by a quantifier with a minimum of zero.
Back references of this type cause the group that they reference to be
treated as an atomic group. Once the whole group has been matched, a
subsequent matching failure cannot cause backtracking into the middle
of the group.
ASSERTIONS
An assertion is a test on the characters following or preceding the
current matching point that does not actually consume any characters.
The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are
described above.
More complicated assertions are coded as subpatterns. There are two
kinds: those that look ahead of the current position in the subject
string, and those that look behind it. An assertion subpattern is
matched in the normal way, except that it does not cause the current
matching position to be changed.
Assertion subpatterns are not capturing subpatterns. If such an asser-
tion contains capturing subpatterns within it, these are counted for
the purposes of numbering the capturing subpatterns in the whole pat-
tern. However, substring capturing is carried out only for positive
assertions. (Perl sometimes, but not always, does do capturing in nega-
tive assertions.)
WARNING: If a positive assertion containing one or more capturing sub-
patterns succeeds, but failure to match later in the pattern causes
backtracking over this assertion, the captures within the assertion are
reset only if no higher numbered captures are already set. This is,
unfortunately, a fundamental limitation of the current implementation,
and as PCRE1 is now in maintenance-only status, it is unlikely ever to
change.
For compatibility with Perl, assertion subpatterns may be repeated;
though it makes no sense to assert the same thing several times, the
side effect of capturing parentheses may occasionally be useful. In
practice, there only three cases:
(1) If the quantifier is {0}, the assertion is never obeyed during
matching. However, it may contain internal capturing parenthesized
groups that are called from elsewhere via the subroutine mechanism.
(2) If quantifier is {0,n} where n is greater than zero, it is treated
as if it were {0,1}. At run time, the rest of the pattern match is
tried with and without the assertion, the order depending on the greed-
iness of the quantifier.
(3) If the minimum repetition is greater than zero, the quantifier is
ignored. The assertion is obeyed just once when encountered during
matching.
Lookahead assertions
Lookahead assertions start with (?= for positive assertions and (?! for
negative assertions. For example,
\w+(?=;)
matches a word followed by a semicolon, but does not include the semi-
colon in the match, and
foo(?!bar)
matches any occurrence of "foo" that is not followed by "bar". Note
that the apparently similar pattern
(?!foo)bar
does not find an occurrence of "bar" that is preceded by something
other than "foo"; it finds any occurrence of "bar" whatsoever, because
the assertion (?!foo) is always true when the next three characters are
"bar". A lookbehind assertion is needed to achieve the other effect.
If you want to force a matching failure at some point in a pattern, the
most convenient way to do it is with (?!) because an empty string
always matches, so an assertion that requires there not to be an empty
string must always fail. The backtracking control verb (*FAIL) or (*F)
is a synonym for (?!).
Lookbehind assertions
Lookbehind assertions start with (?<= for positive assertions and (?<!
for negative assertions. For example,
(?<!foo)bar
does find an occurrence of "bar" that is not preceded by "foo". The
contents of a lookbehind assertion are restricted such that all the
strings it matches must have a fixed length. However, if there are sev-
eral top-level alternatives, they do not all have to have the same
fixed length. Thus
(?<=bullock|donkey)
is permitted, but
(?<!dogs?|cats?)
causes an error at compile time. Branches that match different length
strings are permitted only at the top level of a lookbehind assertion.
This is an extension compared with Perl, which requires all branches to
match the same length of string. An assertion such as
(?<=ab(c|de))
is not permitted, because its single top-level branch can match two
different lengths, but it is acceptable to PCRE if rewritten to use two
top-level branches:
(?<=abc|abde)
In some cases, the escape sequence \K (see above) can be used instead
of a lookbehind assertion to get round the fixed-length restriction.
The implementation of lookbehind assertions is, for each alternative,
to temporarily move the current position back by the fixed length and
then try to match. If there are insufficient characters before the cur-
rent position, the assertion fails.
In a UTF mode, PCRE does not allow the \C escape (which matches a sin-
gle data unit even in a UTF mode) to appear in lookbehind assertions,
because it makes it impossible to calculate the length of the lookbe-
hind. The \X and \R escapes, which can match different numbers of data
units, are also not permitted.
"Subroutine" calls (see below) such as (?2) or (?&X) are permitted in
lookbehinds, as long as the subpattern matches a fixed-length string.
Recursion, however, is not supported.
Possessive quantifiers can be used in conjunction with lookbehind
assertions to specify efficient matching of fixed-length strings at the
end of subject strings. Consider a simple pattern such as
abcd$
when applied to a long string that does not match. Because matching
proceeds from left to right, PCRE will look for each "a" in the subject
and then see if what follows matches the rest of the pattern. If the
pattern is specified as
^.*abcd$
the initial .* matches the entire string at first, but when this fails
(because there is no following "a"), it backtracks to match all but the
last character, then all but the last two characters, and so on. Once
again the search for "a" covers the entire string, from right to left,
so we are no better off. However, if the pattern is written as
^.*+(?<=abcd)
there can be no backtracking for the .*+ item; it can match only the
entire string. The subsequent lookbehind assertion does a single test
on the last four characters. If it fails, the match fails immediately.
For long strings, this approach makes a significant difference to the
processing time.
Using multiple assertions
Several assertions (of any sort) may occur in succession. For example,
(?<=\d{3})(?<!999)foo
matches "foo" preceded by three digits that are not "999". Notice that
each of the assertions is applied independently at the same point in
the subject string. First there is a check that the previous three
characters are all digits, and then there is a check that the same
three characters are not "999". This pattern does not match "foo" pre-
ceded by six characters, the first of which are digits and the last
three of which are not "999". For example, it doesn't match "123abc-
foo". A pattern to do that is
(?<=\d{3}...)(?<!999)foo
This time the first assertion looks at the preceding six characters,
checking that the first three are digits, and then the second assertion
checks that the preceding three characters are not "999".
Assertions can be nested in any combination. For example,
(?<=(?<!foo)bar)baz
matches an occurrence of "baz" that is preceded by "bar" which in turn
is not preceded by "foo", while
(?<=\d{3}(?!999)...)foo
is another pattern that matches "foo" preceded by three digits and any
three characters that are not "999".
CONDITIONAL SUBPATTERNS
It is possible to cause the matching process to obey a subpattern con-
ditionally or to choose between two alternative subpatterns, depending
on the result of an assertion, or whether a specific capturing subpat-
tern has already been matched. The two possible forms of conditional
subpattern are:
(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)
If the condition is satisfied, the yes-pattern is used; otherwise the
no-pattern (if present) is used. If there are more than two alterna-
tives in the subpattern, a compile-time error occurs. Each of the two
alternatives may itself contain nested subpatterns of any form, includ-
ing conditional subpatterns; the restriction to two alternatives
applies only at the level of the condition. This pattern fragment is an
example where the alternatives are complex:
(?(1) (A|B|C) | (D | (?(2)E|F) | E) )
There are four kinds of condition: references to subpatterns, refer-
ences to recursion, a pseudo-condition called DEFINE, and assertions.
Checking for a used subpattern by number
If the text between the parentheses consists of a sequence of digits,
the condition is true if a capturing subpattern of that number has pre-
viously matched. If there is more than one capturing subpattern with
the same number (see the earlier section about duplicate subpattern
numbers), the condition is true if any of them have matched. An alter-
native notation is to precede the digits with a plus or minus sign. In
this case, the subpattern number is relative rather than absolute. The
most recently opened parentheses can be referenced by (?(-1), the next
most recent by (?(-2), and so on. Inside loops it can also make sense
to refer to subsequent groups. The next parentheses to be opened can be
referenced as (?(+1), and so on. (The value zero in any of these forms
is not used; it provokes a compile-time error.)
Consider the following pattern, which contains non-significant white
space to make it more readable (assume the PCRE_EXTENDED option) and to
divide it into three parts for ease of discussion:
( \( )? [^()]+ (?(1) \) )
The first part matches an optional opening parenthesis, and if that
character is present, sets it as the first captured substring. The sec-
ond part matches one or more characters that are not parentheses. The
third part is a conditional subpattern that tests whether or not the
first set of parentheses matched. If they did, that is, if subject
started with an opening parenthesis, the condition is true, and so the
yes-pattern is executed and a closing parenthesis is required. Other-
wise, since no-pattern is not present, the subpattern matches nothing.
In other words, this pattern matches a sequence of non-parentheses,
optionally enclosed in parentheses.
If you were embedding this pattern in a larger one, you could use a
relative reference:
...other stuff... ( \( )? [^()]+ (?(-1) \) ) ...
This makes the fragment independent of the parentheses in the larger
pattern.
Checking for a used subpattern by name
Perl uses the syntax (?(<name>)...) or (?('name')...) to test for a
used subpattern by name. For compatibility with earlier versions of
PCRE, which had this facility before Perl, the syntax (?(name)...) is
also recognized.
Rewriting the above example to use a named subpattern gives this:
(?<OPEN> \( )? [^()]+ (?(<OPEN>) \) )
If the name used in a condition of this kind is a duplicate, the test
is applied to all subpatterns of the same name, and is true if any one
of them has matched.
Checking for pattern recursion
If the condition is the string (R), and there is no subpattern with the
name R, the condition is true if a recursive call to the whole pattern
or any subpattern has been made. If digits or a name preceded by amper-
sand follow the letter R, for example:
(?(R3)...) or (?(R&name)...)
the condition is true if the most recent recursion is into a subpattern
whose number or name is given. This condition does not check the entire
recursion stack. If the name used in a condition of this kind is a
duplicate, the test is applied to all subpatterns of the same name, and
is true if any one of them is the most recent recursion.
At "top level", all these recursion test conditions are false. The
syntax for recursive patterns is described below.
Defining subpatterns for use by reference only
If the condition is the string (DEFINE), and there is no subpattern
with the name DEFINE, the condition is always false. In this case,
there may be only one alternative in the subpattern. It is always
skipped if control reaches this point in the pattern; the idea of
DEFINE is that it can be used to define subroutines that can be refer-
enced from elsewhere. (The use of subroutines is described below.) For
example, a pattern to match an IPv4 address such as "192.168.23.245"
could be written like this (ignore white space and line breaks):
(?(DEFINE) (?<byte> 2[0-4]\d | 25[0-5] | 1\d\d | [1-9]?\d) )
\b (?&byte) (\.(?&byte)){3} \b
The first part of the pattern is a DEFINE group inside which a another
group named "byte" is defined. This matches an individual component of
an IPv4 address (a number less than 256). When matching takes place,
this part of the pattern is skipped because DEFINE acts like a false
condition. The rest of the pattern uses references to the named group
to match the four dot-separated components of an IPv4 address, insist-
ing on a word boundary at each end.
Assertion conditions
If the condition is not in any of the above formats, it must be an
assertion. This may be a positive or negative lookahead or lookbehind
assertion. Consider this pattern, again containing non-significant
white space, and with the two alternatives on the second line:
(?(?=[^a-z]*[a-z])
\d{2}-[a-z]{3}-\d{2} | \d{2}-\d{2}-\d{2} )
The condition is a positive lookahead assertion that matches an
optional sequence of non-letters followed by a letter. In other words,
it tests for the presence of at least one letter in the subject. If a
letter is found, the subject is matched against the first alternative;
otherwise it is matched against the second. This pattern matches
strings in one of the two forms dd-aaa-dd or dd-dd-dd, where aaa are
letters and dd are digits.
COMMENTS
There are two ways of including comments in patterns that are processed
by PCRE. In both cases, the start of the comment must not be in a char-
acter class, nor in the middle of any other sequence of related charac-
ters such as (?: or a subpattern name or number. The characters that
make up a comment play no part in the pattern matching.
The sequence (?# marks the start of a comment that continues up to the
next closing parenthesis. Nested parentheses are not permitted. If the
PCRE_EXTENDED option is set, an unescaped # character also introduces a
comment, which in this case continues to immediately after the next
newline character or character sequence in the pattern. Which charac-
ters are interpreted as newlines is controlled by the options passed to
a compiling function or by a special sequence at the start of the pat-
tern, as described in the section entitled "Newline conventions" above.
Note that the end of this type of comment is a literal newline sequence
in the pattern; escape sequences that happen to represent a newline do
not count. For example, consider this pattern when PCRE_EXTENDED is
set, and the default newline convention is in force:
abc #comment \n still comment
On encountering the # character, pcre_compile() skips along, looking
for a newline in the pattern. The sequence \n is still literal at this
stage, so it does not terminate the comment. Only an actual character
with the code value 0x0a (the default newline) does so.
RECURSIVE PATTERNS
Consider the problem of matching a string in parentheses, allowing for
unlimited nested parentheses. Without the use of recursion, the best
that can be done is to use a pattern that matches up to some fixed
depth of nesting. It is not possible to handle an arbitrary nesting
depth.
For some time, Perl has provided a facility that allows regular expres-
sions to recurse (amongst other things). It does this by interpolating
Perl code in the expression at run time, and the code can refer to the
expression itself. A Perl pattern using code interpolation to solve the
parentheses problem can be created like this:
$re = qr{\( (?: (?>[^()]+) | (?p{$re}) )* \)}x;
The (?p{...}) item interpolates Perl code at run time, and in this case
refers recursively to the pattern in which it appears.
Obviously, PCRE cannot support the interpolation of Perl code. Instead,
it supports special syntax for recursion of the entire pattern, and
also for individual subpattern recursion. After its introduction in
PCRE and Python, this kind of recursion was subsequently introduced
into Perl at release 5.10.
A special item that consists of (? followed by a number greater than
zero and a closing parenthesis is a recursive subroutine call of the
subpattern of the given number, provided that it occurs inside that
subpattern. (If not, it is a non-recursive subroutine call, which is
described in the next section.) The special item (?R) or (?0) is a
recursive call of the entire regular expression.
This PCRE pattern solves the nested parentheses problem (assume the
PCRE_EXTENDED option is set so that white space is ignored):
\( ( [^()]++ | (?R) )* \)
First it matches an opening parenthesis. Then it matches any number of
substrings which can either be a sequence of non-parentheses, or a
recursive match of the pattern itself (that is, a correctly parenthe-
sized substring). Finally there is a closing parenthesis. Note the use
of a possessive quantifier to avoid backtracking into sequences of non-
parentheses.
If this were part of a larger pattern, you would not want to recurse
the entire pattern, so instead you could use this:
( \( ( [^()]++ | (?1) )* \) )
We have put the pattern into parentheses, and caused the recursion to
refer to them instead of the whole pattern.
In a larger pattern, keeping track of parenthesis numbers can be
tricky. This is made easier by the use of relative references. Instead
of (?1) in the pattern above you can write (?-2) to refer to the second
most recently opened parentheses preceding the recursion. In other
words, a negative number counts capturing parentheses leftwards from
the point at which it is encountered.
It is also possible to refer to subsequently opened parentheses, by
writing references such as (?+2). However, these cannot be recursive
because the reference is not inside the parentheses that are refer-
enced. They are always non-recursive subroutine calls, as described in
the next section.
An alternative approach is to use named parentheses instead. The Perl
syntax for this is (?&name); PCRE's earlier syntax (?P>name) is also
supported. We could rewrite the above example as follows:
(?<pn> \( ( [^()]++ | (?&pn) )* \) )
If there is more than one subpattern with the same name, the earliest
one is used.
This particular example pattern that we have been looking at contains
nested unlimited repeats, and so the use of a possessive quantifier for
matching strings of non-parentheses is important when applying the pat-
tern to strings that do not match. For example, when this pattern is
applied to
(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa()
it yields "no match" quickly. However, if a possessive quantifier is
not used, the match runs for a very long time indeed because there are
so many different ways the + and * repeats can carve up the subject,
and all have to be tested before failure can be reported.
At the end of a match, the values of capturing parentheses are those
from the outermost level. If you want to obtain intermediate values, a
callout function can be used (see below and the pcrecallout documenta-
tion). If the pattern above is matched against
(ab(cd)ef)
the value for the inner capturing parentheses (numbered 2) is "ef",
which is the last value taken on at the top level. If a capturing sub-
pattern is not matched at the top level, its final captured value is
unset, even if it was (temporarily) set at a deeper level during the
matching process.
If there are more than 15 capturing parentheses in a pattern, PCRE has
to obtain extra memory to store data during a recursion, which it does
by using pcre_malloc, freeing it via pcre_free afterwards. If no memory
can be obtained, the match fails with the PCRE_ERROR_NOMEMORY error.
Do not confuse the (?R) item with the condition (R), which tests for
recursion. Consider this pattern, which matches text in angle brack-
ets, allowing for arbitrary nesting. Only digits are allowed in nested
brackets (that is, when recursing), whereas any characters are permit-
ted at the outer level.
< (?: (?(R) \d++ | [^<>]*+) | (?R)) * >
In this pattern, (?(R) is the start of a conditional subpattern, with
two different alternatives for the recursive and non-recursive cases.
The (?R) item is the actual recursive call.
Differences in recursion processing between PCRE and Perl
Recursion processing in PCRE differs from Perl in two important ways.
