1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
|
/*
* Stack-less Just-In-Time compiler
*
* Copyright 2009-2012 Zoltan Herczeg (hzmester@freemail.hu). All rights reserved.
*
* Redistribution and use in source and binary forms, with or without modification, are
* permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice, this list of
* conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice, this list
* of conditions and the following disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDER(S) AND CONTRIBUTORS ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
* SHALL THE COPYRIGHT HOLDER(S) OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
* BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/* Latest MIPS architecture. */
/* Automatically detect SLJIT_MIPS_R1 */
SLJIT_API_FUNC_ATTRIBUTE SLJIT_CONST char* sljit_get_platform_name(void)
{
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1)
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
return "MIPS32-R1" SLJIT_CPUINFO;
#else
return "MIPS64-R1" SLJIT_CPUINFO;
#endif
#else /* SLJIT_MIPS_R1 */
return "MIPS III" SLJIT_CPUINFO;
#endif
}
/* Length of an instruction word
Both for mips-32 and mips-64 */
typedef sljit_ui sljit_ins;
#define TMP_REG1 (SLJIT_NUMBER_OF_REGISTERS + 2)
#define TMP_REG2 (SLJIT_NUMBER_OF_REGISTERS + 3)
#define TMP_REG3 (SLJIT_NUMBER_OF_REGISTERS + 4)
/* For position independent code, t9 must contain the function address. */
#define PIC_ADDR_REG TMP_REG2
/* Floating point status register. */
#define FCSR_REG 31
/* Return address register. */
#define RETURN_ADDR_REG 31
/* Flags are kept in volatile registers. */
#define EQUAL_FLAG 12
/* And carry flag as well. */
#define ULESS_FLAG 13
#define UGREATER_FLAG 14
#define LESS_FLAG 15
#define GREATER_FLAG 31
#define OVERFLOW_FLAG 1
#define TMP_FREG1 (0)
#define TMP_FREG2 ((SLJIT_NUMBER_OF_FLOAT_REGISTERS + 1) << 1)
static SLJIT_CONST sljit_ub reg_map[SLJIT_NUMBER_OF_REGISTERS + 5] = {
0, 2, 5, 6, 7, 8, 9, 10, 11, 24, 23, 22, 21, 20, 19, 18, 17, 16, 29, 3, 25, 4
};
/* --------------------------------------------------------------------- */
/* Instrucion forms */
/* --------------------------------------------------------------------- */
#define S(s) (reg_map[s] << 21)
#define T(t) (reg_map[t] << 16)
#define D(d) (reg_map[d] << 11)
/* Absolute registers. */
#define SA(s) ((s) << 21)
#define TA(t) ((t) << 16)
#define DA(d) ((d) << 11)
#define FT(t) ((t) << 16)
#define FS(s) ((s) << 11)
#define FD(d) ((d) << 6)
#define IMM(imm) ((imm) & 0xffff)
#define SH_IMM(imm) ((imm) << 6)
#define DR(dr) (reg_map[dr])
#define HI(opcode) ((opcode) << 26)
#define LO(opcode) (opcode)
/* S = (16 << 21) D = (17 << 21) */
#define FMT_S (16 << 21)
#define ABS_S (HI(17) | FMT_S | LO(5))
#define ADD_S (HI(17) | FMT_S | LO(0))
#define ADDIU (HI(9))
#define ADDU (HI(0) | LO(33))
#define AND (HI(0) | LO(36))
#define ANDI (HI(12))
#define B (HI(4))
#define BAL (HI(1) | (17 << 16))
#define BC1F (HI(17) | (8 << 21))
#define BC1T (HI(17) | (8 << 21) | (1 << 16))
#define BEQ (HI(4))
#define BGEZ (HI(1) | (1 << 16))
#define BGTZ (HI(7))
#define BLEZ (HI(6))
#define BLTZ (HI(1) | (0 << 16))
#define BNE (HI(5))
#define BREAK (HI(0) | LO(13))
#define CFC1 (HI(17) | (2 << 21))
#define C_UN_S (HI(17) | FMT_S | LO(49))
#define C_UEQ_S (HI(17) | FMT_S | LO(51))
#define C_ULE_S (HI(17) | FMT_S | LO(55))
#define C_ULT_S (HI(17) | FMT_S | LO(53))
#define CVT_S_S (HI(17) | FMT_S | LO(32))
#define DADDIU (HI(25))
#define DADDU (HI(0) | LO(45))
#define DDIV (HI(0) | LO(30))
#define DDIVU (HI(0) | LO(31))
#define DIV (HI(0) | LO(26))
#define DIVU (HI(0) | LO(27))
#define DIV_S (HI(17) | FMT_S | LO(3))
#define DMULT (HI(0) | LO(28))
#define DMULTU (HI(0) | LO(29))
#define DSLL (HI(0) | LO(56))
#define DSLL32 (HI(0) | LO(60))
#define DSLLV (HI(0) | LO(20))
#define DSRA (HI(0) | LO(59))
#define DSRA32 (HI(0) | LO(63))
#define DSRAV (HI(0) | LO(23))
#define DSRL (HI(0) | LO(58))
#define DSRL32 (HI(0) | LO(62))
#define DSRLV (HI(0) | LO(22))
#define DSUBU (HI(0) | LO(47))
#define J (HI(2))
#define JAL (HI(3))
#define JALR (HI(0) | LO(9))
#define JR (HI(0) | LO(8))
#define LD (HI(55))
#define LUI (HI(15))
#define LW (HI(35))
#define MFC1 (HI(17))
#define MFHI (HI(0) | LO(16))
#define MFLO (HI(0) | LO(18))
#define MOV_S (HI(17) | FMT_S | LO(6))
#define MTC1 (HI(17) | (4 << 21))
#define MUL_S (HI(17) | FMT_S | LO(2))
#define MULT (HI(0) | LO(24))
#define MULTU (HI(0) | LO(25))
#define NEG_S (HI(17) | FMT_S | LO(7))
#define NOP (HI(0) | LO(0))
#define NOR (HI(0) | LO(39))
#define OR (HI(0) | LO(37))
#define ORI (HI(13))
#define SD (HI(63))
#define SLT (HI(0) | LO(42))
#define SLTI (HI(10))
#define SLTIU (HI(11))
#define SLTU (HI(0) | LO(43))
#define SLL (HI(0) | LO(0))
#define SLLV (HI(0) | LO(4))
#define SRL (HI(0) | LO(2))
#define SRLV (HI(0) | LO(6))
#define SRA (HI(0) | LO(3))