In PCRE (like Python, but unlike Perl), a recursive subpattern call is
always treated as an atomic group. That is, once it has matched some of
the subject string, it is never re-entered, even if it contains untried
alternatives and there is a subsequent matching failure. This can be
illustrated by the following pattern, which purports to match a palin-
dromic string that contains an odd number of characters (for example,
"a", "aba", "abcba", "abcdcba"):
^(.|(.)(?1)\2)$
The idea is that it either matches a single character, or two identical
characters surrounding a sub-palindrome. In Perl, this pattern works;
in PCRE it does not if the pattern is longer than three characters.
Consider the subject string "abcba":
At the top level, the first character is matched, but as it is not at
the end of the string, the first alternative fails; the second alterna-
tive is taken and the recursion kicks in. The recursive call to subpat-
tern 1 successfully matches the next character ("b"). (Note that the
beginning and end of line tests are not part of the recursion).
Back at the top level, the next character ("c") is compared with what
subpattern 2 matched, which was "a". This fails. Because the recursion
is treated as an atomic group, there are now no backtracking points,
and so the entire match fails. (Perl is able, at this point, to re-
enter the recursion and try the second alternative.) However, if the
pattern is written with the alternatives in the other order, things are
different:
^((.)(?1)\2|.)$
This time, the recursing alternative is tried first, and continues to
recurse until it runs out of characters, at which point the recursion
fails. But this time we do have another alternative to try at the
higher level. That is the big difference: in the previous case the
remaining alternative is at a deeper recursion level, which PCRE cannot
use.
To change the pattern so that it matches all palindromic strings, not
just those with an odd number of characters, it is tempting to change
the pattern to this:
^((.)(?1)\2|.?)$
Again, this works in Perl, but not in PCRE, and for the same reason.
When a deeper recursion has matched a single character, it cannot be
entered again in order to match an empty string. The solution is to
separate the two cases, and write out the odd and even cases as alter-
natives at the higher level:
^(?:((.)(?1)\2|)|((.)(?3)\4|.))
If you want to match typical palindromic phrases, the pattern has to
ignore all non-word characters, which can be done like this:
^\W*+(?:((.)\W*+(?1)\W*+\2|)|((.)\W*+(?3)\W*+\4|\W*+.\W*+))\W*+$
If run with the PCRE_CASELESS option, this pattern matches phrases such
as "A man, a plan, a canal: Panama!" and it works well in both PCRE and
Perl. Note the use of the possessive quantifier *+ to avoid backtrack-
ing into sequences of non-word characters. Without this, PCRE takes a
great deal longer (ten times or more) to match typical phrases, and
Perl takes so long that you think it has gone into a loop.
WARNING: The palindrome-matching patterns above work only if the sub-
ject string does not start with a palindrome that is shorter than the
entire string. For example, although "abcba" is correctly matched, if
the subject is "ababa", PCRE finds the palindrome "aba" at the start,
then fails at top level because the end of the string does not follow.
Once again, it cannot jump back into the recursion to try other alter-
natives, so the entire match fails.
The second way in which PCRE and Perl differ in their recursion pro-
cessing is in the handling of captured values. In Perl, when a subpat-
tern is called recursively or as a subpattern (see the next section),
it has no access to any values that were captured outside the recur-
sion, whereas in PCRE these values can be referenced. Consider this
pattern:
^(.)(\1|a(?2))
In PCRE, this pattern matches "bab". The first capturing parentheses
match "b", then in the second group, when the back reference \1 fails
to match "b", the second alternative matches "a" and then recurses. In
the recursion, \1 does now match "b" and so the whole match succeeds.
In Perl, the pattern fails to match because inside the recursive call
\1 cannot access the externally set value.
SUBPATTERNS AS SUBROUTINES
If the syntax for a recursive subpattern call (either by number or by
name) is used outside the parentheses to which it refers, it operates
like a subroutine in a programming language. The called subpattern may
be defined before or after the reference. A numbered reference can be
absolute or relative, as in these examples:
(...(absolute)...)...(?2)...
(...(relative)...)...(?-1)...
(...(?+1)...(relative)...
An earlier example pointed out that the pattern
(sens|respons)e and \1ibility
matches "sense and sensibility" and "response and responsibility", but
not "sense and responsibility". If instead the pattern
(sens|respons)e and (?1)ibility
is used, it does match "sense and responsibility" as well as the other
two strings. Another example is given in the discussion of DEFINE
above.
All subroutine calls, whether recursive or not, are always treated as
atomic groups. That is, once a subroutine has matched some of the sub-
ject string, it is never re-entered, even if it contains untried alter-
natives and there is a subsequent matching failure. Any capturing
parentheses that are set during the subroutine call revert to their
previous values afterwards.
Processing options such as case-independence are fixed when a subpat-
tern is defined, so if it is used as a subroutine, such options cannot
be changed for different calls. For example, consider this pattern:
(abc)(?i:(?-1))
It matches "abcabc". It does not match "abcABC" because the change of
processing option does not affect the called subpattern.
ONIGURUMA SUBROUTINE SYNTAX
For compatibility with Oniguruma, the non-Perl syntax \g followed by a
name or a number enclosed either in angle brackets or single quotes, is
an alternative syntax for referencing a subpattern as a subroutine,
possibly recursively. Here are two of the examples used above, rewrit-
ten using this syntax:
(?<pn> \( ( (?>[^()]+) | \g<pn> )* \) )
(sens|respons)e and \g'1'ibility
PCRE supports an extension to Oniguruma: if a number is preceded by a
plus or a minus sign it is taken as a relative reference. For example:
(abc)(?i:\g<-1>)
Note that \g{...} (Perl syntax) and \g<...> (Oniguruma syntax) are not
synonymous. The former is a back reference; the latter is a subroutine
call.
CALLOUTS
Perl has a feature whereby using the sequence (?{...}) causes arbitrary
Perl code to be obeyed in the middle of matching a regular expression.
This makes it possible, amongst other things, to extract different sub-
strings that match the same pair of parentheses when there is a repeti-
tion.
PCRE provides a similar feature, but of course it cannot obey arbitrary
Perl code. The feature is called "callout". The caller of PCRE provides
an external function by putting its entry point in the global variable
pcre_callout (8-bit library) or pcre[16|32]_callout (16-bit or 32-bit
library). By default, this variable contains NULL, which disables all
calling out.
Within a regular expression, (?C) indicates the points at which the
external function is to be called. If you want to identify different
callout points, you can put a number less than 256 after the letter C.
The default value is zero. For example, this pattern has two callout
points:
(?C1)abc(?C2)def
If the PCRE_AUTO_CALLOUT flag is passed to a compiling function, call-
outs are automatically installed before each item in the pattern. They
are all numbered 255. If there is a conditional group in the pattern
whose condition is an assertion, an additional callout is inserted just
before the condition. An explicit callout may also be set at this posi-
tion, as in this example:
(?(?C9)(?=a)abc|def)
Note that this applies only to assertion conditions, not to other types
of condition.
During matching, when PCRE reaches a callout point, the external func-
tion is called. It is provided with the number of the callout, the
position in the pattern, and, optionally, one item of data originally
supplied by the caller of the matching function. The callout function
may cause matching to proceed, to backtrack, or to fail altogether.
By default, PCRE implements a number of optimizations at compile time
and matching time, and one side-effect is that sometimes callouts are
skipped. If you need all possible callouts to happen, you need to set
options that disable the relevant optimizations. More details, and a
complete description of the interface to the callout function, are
given in the pcrecallout documentation.
BACKTRACKING CONTROL
Perl 5.10 introduced a number of "Special Backtracking Control Verbs",
which are still described in the Perl documentation as "experimental
and subject to change or removal in a future version of Perl". It goes
on to say: "Their usage in production code should be noted to avoid
problems during upgrades." The same remarks apply to the PCRE features
described in this section.
The new verbs make use of what was previously invalid syntax: an open-
ing parenthesis followed by an asterisk. They are generally of the form
(*VERB) or (*VERB:NAME). Some may take either form, possibly behaving
differently depending on whether or not a name is present. A name is
any sequence of characters that does not include a closing parenthesis.
The maximum length of name is 255 in the 8-bit library and 65535 in the
16-bit and 32-bit libraries. If the name is empty, that is, if the
closing parenthesis immediately follows the colon, the effect is as if
the colon were not there. Any number of these verbs may occur in a
pattern.
Since these verbs are specifically related to backtracking, most of
them can be used only when the pattern is to be matched using one of
the traditional matching functions, because these use a backtracking
algorithm. With the exception of (*FAIL), which behaves like a failing
negative assertion, the backtracking control verbs cause an error if
encountered by a DFA matching function.
The behaviour of these verbs in repeated groups, assertions, and in
subpatterns called as subroutines (whether or not recursively) is docu-
mented below.
Optimizations that affect backtracking verbs
PCRE contains some optimizations that are used to speed up matching by
running some checks at the start of each match attempt. For example, it
may know the minimum length of matching subject, or that a particular
character must be present. When one of these optimizations bypasses the
running of a match, any included backtracking verbs will not, of
course, be processed. You can suppress the start-of-match optimizations
by setting the PCRE_NO_START_OPTIMIZE option when calling pcre_com-
pile() or pcre_exec(), or by starting the pattern with (*NO_START_OPT).
There is more discussion of this option in the section entitled "Option
bits for pcre_exec()" in the pcreapi documentation.
Experiments with Perl suggest that it too has similar optimizations,
sometimes leading to anomalous results.
Verbs that act immediately
The following verbs act as soon as they are encountered. They may not
be followed by a name.
(*ACCEPT)
This verb causes the match to end successfully, skipping the remainder
of the pattern. However, when it is inside a subpattern that is called
as a subroutine, only that subpattern is ended successfully. Matching
then continues at the outer level. If (*ACCEPT) in triggered in a posi-
tive assertion, the assertion succeeds; in a negative assertion, the
assertion fails.
If (*ACCEPT) is inside capturing parentheses, the data so far is cap-
tured. For example:
A((?:A|B(*ACCEPT)|C)D)
This matches "AB", "AAD", or "ACD"; when it matches "AB", "B" is cap-
tured by the outer parentheses.
(*FAIL) or (*F)
This verb causes a matching failure, forcing backtracking to occur. It
is equivalent to (?!) but easier to read. The Perl documentation notes
that it is probably useful only when combined with (?{}) or (??{}).
Those are, of course, Perl features that are not present in PCRE. The
nearest equivalent is the callout feature, as for example in this pat-
tern:
a+(?C)(*FAIL)
A match with the string "aaaa" always fails, but the callout is taken
before each backtrack happens (in this example, 10 times).
Recording which path was taken
There is one verb whose main purpose is to track how a match was
arrived at, though it also has a secondary use in conjunction with
advancing the match starting point (see (*SKIP) below).
(*MARK:NAME) or (*:NAME)
A name is always required with this verb. There may be as many
instances of (*MARK) as you like in a pattern, and their names do not
have to be unique.
When a match succeeds, the name of the last-encountered (*MARK:NAME),
(*PRUNE:NAME), or (*THEN:NAME) on the matching path is passed back to
the caller as described in the section entitled "Extra data for
pcre_exec()" in the pcreapi documentation. Here is an example of
pcretest output, where the /K modifier requests the retrieval and out-
putting of (*MARK) data:
re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XY
0: XY
MK: A
XZ
0: XZ
MK: B
The (*MARK) name is tagged with "MK:" in this output, and in this exam-
ple it indicates which of the two alternatives matched. This is a more
efficient way of obtaining this information than putting each alterna-
tive in its own capturing parentheses.
If a verb with a name is encountered in a positive assertion that is
true, the name is recorded and passed back if it is the last-encoun-
tered. This does not happen for negative assertions or failing positive
assertions.
After a partial match or a failed match, the last encountered name in
the entire match process is returned. For example:
re> /X(*MARK:A)Y|X(*MARK:B)Z/K
data> XP
No match, mark = B
Note that in this unanchored example the mark is retained from the
match attempt that started at the letter "X" in the subject. Subsequent
match attempts starting at "P" and then with an empty string do not get
as far as the (*MARK) item, but nevertheless do not reset it.
If you are interested in (*MARK) values after failed matches, you
should probably set the PCRE_NO_START_OPTIMIZE option (see above) to
ensure that the match is always attempted.
Verbs that act after backtracking
The following verbs do nothing when they are encountered. Matching con-
tinues with what follows, but if there is no subsequent match, causing
a backtrack to the verb, a failure is forced. That is, backtracking
cannot pass to the left of the verb. However, when one of these verbs
appears inside an atomic group or an assertion that is true, its effect
is confined to that group, because once the group has been matched,
there is never any backtracking into it. In this situation, backtrack-
ing can "jump back" to the left of the entire atomic group or asser-
tion. (Remember also, as stated above, that this localization also
applies in subroutine calls.)
These verbs differ in exactly what kind of failure occurs when back-
tracking reaches them. The behaviour described below is what happens
when the verb is not in a subroutine or an assertion. Subsequent sec-
tions cover these special cases.
(*COMMIT)
This verb, which may not be followed by a name, causes the whole match
to fail outright if there is a later matching failure that causes back-
tracking to reach it. Even if the pattern is unanchored, no further
attempts to find a match by advancing the starting point take place. If
(*COMMIT) is the only backtracking verb that is encountered, once it
has been passed pcre_exec() is committed to finding a match at the cur-
rent starting point, or not at all. For example:
a+(*COMMIT)b
This matches "xxaab" but not "aacaab". It can be thought of as a kind
of dynamic anchor, or "I've started, so I must finish." The name of the
most recently passed (*MARK) in the path is passed back when (*COMMIT)
forces a match failure.
If there is more than one backtracking verb in a pattern, a different
one that follows (*COMMIT) may be triggered first, so merely passing
(*COMMIT) during a match does not always guarantee that a match must be
at this starting point.
Note that (*COMMIT) at the start of a pattern is not the same as an
anchor, unless PCRE's start-of-match optimizations are turned off, as
shown in this output from pcretest:
re> /(*COMMIT)abc/
data> xyzabc
0: abc
data> xyzabc\Y
No match
For this pattern, PCRE knows that any match must start with "a", so the
optimization skips along the subject to "a" before applying the pattern
to the first set of data. The match attempt then succeeds. In the sec-
ond set of data, the escape sequence \Y is interpreted by the pcretest
program. It causes the PCRE_NO_START_OPTIMIZE option to be set when
pcre_exec() is called. This disables the optimization that skips along
to the first character. The pattern is now applied starting at "x", and
so the (*COMMIT) causes the match to fail without trying any other
starting points.
(*PRUNE) or (*PRUNE:NAME)
This verb causes the match to fail at the current starting position in
the subject if there is a later matching failure that causes backtrack-
ing to reach it. If the pattern is unanchored, the normal "bumpalong"
advance to the next starting character then happens. Backtracking can
occur as usual to the left of (*PRUNE), before it is reached, or when
matching to the right of (*PRUNE), but if there is no match to the
right, backtracking cannot cross (*PRUNE). In simple cases, the use of
(*PRUNE) is just an alternative to an atomic group or possessive quan-
tifier, but there are some uses of (*PRUNE) that cannot be expressed in
any other way. In an anchored pattern (*PRUNE) has the same effect as
(*COMMIT).
The behaviour of (*PRUNE:NAME) is the not the same as
(*MARK:NAME)(*PRUNE). It is like (*MARK:NAME) in that the name is
remembered for passing back to the caller. However, (*SKIP:NAME)
searches only for names set with (*MARK).
(*SKIP)
This verb, when given without a name, is like (*PRUNE), except that if
the pattern is unanchored, the "bumpalong" advance is not to the next
character, but to the position in the subject where (*SKIP) was encoun-
tered. (*SKIP) signifies that whatever text was matched leading up to
it cannot be part of a successful match. Consider:
a+(*SKIP)b
If the subject is "aaaac...", after the first match attempt fails
(starting at the first character in the string), the starting point
skips on to start the next attempt at "c". Note that a possessive quan-
tifer does not have the same effect as this example; although it would
suppress backtracking during the first match attempt, the second
attempt would start at the second character instead of skipping on to
"c".
(*SKIP:NAME)
When (*SKIP) has an associated name, its behaviour is modified. When it
is triggered, the previous path through the pattern is searched for the
most recent (*MARK) that has the same name. If one is found, the
"bumpalong" advance is to the subject position that corresponds to that
(*MARK) instead of to where (*SKIP) was encountered. If no (*MARK) with
a matching name is found, the (*SKIP) is ignored.
Note that (*SKIP:NAME) searches only for names set by (*MARK:NAME). It
ignores names that are set by (*PRUNE:NAME) or (*THEN:NAME).
(*THEN) or (*THEN:NAME)
This verb causes a skip to the next innermost alternative when back-
tracking reaches it. That is, it cancels any further backtracking
within the current alternative. Its name comes from the observation
that it can be used for a pattern-based if-then-else block:
( COND1 (*THEN) FOO | COND2 (*THEN) BAR | COND3 (*THEN) BAZ ) ...
If the COND1 pattern matches, FOO is tried (and possibly further items
after the end of the group if FOO succeeds); on failure, the matcher
skips to the second alternative and tries COND2, without backtracking
into COND1. If that succeeds and BAR fails, COND3 is tried. If subse-
quently BAZ fails, there are no more alternatives, so there is a back-
track to whatever came before the entire group. If (*THEN) is not
inside an alternation, it acts like (*PRUNE).
The behaviour of (*THEN:NAME) is the not the same as
(*MARK:NAME)(*THEN). It is like (*MARK:NAME) in that the name is
remembered for passing back to the caller. However, (*SKIP:NAME)
searches only for names set with (*MARK).
A subpattern that does not contain a | character is just a part of the
enclosing alternative; it is not a nested alternation with only one
alternative. The effect of (*THEN) extends beyond such a subpattern to
the enclosing alternative. Consider this pattern, where A, B, etc. are
complex pattern fragments that do not contain any | characters at this
level:
A (B(*THEN)C) | D
If A and B are matched, but there is a failure in C, matching does not
backtrack into A; instead it moves to the next alternative, that is, D.
However, if the subpattern containing (*THEN) is given an alternative,
it behaves differently:
A (B(*THEN)C | (*FAIL)) | D
The effect of (*THEN) is now confined to the inner subpattern. After a
failure in C, matching moves to (*FAIL), which causes the whole subpat-
tern to fail because there are no more alternatives to try. In this
case, matching does now backtrack into A.
Note that a conditional subpattern is not considered as having two
alternatives, because only one is ever used. In other words, the |
character in a conditional subpattern has a different meaning. Ignoring
white space, consider:
^.*? (?(?=a) a | b(*THEN)c )
If the subject is "ba", this pattern does not match. Because .*? is
ungreedy, it initially matches zero characters. The condition (?=a)
then fails, the character "b" is matched, but "c" is not. At this
point, matching does not backtrack to .*? as might perhaps be expected
from the presence of the | character. The conditional subpattern is
part of the single alternative that comprises the whole pattern, and so
the match fails. (If there was a backtrack into .*?, allowing it to
match "b", the match would succeed.)
The verbs just described provide four different "strengths" of control
when subsequent matching fails. (*THEN) is the weakest, carrying on the
match at the next alternative. (*PRUNE) comes next, failing the match
at the current starting position, but allowing an advance to the next
character (for an unanchored pattern). (*SKIP) is similar, except that
the advance may be more than one character. (*COMMIT) is the strongest,
causing the entire match to fail.
More than one backtracking verb
If more than one backtracking verb is present in a pattern, the one
that is backtracked onto first acts. For example, consider this pat-
tern, where A, B, etc. are complex pattern fragments:
(A(*COMMIT)B(*THEN)C|ABD)
If A matches but B fails, the backtrack to (*COMMIT) causes the entire
match to fail. However, if A and B match, but C fails, the backtrack to
(*THEN) causes the next alternative (ABD) to be tried. This behaviour
is consistent, but is not always the same as Perl's. It means that if
two or more backtracking verbs appear in succession, all the the last
of them has no effect. Consider this example:
...(*COMMIT)(*PRUNE)...
If there is a matching failure to the right, backtracking onto (*PRUNE)
causes it to be triggered, and its action is taken. There can never be
a backtrack onto (*COMMIT).
Backtracking verbs in repeated groups
PCRE differs from Perl in its handling of backtracking verbs in
repeated groups. For example, consider:
/(a(*COMMIT)b)+ac/
If the subject is "abac", Perl matches, but PCRE fails because the
(*COMMIT) in the second repeat of the group acts.
Backtracking verbs in assertions
(*FAIL) in an assertion has its normal effect: it forces an immediate
backtrack.
(*ACCEPT) in a positive assertion causes the assertion to succeed with-
out any further processing. In a negative assertion, (*ACCEPT) causes
the assertion to fail without any further processing.
The other backtracking verbs are not treated specially if they appear
in a positive assertion. In particular, (*THEN) skips to the next
alternative in the innermost enclosing group that has alternations,
whether or not this is within the assertion.
Negative assertions are, however, different, in order to ensure that
changing a positive assertion into a negative assertion changes its
result. Backtracking into (*COMMIT), (*SKIP), or (*PRUNE) causes a neg-
ative assertion to be true, without considering any further alternative
branches in the assertion. Backtracking into (*THEN) causes it to skip
to the next enclosing alternative within the assertion (the normal be-
haviour), but if the assertion does not have such an alternative,
(*THEN) behaves like (*PRUNE).
Backtracking verbs in subroutines
These behaviours occur whether or not the subpattern is called recur-
sively. Perl's treatment of subroutines is different in some cases.
(*FAIL) in a subpattern called as a subroutine has its normal effect:
it forces an immediate backtrack.
(*ACCEPT) in a subpattern called as a subroutine causes the subroutine
match to succeed without any further processing. Matching then contin-
ues after the subroutine call.
(*COMMIT), (*SKIP), and (*PRUNE) in a subpattern called as a subroutine
cause the subroutine match to fail.
(*THEN) skips to the next alternative in the innermost enclosing group
within the subpattern that has alternatives. If there is no such group
within the subpattern, (*THEN) causes the subroutine match to fail.
SEE ALSO
pcreapi(3), pcrecallout(3), pcrematching(3), pcresyntax(3), pcre(3),
pcre16(3), pcre32(3).
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 23 October 2016
Copyright (c) 1997-2016 University of Cambridge.
------------------------------------------------------------------------------
PCRESYNTAX(3) Library Functions Manual PCRESYNTAX(3)
NAME
PCRE - Perl-compatible regular expressions
PCRE REGULAR EXPRESSION SYNTAX SUMMARY
The full syntax and semantics of the regular expressions that are sup-
ported by PCRE are described in the pcrepattern documentation. This
document contains a quick-reference summary of the syntax.
QUOTING
\x where x is non-alphanumeric is a literal x
\Q...\E treat enclosed characters as literal
CHARACTERS
\a alarm, that is, the BEL character (hex 07)
\cx "control-x", where x is any ASCII character
\e escape (hex 1B)
\f form feed (hex 0C)
\n newline (hex 0A)
\r carriage return (hex 0D)
\t tab (hex 09)
\0dd character with octal code 0dd
\ddd character with octal code ddd, or backreference
\o{ddd..} character with octal code ddd..
\xhh character with hex code hh
\x{hhh..} character with hex code hhh..
Note that \0dd is always an octal code, and that \8 and \9 are the lit-
eral characters "8" and "9".
CHARACTER TYPES
. any character except newline;
in dotall mode, any character whatsoever
\C one data unit, even in UTF mode (best avoided)
\d a decimal digit
\D a character that is not a decimal digit
\h a horizontal white space character
\H a character that is not a horizontal white space character
\N a character that is not a newline
\p{xx} a character with the xx property
\P{xx} a character without the xx property
\R a newline sequence
\s a white space character
\S a character that is not a white space character
\v a vertical white space character
\V a character that is not a vertical white space character
\w a "word" character
\W a "non-word" character
\X a Unicode extended grapheme cluster
By default, \d, \s, and \w match only ASCII characters, even in UTF-8
mode or in the 16- bit and 32-bit libraries. However, if locale-spe-
cific matching is happening, \s and \w may also match characters with
code points in the range 128-255. If the PCRE_UCP option is set, the
behaviour of these escape sequences is changed to use Unicode proper-
ties and they match many more characters.
GENERAL CATEGORY PROPERTIES FOR \p and \P
C Other
Cc Control
Cf Format
Cn Unassigned
Co Private use
Cs Surrogate
L Letter
Ll Lower case letter
Lm Modifier letter
Lo Other letter
Lt Title case letter
Lu Upper case letter
L& Ll, Lu, or Lt
M Mark
Mc Spacing mark
Me Enclosing mark
Mn Non-spacing mark
N Number
Nd Decimal number
Nl Letter number
No Other number
P Punctuation
Pc Connector punctuation
Pd Dash punctuation
Pe Close punctuation
Pf Final punctuation
Pi Initial punctuation
Po Other punctuation
Ps Open punctuation
S Symbol
Sc Currency symbol
Sk Modifier symbol
Sm Mathematical symbol
So Other symbol
Z Separator
Zl Line separator
Zp Paragraph separator
Zs Space separator
PCRE SPECIAL CATEGORY PROPERTIES FOR \p and \P
Xan Alphanumeric: union of properties L and N
Xps POSIX space: property Z or tab, NL, VT, FF, CR
Xsp Perl space: property Z or tab, NL, VT, FF, CR
Xuc Univerally-named character: one that can be
represented by a Universal Character Name
Xwd Perl word: property Xan or underscore
Perl and POSIX space are now the same. Perl added VT to its space char-
acter set at release 5.18 and PCRE changed at release 8.34.
SCRIPT NAMES FOR \p AND \P
Arabic, Armenian, Avestan, Balinese, Bamum, Bassa_Vah, Batak, Bengali,
Bopomofo, Brahmi, Braille, Buginese, Buhid, Canadian_Aboriginal, Car-
ian, Caucasian_Albanian, Chakma, Cham, Cherokee, Common, Coptic, Cunei-
form, Cypriot, Cyrillic, Deseret, Devanagari, Duployan, Egyptian_Hiero-
glyphs, Elbasan, Ethiopic, Georgian, Glagolitic, Gothic, Grantha,
Greek, Gujarati, Gurmukhi, Han, Hangul, Hanunoo, Hebrew, Hiragana,
Imperial_Aramaic, Inherited, Inscriptional_Pahlavi, Inscrip-
tional_Parthian, Javanese, Kaithi, Kannada, Katakana, Kayah_Li,
Kharoshthi, Khmer, Khojki, Khudawadi, Lao, Latin, Lepcha, Limbu, Lin-
ear_A, Linear_B, Lisu, Lycian, Lydian, Mahajani, Malayalam, Mandaic,
Manichaean, Meetei_Mayek, Mende_Kikakui, Meroitic_Cursive,
Meroitic_Hieroglyphs, Miao, Modi, Mongolian, Mro, Myanmar, Nabataean,
New_Tai_Lue, Nko, Ogham, Ol_Chiki, Old_Italic, Old_North_Arabian,
Old_Permic, Old_Persian, Old_South_Arabian, Old_Turkic, Oriya, Osmanya,
Pahawh_Hmong, Palmyrene, Pau_Cin_Hau, Phags_Pa, Phoenician,
Psalter_Pahlavi, Rejang, Runic, Samaritan, Saurashtra, Sharada, Sha-
vian, Siddham, Sinhala, Sora_Sompeng, Sundanese, Syloti_Nagri, Syriac,
Tagalog, Tagbanwa, Tai_Le, Tai_Tham, Tai_Viet, Takri, Tamil, Telugu,
Thaana, Thai, Tibetan, Tifinagh, Tirhuta, Ugaritic, Vai, Warang_Citi,
Yi.
CHARACTER CLASSES
[...] positive character class
[^...] negative character class
[x-y] range (can be used for hex characters)
[[:xxx:]] positive POSIX named set
[[:^xxx:]] negative POSIX named set
alnum alphanumeric
alpha alphabetic
ascii 0-127
blank space or tab
cntrl control character
digit decimal digit
graph printing, excluding space
lower lower case letter
print printing, including space
punct printing, excluding alphanumeric
space white space
upper upper case letter
word same as \w
xdigit hexadecimal digit
In PCRE, POSIX character set names recognize only ASCII characters by
default, but some of them use Unicode properties if PCRE_UCP is set.
You can use \Q...\E inside a character class.
QUANTIFIERS
? 0 or 1, greedy
?+ 0 or 1, possessive
?? 0 or 1, lazy
* 0 or more, greedy
*+ 0 or more, possessive
*? 0 or more, lazy
+ 1 or more, greedy
++ 1 or more, possessive
+? 1 or more, lazy
{n} exactly n
{n,m} at least n, no more than m, greedy
{n,m}+ at least n, no more than m, possessive
{n,m}? at least n, no more than m, lazy
{n,} n or more, greedy
{n,}+ n or more, possessive
{n,}? n or more, lazy
ANCHORS AND SIMPLE ASSERTIONS
\b word boundary
\B not a word boundary
^ start of subject
also after internal newline in multiline mode
\A start of subject
$ end of subject
also before newline at end of subject
also before internal newline in multiline mode
\Z end of subject
also before newline at end of subject
\z end of subject
\G first matching position in subject
MATCH POINT RESET
\K reset start of match
\K is honoured in positive assertions, but ignored in negative ones.
ALTERNATION
expr|expr|expr...
CAPTURING
(...) capturing group
(?<name>...) named capturing group (Perl)
(?'name'...) named capturing group (Perl)
(?P<name>...) named capturing group (Python)
(?:...) non-capturing group
(?|...) non-capturing group; reset group numbers for
capturing groups in each alternative
ATOMIC GROUPS
(?>...) atomic, non-capturing group
COMMENT
(?#....) comment (not nestable)
OPTION SETTING
(?i) caseless
(?J) allow duplicate names
(?m) multiline
(?s) single line (dotall)
(?U) default ungreedy (lazy)
(?x) extended (ignore white space)
(?-...) unset option(s)
The following are recognized only at the very start of a pattern or
after one of the newline or \R options with similar syntax. More than
one of them may appear.
(*LIMIT_MATCH=d) set the match limit to d (decimal number)
(*LIMIT_RECURSION=d) set the recursion limit to d (decimal number)
(*NO_AUTO_POSSESS) no auto-possessification (PCRE_NO_AUTO_POSSESS)
(*NO_START_OPT) no start-match optimization (PCRE_NO_START_OPTIMIZE)
(*UTF8) set UTF-8 mode: 8-bit library (PCRE_UTF8)
(*UTF16) set UTF-16 mode: 16-bit library (PCRE_UTF16)
(*UTF32) set UTF-32 mode: 32-bit library (PCRE_UTF32)
(*UTF) set appropriate UTF mode for the library in use
(*UCP) set PCRE_UCP (use Unicode properties for \d etc)
Note that LIMIT_MATCH and LIMIT_RECURSION can only reduce the value of
the limits set by the caller of pcre_exec(), not increase them.
NEWLINE CONVENTION
These are recognized only at the very start of the pattern or after
option settings with a similar syntax.
(*CR) carriage return only
(*LF) linefeed only
(*CRLF) carriage return followed by linefeed
(*ANYCRLF) all three of the above
(*ANY) any Unicode newline sequence
WHAT \R MATCHES
These are recognized only at the very start of the pattern or after
option setting with a similar syntax.
(*BSR_ANYCRLF) CR, LF, or CRLF
(*BSR_UNICODE) any Unicode newline sequence
LOOKAHEAD AND LOOKBEHIND ASSERTIONS
(?=...) positive look ahead
(?!...) negative look ahead
(?<=...) positive look behind
(?<!...) negative look behind
Each top-level branch of a look behind must be of a fixed length.
BACKREFERENCES
\n reference by number (can be ambiguous)
\gn reference by number
\g{n} reference by number
\g{-n} relative reference by number
\k<name> reference by name (Perl)
\k'name' reference by name (Perl)
\g{name} reference by name (Perl)
\k{name} reference by name (.NET)
(?P=name) reference by name (Python)
SUBROUTINE REFERENCES (POSSIBLY RECURSIVE)
(?R) recurse whole pattern
(?n) call subpattern by absolute number
(?+n) call subpattern by relative number
(?-n) call subpattern by relative number
(?&name) call subpattern by name (Perl)
(?P>name) call subpattern by name (Python)
\g<name> call subpattern by name (Oniguruma)
\g'name' call subpattern by name (Oniguruma)
\g<n> call subpattern by absolute number (Oniguruma)
\g'n' call subpattern by absolute number (Oniguruma)
\g<+n> call subpattern by relative number (PCRE extension)
\g'+n' call subpattern by relative number (PCRE extension)
\g<-n> call subpattern by relative number (PCRE extension)
\g'-n' call subpattern by relative number (PCRE extension)
CONDITIONAL PATTERNS
(?(condition)yes-pattern)
(?(condition)yes-pattern|no-pattern)
(?(n)... absolute reference condition
(?(+n)... relative reference condition
(?(-n)... relative reference condition
(?(<name>)... named reference condition (Perl)
(?('name')... named reference condition (Perl)
(?(name)... named reference condition (PCRE)
(?(R)... overall recursion condition
(?(Rn)... specific group recursion condition
(?(R&name)... specific recursion condition
(?(DEFINE)... define subpattern for reference
(?(assert)... assertion condition
BACKTRACKING CONTROL
The following act immediately they are reached:
(*ACCEPT) force successful match
(*FAIL) force backtrack; synonym (*F)
(*MARK:NAME) set name to be passed back; synonym (*:NAME)
The following act only when a subsequent match failure causes a back-
track to reach them. They all force a match failure, but they differ in
what happens afterwards. Those that advance the start-of-match point do
so only if the pattern is not anchored.
(*COMMIT) overall failure, no advance of starting point
(*PRUNE) advance to next starting character
(*PRUNE:NAME) equivalent to (*MARK:NAME)(*PRUNE)
(*SKIP) advance to current matching position
(*SKIP:NAME) advance to position corresponding to an earlier
(*MARK:NAME); if not found, the (*SKIP) is ignored
(*THEN) local failure, backtrack to next alternation
(*THEN:NAME) equivalent to (*MARK:NAME)(*THEN)
CALLOUTS
(?C) callout
(?Cn) callout with data n
SEE ALSO
pcrepattern(3), pcreapi(3), pcrecallout(3), pcrematching(3), pcre(3).