#define SRAV (HI(0) | LO(7))
#define SUB_S (HI(17) | FMT_S | LO(1))
#define SUBU (HI(0) | LO(35))
#define SW (HI(43))
#define TRUNC_W_S (HI(17) | FMT_S | LO(13))
#define XOR (HI(0) | LO(38))
#define XORI (HI(14))
#if (defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1)
#define CLZ (HI(28) | LO(32))
#define DCLZ (HI(28) | LO(36))
#define MUL (HI(28) | LO(2))
#define SEB (HI(31) | (16 << 6) | LO(32))
#define SEH (HI(31) | (24 << 6) | LO(32))
#endif
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
#define ADDU_W ADDU
#define ADDIU_W ADDIU
#define SLL_W SLL
#define SUBU_W SUBU
#else
#define ADDU_W DADDU
#define ADDIU_W DADDIU
#define SLL_W DSLL
#define SUBU_W DSUBU
#endif
#define SIMM_MAX (0x7fff)
#define SIMM_MIN (-0x8000)
#define UIMM_MAX (0xffff)
/* dest_reg is the absolute name of the register
Useful for reordering instructions in the delay slot. */
static sljit_si push_inst(struct sljit_compiler *compiler, sljit_ins ins, sljit_si delay_slot)
{
SLJIT_ASSERT(delay_slot == MOVABLE_INS || delay_slot >= UNMOVABLE_INS
|| delay_slot == ((ins >> 11) & 0x1f) || delay_slot == ((ins >> 16) & 0x1f));
sljit_ins *ptr = (sljit_ins*)ensure_buf(compiler, sizeof(sljit_ins));
FAIL_IF(!ptr);
*ptr = ins;
compiler->size++;
compiler->delay_slot = delay_slot;
return SLJIT_SUCCESS;
}
static SLJIT_INLINE sljit_ins invert_branch(sljit_si flags)
{
return (flags & IS_BIT26_COND) ? (1 << 26) : (1 << 16);
}
static SLJIT_INLINE sljit_ins* detect_jump_type(struct sljit_jump *jump, sljit_ins *code_ptr, sljit_ins *code)
{
sljit_sw diff;
sljit_uw target_addr;
sljit_ins *inst;
sljit_ins saved_inst;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
if (jump->flags & (SLJIT_REWRITABLE_JUMP | IS_CALL))
return code_ptr;
#else
if (jump->flags & SLJIT_REWRITABLE_JUMP)
return code_ptr;
#endif
if (jump->flags & JUMP_ADDR)
target_addr = jump->u.target;
else {
SLJIT_ASSERT(jump->flags & JUMP_LABEL);
target_addr = (sljit_uw)(code + jump->u.label->size);
}
inst = (sljit_ins*)jump->addr;
if (jump->flags & IS_COND)
inst--;
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
if (jump->flags & IS_CALL)
goto keep_address;
#endif
/* B instructions. */
if (jump->flags & IS_MOVABLE) {
diff = ((sljit_sw)target_addr - (sljit_sw)(inst)) >> 2;
if (diff <= SIMM_MAX && diff >= SIMM_MIN) {
jump->flags |= PATCH_B;
if (!(jump->flags & IS_COND)) {
inst[0] = inst[-1];
inst[-1] = (jump->flags & IS_JAL) ? BAL : B;
jump->addr -= sizeof(sljit_ins);
return inst;
}
saved_inst = inst[0];
inst[0] = inst[-1];
inst[-1] = saved_inst ^ invert_branch(jump->flags);
jump->addr -= 2 * sizeof(sljit_ins);
return inst;
}
}
else {
diff = ((sljit_sw)target_addr - (sljit_sw)(inst + 1)) >> 2;
if (diff <= SIMM_MAX && diff >= SIMM_MIN) {
jump->flags |= PATCH_B;
if (!(jump->flags & IS_COND)) {
inst[0] = (jump->flags & IS_JAL) ? BAL : B;
inst[1] = NOP;
return inst + 1;
}
inst[0] = inst[0] ^ invert_branch(jump->flags);
inst[1] = NOP;
jump->addr -= sizeof(sljit_ins);
return inst + 1;
}
}
if (jump->flags & IS_COND) {
if ((jump->flags & IS_MOVABLE) && (target_addr & ~0xfffffff) == ((jump->addr + 2 * sizeof(sljit_ins)) & ~0xfffffff)) {
jump->flags |= PATCH_J;
saved_inst = inst[0];
inst[0] = inst[-1];
inst[-1] = (saved_inst & 0xffff0000) | 3;
inst[1] = J;
inst[2] = NOP;
return inst + 2;
}
else if ((target_addr & ~0xfffffff) == ((jump->addr + 3 * sizeof(sljit_ins)) & ~0xfffffff)) {
jump->flags |= PATCH_J;
inst[0] = (inst[0] & 0xffff0000) | 3;
inst[1] = NOP;
inst[2] = J;
inst[3] = NOP;
jump->addr += sizeof(sljit_ins);
return inst + 3;
}
}
else {
/* J instuctions. */
if ((jump->flags & IS_MOVABLE) && (target_addr & ~0xfffffff) == (jump->addr & ~0xfffffff)) {
jump->flags |= PATCH_J;
inst[0] = inst[-1];
inst[-1] = (jump->flags & IS_JAL) ? JAL : J;
jump->addr -= sizeof(sljit_ins);
return inst;
}
if ((target_addr & ~0xfffffff) == ((jump->addr + sizeof(sljit_ins)) & ~0xfffffff)) {
jump->flags |= PATCH_J;
inst[0] = (jump->flags & IS_JAL) ? JAL : J;
inst[1] = NOP;
return inst + 1;
}
}
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
keep_address:
if (target_addr <= 0x7fffffff) {
jump->flags |= PATCH_ABS32;
if (jump->flags & IS_COND) {
inst[0] -= 4;
inst++;
}
inst[2] = inst[6];
inst[3] = inst[7];
return inst + 3;
}
if (target_addr <= 0x7fffffffffffl) {
jump->flags |= PATCH_ABS48;
if (jump->flags & IS_COND) {
inst[0] -= 2;
inst++;
}
inst[4] = inst[6];
inst[5] = inst[7];
return inst + 5;
}
#endif
return code_ptr;
}
#ifdef __GNUC__
static __attribute__ ((noinline)) void sljit_cache_flush(void* code, void* code_ptr)
{
SLJIT_CACHE_FLUSH(code, code_ptr);
}
#endif
SLJIT_API_FUNC_ATTRIBUTE void* sljit_generate_code(struct sljit_compiler *compiler)
{
struct sljit_memory_fragment *buf;
sljit_ins *code;
sljit_ins *code_ptr;
sljit_ins *buf_ptr;
sljit_ins *buf_end;
sljit_uw word_count;
sljit_uw addr;
struct sljit_label *label;
struct sljit_jump *jump;