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 08 January 2014
Copyright (c) 1997-2014 University of Cambridge.
------------------------------------------------------------------------------
PCREUNICODE(3) Library Functions Manual PCREUNICODE(3)
NAME
PCRE - Perl-compatible regular expressions
UTF-8, UTF-16, UTF-32, AND UNICODE PROPERTY SUPPORT
As well as UTF-8 support, PCRE also supports UTF-16 (from release 8.30)
and UTF-32 (from release 8.32), by means of two additional libraries.
They can be built as well as, or instead of, the 8-bit library.
UTF-8 SUPPORT
In order process UTF-8 strings, you must build PCRE's 8-bit library
with UTF support, and, in addition, you must call pcre_compile() with
the PCRE_UTF8 option flag, or the pattern must start with the sequence
(*UTF8) or (*UTF). When either of these is the case, both the pattern
and any subject strings that are matched against it are treated as
UTF-8 strings instead of strings of individual 1-byte characters.
UTF-16 AND UTF-32 SUPPORT
In order process UTF-16 or UTF-32 strings, you must build PCRE's 16-bit
or 32-bit library with UTF support, and, in addition, you must call
pcre16_compile() or pcre32_compile() with the PCRE_UTF16 or PCRE_UTF32
option flag, as appropriate. Alternatively, the pattern must start with
the sequence (*UTF16), (*UTF32), as appropriate, or (*UTF), which can
be used with either library. When UTF mode is set, both the pattern and
any subject strings that are matched against it are treated as UTF-16
or UTF-32 strings instead of strings of individual 16-bit or 32-bit
characters.
UTF SUPPORT OVERHEAD
If you compile PCRE with UTF support, but do not use it at run time,
the library will be a bit bigger, but the additional run time overhead
is limited to testing the PCRE_UTF[8|16|32] flag occasionally, so
should not be very big.
UNICODE PROPERTY SUPPORT
If PCRE is built with Unicode character property support (which implies
UTF support), the escape sequences \p{..}, \P{..}, and \X can be used.
The available properties that can be tested are limited to the general
category properties such as Lu for an upper case letter or Nd for a
decimal number, the Unicode script names such as Arabic or Han, and the
derived properties Any and L&. Full lists is given in the pcrepattern
and pcresyntax documentation. Only the short names for properties are
supported. For example, \p{L} matches a letter. Its Perl synonym,
\p{Letter}, is not supported. Furthermore, in Perl, many properties
may optionally be prefixed by "Is", for compatibility with Perl 5.6.
PCRE does not support this.
Validity of UTF-8 strings
When you set the PCRE_UTF8 flag, the byte strings passed as patterns
and subjects are (by default) checked for validity on entry to the rel-
evant functions. The entire string is checked before any other process-
ing takes place. From release 7.3 of PCRE, the check is according the
rules of RFC 3629, which are themselves derived from the Unicode speci-
fication. Earlier releases of PCRE followed the rules of RFC 2279,
which allows the full range of 31-bit values (0 to 0x7FFFFFFF). The
current check allows only values in the range U+0 to U+10FFFF, exclud-
ing the surrogate area. (From release 8.33 the so-called "non-charac-
ter" code points are no longer excluded because Unicode corrigendum #9
makes it clear that they should not be.)
Characters in the "Surrogate Area" of Unicode are reserved for use by
UTF-16, where they are used in pairs to encode codepoints with values
greater than 0xFFFF. The code points that are encoded by UTF-16 pairs
are available independently in the UTF-8 and UTF-32 encodings. (In
other words, the whole surrogate thing is a fudge for UTF-16 which
unfortunately messes up UTF-8 and UTF-32.)
If an invalid UTF-8 string is passed to PCRE, an error return is given.
At compile time, the only additional information is the offset to the
first byte of the failing character. The run-time functions pcre_exec()
and pcre_dfa_exec() also pass back this information, as well as a more
detailed reason code if the caller has provided memory in which to do
this.
In some situations, you may already know that your strings are valid,
and therefore want to skip these checks in order to improve perfor-
mance, for example in the case of a long subject string that is being
scanned repeatedly. If you set the PCRE_NO_UTF8_CHECK flag at compile
time or at run time, PCRE assumes that the pattern or subject it is
given (respectively) contains only valid UTF-8 codes. In this case, it
does not diagnose an invalid UTF-8 string.
Note that passing PCRE_NO_UTF8_CHECK to pcre_compile() just disables
the check for the pattern; it does not also apply to subject strings.
If you want to disable the check for a subject string you must pass
this option to pcre_exec() or pcre_dfa_exec().
If you pass an invalid UTF-8 string when PCRE_NO_UTF8_CHECK is set, the
result is undefined and your program may crash.
Validity of UTF-16 strings
When you set the PCRE_UTF16 flag, the strings of 16-bit data units that
are passed as patterns and subjects are (by default) checked for valid-
ity on entry to the relevant functions. Values other than those in the
surrogate range U+D800 to U+DFFF are independent code points. Values in
the surrogate range must be used in pairs in the correct manner.
If an invalid UTF-16 string is passed to PCRE, an error return is
given. At compile time, the only additional information is the offset
to the first data unit of the failing character. The run-time functions
pcre16_exec() and pcre16_dfa_exec() also pass back this information, as
well as a more detailed reason code if the caller has provided memory
in which to do this.
In some situations, you may already know that your strings are valid,
and therefore want to skip these checks in order to improve perfor-
mance. If you set the PCRE_NO_UTF16_CHECK flag at compile time or at
run time, PCRE assumes that the pattern or subject it is given (respec-
tively) contains only valid UTF-16 sequences. In this case, it does not
diagnose an invalid UTF-16 string. However, if an invalid string is
passed, the result is undefined.
Validity of UTF-32 strings
When you set the PCRE_UTF32 flag, the strings of 32-bit data units that
are passed as patterns and subjects are (by default) checked for valid-
ity on entry to the relevant functions. This check allows only values
in the range U+0 to U+10FFFF, excluding the surrogate area U+D800 to
U+DFFF.
If an invalid UTF-32 string is passed to PCRE, an error return is
given. At compile time, the only additional information is the offset
to the first data unit of the failing character. The run-time functions
pcre32_exec() and pcre32_dfa_exec() also pass back this information, as
well as a more detailed reason code if the caller has provided memory
in which to do this.
In some situations, you may already know that your strings are valid,
and therefore want to skip these checks in order to improve perfor-
mance. If you set the PCRE_NO_UTF32_CHECK flag at compile time or at
run time, PCRE assumes that the pattern or subject it is given (respec-
tively) contains only valid UTF-32 sequences. In this case, it does not
diagnose an invalid UTF-32 string. However, if an invalid string is
passed, the result is undefined.
General comments about UTF modes
1. Codepoints less than 256 can be specified in patterns by either
braced or unbraced hexadecimal escape sequences (for example, \x{b3} or
\xb3). Larger values have to use braced sequences.
2. Octal numbers up to \777 are recognized, and in UTF-8 mode they
match two-byte characters for values greater than \177.
3. Repeat quantifiers apply to complete UTF characters, not to individ-
ual data units, for example: \x{100}{3}.
4. The dot metacharacter matches one UTF character instead of a single
data unit.
5. The escape sequence \C can be used to match a single byte in UTF-8
mode, or a single 16-bit data unit in UTF-16 mode, or a single 32-bit
data unit in UTF-32 mode, but its use can lead to some strange effects
because it breaks up multi-unit characters (see the description of \C
in the pcrepattern documentation). The use of \C is not supported in
the alternative matching function pcre[16|32]_dfa_exec(), nor is it
supported in UTF mode by the JIT optimization of pcre[16|32]_exec(). If
JIT optimization is requested for a UTF pattern that contains \C, it
will not succeed, and so the matching will be carried out by the normal
interpretive function.
6. The character escapes \b, \B, \d, \D, \s, \S, \w, and \W correctly
test characters of any code value, but, by default, the characters that
PCRE recognizes as digits, spaces, or word characters remain the same
set as in non-UTF mode, all with values less than 256. This remains
true even when PCRE is built to include Unicode property support,
because to do otherwise would slow down PCRE in many common cases. Note
in particular that this applies to \b and \B, because they are defined
in terms of \w and \W. If you really want to test for a wider sense of,
say, "digit", you can use explicit Unicode property tests such as
\p{Nd}. Alternatively, if you set the PCRE_UCP option, the way that the
character escapes work is changed so that Unicode properties are used
to determine which characters match. There are more details in the sec-
tion on generic character types in the pcrepattern documentation.
7. Similarly, characters that match the POSIX named character classes
are all low-valued characters, unless the PCRE_UCP option is set.
8. However, the horizontal and vertical white space matching escapes
(\h, \H, \v, and \V) do match all the appropriate Unicode characters,
whether or not PCRE_UCP is set.
9. Case-insensitive matching applies only to characters whose values
are less than 128, unless PCRE is built with Unicode property support.
A few Unicode characters such as Greek sigma have more than two code-
points that are case-equivalent. Up to and including PCRE release 8.31,
only one-to-one case mappings were supported, but later releases (with
Unicode property support) do treat as case-equivalent all versions of
characters such as Greek sigma.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 27 February 2013
Copyright (c) 1997-2013 University of Cambridge.
------------------------------------------------------------------------------
PCREJIT(3) Library Functions Manual PCREJIT(3)
NAME
PCRE - Perl-compatible regular expressions
PCRE JUST-IN-TIME COMPILER SUPPORT
Just-in-time compiling is a heavyweight optimization that can greatly
speed up pattern matching. However, it comes at the cost of extra pro-
cessing before the match is performed. Therefore, it is of most benefit
when the same pattern is going to be matched many times. This does not
necessarily mean many calls of a matching function; if the pattern is
not anchored, matching attempts may take place many times at various
positions in the subject, even for a single call. Therefore, if the
subject string is very long, it may still pay to use JIT for one-off
matches.
JIT support applies only to the traditional Perl-compatible matching
function. It does not apply when the DFA matching function is being
used. The code for this support was written by Zoltan Herczeg.
8-BIT, 16-BIT AND 32-BIT SUPPORT
JIT support is available for all of the 8-bit, 16-bit and 32-bit PCRE
libraries. To keep this documentation simple, only the 8-bit interface
is described in what follows. If you are using the 16-bit library, sub-
stitute the 16-bit functions and 16-bit structures (for example,
pcre16_jit_stack instead of pcre_jit_stack). If you are using the
32-bit library, substitute the 32-bit functions and 32-bit structures
(for example, pcre32_jit_stack instead of pcre_jit_stack).
AVAILABILITY OF JIT SUPPORT
JIT support is an optional feature of PCRE. The "configure" option
--enable-jit (or equivalent CMake option) must be set when PCRE is
built if you want to use JIT. The support is limited to the following
hardware platforms:
ARM v5, v7, and Thumb2
Intel x86 32-bit and 64-bit
MIPS 32-bit
Power PC 32-bit and 64-bit
SPARC 32-bit (experimental)
If --enable-jit is set on an unsupported platform, compilation fails.
A program that is linked with PCRE 8.20 or later can tell if JIT sup-
port is available by calling pcre_config() with the PCRE_CONFIG_JIT
option. The result is 1 when JIT is available, and 0 otherwise. How-
ever, a simple program does not need to check this in order to use JIT.
The normal API is implemented in a way that falls back to the interpre-
tive code if JIT is not available. For programs that need the best pos-
sible performance, there is also a "fast path" API that is JIT-spe-
cific.
If your program may sometimes be linked with versions of PCRE that are
older than 8.20, but you want to use JIT when it is available, you can
test the values of PCRE_MAJOR and PCRE_MINOR, or the existence of a JIT
macro such as PCRE_CONFIG_JIT, for compile-time control of your code.
SIMPLE USE OF JIT
You have to do two things to make use of the JIT support in the sim-
plest way:
(1) Call pcre_study() with the PCRE_STUDY_JIT_COMPILE option for
each compiled pattern, and pass the resulting pcre_extra block to
pcre_exec().
(2) Use pcre_free_study() to free the pcre_extra block when it is
no longer needed, instead of just freeing it yourself. This
ensures that
any JIT data is also freed.
For a program that may be linked with pre-8.20 versions of PCRE, you
can insert
#ifndef PCRE_STUDY_JIT_COMPILE
#define PCRE_STUDY_JIT_COMPILE 0
#endif
so that no option is passed to pcre_study(), and then use something
like this to free the study data:
#ifdef PCRE_CONFIG_JIT
pcre_free_study(study_ptr);
#else
pcre_free(study_ptr);
#endif
PCRE_STUDY_JIT_COMPILE requests the JIT compiler to generate code for
complete matches. If you want to run partial matches using the
PCRE_PARTIAL_HARD or PCRE_PARTIAL_SOFT options of pcre_exec(), you
should set one or both of the following options in addition to, or
instead of, PCRE_STUDY_JIT_COMPILE when you call pcre_study():
PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
The JIT compiler generates different optimized code for each of the
three modes (normal, soft partial, hard partial). When pcre_exec() is
called, the appropriate code is run if it is available. Otherwise, the
pattern is matched using interpretive code.
In some circumstances you may need to call additional functions. These
are described in the section entitled "Controlling the JIT stack"
below.
If JIT support is not available, PCRE_STUDY_JIT_COMPILE etc. are
ignored, and no JIT data is created. Otherwise, the compiled pattern is
passed to the JIT compiler, which turns it into machine code that exe-
cutes much faster than the normal interpretive code. When pcre_exec()
is passed a pcre_extra block containing a pointer to JIT code of the
appropriate mode (normal or hard/soft partial), it obeys that code
instead of running the interpreter. The result is identical, but the
compiled JIT code runs much faster.
There are some pcre_exec() options that are not supported for JIT exe-
cution. There are also some pattern items that JIT cannot handle.
Details are given below. In both cases, execution automatically falls
back to the interpretive code. If you want to know whether JIT was
actually used for a particular match, you should arrange for a JIT
callback function to be set up as described in the section entitled
"Controlling the JIT stack" below, even if you do not need to supply a
non-default JIT stack. Such a callback function is called whenever JIT
code is about to be obeyed. If the execution options are not right for
JIT execution, the callback function is not obeyed.
If the JIT compiler finds an unsupported item, no JIT data is gener-
ated. You can find out if JIT execution is available after studying a
pattern by calling pcre_fullinfo() with the PCRE_INFO_JIT option. A
result of 1 means that JIT compilation was successful. A result of 0
means that JIT support is not available, or the pattern was not studied
with PCRE_STUDY_JIT_COMPILE etc., or the JIT compiler was not able to
handle the pattern.
Once a pattern has been studied, with or without JIT, it can be used as
many times as you like for matching different subject strings.
UNSUPPORTED OPTIONS AND PATTERN ITEMS
The only pcre_exec() options that are supported for JIT execution are
PCRE_NO_UTF8_CHECK, PCRE_NO_UTF16_CHECK, PCRE_NO_UTF32_CHECK, PCRE_NOT-
BOL, PCRE_NOTEOL, PCRE_NOTEMPTY, PCRE_NOTEMPTY_ATSTART, PCRE_PAR-
TIAL_HARD, and PCRE_PARTIAL_SOFT.
The only unsupported pattern items are \C (match a single data unit)
when running in a UTF mode, and a callout immediately before an asser-
tion condition in a conditional group.
RETURN VALUES FROM JIT EXECUTION
When a pattern is matched using JIT execution, the return values are
the same as those given by the interpretive pcre_exec() code, with the
addition of one new error code: PCRE_ERROR_JIT_STACKLIMIT. This means
that the memory used for the JIT stack was insufficient. See "Control-
ling the JIT stack" below for a discussion of JIT stack usage. For com-
patibility with the interpretive pcre_exec() code, no more than two-
thirds of the ovector argument is used for passing back captured sub-
strings.
The error code PCRE_ERROR_MATCHLIMIT is returned by the JIT code if
searching a very large pattern tree goes on for too long, as it is in
the same circumstance when JIT is not used, but the details of exactly
what is counted are not the same. The PCRE_ERROR_RECURSIONLIMIT error
code is never returned by JIT execution.
SAVING AND RESTORING COMPILED PATTERNS
The code that is generated by the JIT compiler is architecture-spe-
cific, and is also position dependent. For those reasons it cannot be
saved (in a file or database) and restored later like the bytecode and
other data of a compiled pattern. Saving and restoring compiled pat-
terns is not something many people do. More detail about this facility
is given in the pcreprecompile documentation. It should be possible to
run pcre_study() on a saved and restored pattern, and thereby recreate
the JIT data, but because JIT compilation uses significant resources,
it is probably not worth doing this; you might as well recompile the
original pattern.
CONTROLLING THE JIT STACK
When the compiled JIT code runs, it needs a block of memory to use as a
stack. By default, it uses 32K on the machine stack. However, some
large or complicated patterns need more than this. The error
PCRE_ERROR_JIT_STACKLIMIT is given when there is not enough stack.