struct sljit_const *const_;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_generate_code(compiler));
reverse_buf(compiler);
code = (sljit_ins*)SLJIT_MALLOC_EXEC(compiler->size * sizeof(sljit_ins));
PTR_FAIL_WITH_EXEC_IF(code);
buf = compiler->buf;
code_ptr = code;
word_count = 0;
label = compiler->labels;
jump = compiler->jumps;
const_ = compiler->consts;
do {
buf_ptr = (sljit_ins*)buf->memory;
buf_end = buf_ptr + (buf->used_size >> 2);
do {
*code_ptr = *buf_ptr++;
SLJIT_ASSERT(!label || label->size >= word_count);
SLJIT_ASSERT(!jump || jump->addr >= word_count);
SLJIT_ASSERT(!const_ || const_->addr >= word_count);
/* These structures are ordered by their address. */
if (label && label->size == word_count) {
/* Just recording the address. */
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
if (jump && jump->addr == word_count) {
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
jump->addr = (sljit_uw)(code_ptr - 3);
#else
jump->addr = (sljit_uw)(code_ptr - 7);
#endif
code_ptr = detect_jump_type(jump, code_ptr, code);
jump = jump->next;
}
if (const_ && const_->addr == word_count) {
/* Just recording the address. */
const_->addr = (sljit_uw)code_ptr;
const_ = const_->next;
}
code_ptr ++;
word_count ++;
} while (buf_ptr < buf_end);
buf = buf->next;
} while (buf);
if (label && label->size == word_count) {
label->addr = (sljit_uw)code_ptr;
label->size = code_ptr - code;
label = label->next;
}
SLJIT_ASSERT(!label);
SLJIT_ASSERT(!jump);
SLJIT_ASSERT(!const_);
SLJIT_ASSERT(code_ptr - code <= (sljit_sw)compiler->size);
jump = compiler->jumps;
while (jump) {
do {
addr = (jump->flags & JUMP_LABEL) ? jump->u.label->addr : jump->u.target;
buf_ptr = (sljit_ins*)jump->addr;
if (jump->flags & PATCH_B) {
addr = (sljit_sw)(addr - (jump->addr + sizeof(sljit_ins))) >> 2;
SLJIT_ASSERT((sljit_sw)addr <= SIMM_MAX && (sljit_sw)addr >= SIMM_MIN);
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | (addr & 0xffff);
break;
}
if (jump->flags & PATCH_J) {
SLJIT_ASSERT((addr & ~0xfffffff) == ((jump->addr + sizeof(sljit_ins)) & ~0xfffffff));
buf_ptr[0] |= (addr >> 2) & 0x03ffffff;
break;
}
/* Set the fields of immediate loads. */
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff);
#else
if (jump->flags & PATCH_ABS32) {
SLJIT_ASSERT(addr <= 0x7fffffff);
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | (addr & 0xffff);
}
else if (jump->flags & PATCH_ABS48) {
SLJIT_ASSERT(addr <= 0x7fffffffffffl);
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 32) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | (addr & 0xffff);
}
else {
buf_ptr[0] = (buf_ptr[0] & 0xffff0000) | ((addr >> 48) & 0xffff);
buf_ptr[1] = (buf_ptr[1] & 0xffff0000) | ((addr >> 32) & 0xffff);
buf_ptr[3] = (buf_ptr[3] & 0xffff0000) | ((addr >> 16) & 0xffff);
buf_ptr[5] = (buf_ptr[5] & 0xffff0000) | (addr & 0xffff);
}
#endif
} while (0);
jump = jump->next;
}
compiler->error = SLJIT_ERR_COMPILED;
compiler->executable_size = (code_ptr - code) * sizeof(sljit_ins);
#ifndef __GNUC__
SLJIT_CACHE_FLUSH(code, code_ptr);
#else
/* GCC workaround for invalid code generation with -O2. */
sljit_cache_flush(code, code_ptr);
#endif
return code;
}
/* --------------------------------------------------------------------- */
/* Entry, exit */
/* --------------------------------------------------------------------- */
/* Creates an index in data_transfer_insts array. */
#define LOAD_DATA 0x01
#define WORD_DATA 0x00
#define BYTE_DATA 0x02
#define HALF_DATA 0x04
#define INT_DATA 0x06
#define SIGNED_DATA 0x08
/* Separates integer and floating point registers */
#define GPR_REG 0x0f
#define DOUBLE_DATA 0x10
#define SINGLE_DATA 0x12
#define MEM_MASK 0x1f
#define WRITE_BACK 0x00020
#define ARG_TEST 0x00040
#define ALT_KEEP_CACHE 0x00080
#define CUMULATIVE_OP 0x00100
#define LOGICAL_OP 0x00200
#define IMM_OP 0x00400
#define SRC2_IMM 0x00800
#define UNUSED_DEST 0x01000
#define REG_DEST 0x02000
#define REG1_SOURCE 0x04000
#define REG2_SOURCE 0x08000
#define SLOW_SRC1 0x10000
#define SLOW_SRC2 0x20000
#define SLOW_DEST 0x40000
/* Only these flags are set. UNUSED_DEST is not set when no flags should be set. */
#define CHECK_FLAGS(list) \
(!(flags & UNUSED_DEST) || (op & GET_FLAGS(~(list))))
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
#define STACK_STORE SW
#define STACK_LOAD LW
#else
#define STACK_STORE SD
#define STACK_LOAD LD
#endif
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
#include "sljitNativeMIPS_32.c"
#else
#include "sljitNativeMIPS_64.c"
#endif
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_enter(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
sljit_ins base;
sljit_si i, tmp, offs;
CHECK_ERROR();
CHECK(check_sljit_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
set_emit_enter(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1) + SLJIT_LOCALS_OFFSET;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
local_size = (local_size + 15) & ~0xf;
#else
local_size = (local_size + 31) & ~0x1f;
#endif
compiler->local_size = local_size;
if (local_size <= SIMM_MAX) {
/* Frequent case. */
FAIL_IF(push_inst(compiler, ADDIU_W | S(SLJIT_SP) | T(SLJIT_SP) | IMM(-local_size), DR(SLJIT_SP)));
base = S(SLJIT_SP);
}
else {
FAIL_IF(load_immediate(compiler, DR(TMP_REG1), local_size));
FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_SP) | TA(0) | D(TMP_REG2), DR(TMP_REG2)));
FAIL_IF(push_inst(compiler, SUBU_W | S(SLJIT_SP) | T(TMP_REG1) | D(SLJIT_SP), DR(SLJIT_SP)));
base = S(TMP_REG2);
local_size = 0;
}
offs = local_size - (sljit_sw)(sizeof(sljit_sw));
FAIL_IF(push_inst(compiler, STACK_STORE | base | TA(RETURN_ADDR_REG) | IMM(offs), MOVABLE_INS));
tmp = saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - saveds) : SLJIT_FIRST_SAVED_REG;
for (i = SLJIT_S0; i >= tmp; i--) {
offs -= (sljit_si)(sizeof(sljit_sw));
FAIL_IF(push_inst(compiler, STACK_STORE | base | T(i) | IMM(offs), MOVABLE_INS));
}
for (i = scratches; i >= SLJIT_FIRST_SAVED_REG; i--) {
offs -= (sljit_si)(sizeof(sljit_sw));
FAIL_IF(push_inst(compiler, STACK_STORE | base | T(i) | IMM(offs), MOVABLE_INS));
}
if (args >= 1)
FAIL_IF(push_inst(compiler, ADDU_W | SA(4) | TA(0) | D(SLJIT_S0), DR(SLJIT_S0)));
if (args >= 2)
FAIL_IF(push_inst(compiler, ADDU_W | SA(5) | TA(0) | D(SLJIT_S1), DR(SLJIT_S1)));
if (args >= 3)
FAIL_IF(push_inst(compiler, ADDU_W | SA(6) | TA(0) | D(SLJIT_S2), DR(SLJIT_S2)));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_set_context(struct sljit_compiler *compiler,
sljit_si options, sljit_si args, sljit_si scratches, sljit_si saveds,
sljit_si fscratches, sljit_si fsaveds, sljit_si local_size)
{
CHECK_ERROR();
CHECK(check_sljit_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size));
set_set_context(compiler, options, args, scratches, saveds, fscratches, fsaveds, local_size);
local_size += GET_SAVED_REGISTERS_SIZE(scratches, saveds, 1) + SLJIT_LOCALS_OFFSET;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
compiler->local_size = (local_size + 15) & ~0xf;
#else
compiler->local_size = (local_size + 31) & ~0x1f;
#endif
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_return(struct sljit_compiler *compiler, sljit_si op, sljit_si src, sljit_sw srcw)
{
sljit_si local_size, i, tmp, offs;
sljit_ins base;
CHECK_ERROR();
CHECK(check_sljit_emit_return(compiler, op, src, srcw));
FAIL_IF(emit_mov_before_return(compiler, op, src, srcw));
local_size = compiler->local_size;
if (local_size <= SIMM_MAX)
base = S(SLJIT_SP);
else {
FAIL_IF(load_immediate(compiler, DR(TMP_REG1), local_size));
FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_SP) | T(TMP_REG1) | D(TMP_REG1), DR(TMP_REG1)));
base = S(TMP_REG1);
local_size = 0;
}
FAIL_IF(push_inst(compiler, STACK_LOAD | base | TA(RETURN_ADDR_REG) | IMM(local_size - (sljit_si)sizeof(sljit_sw)), RETURN_ADDR_REG));
offs = local_size - (sljit_si)GET_SAVED_REGISTERS_SIZE(compiler->scratches, compiler->saveds, 1);
tmp = compiler->scratches;
for (i = SLJIT_FIRST_SAVED_REG; i <= tmp; i++) {
FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(i) | IMM(offs), DR(i)));
offs += (sljit_si)(sizeof(sljit_sw));
}
tmp = compiler->saveds < SLJIT_NUMBER_OF_SAVED_REGISTERS ? (SLJIT_S0 + 1 - compiler->saveds) : SLJIT_FIRST_SAVED_REG;
for (i = tmp; i <= SLJIT_S0; i++) {
FAIL_IF(push_inst(compiler, STACK_LOAD | base | T(i) | IMM(offs), DR(i)));
offs += (sljit_si)(sizeof(sljit_sw));
}
SLJIT_ASSERT(offs == local_size - (sljit_sw)(sizeof(sljit_sw)));
FAIL_IF(push_inst(compiler, JR | SA(RETURN_ADDR_REG), UNMOVABLE_INS));
if (compiler->local_size <= SIMM_MAX)
return push_inst(compiler, ADDIU_W | S(SLJIT_SP) | T(SLJIT_SP) | IMM(compiler->local_size), UNMOVABLE_INS);
else
return push_inst(compiler, ADDU_W | S(TMP_REG1) | TA(0) | D(SLJIT_SP), UNMOVABLE_INS);
}
#undef STACK_STORE
#undef STACK_LOAD
/* --------------------------------------------------------------------- */
/* Operators */
/* --------------------------------------------------------------------- */
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
#define ARCH_32_64(a, b) a
#else
#define ARCH_32_64(a, b) b
#endif
static SLJIT_CONST sljit_ins data_transfer_insts[16 + 4] = {
/* u w s */ ARCH_32_64(HI(43) /* sw */, HI(63) /* sd */),
/* u w l */ ARCH_32_64(HI(35) /* lw */, HI(55) /* ld */),
/* u b s */ HI(40) /* sb */,
/* u b l */ HI(36) /* lbu */,
/* u h s */ HI(41) /* sh */,
/* u h l */ HI(37) /* lhu */,
/* u i s */ HI(43) /* sw */,
/* u i l */ ARCH_32_64(HI(35) /* lw */, HI(39) /* lwu */),
/* s w s */ ARCH_32_64(HI(43) /* sw */, HI(63) /* sd */),
/* s w l */ ARCH_32_64(HI(35) /* lw */, HI(55) /* ld */),
/* s b s */ HI(40) /* sb */,
/* s b l */ HI(32) /* lb */,
/* s h s */ HI(41) /* sh */,
/* s h l */ HI(33) /* lh */,
/* s i s */ HI(43) /* sw */,
/* s i l */ HI(35) /* lw */,
/* d s */ HI(61) /* sdc1 */,
/* d l */ HI(53) /* ldc1 */,
/* s s */ HI(57) /* swc1 */,