Three functions are provided for managing blocks of memory for use as
JIT stacks. There is further discussion about the use of JIT stacks in
the section entitled "JIT stack FAQ" below.
The pcre_jit_stack_alloc() function creates a JIT stack. Its arguments
are a starting size and a maximum size, and it returns a pointer to an
opaque structure of type pcre_jit_stack, or NULL if there is an error.
The pcre_jit_stack_free() function can be used to free a stack that is
no longer needed. (For the technically minded: the address space is
allocated by mmap or VirtualAlloc.)
JIT uses far less memory for recursion than the interpretive code, and
a maximum stack size of 512K to 1M should be more than enough for any
pattern.
The pcre_assign_jit_stack() function specifies which stack JIT code
should use. Its arguments are as follows:
pcre_extra *extra
pcre_jit_callback callback
void *data
The extra argument must be the result of studying a pattern with
PCRE_STUDY_JIT_COMPILE etc. There are three cases for the values of the
other two options:
(1) If callback is NULL and data is NULL, an internal 32K block
on the machine stack is used.
(2) If callback is NULL and data is not NULL, data must be
a valid JIT stack, the result of calling pcre_jit_stack_alloc().
(3) If callback is not NULL, it must point to a function that is
called with data as an argument at the start of matching, in
order to set up a JIT stack. If the return from the callback
function is NULL, the internal 32K stack is used; otherwise the
return value must be a valid JIT stack, the result of calling
pcre_jit_stack_alloc().
A callback function is obeyed whenever JIT code is about to be run; it
is not obeyed when pcre_exec() is called with options that are incom-
patible for JIT execution. A callback function can therefore be used to
determine whether a match operation was executed by JIT or by the
interpreter.
You may safely use the same JIT stack for more than one pattern (either
by assigning directly or by callback), as long as the patterns are all
matched sequentially in the same thread. In a multithread application,
if you do not specify a JIT stack, or if you assign or pass back NULL
from a callback, that is thread-safe, because each thread has its own
machine stack. However, if you assign or pass back a non-NULL JIT
stack, this must be a different stack for each thread so that the
application is thread-safe.
Strictly speaking, even more is allowed. You can assign the same non-
NULL stack to any number of patterns as long as they are not used for
matching by multiple threads at the same time. For example, you can
assign the same stack to all compiled patterns, and use a global mutex
in the callback to wait until the stack is available for use. However,
this is an inefficient solution, and not recommended.
This is a suggestion for how a multithreaded program that needs to set
up non-default JIT stacks might operate:
During thread initalization
thread_local_var = pcre_jit_stack_alloc(...)
During thread exit
pcre_jit_stack_free(thread_local_var)
Use a one-line callback function
return thread_local_var
All the functions described in this section do nothing if JIT is not
available, and pcre_assign_jit_stack() does nothing unless the extra
argument is non-NULL and points to a pcre_extra block that is the
result of a successful study with PCRE_STUDY_JIT_COMPILE etc.
JIT STACK FAQ
(1) Why do we need JIT stacks?
PCRE (and JIT) is a recursive, depth-first engine, so it needs a stack
where the local data of the current node is pushed before checking its
child nodes. Allocating real machine stack on some platforms is diffi-
cult. For example, the stack chain needs to be updated every time if we
extend the stack on PowerPC. Although it is possible, its updating
time overhead decreases performance. So we do the recursion in memory.
(2) Why don't we simply allocate blocks of memory with malloc()?
Modern operating systems have a nice feature: they can reserve an
address space instead of allocating memory. We can safely allocate mem-
ory pages inside this address space, so the stack could grow without
moving memory data (this is important because of pointers). Thus we can
allocate 1M address space, and use only a single memory page (usually
4K) if that is enough. However, we can still grow up to 1M anytime if
needed.
(3) Who "owns" a JIT stack?
The owner of the stack is the user program, not the JIT studied pattern
or anything else. The user program must ensure that if a stack is used
by pcre_exec(), (that is, it is assigned to the pattern currently run-
ning), that stack must not be used by any other threads (to avoid over-
writing the same memory area). The best practice for multithreaded pro-
grams is to allocate a stack for each thread, and return this stack
through the JIT callback function.
(4) When should a JIT stack be freed?
You can free a JIT stack at any time, as long as it will not be used by
pcre_exec() again. When you assign the stack to a pattern, only a
pointer is set. There is no reference counting or any other magic. You
can free the patterns and stacks in any order, anytime. Just do not
call pcre_exec() with a pattern pointing to an already freed stack, as
that will cause SEGFAULT. (Also, do not free a stack currently used by
pcre_exec() in another thread). You can also replace the stack for a
pattern at any time. You can even free the previous stack before
assigning a replacement.
(5) Should I allocate/free a stack every time before/after calling
pcre_exec()?
No, because this is too costly in terms of resources. However, you
could implement some clever idea which release the stack if it is not
used in let's say two minutes. The JIT callback can help to achieve
this without keeping a list of the currently JIT studied patterns.
(6) OK, the stack is for long term memory allocation. But what happens
if a pattern causes stack overflow with a stack of 1M? Is that 1M kept
until the stack is freed?
Especially on embedded sytems, it might be a good idea to release mem-
ory sometimes without freeing the stack. There is no API for this at
the moment. Probably a function call which returns with the currently
allocated memory for any stack and another which allows releasing mem-
ory (shrinking the stack) would be a good idea if someone needs this.
(7) This is too much of a headache. Isn't there any better solution for
JIT stack handling?
No, thanks to Windows. If POSIX threads were used everywhere, we could
throw out this complicated API.
EXAMPLE CODE
This is a single-threaded example that specifies a JIT stack without
using a callback.
int rc;
int ovector[30];
pcre *re;
pcre_extra *extra;
pcre_jit_stack *jit_stack;
re = pcre_compile(pattern, 0, &error, &erroffset, NULL);
/* Check for errors */
extra = pcre_study(re, PCRE_STUDY_JIT_COMPILE, &error);
jit_stack = pcre_jit_stack_alloc(32*1024, 512*1024);
/* Check for error (NULL) */
pcre_assign_jit_stack(extra, NULL, jit_stack);
rc = pcre_exec(re, extra, subject, length, 0, 0, ovector, 30);
/* Check results */
pcre_free(re);
pcre_free_study(extra);
pcre_jit_stack_free(jit_stack);
JIT FAST PATH API
Because the API described above falls back to interpreted execution
when JIT is not available, it is convenient for programs that are writ-
ten for general use in many environments. However, calling JIT via
pcre_exec() does have a performance impact. Programs that are written
for use where JIT is known to be available, and which need the best
possible performance, can instead use a "fast path" API to call JIT
execution directly instead of calling pcre_exec() (obviously only for
patterns that have been successfully studied by JIT).
The fast path function is called pcre_jit_exec(), and it takes exactly
the same arguments as pcre_exec(), plus one additional argument that
must point to a JIT stack. The JIT stack arrangements described above
do not apply. The return values are the same as for pcre_exec().
When you call pcre_exec(), as well as testing for invalid options, a
number of other sanity checks are performed on the arguments. For exam-
ple, if the subject pointer is NULL, or its length is negative, an
immediate error is given. Also, unless PCRE_NO_UTF[8|16|32] is set, a
UTF subject string is tested for validity. In the interests of speed,
these checks do not happen on the JIT fast path, and if invalid data is
passed, the result is undefined.
Bypassing the sanity checks and the pcre_exec() wrapping can give
speedups of more than 10%.
SEE ALSO
pcreapi(3)
AUTHOR
Philip Hazel (FAQ by Zoltan Herczeg)
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 17 March 2013
Copyright (c) 1997-2013 University of Cambridge.
------------------------------------------------------------------------------
PCREPARTIAL(3) Library Functions Manual PCREPARTIAL(3)
NAME
PCRE - Perl-compatible regular expressions
PARTIAL MATCHING IN PCRE
In normal use of PCRE, if the subject string that is passed to a match-
ing function matches as far as it goes, but is too short to match the
entire pattern, PCRE_ERROR_NOMATCH is returned. There are circumstances
where it might be helpful to distinguish this case from other cases in
which there is no match.
Consider, for example, an application where a human is required to type
in data for a field with specific formatting requirements. An example
might be a date in the form ddmmmyy, defined by this pattern:
^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$
If the application sees the user's keystrokes one by one, and can check
that what has been typed so far is potentially valid, it is able to
raise an error as soon as a mistake is made, by beeping and not
reflecting the character that has been typed, for example. This immedi-
ate feedback is likely to be a better user interface than a check that
is delayed until the entire string has been entered. Partial matching
can also be useful when the subject string is very long and is not all
available at once.
PCRE supports partial matching by means of the PCRE_PARTIAL_SOFT and
PCRE_PARTIAL_HARD options, which can be set when calling any of the
matching functions. For backwards compatibility, PCRE_PARTIAL is a syn-
onym for PCRE_PARTIAL_SOFT. The essential difference between the two
options is whether or not a partial match is preferred to an alterna-
tive complete match, though the details differ between the two types of
matching function. If both options are set, PCRE_PARTIAL_HARD takes
precedence.
If you want to use partial matching with just-in-time optimized code,
you must call pcre_study(), pcre16_study() or pcre32_study() with one
or both of these options:
PCRE_STUDY_JIT_PARTIAL_SOFT_COMPILE
PCRE_STUDY_JIT_PARTIAL_HARD_COMPILE
PCRE_STUDY_JIT_COMPILE should also be set if you are going to run non-
partial matches on the same pattern. If the appropriate JIT study mode
has not been set for a match, the interpretive matching code is used.
Setting a partial matching option disables two of PCRE's standard opti-
mizations. PCRE remembers the last literal data unit in a pattern, and
abandons matching immediately if it is not present in the subject
string. This optimization cannot be used for a subject string that
might match only partially. If the pattern was studied, PCRE knows the
minimum length of a matching string, and does not bother to run the
matching function on shorter strings. This optimization is also dis-
abled for partial matching.
PARTIAL MATCHING USING pcre_exec() OR pcre[16|32]_exec()
A partial match occurs during a call to pcre_exec() or
pcre[16|32]_exec() when the end of the subject string is reached suc-
cessfully, but matching cannot continue because more characters are
needed. However, at least one character in the subject must have been
inspected. This character need not form part of the final matched
string; lookbehind assertions and the \K escape sequence provide ways
of inspecting characters before the start of a matched substring. The
requirement for inspecting at least one character exists because an
empty string can always be matched; without such a restriction there
would always be a partial match of an empty string at the end of the
subject.
If there are at least two slots in the offsets vector when a partial
match is returned, the first slot is set to the offset of the earliest
character that was inspected. For convenience, the second offset points
to the end of the subject so that a substring can easily be identified.
If there are at least three slots in the offsets vector, the third slot
is set to the offset of the character where matching started.
For the majority of patterns, the contents of the first and third slots
will be the same. However, for patterns that contain lookbehind asser-
tions, or begin with \b or \B, characters before the one where matching
started may have been inspected while carrying out the match. For exam-
ple, consider this pattern:
/(?<=abc)123/
This pattern matches "123", but only if it is preceded by "abc". If the
subject string is "xyzabc12", the first two offsets after a partial
match are for the substring "abc12", because all these characters were
inspected. However, the third offset is set to 6, because that is the
offset where matching began.
What happens when a partial match is identified depends on which of the
two partial matching options are set.
PCRE_PARTIAL_SOFT WITH pcre_exec() OR pcre[16|32]_exec()
If PCRE_PARTIAL_SOFT is set when pcre_exec() or pcre[16|32]_exec()
identifies a partial match, the partial match is remembered, but match-
ing continues as normal, and other alternatives in the pattern are
tried. If no complete match can be found, PCRE_ERROR_PARTIAL is
returned instead of PCRE_ERROR_NOMATCH.
This option is "soft" because it prefers a complete match over a par-
tial match. All the various matching items in a pattern behave as if
the subject string is potentially complete. For example, \z, \Z, and $
match at the end of the subject, as normal, and for \b and \B the end
of the subject is treated as a non-alphanumeric.
If there is more than one partial match, the first one that was found
provides the data that is returned. Consider this pattern:
/123\w+X|dogY/
If this is matched against the subject string "abc123dog", both alter-
natives fail to match, but the end of the subject is reached during
matching, so PCRE_ERROR_PARTIAL is returned. The offsets are set to 3
and 9, identifying "123dog" as the first partial match that was found.
(In this example, there are two partial matches, because "dog" on its
own partially matches the second alternative.)
PCRE_PARTIAL_HARD WITH pcre_exec() OR pcre[16|32]_exec()
If PCRE_PARTIAL_HARD is set for pcre_exec() or pcre[16|32]_exec(),
PCRE_ERROR_PARTIAL is returned as soon as a partial match is found,
without continuing to search for possible complete matches. This option
is "hard" because it prefers an earlier partial match over a later com-
plete match. For this reason, the assumption is made that the end of
the supplied subject string may not be the true end of the available
data, and so, if \z, \Z, \b, \B, or $ are encountered at the end of the
subject, the result is PCRE_ERROR_PARTIAL, provided that at least one
character in the subject has been inspected.
Setting PCRE_PARTIAL_HARD also affects the way UTF-8 and UTF-16 subject
strings are checked for validity. Normally, an invalid sequence causes
the error PCRE_ERROR_BADUTF8 or PCRE_ERROR_BADUTF16. However, in the
special case of a truncated character at the end of the subject,
PCRE_ERROR_SHORTUTF8 or PCRE_ERROR_SHORTUTF16 is returned when
PCRE_PARTIAL_HARD is set.
Comparing hard and soft partial matching
The difference between the two partial matching options can be illus-
trated by a pattern such as:
/dog(sbody)?/
This matches either "dog" or "dogsbody", greedily (that is, it prefers
the longer string if possible). If it is matched against the string
"dog" with PCRE_PARTIAL_SOFT, it yields a complete match for "dog".
However, if PCRE_PARTIAL_HARD is set, the result is PCRE_ERROR_PARTIAL.
On the other hand, if the pattern is made ungreedy the result is dif-
ferent:
/dog(sbody)??/
In this case the result is always a complete match because that is
found first, and matching never continues after finding a complete
match. It might be easier to follow this explanation by thinking of the
two patterns like this:
/dog(sbody)?/ is the same as /dogsbody|dog/
/dog(sbody)??/ is the same as /dog|dogsbody/
The second pattern will never match "dogsbody", because it will always
find the shorter match first.
PARTIAL MATCHING USING pcre_dfa_exec() OR pcre[16|32]_dfa_exec()
The DFA functions move along the subject string character by character,
without backtracking, searching for all possible matches simultane-
ously. If the end of the subject is reached before the end of the pat-
tern, there is the possibility of a partial match, again provided that
at least one character has been inspected.
When PCRE_PARTIAL_SOFT is set, PCRE_ERROR_PARTIAL is returned only if
there have been no complete matches. Otherwise, the complete matches
are returned. However, if PCRE_PARTIAL_HARD is set, a partial match
takes precedence over any complete matches. The portion of the string
that was inspected when the longest partial match was found is set as
the first matching string, provided there are at least two slots in the
offsets vector.
Because the DFA functions always search for all possible matches, and
there is no difference between greedy and ungreedy repetition, their
behaviour is different from the standard functions when PCRE_PAR-
TIAL_HARD is set. Consider the string "dog" matched against the
ungreedy pattern shown above:
/dog(sbody)??/
Whereas the standard functions stop as soon as they find the complete
match for "dog", the DFA functions also find the partial match for
"dogsbody", and so return that when PCRE_PARTIAL_HARD is set.
PARTIAL MATCHING AND WORD BOUNDARIES
If a pattern ends with one of sequences \b or \B, which test for word
boundaries, partial matching with PCRE_PARTIAL_SOFT can give counter-
intuitive results. Consider this pattern:
/\bcat\b/
This matches "cat", provided there is a word boundary at either end. If
the subject string is "the cat", the comparison of the final "t" with a
following character cannot take place, so a partial match is found.
However, normal matching carries on, and \b matches at the end of the
subject when the last character is a letter, so a complete match is
found. The result, therefore, is not PCRE_ERROR_PARTIAL. Using
PCRE_PARTIAL_HARD in this case does yield PCRE_ERROR_PARTIAL, because
then the partial match takes precedence.
FORMERLY RESTRICTED PATTERNS
For releases of PCRE prior to 8.00, because of the way certain internal
optimizations were implemented in the pcre_exec() function, the
PCRE_PARTIAL option (predecessor of PCRE_PARTIAL_SOFT) could not be
used with all patterns. From release 8.00 onwards, the restrictions no
longer apply, and partial matching with can be requested for any pat-
tern.
Items that were formerly restricted were repeated single characters and
repeated metasequences. If PCRE_PARTIAL was set for a pattern that did
not conform to the restrictions, pcre_exec() returned the error code
PCRE_ERROR_BADPARTIAL (-13). This error code is no longer in use. The
PCRE_INFO_OKPARTIAL call to pcre_fullinfo() to find out if a compiled
pattern can be used for partial matching now always returns 1.