/* s l */ HI(49) /* lwc1 */,
};
#undef ARCH_32_64
/* reg_ar is an absoulute register! */
/* Can perform an operation using at most 1 instruction. */
static sljit_si getput_arg_fast(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
{
SLJIT_ASSERT(arg & SLJIT_MEM);
if ((!(flags & WRITE_BACK) || !(arg & REG_MASK)) && !(arg & OFFS_REG_MASK) && argw <= SIMM_MAX && argw >= SIMM_MIN) {
/* Works for both absoulte and relative addresses. */
if (SLJIT_UNLIKELY(flags & ARG_TEST))
return 1;
FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(arg & REG_MASK)
| TA(reg_ar) | IMM(argw), ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) ? reg_ar : MOVABLE_INS));
return -1;
}
return 0;
}
/* See getput_arg below.
Note: can_cache is called only for binary operators. Those
operators always uses word arguments without write back. */
static sljit_si can_cache(sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
SLJIT_ASSERT((arg & SLJIT_MEM) && (next_arg & SLJIT_MEM));
/* Simple operation except for updates. */
if (arg & OFFS_REG_MASK) {
argw &= 0x3;
next_argw &= 0x3;
if (argw && argw == next_argw && (arg == next_arg || (arg & OFFS_REG_MASK) == (next_arg & OFFS_REG_MASK)))
return 1;
return 0;
}
if (arg == next_arg) {
if (((next_argw - argw) <= SIMM_MAX && (next_argw - argw) >= SIMM_MIN))
return 1;
return 0;
}
return 0;
}
/* Emit the necessary instructions. See can_cache above. */
static sljit_si getput_arg(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw, sljit_si next_arg, sljit_sw next_argw)
{
sljit_si tmp_ar, base, delay_slot;
SLJIT_ASSERT(arg & SLJIT_MEM);
if (!(next_arg & SLJIT_MEM)) {
next_arg = 0;
next_argw = 0;
}
if ((flags & MEM_MASK) <= GPR_REG && (flags & LOAD_DATA)) {
tmp_ar = reg_ar;
delay_slot = reg_ar;
} else {
tmp_ar = DR(TMP_REG1);
delay_slot = MOVABLE_INS;
}
base = arg & REG_MASK;
if (SLJIT_UNLIKELY(arg & OFFS_REG_MASK)) {
argw &= 0x3;
if ((flags & WRITE_BACK) && reg_ar == DR(base)) {
SLJIT_ASSERT(!(flags & LOAD_DATA) && DR(TMP_REG1) != reg_ar);
FAIL_IF(push_inst(compiler, ADDU_W | SA(reg_ar) | TA(0) | D(TMP_REG1), DR(TMP_REG1)));
reg_ar = DR(TMP_REG1);
}
/* Using the cache. */
if (argw == compiler->cache_argw) {
if (!(flags & WRITE_BACK)) {
if (arg == compiler->cache_arg)
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot);
if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
if (arg == next_arg && argw == (next_argw & 0x3)) {
compiler->cache_arg = arg;
compiler->cache_argw = argw;
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(TMP_REG3), DR(TMP_REG3)));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot);
}
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | DA(tmp_ar), tmp_ar));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot);
}
}
else {
if ((SLJIT_MEM | (arg & OFFS_REG_MASK)) == compiler->cache_arg) {
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(base), DR(base)));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar), delay_slot);
}
}
}
if (SLJIT_UNLIKELY(argw)) {
compiler->cache_arg = SLJIT_MEM | (arg & OFFS_REG_MASK);
compiler->cache_argw = argw;
FAIL_IF(push_inst(compiler, SLL_W | T(OFFS_REG(arg)) | D(TMP_REG3) | SH_IMM(argw), DR(TMP_REG3)));
}
if (!(flags & WRITE_BACK)) {
if (arg == next_arg && argw == (next_argw & 0x3)) {
compiler->cache_arg = arg;
compiler->cache_argw = argw;
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? OFFS_REG(arg) : TMP_REG3) | D(TMP_REG3), DR(TMP_REG3)));
tmp_ar = DR(TMP_REG3);
}
else
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? OFFS_REG(arg) : TMP_REG3) | DA(tmp_ar), tmp_ar));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot);
}
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(!argw ? OFFS_REG(arg) : TMP_REG3) | D(base), DR(base)));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar), delay_slot);
}
if (SLJIT_UNLIKELY(flags & WRITE_BACK) && base) {
/* Update only applies if a base register exists. */
if (reg_ar == DR(base)) {
SLJIT_ASSERT(!(flags & LOAD_DATA) && DR(TMP_REG1) != reg_ar);
if (argw <= SIMM_MAX && argw >= SIMM_MIN) {
FAIL_IF(push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar) | IMM(argw), MOVABLE_INS));
if (argw)
return push_inst(compiler, ADDIU_W | S(base) | T(base) | IMM(argw), DR(base));
return SLJIT_SUCCESS;
}
FAIL_IF(push_inst(compiler, ADDU_W | SA(reg_ar) | TA(0) | D(TMP_REG1), DR(TMP_REG1)));
reg_ar = DR(TMP_REG1);
}
if (argw <= SIMM_MAX && argw >= SIMM_MIN) {
if (argw)
FAIL_IF(push_inst(compiler, ADDIU_W | S(base) | T(base) | IMM(argw), DR(base)));
}
else {
if (compiler->cache_arg == SLJIT_MEM && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) {
if (argw != compiler->cache_argw) {
FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
compiler->cache_argw = argw;
}
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(base), DR(base)));
}
else {
compiler->cache_arg = SLJIT_MEM;
compiler->cache_argw = argw;