EXAMPLE OF PARTIAL MATCHING USING PCRETEST
If the escape sequence \P is present in a pcretest data line, the
PCRE_PARTIAL_SOFT option is used for the match. Here is a run of
pcretest that uses the date example quoted above:
re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
data> 25jun04\P
0: 25jun04
1: jun
data> 25dec3\P
Partial match: 23dec3
data> 3ju\P
Partial match: 3ju
data> 3juj\P
No match
data> j\P
No match
The first data string is matched completely, so pcretest shows the
matched substrings. The remaining four strings do not match the com-
plete pattern, but the first two are partial matches. Similar output is
obtained if DFA matching is used.
If the escape sequence \P is present more than once in a pcretest data
line, the PCRE_PARTIAL_HARD option is set for the match.
MULTI-SEGMENT MATCHING WITH pcre_dfa_exec() OR pcre[16|32]_dfa_exec()
When a partial match has been found using a DFA matching function, it
is possible to continue the match by providing additional subject data
and calling the function again with the same compiled regular expres-
sion, this time setting the PCRE_DFA_RESTART option. You must pass the
same working space as before, because this is where details of the pre-
vious partial match are stored. Here is an example using pcretest,
using the \R escape sequence to set the PCRE_DFA_RESTART option (\D
specifies the use of the DFA matching function):
re> /^\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d$/
data> 23ja\P\D
Partial match: 23ja
data> n05\R\D
0: n05
The first call has "23ja" as the subject, and requests partial match-
ing; the second call has "n05" as the subject for the continued
(restarted) match. Notice that when the match is complete, only the
last part is shown; PCRE does not retain the previously partially-
matched string. It is up to the calling program to do that if it needs
to.
That means that, for an unanchored pattern, if a continued match fails,
it is not possible to try again at a new starting point. All this
facility is capable of doing is continuing with the previous match
attempt. In the previous example, if the second set of data is "ug23"
the result is no match, even though there would be a match for "aug23"
if the entire string were given at once. Depending on the application,
this may or may not be what you want. The only way to allow for start-
ing again at the next character is to retain the matched part of the
subject and try a new complete match.
You can set the PCRE_PARTIAL_SOFT or PCRE_PARTIAL_HARD options with
PCRE_DFA_RESTART to continue partial matching over multiple segments.
This facility can be used to pass very long subject strings to the DFA
matching functions.
MULTI-SEGMENT MATCHING WITH pcre_exec() OR pcre[16|32]_exec()
From release 8.00, the standard matching functions can also be used to
do multi-segment matching. Unlike the DFA functions, it is not possible
to restart the previous match with a new segment of data. Instead, new
data must be added to the previous subject string, and the entire match
re-run, starting from the point where the partial match occurred. Ear-
lier data can be discarded.
It is best to use PCRE_PARTIAL_HARD in this situation, because it does
not treat the end of a segment as the end of the subject when matching
\z, \Z, \b, \B, and $. Consider an unanchored pattern that matches
dates:
re> /\d?\d(jan|feb|mar|apr|may|jun|jul|aug|sep|oct|nov|dec)\d\d/
data> The date is 23ja\P\P
Partial match: 23ja
At this stage, an application could discard the text preceding "23ja",
add on text from the next segment, and call the matching function
again. Unlike the DFA matching functions, the entire matching string
must always be available, and the complete matching process occurs for
each call, so more memory and more processing time is needed.
Note: If the pattern contains lookbehind assertions, or \K, or starts
with \b or \B, the string that is returned for a partial match includes
characters that precede the start of what would be returned for a com-
plete match, because it contains all the characters that were inspected
during the partial match.
ISSUES WITH MULTI-SEGMENT MATCHING
Certain types of pattern may give problems with multi-segment matching,
whichever matching function is used.
1. If the pattern contains a test for the beginning of a line, you need
to pass the PCRE_NOTBOL option when the subject string for any call
does start at the beginning of a line. There is also a PCRE_NOTEOL
option, but in practice when doing multi-segment matching you should be
using PCRE_PARTIAL_HARD, which includes the effect of PCRE_NOTEOL.
2. Lookbehind assertions that have already been obeyed are catered for
in the offsets that are returned for a partial match. However a lookbe-
hind assertion later in the pattern could require even earlier charac-
ters to be inspected. You can handle this case by using the
PCRE_INFO_MAXLOOKBEHIND option of the pcre_fullinfo() or
pcre[16|32]_fullinfo() functions to obtain the length of the longest
lookbehind in the pattern. This length is given in characters, not
bytes. If you always retain at least that many characters before the
partially matched string, all should be well. (Of course, near the
start of the subject, fewer characters may be present; in that case all
characters should be retained.)
From release 8.33, there is a more accurate way of deciding which char-
acters to retain. Instead of subtracting the length of the longest
lookbehind from the earliest inspected character (offsets[0]), the
match start position (offsets[2]) should be used, and the next match
attempt started at the offsets[2] character by setting the startoffset
argument of pcre_exec() or pcre_dfa_exec().
For example, if the pattern "(?<=123)abc" is partially matched against
the string "xx123a", the three offset values returned are 2, 6, and 5.
This indicates that the matching process that gave a partial match
started at offset 5, but the characters "123a" were all inspected. The
maximum lookbehind for that pattern is 3, so taking that away from 5
shows that we need only keep "123a", and the next match attempt can be
started at offset 3 (that is, at "a") when further characters have been
added. When the match start is not the earliest inspected character,
pcretest shows it explicitly:
re> "(?<=123)abc"
data> xx123a\P\P
Partial match at offset 5: 123a
3. Because a partial match must always contain at least one character,
what might be considered a partial match of an empty string actually
gives a "no match" result. For example:
re> /c(?<=abc)x/
data> ab\P
No match
If the next segment begins "cx", a match should be found, but this will
only happen if characters from the previous segment are retained. For
this reason, a "no match" result should be interpreted as "partial
match of an empty string" when the pattern contains lookbehinds.
4. Matching a subject string that is split into multiple segments may
not always produce exactly the same result as matching over one single
long string, especially when PCRE_PARTIAL_SOFT is used. The section
"Partial Matching and Word Boundaries" above describes an issue that
arises if the pattern ends with \b or \B. Another kind of difference
may occur when there are multiple matching possibilities, because (for
PCRE_PARTIAL_SOFT) a partial match result is given only when there are
no completed matches. This means that as soon as the shortest match has
been found, continuation to a new subject segment is no longer possi-
ble. Consider again this pcretest example:
re> /dog(sbody)?/
data> dogsb\P
0: dog
data> do\P\D
Partial match: do
data> gsb\R\P\D
0: g
data> dogsbody\D
0: dogsbody
1: dog
The first data line passes the string "dogsb" to a standard matching
function, setting the PCRE_PARTIAL_SOFT option. Although the string is
a partial match for "dogsbody", the result is not PCRE_ERROR_PARTIAL,
because the shorter string "dog" is a complete match. Similarly, when
the subject is presented to a DFA matching function in several parts
("do" and "gsb" being the first two) the match stops when "dog" has
been found, and it is not possible to continue. On the other hand, if
"dogsbody" is presented as a single string, a DFA matching function
finds both matches.
Because of these problems, it is best to use PCRE_PARTIAL_HARD when
matching multi-segment data. The example above then behaves differ-
ently:
re> /dog(sbody)?/
data> dogsb\P\P
Partial match: dogsb
data> do\P\D
Partial match: do
data> gsb\R\P\P\D
Partial match: gsb
5. Patterns that contain alternatives at the top level which do not all
start with the same pattern item may not work as expected when
PCRE_DFA_RESTART is used. For example, consider this pattern:
1234|3789
If the first part of the subject is "ABC123", a partial match of the
first alternative is found at offset 3. There is no partial match for
the second alternative, because such a match does not start at the same
point in the subject string. Attempting to continue with the string
"7890" does not yield a match because only those alternatives that
match at one point in the subject are remembered. The problem arises
because the start of the second alternative matches within the first
alternative. There is no problem with anchored patterns or patterns
such as:
1234|ABCD
where no string can be a partial match for both alternatives. This is
not a problem if a standard matching function is used, because the
entire match has to be rerun each time:
re> /1234|3789/
data> ABC123\P\P
Partial match: 123
data> 1237890
0: 3789
Of course, instead of using PCRE_DFA_RESTART, the same technique of re-
running the entire match can also be used with the DFA matching func-
tions. Another possibility is to work with two buffers. If a partial
match at offset n in the first buffer is followed by "no match" when
PCRE_DFA_RESTART is used on the second buffer, you can then try a new
match starting at offset n+1 in the first buffer.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 02 July 2013
Copyright (c) 1997-2013 University of Cambridge.
------------------------------------------------------------------------------
PCREPRECOMPILE(3) Library Functions Manual PCREPRECOMPILE(3)
NAME
PCRE - Perl-compatible regular expressions
SAVING AND RE-USING PRECOMPILED PCRE PATTERNS
If you are running an application that uses a large number of regular
expression patterns, it may be useful to store them in a precompiled
form instead of having to compile them every time the application is
run. If you are not using any private character tables (see the
pcre_maketables() documentation), this is relatively straightforward.
If you are using private tables, it is a little bit more complicated.
However, if you are using the just-in-time optimization feature, it is
not possible to save and reload the JIT data.
If you save compiled patterns to a file, you can copy them to a differ-
ent host and run them there. If the two hosts have different endianness
(byte order), you should run the pcre[16|32]_pat-
tern_to_host_byte_order() function on the new host before trying to
match the pattern. The matching functions return PCRE_ERROR_BADENDIAN-
NESS if they detect a pattern with the wrong endianness.
Compiling regular expressions with one version of PCRE for use with a
different version is not guaranteed to work and may cause crashes, and
saving and restoring a compiled pattern loses any JIT optimization
data.
SAVING A COMPILED PATTERN
The value returned by pcre[16|32]_compile() points to a single block of
memory that holds the compiled pattern and associated data. You can
find the length of this block in bytes by calling
pcre[16|32]_fullinfo() with an argument of PCRE_INFO_SIZE. You can then
save the data in any appropriate manner. Here is sample code for the
8-bit library that compiles a pattern and writes it to a file. It
assumes that the variable fd refers to a file that is open for output:
int erroroffset, rc, size;
char *error;
pcre *re;
re = pcre_compile("my pattern", 0, &error, &erroroffset, NULL);
if (re == NULL) { ... handle errors ... }
rc = pcre_fullinfo(re, NULL, PCRE_INFO_SIZE, &size);
if (rc < 0) { ... handle errors ... }
rc = fwrite(re, 1, size, fd);
if (rc != size) { ... handle errors ... }
In this example, the bytes that comprise the compiled pattern are
copied exactly. Note that this is binary data that may contain any of
the 256 possible byte values. On systems that make a distinction
between binary and non-binary data, be sure that the file is opened for
binary output.
If you want to write more than one pattern to a file, you will have to
devise a way of separating them. For binary data, preceding each pat-
tern with its length is probably the most straightforward approach.
Another possibility is to write out the data in hexadecimal instead of
binary, one pattern to a line.
Saving compiled patterns in a file is only one possible way of storing
them for later use. They could equally well be saved in a database, or
in the memory of some daemon process that passes them via sockets to
the processes that want them.
If the pattern has been studied, it is also possible to save the normal
study data in a similar way to the compiled pattern itself. However, if
the PCRE_STUDY_JIT_COMPILE was used, the just-in-time data that is cre-
ated cannot be saved because it is too dependent on the current envi-
ronment. When studying generates additional information,
pcre[16|32]_study() returns a pointer to a pcre[16|32]_extra data
block. Its format is defined in the section on matching a pattern in
the pcreapi documentation. The study_data field points to the binary
study data, and this is what you must save (not the pcre[16|32]_extra
block itself). The length of the study data can be obtained by calling
pcre[16|32]_fullinfo() with an argument of PCRE_INFO_STUDYSIZE. Remem-
ber to check that pcre[16|32]_study() did return a non-NULL value
before trying to save the study data.
RE-USING A PRECOMPILED PATTERN
Re-using a precompiled pattern is straightforward. Having reloaded it
into main memory, called pcre[16|32]_pattern_to_host_byte_order() if
necessary, you pass its pointer to pcre[16|32]_exec() or
pcre[16|32]_dfa_exec() in the usual way.
However, if you passed a pointer to custom character tables when the
pattern was compiled (the tableptr argument of pcre[16|32]_compile()),
you must now pass a similar pointer to pcre[16|32]_exec() or
pcre[16|32]_dfa_exec(), because the value saved with the compiled pat-
tern will obviously be nonsense. A field in a pcre[16|32]_extra() block
is used to pass this data, as described in the section on matching a
pattern in the pcreapi documentation.
Warning: The tables that pcre_exec() and pcre_dfa_exec() use must be
the same as those that were used when the pattern was compiled. If this
is not the case, the behaviour is undefined.
If you did not provide custom character tables when the pattern was
compiled, the pointer in the compiled pattern is NULL, which causes the
matching functions to use PCRE's internal tables. Thus, you do not need
to take any special action at run time in this case.
If you saved study data with the compiled pattern, you need to create
your own pcre[16|32]_extra data block and set the study_data field to
point to the reloaded study data. You must also set the
PCRE_EXTRA_STUDY_DATA bit in the flags field to indicate that study
data is present. Then pass the pcre[16|32]_extra block to the matching
function in the usual way. If the pattern was studied for just-in-time
optimization, that data cannot be saved, and so is lost by a
save/restore cycle.
COMPATIBILITY WITH DIFFERENT PCRE RELEASES
In general, it is safest to recompile all saved patterns when you
update to a new PCRE release, though not all updates actually require
this.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 12 November 2013
Copyright (c) 1997-2013 University of Cambridge.
------------------------------------------------------------------------------
PCREPERFORM(3) Library Functions Manual PCREPERFORM(3)
NAME
PCRE - Perl-compatible regular expressions
PCRE PERFORMANCE
Two aspects of performance are discussed below: memory usage and pro-
cessing time. The way you express your pattern as a regular expression
can affect both of them.
COMPILED PATTERN MEMORY USAGE
Patterns are compiled by PCRE into a reasonably efficient interpretive
code, so that most simple patterns do not use much memory. However,
there is one case where the memory usage of a compiled pattern can be
unexpectedly large. If a parenthesized subpattern has a quantifier with
a minimum greater than 1 and/or a limited maximum, the whole subpattern
is repeated in the compiled code. For example, the pattern
(abc|def){2,4}
is compiled as if it were
(abc|def)(abc|def)((abc|def)(abc|def)?)?
(Technical aside: It is done this way so that backtrack points within
each of the repetitions can be independently maintained.)
For regular expressions whose quantifiers use only small numbers, this
is not usually a problem. However, if the numbers are large, and par-
ticularly if such repetitions are nested, the memory usage can become
an embarrassment. For example, the very simple pattern
((ab){1,1000}c){1,3}
uses 51K bytes when compiled using the 8-bit library. When PCRE is com-
piled with its default internal pointer size of two bytes, the size
limit on a compiled pattern is 64K data units, and this is reached with
the above pattern if the outer repetition is increased from 3 to 4.
PCRE can be compiled to use larger internal pointers and thus handle
larger compiled patterns, but it is better to try to rewrite your pat-
tern to use less memory if you can.
One way of reducing the memory usage for such patterns is to make use
of PCRE's "subroutine" facility. Re-writing the above pattern as
((ab)(?2){0,999}c)(?1){0,2}
reduces the memory requirements to 18K, and indeed it remains under 20K
even with the outer repetition increased to 100. However, this pattern
is not exactly equivalent, because the "subroutine" calls are treated
as atomic groups into which there can be no backtracking if there is a
subsequent matching failure. Therefore, PCRE cannot do this kind of
rewriting automatically. Furthermore, there is a noticeable loss of
speed when executing the modified pattern. Nevertheless, if the atomic
grouping is not a problem and the loss of speed is acceptable, this
kind of rewriting will allow you to process patterns that PCRE cannot
otherwise handle.
STACK USAGE AT RUN TIME
When pcre_exec() or pcre[16|32]_exec() is used for matching, certain
kinds of pattern can cause it to use large amounts of the process
stack. In some environments the default process stack is quite small,
and if it runs out the result is often SIGSEGV. This issue is probably
the most frequently raised problem with PCRE. Rewriting your pattern
can often help. The pcrestack documentation discusses this issue in
detail.
PROCESSING TIME
Certain items in regular expression patterns are processed more effi-
ciently than others. It is more efficient to use a character class like
[aeiou] than a set of single-character alternatives such as
(a|e|i|o|u). In general, the simplest construction that provides the
required behaviour is usually the most efficient. Jeffrey Friedl's book
contains a lot of useful general discussion about optimizing regular
expressions for efficient performance. This document contains a few
observations about PCRE.
Using Unicode character properties (the \p, \P, and \X escapes) is
slow, because PCRE has to use a multi-stage table lookup whenever it
needs a character's property. If you can find an alternative pattern
that does not use character properties, it will probably be faster.
By default, the escape sequences \b, \d, \s, and \w, and the POSIX
character classes such as [:alpha:] do not use Unicode properties,
partly for backwards compatibility, and partly for performance reasons.
However, you can set PCRE_UCP if you want Unicode character properties
to be used. This can double the matching time for items such as \d,
when matched with a traditional matching function; the performance loss
is less with a DFA matching function, and in both cases there is not
much difference for \b.
When a pattern begins with .* not in parentheses, or in parentheses
that are not the subject of a backreference, and the PCRE_DOTALL option
is set, the pattern is implicitly anchored by PCRE, since it can match
only at the start of a subject string. However, if PCRE_DOTALL is not
set, PCRE cannot make this optimization, because the . metacharacter
does not then match a newline, and if the subject string contains new-
lines, the pattern may match from the character immediately following
one of them instead of from the very start. For example, the pattern
.*second
matches the subject "first\nand second" (where \n stands for a newline
character), with the match starting at the seventh character. In order
to do this, PCRE has to retry the match starting after every newline in
the subject.
If you are using such a pattern with subject strings that do not con-
tain newlines, the best performance is obtained by setting PCRE_DOTALL,
or starting the pattern with ^.* or ^.*? to indicate explicit anchor-
ing. That saves PCRE from having to scan along the subject looking for
a newline to restart at.
Beware of patterns that contain nested indefinite repeats. These can
take a long time to run when applied to a string that does not match.
Consider the pattern fragment
^(a+)*
This can match "aaaa" in 16 different ways, and this number increases
very rapidly as the string gets longer. (The * repeat can match 0, 1,
2, 3, or 4 times, and for each of those cases other than 0 or 4, the +
repeats can match different numbers of times.) When the remainder of
the pattern is such that the entire match is going to fail, PCRE has in
principle to try every possible variation, and this can take an
extremely long time, even for relatively short strings.
An optimization catches some of the more simple cases such as
(a+)*b
where a literal character follows. Before embarking on the standard
matching procedure, PCRE checks that there is a "b" later in the sub-
ject string, and if there is not, it fails the match immediately. How-
ever, when there is no following literal this optimization cannot be
used. You can see the difference by comparing the behaviour of
(a+)*\d
with the pattern above. The former gives a failure almost instantly
when applied to a whole line of "a" characters, whereas the latter
takes an appreciable time with strings longer than about 20 characters.
In many cases, the solution to this kind of performance issue is to use
an atomic group or a possessive quantifier.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 25 August 2012
Copyright (c) 1997-2012 University of Cambridge.
------------------------------------------------------------------------------
PCREPOSIX(3) Library Functions Manual PCREPOSIX(3)
NAME
PCRE - Perl-compatible regular expressions.
SYNOPSIS
#include <pcreposix.h>
int regcomp(regex_t *preg, const char *pattern,
int cflags);
int regexec(regex_t *preg, const char *string,
size_t nmatch, regmatch_t pmatch[], int eflags);
size_t regerror(int errcode, const regex_t *preg,
char *errbuf, size_t errbuf_size);
void regfree(regex_t *preg);
DESCRIPTION
This set of functions provides a POSIX-style API for the PCRE regular
expression 8-bit library. See the pcreapi documentation for a descrip-
tion of PCRE's native API, which contains much additional functional-
ity. There is no POSIX-style wrapper for PCRE's 16-bit and 32-bit
library.
The functions described here are just wrapper functions that ultimately
call the PCRE native API. Their prototypes are defined in the
pcreposix.h header file, and on Unix systems the library itself is
called pcreposix.a, so can be accessed by adding -lpcreposix to the
command for linking an application that uses them. Because the POSIX
functions call the native ones, it is also necessary to add -lpcre.
I have implemented only those POSIX option bits that can be reasonably
mapped to PCRE native options. In addition, the option REG_EXTENDED is
defined with the value zero. This has no effect, but since programs
that are written to the POSIX interface often use it, this makes it
easier to slot in PCRE as a replacement library. Other POSIX options
are not even defined.
There are also some other options that are not defined by POSIX. These
have been added at the request of users who want to make use of certain
PCRE-specific features via the POSIX calling interface.
When PCRE is called via these functions, it is only the API that is
POSIX-like in style. The syntax and semantics of the regular expres-
sions themselves are still those of Perl, subject to the setting of
various PCRE options, as described below. "POSIX-like in style" means
that the API approximates to the POSIX definition; it is not fully
POSIX-compatible, and in multi-byte encoding domains it is probably
even less compatible.
The header for these functions is supplied as pcreposix.h to avoid any
potential clash with other POSIX libraries. It can, of course, be
renamed or aliased as regex.h, which is the "correct" name. It provides
two structure types, regex_t for compiled internal forms, and reg-
match_t for returning captured substrings. It also defines some con-
stants whose names start with "REG_"; these are used for setting
options and identifying error codes.
COMPILING A PATTERN
The function regcomp() is called to compile a pattern into an internal
form. The pattern is a C string terminated by a binary zero, and is
passed in the argument pattern. The preg argument is a pointer to a
regex_t structure that is used as a base for storing information about
the compiled regular expression.
The argument cflags is either zero, or contains one or more of the bits
defined by the following macros:
REG_DOTALL
The PCRE_DOTALL option is set when the regular expression is passed for
compilation to the native function. Note that REG_DOTALL is not part of
the POSIX standard.
REG_ICASE
The PCRE_CASELESS option is set when the regular expression is passed
for compilation to the native function.
REG_NEWLINE
The PCRE_MULTILINE option is set when the regular expression is passed
for compilation to the native function. Note that this does not mimic
the defined POSIX behaviour for REG_NEWLINE (see the following sec-
tion).
REG_NOSUB
The PCRE_NO_AUTO_CAPTURE option is set when the regular expression is
passed for compilation to the native function. In addition, when a pat-
tern that is compiled with this flag is passed to regexec() for match-
ing, the nmatch and pmatch arguments are ignored, and no captured
strings are returned.
REG_UCP
The PCRE_UCP option is set when the regular expression is passed for
compilation to the native function. This causes PCRE to use Unicode
properties when matchine \d, \w, etc., instead of just recognizing
ASCII values. Note that REG_UTF8 is not part of the POSIX standard.
REG_UNGREEDY
The PCRE_UNGREEDY option is set when the regular expression is passed
for compilation to the native function. Note that REG_UNGREEDY is not
part of the POSIX standard.
REG_UTF8
The PCRE_UTF8 option is set when the regular expression is passed for
compilation to the native function. This causes the pattern itself and
all data strings used for matching it to be treated as UTF-8 strings.
Note that REG_UTF8 is not part of the POSIX standard.
In the absence of these flags, no options are passed to the native
function. This means the the regex is compiled with PCRE default
semantics. In particular, the way it handles newline characters in the
subject string is the Perl way, not the POSIX way. Note that setting
PCRE_MULTILINE has only some of the effects specified for REG_NEWLINE.
It does not affect the way newlines are matched by . (they are not) or
by a negative class such as [^a] (they are).
The yield of regcomp() is zero on success, and non-zero otherwise. The
preg structure is filled in on success, and one member of the structure
is public: re_nsub contains the number of capturing subpatterns in the
regular expression. Various error codes are defined in the header file.
NOTE: If the yield of regcomp() is non-zero, you must not attempt to
use the contents of the preg structure. If, for example, you pass it to
regexec(), the result is undefined and your program is likely to crash.
MATCHING NEWLINE CHARACTERS
This area is not simple, because POSIX and Perl take different views of
things. It is not possible to get PCRE to obey POSIX semantics, but
then PCRE was never intended to be a POSIX engine. The following table
lists the different possibilities for matching newline characters in
PCRE:
Default Change with
. matches newline no PCRE_DOTALL
newline matches [^a] yes not changeable
$ matches \n at end yes PCRE_DOLLARENDONLY
$ matches \n in middle no PCRE_MULTILINE
^ matches \n in middle no PCRE_MULTILINE
This is the equivalent table for POSIX:
Default Change with
. matches newline yes REG_NEWLINE
newline matches [^a] yes REG_NEWLINE
$ matches \n at end no REG_NEWLINE
$ matches \n in middle no REG_NEWLINE
^ matches \n in middle no REG_NEWLINE
PCRE's behaviour is the same as Perl's, except that there is no equiva-
lent for PCRE_DOLLAR_ENDONLY in Perl. In both PCRE and Perl, there is
no way to stop newline from matching [^a].
The default POSIX newline handling can be obtained by setting
PCRE_DOTALL and PCRE_DOLLAR_ENDONLY, but there is no way to make PCRE
behave exactly as for the REG_NEWLINE action.
MATCHING A PATTERN
The function regexec() is called to match a compiled pattern preg
against a given string, which is by default terminated by a zero byte
(but see REG_STARTEND below), subject to the options in eflags. These
can be:
REG_NOTBOL
The PCRE_NOTBOL option is set when calling the underlying PCRE matching
function.
REG_NOTEMPTY
The PCRE_NOTEMPTY option is set when calling the underlying PCRE match-
ing function. Note that REG_NOTEMPTY is not part of the POSIX standard.
However, setting this option can give more POSIX-like behaviour in some
situations.
REG_NOTEOL
The PCRE_NOTEOL option is set when calling the underlying PCRE matching
function.
REG_STARTEND
The string is considered to start at string + pmatch[0].rm_so and to
have a terminating NUL located at string + pmatch[0].rm_eo (there need
not actually be a NUL at that location), regardless of the value of
nmatch. This is a BSD extension, compatible with but not specified by
IEEE Standard 1003.2 (POSIX.2), and should be used with caution in
software intended to be portable to other systems. Note that a non-zero
rm_so does not imply REG_NOTBOL; REG_STARTEND affects only the location
of the string, not how it is matched.
If the pattern was compiled with the REG_NOSUB flag, no data about any
matched strings is returned. The nmatch and pmatch arguments of
regexec() are ignored.
If the value of nmatch is zero, or if the value pmatch is NULL, no data
about any matched strings is returned.
Otherwise,the portion of the string that was matched, and also any cap-
tured substrings, are returned via the pmatch argument, which points to
an array of nmatch structures of type regmatch_t, containing the mem-
bers rm_so and rm_eo. These contain the offset to the first character
of each substring and the offset to the first character after the end
of each substring, respectively. The 0th element of the vector relates
to the entire portion of string that was matched; subsequent elements
relate to the capturing subpatterns of the regular expression. Unused
entries in the array have both structure members set to -1.
A successful match yields a zero return; various error codes are
defined in the header file, of which REG_NOMATCH is the "expected"
failure code.
ERROR MESSAGES
The regerror() function maps a non-zero errorcode from either regcomp()
or regexec() to a printable message. If preg is not NULL, the error
should have arisen from the use of that structure. A message terminated
by a binary zero is placed in errbuf. The length of the message,
including the zero, is limited to errbuf_size. The yield of the func-
tion is the size of buffer needed to hold the whole message.
MEMORY USAGE
Compiling a regular expression causes memory to be allocated and asso-
ciated with the preg structure. The function regfree() frees all such
memory, after which preg may no longer be used as a compiled expres-
sion.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 09 January 2012
Copyright (c) 1997-2012 University of Cambridge.
------------------------------------------------------------------------------
PCRECPP(3) Library Functions Manual PCRECPP(3)
NAME
PCRE - Perl-compatible regular expressions.
SYNOPSIS OF C++ WRAPPER
#include <pcrecpp.h>
DESCRIPTION
The C++ wrapper for PCRE was provided by Google Inc. Some additional
functionality was added by Giuseppe Maxia. This brief man page was con-
structed from the notes in the pcrecpp.h file, which should be con-
sulted for further details. Note that the C++ wrapper supports only the
original 8-bit PCRE library. There is no 16-bit or 32-bit support at
present.
MATCHING INTERFACE
The "FullMatch" operation checks that supplied text matches a supplied
pattern exactly. If pointer arguments are supplied, it copies matched
sub-strings that match sub-patterns into them.
Example: successful match
pcrecpp::RE re("h.*o");
re.FullMatch("hello");
Example: unsuccessful match (requires full match):
pcrecpp::RE re("e");
!re.FullMatch("hello");
Example: creating a temporary RE object:
pcrecpp::RE("h.*o").FullMatch("hello");
You can pass in a "const char*" or a "string" for "text". The examples
below tend to use a const char*. You can, as in the different examples
above, store the RE object explicitly in a variable or use a temporary
RE object. The examples below use one mode or the other arbitrarily.
Either could correctly be used for any of these examples.
You must supply extra pointer arguments to extract matched subpieces.
Example: extracts "ruby" into "s" and 1234 into "i"
int i;
string s;
pcrecpp::RE re("(\\w+):(\\d+)");
re.FullMatch("ruby:1234", &s, &i);
Example: does not try to extract any extra sub-patterns
re.FullMatch("ruby:1234", &s);
Example: does not try to extract into NULL
re.FullMatch("ruby:1234", NULL, &i);
Example: integer overflow causes failure
!re.FullMatch("ruby:1234567891234", NULL, &i);
Example: fails because there aren't enough sub-patterns:
!pcrecpp::RE("\\w+:\\d+").FullMatch("ruby:1234", &s);
Example: fails because string cannot be stored in integer
!pcrecpp::RE("(.*)").FullMatch("ruby", &i);
The provided pointer arguments can be pointers to any scalar numeric
type, or one of:
string (matched piece is copied to string)
StringPiece (StringPiece is mutated to point to matched piece)
T (where "bool T::ParseFrom(const char*, int)" exists)
NULL (the corresponding matched sub-pattern is not copied)
The function returns true iff all of the following conditions are sat-
isfied:
a. "text" matches "pattern" exactly;
b. The number of matched sub-patterns is >= number of supplied
pointers;
c. The "i"th argument has a suitable type for holding the
string captured as the "i"th sub-pattern. If you pass in
void * NULL for the "i"th argument, or a non-void * NULL
of the correct type, or pass fewer arguments than the
number of sub-patterns, "i"th captured sub-pattern is
ignored.
CAVEAT: An optional sub-pattern that does not exist in the matched
string is assigned the empty string. Therefore, the following will
return false (because the empty string is not a valid number):
int number;
pcrecpp::RE::FullMatch("abc", "[a-z]+(\\d+)?", &number);
The matching interface supports at most 16 arguments per call. If you
need more, consider using the more general interface
pcrecpp::RE::DoMatch. See pcrecpp.h for the signature for DoMatch.
NOTE: Do not use no_arg, which is used internally to mark the end of a
list of optional arguments, as a placeholder for missing arguments, as
this can lead to segfaults.
QUOTING METACHARACTERS
You can use the "QuoteMeta" operation to insert backslashes before all
potentially meaningful characters in a string. The returned string,
used as a regular expression, will exactly match the original string.
Example:
string quoted = RE::QuoteMeta(unquoted);
Note that it's legal to escape a character even if it has no special
meaning in a regular expression -- so this function does that. (This
also makes it identical to the perl function of the same name; see
"perldoc -f quotemeta".) For example, "1.5-2.0?" becomes
"1\.5\-2\.0\?".
PARTIAL MATCHES
You can use the "PartialMatch" operation when you want the pattern to
match any substring of the text.
Example: simple search for a string:
pcrecpp::RE("ell").PartialMatch("hello");
Example: find first number in a string:
int number;
pcrecpp::RE re("(\\d+)");
re.PartialMatch("x*100 + 20", &number);
assert(number == 100);
UTF-8 AND THE MATCHING INTERFACE
By default, pattern and text are plain text, one byte per character.
The UTF8 flag, passed to the constructor, causes both pattern and
string to be treated as UTF-8 text, still a byte stream but potentially
multiple bytes per character. In practice, the text is likelier to be
UTF-8 than the pattern, but the match returned may depend on the UTF8
flag, so always use it when matching UTF8 text. For example, "." will
match one byte normally but with UTF8 set may match up to three bytes
of a multi-byte character.
Example:
pcrecpp::RE_Options options;
options.set_utf8();
pcrecpp::RE re(utf8_pattern, options);
re.FullMatch(utf8_string);
Example: using the convenience function UTF8():
pcrecpp::RE re(utf8_pattern, pcrecpp::UTF8());
re.FullMatch(utf8_string);
NOTE: The UTF8 flag is ignored if pcre was not configured with the
--enable-utf8 flag.
PASSING MODIFIERS TO THE REGULAR EXPRESSION ENGINE
PCRE defines some modifiers to change the behavior of the regular
expression engine. The C++ wrapper defines an auxiliary class,
RE_Options, as a vehicle to pass such modifiers to a RE class. Cur-
rently, the following modifiers are supported:
modifier description Perl corresponding
PCRE_CASELESS case insensitive match /i
PCRE_MULTILINE multiple lines match /m
PCRE_DOTALL dot matches newlines /s
PCRE_DOLLAR_ENDONLY $ matches only at end N/A
PCRE_EXTRA strict escape parsing N/A
PCRE_EXTENDED ignore white spaces /x
PCRE_UTF8 handles UTF8 chars built-in
PCRE_UNGREEDY reverses * and *? N/A
PCRE_NO_AUTO_CAPTURE disables capturing parens N/A (*)
(*) Both Perl and PCRE allow non capturing parentheses by means of the
"?:" modifier within the pattern itself. e.g. (?:ab|cd) does not cap-
ture, while (ab|cd) does.