FAIL_IF(load_immediate(compiler, DR(TMP_REG3), argw));
FAIL_IF(push_inst(compiler, ADDU_W | S(base) | T(TMP_REG3) | D(base), DR(base)));
}
}
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(base) | TA(reg_ar), delay_slot);
}
if (compiler->cache_arg == arg && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) {
if (argw != compiler->cache_argw) {
FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
compiler->cache_argw = argw;
}
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot);
}
if (compiler->cache_arg == SLJIT_MEM && argw - compiler->cache_argw <= SIMM_MAX && argw - compiler->cache_argw >= SIMM_MIN) {
if (argw != compiler->cache_argw)
FAIL_IF(push_inst(compiler, ADDIU_W | S(TMP_REG3) | T(TMP_REG3) | IMM(argw - compiler->cache_argw), DR(TMP_REG3)));
}
else {
compiler->cache_arg = SLJIT_MEM;
FAIL_IF(load_immediate(compiler, DR(TMP_REG3), argw));
}
compiler->cache_argw = argw;
if (!base)
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot);
if (arg == next_arg && next_argw - argw <= SIMM_MAX && next_argw - argw >= SIMM_MIN) {
compiler->cache_arg = arg;
FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | T(base) | D(TMP_REG3), DR(TMP_REG3)));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | S(TMP_REG3) | TA(reg_ar), delay_slot);
}
FAIL_IF(push_inst(compiler, ADDU_W | S(TMP_REG3) | T(base) | DA(tmp_ar), tmp_ar));
return push_inst(compiler, data_transfer_insts[flags & MEM_MASK] | SA(tmp_ar) | TA(reg_ar), delay_slot);
}
static SLJIT_INLINE sljit_si emit_op_mem(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg_ar, sljit_si arg, sljit_sw argw)
{
if (getput_arg_fast(compiler, flags, reg_ar, arg, argw))
return compiler->error;
compiler->cache_arg = 0;
compiler->cache_argw = 0;
return getput_arg(compiler, flags, reg_ar, arg, argw, 0, 0);
}
static SLJIT_INLINE sljit_si emit_op_mem2(struct sljit_compiler *compiler, sljit_si flags, sljit_si reg, sljit_si arg1, sljit_sw arg1w, sljit_si arg2, sljit_sw arg2w)
{
if (getput_arg_fast(compiler, flags, reg, arg1, arg1w))
return compiler->error;
return getput_arg(compiler, flags, reg, arg1, arg1w, arg2, arg2w);
}
static sljit_si emit_op(struct sljit_compiler *compiler, sljit_si op, sljit_si flags,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
/* arg1 goes to TMP_REG1 or src reg
arg2 goes to TMP_REG2, imm or src reg
TMP_REG3 can be used for caching
result goes to TMP_REG2, so put result can use TMP_REG1 and TMP_REG3. */
sljit_si dst_r = TMP_REG2;
sljit_si src1_r;
sljit_sw src2_r = 0;
sljit_si sugg_src2_r = TMP_REG2;
if (!(flags & ALT_KEEP_CACHE)) {
compiler->cache_arg = 0;
compiler->cache_argw = 0;
}
if (SLJIT_UNLIKELY(dst == SLJIT_UNUSED)) {
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI && !(src2 & SLJIT_MEM))
return SLJIT_SUCCESS;
if (GET_FLAGS(op))
flags |= UNUSED_DEST;
}
else if (FAST_IS_REG(dst)) {
dst_r = dst;
flags |= REG_DEST;
if (op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
sugg_src2_r = dst_r;
}
else if ((dst & SLJIT_MEM) && !getput_arg_fast(compiler, flags | ARG_TEST, DR(TMP_REG1), dst, dstw))
flags |= SLOW_DEST;
if (flags & IMM_OP) {
if ((src2 & SLJIT_IMM) && src2w) {
if ((!(flags & LOGICAL_OP) && (src2w <= SIMM_MAX && src2w >= SIMM_MIN))
|| ((flags & LOGICAL_OP) && !(src2w & ~UIMM_MAX))) {
flags |= SRC2_IMM;
src2_r = src2w;
}
}
if (!(flags & SRC2_IMM) && (flags & CUMULATIVE_OP) && (src1 & SLJIT_IMM) && src1w) {
if ((!(flags & LOGICAL_OP) && (src1w <= SIMM_MAX && src1w >= SIMM_MIN))
|| ((flags & LOGICAL_OP) && !(src1w & ~UIMM_MAX))) {
flags |= SRC2_IMM;
src2_r = src1w;
/* And swap arguments. */
src1 = src2;
src1w = src2w;
src2 = SLJIT_IMM;
/* src2w = src2_r unneeded. */
}
}
}
/* Source 1. */
if (FAST_IS_REG(src1)) {
src1_r = src1;
flags |= REG1_SOURCE;
}
else if (src1 & SLJIT_IMM) {
if (src1w) {
FAIL_IF(load_immediate(compiler, DR(TMP_REG1), src1w));
src1_r = TMP_REG1;
}
else
src1_r = 0;
}
else {
if (getput_arg_fast(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC1;
src1_r = TMP_REG1;
}
/* Source 2. */
if (FAST_IS_REG(src2)) {
src2_r = src2;
flags |= REG2_SOURCE;
if (!(flags & REG_DEST) && op >= SLJIT_MOV && op <= SLJIT_MOVU_SI)
dst_r = src2_r;
}
else if (src2 & SLJIT_IMM) {
if (!(flags & SRC2_IMM)) {
if (src2w) {
FAIL_IF(load_immediate(compiler, DR(sugg_src2_r), src2w));
src2_r = sugg_src2_r;
}
else {
src2_r = 0;
if ((op >= SLJIT_MOV && op <= SLJIT_MOVU_SI) && (dst & SLJIT_MEM))
dst_r = 0;
}
}
}
else {
if (getput_arg_fast(compiler, flags | LOAD_DATA, DR(sugg_src2_r), src2, src2w))
FAIL_IF(compiler->error);
else
flags |= SLOW_SRC2;
src2_r = sugg_src2_r;
}
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
SLJIT_ASSERT(src2_r == TMP_REG2);
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG2), src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG2), src2, src2w, dst, dstw));
}
}
else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(TMP_REG1), src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, flags | LOAD_DATA, DR(sugg_src2_r), src2, src2w, dst, dstw));