For a full account on how each modifier works, please check the PCRE
API reference page.
For each modifier, there are two member functions whose name is made
out of the modifier in lowercase, without the "PCRE_" prefix. For
instance, PCRE_CASELESS is handled by
bool caseless()
which returns true if the modifier is set, and
RE_Options & set_caseless(bool)
which sets or unsets the modifier. Moreover, PCRE_EXTRA_MATCH_LIMIT can
be accessed through the set_match_limit() and match_limit() member
functions. Setting match_limit to a non-zero value will limit the exe-
cution of pcre to keep it from doing bad things like blowing the stack
or taking an eternity to return a result. A value of 5000 is good
enough to stop stack blowup in a 2MB thread stack. Setting match_limit
to zero disables match limiting. Alternatively, you can call
match_limit_recursion() which uses PCRE_EXTRA_MATCH_LIMIT_RECURSION to
limit how much PCRE recurses. match_limit() limits the number of
matches PCRE does; match_limit_recursion() limits the depth of internal
recursion, and therefore the amount of stack that is used.
Normally, to pass one or more modifiers to a RE class, you declare a
RE_Options object, set the appropriate options, and pass this object to
a RE constructor. Example:
RE_Options opt;
opt.set_caseless(true);
if (RE("HELLO", opt).PartialMatch("hello world")) ...
RE_options has two constructors. The default constructor takes no argu-
ments and creates a set of flags that are off by default. The optional
parameter option_flags is to facilitate transfer of legacy code from C
programs. This lets you do
RE(pattern,
RE_Options(PCRE_CASELESS|PCRE_MULTILINE)).PartialMatch(str);
However, new code is better off doing
RE(pattern,
RE_Options().set_caseless(true).set_multiline(true))
.PartialMatch(str);
If you are going to pass one of the most used modifiers, there are some
convenience functions that return a RE_Options class with the appropri-
ate modifier already set: CASELESS(), UTF8(), MULTILINE(), DOTALL(),
and EXTENDED().
If you need to set several options at once, and you don't want to go
through the pains of declaring a RE_Options object and setting several
options, there is a parallel method that give you such ability on the
fly. You can concatenate several set_xxxxx() member functions, since
each of them returns a reference to its class object. For example, to
pass PCRE_CASELESS, PCRE_EXTENDED, and PCRE_MULTILINE to a RE with one
statement, you may write:
RE(" ^ xyz \\s+ .* blah$",
RE_Options()
.set_caseless(true)
.set_extended(true)
.set_multiline(true)).PartialMatch(sometext);
SCANNING TEXT INCREMENTALLY
The "Consume" operation may be useful if you want to repeatedly match
regular expressions at the front of a string and skip over them as they
match. This requires use of the "StringPiece" type, which represents a
sub-range of a real string. Like RE, StringPiece is defined in the
pcrecpp namespace.
Example: read lines of the form "var = value" from a string.
string contents = ...; // Fill string somehow
pcrecpp::StringPiece input(contents); // Wrap in a StringPiece
string var;
int value;
pcrecpp::RE re("(\\w+) = (\\d+)\n");
while (re.Consume(&input, &var, &value)) {
...;
}
Each successful call to "Consume" will set "var/value", and also
advance "input" so it points past the matched text.
The "FindAndConsume" operation is similar to "Consume" but does not
anchor your match at the beginning of the string. For example, you
could extract all words from a string by repeatedly calling
pcrecpp::RE("(\\w+)").FindAndConsume(&input, &word)
PARSING HEX/OCTAL/C-RADIX NUMBERS
By default, if you pass a pointer to a numeric value, the corresponding
text is interpreted as a base-10 number. You can instead wrap the
pointer with a call to one of the operators Hex(), Octal(), or CRadix()
to interpret the text in another base. The CRadix operator interprets
C-style "0" (base-8) and "0x" (base-16) prefixes, but defaults to
base-10.
Example:
int a, b, c, d;
pcrecpp::RE re("(.*) (.*) (.*) (.*)");
re.FullMatch("100 40 0100 0x40",
pcrecpp::Octal(&a), pcrecpp::Hex(&b),
pcrecpp::CRadix(&c), pcrecpp::CRadix(&d));
will leave 64 in a, b, c, and d.
REPLACING PARTS OF STRINGS
You can replace the first match of "pattern" in "str" with "rewrite".
Within "rewrite", backslash-escaped digits (\1 to \9) can be used to
insert text matching corresponding parenthesized group from the pat-
tern. \0 in "rewrite" refers to the entire matching text. For example:
string s = "yabba dabba doo";
pcrecpp::RE("b+").Replace("d", &s);
will leave "s" containing "yada dabba doo". The result is true if the
pattern matches and a replacement occurs, false otherwise.
GlobalReplace is like Replace except that it replaces all occurrences
of the pattern in the string with the rewrite. Replacements are not
subject to re-matching. For example:
string s = "yabba dabba doo";
pcrecpp::RE("b+").GlobalReplace("d", &s);
will leave "s" containing "yada dada doo". It returns the number of
replacements made.
Extract is like Replace, except that if the pattern matches, "rewrite"
is copied into "out" (an additional argument) with substitutions. The
non-matching portions of "text" are ignored. Returns true iff a match
occurred and the extraction happened successfully; if no match occurs,
the string is left unaffected.
AUTHOR
The C++ wrapper was contributed by Google Inc.
Copyright (c) 2007 Google Inc.
REVISION
Last updated: 08 January 2012
------------------------------------------------------------------------------
PCRESAMPLE(3) Library Functions Manual PCRESAMPLE(3)
NAME
PCRE - Perl-compatible regular expressions
PCRE SAMPLE PROGRAM
A simple, complete demonstration program, to get you started with using
PCRE, is supplied in the file pcredemo.c in the PCRE distribution. A
listing of this program is given in the pcredemo documentation. If you
do not have a copy of the PCRE distribution, you can save this listing
to re-create pcredemo.c.
The demonstration program, which uses the original PCRE 8-bit library,
compiles the regular expression that is its first argument, and matches
it against the subject string in its second argument. No PCRE options
are set, and default character tables are used. If matching succeeds,
the program outputs the portion of the subject that matched, together
with the contents of any captured substrings.
If the -g option is given on the command line, the program then goes on
to check for further matches of the same regular expression in the same
subject string. The logic is a little bit tricky because of the possi-
bility of matching an empty string. Comments in the code explain what
is going on.
If PCRE is installed in the standard include and library directories
for your operating system, you should be able to compile the demonstra-
tion program using this command:
gcc -o pcredemo pcredemo.c -lpcre
If PCRE is installed elsewhere, you may need to add additional options
to the command line. For example, on a Unix-like system that has PCRE
installed in /usr/local, you can compile the demonstration program
using a command like this:
gcc -o pcredemo -I/usr/local/include pcredemo.c \
-L/usr/local/lib -lpcre
In a Windows environment, if you want to statically link the program
against a non-dll pcre.a file, you must uncomment the line that defines
PCRE_STATIC before including pcre.h, because otherwise the pcre_mal-
loc() and pcre_free() exported functions will be declared
__declspec(dllimport), with unwanted results.
Once you have compiled and linked the demonstration program, you can
run simple tests like this:
./pcredemo 'cat|dog' 'the cat sat on the mat'
./pcredemo -g 'cat|dog' 'the dog sat on the cat'
Note that there is a much more comprehensive test program, called
pcretest, which supports many more facilities for testing regular
expressions and both PCRE libraries. The pcredemo program is provided
as a simple coding example.
If you try to run pcredemo when PCRE is not installed in the standard
library directory, you may get an error like this on some operating
systems (e.g. Solaris):
ld.so.1: a.out: fatal: libpcre.so.0: open failed: No such file or
directory
This is caused by the way shared library support works on those sys-
tems. You need to add
-R/usr/local/lib
(for example) to the compile command to get round this problem.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 10 January 2012
Copyright (c) 1997-2012 University of Cambridge.
------------------------------------------------------------------------------
PCRELIMITS(3) Library Functions Manual PCRELIMITS(3)
NAME
PCRE - Perl-compatible regular expressions
SIZE AND OTHER LIMITATIONS
There are some size limitations in PCRE but it is hoped that they will
never in practice be relevant.
The maximum length of a compiled pattern is approximately 64K data
units (bytes for the 8-bit library, 16-bit units for the 16-bit
library, and 32-bit units for the 32-bit library) if PCRE is compiled
with the default internal linkage size, which is 2 bytes for the 8-bit
and 16-bit libraries, and 4 bytes for the 32-bit library. If you want
to process regular expressions that are truly enormous, you can compile
PCRE with an internal linkage size of 3 or 4 (when building the 16-bit
or 32-bit library, 3 is rounded up to 4). See the README file in the
source distribution and the pcrebuild documentation for details. In
these cases the limit is substantially larger. However, the speed of
execution is slower.
All values in repeating quantifiers must be less than 65536.
There is no limit to the number of parenthesized subpatterns, but there
can be no more than 65535 capturing subpatterns. There is, however, a
limit to the depth of nesting of parenthesized subpatterns of all
kinds. This is imposed in order to limit the amount of system stack
used at compile time. The limit can be specified when PCRE is built;
the default is 250.
There is a limit to the number of forward references to subsequent sub-
patterns of around 200,000. Repeated forward references with fixed
upper limits, for example, (?2){0,100} when subpattern number 2 is to
the right, are included in the count. There is no limit to the number
of backward references.
The maximum length of name for a named subpattern is 32 characters, and
the maximum number of named subpatterns is 10000.
The maximum length of a name in a (*MARK), (*PRUNE), (*SKIP), or
(*THEN) verb is 255 for the 8-bit library and 65535 for the 16-bit and
32-bit libraries.
The maximum length of a subject string is the largest positive number
that an integer variable can hold. However, when using the traditional
matching function, PCRE uses recursion to handle subpatterns and indef-
inite repetition. This means that the available stack space may limit
the size of a subject string that can be processed by certain patterns.
For a discussion of stack issues, see the pcrestack documentation.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 05 November 2013
Copyright (c) 1997-2013 University of Cambridge.
------------------------------------------------------------------------------
PCRESTACK(3) Library Functions Manual PCRESTACK(3)
NAME
PCRE - Perl-compatible regular expressions
PCRE DISCUSSION OF STACK USAGE
When you call pcre[16|32]_exec(), it makes use of an internal function
called match(). This calls itself recursively at branch points in the
pattern, in order to remember the state of the match so that it can
back up and try a different alternative if the first one fails. As
matching proceeds deeper and deeper into the tree of possibilities, the
recursion depth increases. The match() function is also called in other
circumstances, for example, whenever a parenthesized sub-pattern is
entered, and in certain cases of repetition.
Not all calls of match() increase the recursion depth; for an item such
as a* it may be called several times at the same level, after matching
different numbers of a's. Furthermore, in a number of cases where the
result of the recursive call would immediately be passed back as the
result of the current call (a "tail recursion"), the function is just
restarted instead.
The above comments apply when pcre[16|32]_exec() is run in its normal
interpretive manner. If the pattern was studied with the
PCRE_STUDY_JIT_COMPILE option, and just-in-time compiling was success-
ful, and the options passed to pcre[16|32]_exec() were not incompati-
ble, the matching process uses the JIT-compiled code instead of the
match() function. In this case, the memory requirements are handled
entirely differently. See the pcrejit documentation for details.
The pcre[16|32]_dfa_exec() function operates in an entirely different
way, and uses recursion only when there is a regular expression recur-
sion or subroutine call in the pattern. This includes the processing of
assertion and "once-only" subpatterns, which are handled like subrou-
tine calls. Normally, these are never very deep, and the limit on the
complexity of pcre[16|32]_dfa_exec() is controlled by the amount of
workspace it is given. However, it is possible to write patterns with
runaway infinite recursions; such patterns will cause
pcre[16|32]_dfa_exec() to run out of stack. At present, there is no
protection against this.
The comments that follow do NOT apply to pcre[16|32]_dfa_exec(); they
are relevant only for pcre[16|32]_exec() without the JIT optimization.
Reducing pcre[16|32]_exec()'s stack usage
Each time that match() is actually called recursively, it uses memory
from the process stack. For certain kinds of pattern and data, very
large amounts of stack may be needed, despite the recognition of "tail
recursion". You can often reduce the amount of recursion, and there-
fore the amount of stack used, by modifying the pattern that is being
matched. Consider, for example, this pattern:
([^<]|<(?!inet))+
It matches from wherever it starts until it encounters "<inet" or the
end of the data, and is the kind of pattern that might be used when
processing an XML file. Each iteration of the outer parentheses matches
either one character that is not "<" or a "<" that is not followed by
"inet". However, each time a parenthesis is processed, a recursion
occurs, so this formulation uses a stack frame for each matched charac-
ter. For a long string, a lot of stack is required. Consider now this
rewritten pattern, which matches exactly the same strings:
([^<]++|<(?!inet))+
This uses very much less stack, because runs of characters that do not
contain "<" are "swallowed" in one item inside the parentheses. Recur-
sion happens only when a "<" character that is not followed by "inet"
is encountered (and we assume this is relatively rare). A possessive
quantifier is used to stop any backtracking into the runs of non-"<"
characters, but that is not related to stack usage.
This example shows that one way of avoiding stack problems when match-
ing long subject strings is to write repeated parenthesized subpatterns
to match more than one character whenever possible.
Compiling PCRE to use heap instead of stack for pcre[16|32]_exec()
In environments where stack memory is constrained, you might want to
compile PCRE to use heap memory instead of stack for remembering back-
up points when pcre[16|32]_exec() is running. This makes it run a lot
more slowly, however. Details of how to do this are given in the pcre-
build documentation. When built in this way, instead of using the
stack, PCRE obtains and frees memory by calling the functions that are
pointed to by the pcre[16|32]_stack_malloc and pcre[16|32]_stack_free
variables. By default, these point to malloc() and free(), but you can
replace the pointers to cause PCRE to use your own functions. Since the
block sizes are always the same, and are always freed in reverse order,
it may be possible to implement customized memory handlers that are
more efficient than the standard functions.
Limiting pcre[16|32]_exec()'s stack usage
You can set limits on the number of times that match() is called, both
in total and recursively. If a limit is exceeded, pcre[16|32]_exec()
returns an error code. Setting suitable limits should prevent it from
running out of stack. The default values of the limits are very large,
and unlikely ever to operate. They can be changed when PCRE is built,
and they can also be set when pcre[16|32]_exec() is called. For details
of these interfaces, see the pcrebuild documentation and the section on
extra data for pcre[16|32]_exec() in the pcreapi documentation.
As a very rough rule of thumb, you should reckon on about 500 bytes per
recursion. Thus, if you want to limit your stack usage to 8Mb, you
should set the limit at 16000 recursions. A 64Mb stack, on the other
hand, can support around 128000 recursions.
In Unix-like environments, the pcretest test program has a command line
option (-S) that can be used to increase the size of its stack. As long
as the stack is large enough, another option (-M) can be used to find
the smallest limits that allow a particular pattern to match a given
subject string. This is done by calling pcre[16|32]_exec() repeatedly
with different limits.
Obtaining an estimate of stack usage
The actual amount of stack used per recursion can vary quite a lot,
depending on the compiler that was used to build PCRE and the optimiza-
tion or debugging options that were set for it. The rule of thumb value
of 500 bytes mentioned above may be larger or smaller than what is
actually needed. A better approximation can be obtained by running this
command:
pcretest -m -C
The -C option causes pcretest to output information about the options
with which PCRE was compiled. When -m is also given (before -C), infor-
mation about stack use is given in a line like this:
Match recursion uses stack: approximate frame size = 640 bytes
The value is approximate because some recursions need a bit more (up to
perhaps 16 more bytes).
If the above command is given when PCRE is compiled to use the heap
instead of the stack for recursion, the value that is output is the
size of each block that is obtained from the heap.
Changing stack size in Unix-like systems
In Unix-like environments, there is not often a problem with the stack
unless very long strings are involved, though the default limit on
stack size varies from system to system. Values from 8Mb to 64Mb are
common. You can find your default limit by running the command:
ulimit -s
Unfortunately, the effect of running out of stack is often SIGSEGV,
though sometimes a more explicit error message is given. You can nor-
mally increase the limit on stack size by code such as this:
struct rlimit rlim;
getrlimit(RLIMIT_STACK, &rlim);
rlim.rlim_cur = 100*1024*1024;
setrlimit(RLIMIT_STACK, &rlim);
This reads the current limits (soft and hard) using getrlimit(), then
attempts to increase the soft limit to 100Mb using setrlimit(). You
must do this before calling pcre[16|32]_exec().
Changing stack size in Mac OS X
Using setrlimit(), as described above, should also work on Mac OS X. It
is also possible to set a stack size when linking a program. There is a
discussion about stack sizes in Mac OS X at this web site:
http://developer.apple.com/qa/qa2005/qa1419.html.
AUTHOR
Philip Hazel
University Computing Service
Cambridge CB2 3QH, England.
REVISION
Last updated: 24 June 2012
Copyright (c) 1997-2012 University of Cambridge.
------------------------------------------------------------------------------
|