FAIL_IF(emit_single_op(compiler, op, flags, dst_r, src1_r, src2_r));
if (dst & SLJIT_MEM) {
if (!(flags & SLOW_DEST)) {
getput_arg_fast(compiler, flags, DR(dst_r), dst, dstw);
return compiler->error;
}
return getput_arg(compiler, flags, DR(dst_r), dst, dstw, 0, 0);
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op0(struct sljit_compiler *compiler, sljit_si op)
{
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
sljit_si int_op = op & SLJIT_INT_OP;
#endif
CHECK_ERROR();
CHECK(check_sljit_emit_op0(compiler, op));
op = GET_OPCODE(op);
switch (op) {
case SLJIT_BREAKPOINT:
return push_inst(compiler, BREAK, UNMOVABLE_INS);
case SLJIT_NOP:
return push_inst(compiler, NOP, UNMOVABLE_INS);
case SLJIT_LUMUL:
case SLJIT_LSMUL:
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
FAIL_IF(push_inst(compiler, (op == SLJIT_LUMUL ? DMULTU : DMULT) | S(SLJIT_R0) | T(SLJIT_R1), MOVABLE_INS));
#else
FAIL_IF(push_inst(compiler, (op == SLJIT_LUMUL ? MULTU : MULT) | S(SLJIT_R0) | T(SLJIT_R1), MOVABLE_INS));
#endif
FAIL_IF(push_inst(compiler, MFLO | D(SLJIT_R0), DR(SLJIT_R0)));
return push_inst(compiler, MFHI | D(SLJIT_R1), DR(SLJIT_R1));
case SLJIT_UDIVMOD:
case SLJIT_SDIVMOD:
case SLJIT_UDIVI:
case SLJIT_SDIVI:
SLJIT_COMPILE_ASSERT((SLJIT_UDIVMOD & 0x2) == 0 && SLJIT_UDIVI - 0x2 == SLJIT_UDIVMOD, bad_div_opcode_assignments);
#if !(defined SLJIT_MIPS_R1 && SLJIT_MIPS_R1)
FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
#endif
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
if (int_op)
FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_UDIVI ? DIVU : DIV) | S(SLJIT_R0) | T(SLJIT_R1), MOVABLE_INS));
else
FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_UDIVI ? DDIVU : DDIV) | S(SLJIT_R0) | T(SLJIT_R1), MOVABLE_INS));
#else
FAIL_IF(push_inst(compiler, ((op | 0x2) == SLJIT_UDIVI ? DIVU : DIV) | S(SLJIT_R0) | T(SLJIT_R1), MOVABLE_INS));
#endif
FAIL_IF(push_inst(compiler, MFLO | D(SLJIT_R0), DR(SLJIT_R0)));
return (op >= SLJIT_UDIVI) ? SLJIT_SUCCESS : push_inst(compiler, MFHI | D(SLJIT_R1), DR(SLJIT_R1));
}
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# define flags 0
#else
sljit_si flags = 0;
#endif
CHECK_ERROR();
CHECK(check_sljit_emit_op1(compiler, op, dst, dstw, src, srcw));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src, srcw);
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
if ((op & SLJIT_INT_OP) && GET_OPCODE(op) >= SLJIT_NOT) {
flags |= INT_DATA | SIGNED_DATA;
if (src & SLJIT_IMM)
srcw = (sljit_si)srcw;
}
#endif
switch (GET_OPCODE(op)) {
case SLJIT_MOV:
case SLJIT_MOV_P:
return emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOV_UI:
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
return emit_op(compiler, SLJIT_MOV_UI, INT_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
#else
return emit_op(compiler, SLJIT_MOV_UI, INT_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ui)srcw : srcw);
#endif
case SLJIT_MOV_SI:
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, srcw);
#else
return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_si)srcw : srcw);
#endif
case SLJIT_MOV_UB:
return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub)srcw : srcw);
case SLJIT_MOV_SB:
return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb)srcw : srcw);
case SLJIT_MOV_UH:
return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh)srcw : srcw);
case SLJIT_MOV_SH:
return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh)srcw : srcw);
case SLJIT_MOVU:
case SLJIT_MOVU_P:
return emit_op(compiler, SLJIT_MOV, WORD_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_MOVU_UI:
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
return emit_op(compiler, SLJIT_MOV_UI, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
#else
return emit_op(compiler, SLJIT_MOV_UI, INT_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ui)srcw : srcw);
#endif
case SLJIT_MOVU_SI:
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, srcw);
#else
return emit_op(compiler, SLJIT_MOV_SI, INT_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_si)srcw : srcw);
#endif
case SLJIT_MOVU_UB:
return emit_op(compiler, SLJIT_MOV_UB, BYTE_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_ub)srcw : srcw);
case SLJIT_MOVU_SB:
return emit_op(compiler, SLJIT_MOV_SB, BYTE_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sb)srcw : srcw);
case SLJIT_MOVU_UH:
return emit_op(compiler, SLJIT_MOV_UH, HALF_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_uh)srcw : srcw);
case SLJIT_MOVU_SH:
return emit_op(compiler, SLJIT_MOV_SH, HALF_DATA | SIGNED_DATA | WRITE_BACK, dst, dstw, TMP_REG1, 0, src, (src & SLJIT_IMM) ? (sljit_sh)srcw : srcw);
case SLJIT_NOT:
return emit_op(compiler, op, flags, dst, dstw, TMP_REG1, 0, src, srcw);
case SLJIT_NEG:
return emit_op(compiler, SLJIT_SUB | GET_ALL_FLAGS(op), flags | IMM_OP, dst, dstw, SLJIT_IMM, 0, src, srcw);
case SLJIT_CLZ:
return emit_op(compiler, op, flags, dst, dstw, TMP_REG1, 0, src, srcw);
}
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# undef flags
#endif
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# define flags 0
#else
sljit_si flags = 0;
#endif
CHECK_ERROR();
CHECK(check_sljit_emit_op2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
if (op & SLJIT_INT_OP) {
flags |= INT_DATA | SIGNED_DATA;
if (src1 & SLJIT_IMM)
src1w = (sljit_si)src1w;
if (src2 & SLJIT_IMM)
src2w = (sljit_si)src2w;
}
#endif
switch (GET_OPCODE(op)) {
case SLJIT_ADD:
case SLJIT_ADDC:
return emit_op(compiler, op, flags | CUMULATIVE_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SUB:
case SLJIT_SUBC:
return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_MUL:
return emit_op(compiler, op, flags | CUMULATIVE_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_AND:
case SLJIT_OR:
case SLJIT_XOR:
return emit_op(compiler, op, flags | CUMULATIVE_OP | LOGICAL_OP | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
case SLJIT_SHL:
case SLJIT_LSHR:
case SLJIT_ASHR:
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
if (src2 & SLJIT_IMM)
src2w &= 0x1f;
#else
if (src2 & SLJIT_IMM) {
if (op & SLJIT_INT_OP)
src2w &= 0x1f;
else
src2w &= 0x3f;
}
#endif
return emit_op(compiler, op, flags | IMM_OP, dst, dstw, src1, src1w, src2, src2w);
}
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# undef flags
#endif
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_register_index(sljit_si reg)
{
CHECK_REG_INDEX(check_sljit_get_register_index(reg));
return reg_map[reg];
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_get_float_register_index(sljit_si reg)
{
CHECK_REG_INDEX(check_sljit_get_float_register_index(reg));
return reg << 1;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_custom(struct sljit_compiler *compiler,
void *instruction, sljit_si size)
{
CHECK_ERROR();
CHECK(check_sljit_emit_op_custom(compiler, instruction, size));
return push_inst(compiler, *(sljit_ins*)instruction, UNMOVABLE_INS);
}
/* --------------------------------------------------------------------- */
/* Floating point operators */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_is_fpu_available(void)
{
#ifdef SLJIT_IS_FPU_AVAILABLE
return SLJIT_IS_FPU_AVAILABLE;
#elif defined(__GNUC__)
sljit_sw fir;
asm ("cfc1 %0, $0" : "=r"(fir));
return (fir >> 22) & 0x1;
#else
#error "FIR check is not implemented for this architecture"
#endif
}
#define FLOAT_DATA(op) (DOUBLE_DATA | ((op & SLJIT_SINGLE_OP) >> 7))
#define FMT(op) (((op & SLJIT_SINGLE_OP) ^ SLJIT_SINGLE_OP) << (21 - 8))
static SLJIT_INLINE sljit_si sljit_emit_fop1_convw_fromd(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# define flags 0
#else
sljit_si flags = (GET_OPCODE(op) == SLJIT_CONVW_FROMD) << 21;
#endif
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
src = TMP_FREG1;
}
else
src <<= 1;
FAIL_IF(push_inst(compiler, (TRUNC_W_S ^ (flags >> 19)) | FMT(op) | FS(src) | FD(TMP_FREG1), MOVABLE_INS));
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (FAST_IS_REG(dst))
return push_inst(compiler, MFC1 | flags | T(dst) | FS(TMP_FREG1), MOVABLE_INS);
/* Store the integer value from a VFP register. */
return emit_op_mem2(compiler, flags ? DOUBLE_DATA : SINGLE_DATA, TMP_FREG1, dst, dstw, 0, 0);
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# undef is_long
#endif
}
static SLJIT_INLINE sljit_si sljit_emit_fop1_convd_fromw(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# define flags 0
#else
sljit_si flags = (GET_OPCODE(op) == SLJIT_CONVD_FROMW) << 21;
#endif
sljit_si dst_r = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG1;
if (FAST_IS_REG(src))
FAIL_IF(push_inst(compiler, MTC1 | flags | T(src) | FS(TMP_FREG1), MOVABLE_INS));
else if (src & SLJIT_MEM) {
/* Load the integer value into a VFP register. */
FAIL_IF(emit_op_mem2(compiler, ((flags) ? DOUBLE_DATA : SINGLE_DATA) | LOAD_DATA, TMP_FREG1, src, srcw, dst, dstw));
}
else {
#if (defined SLJIT_CONFIG_X86_64 && SLJIT_CONFIG_X86_64)
if (GET_OPCODE(op) == SLJIT_CONVD_FROMI)
srcw = (sljit_si)srcw;
#endif
FAIL_IF(load_immediate(compiler, DR(TMP_REG1), srcw));
FAIL_IF(push_inst(compiler, MTC1 | flags | T(TMP_REG1) | FS(TMP_FREG1), MOVABLE_INS));
}
FAIL_IF(push_inst(compiler, CVT_S_S | flags | (4 << 21) | (((op & SLJIT_SINGLE_OP) ^ SLJIT_SINGLE_OP) >> 8) | FS(TMP_FREG1) | FD(dst_r), MOVABLE_INS));
if (dst & SLJIT_MEM)
return emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG1, dst, dstw, 0, 0);
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# undef flags
#endif
}
static SLJIT_INLINE sljit_si sljit_emit_fop1_cmp(struct sljit_compiler *compiler, sljit_si op,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
if (src1 & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
src1 = TMP_FREG1;
}
else
src1 <<= 1;
if (src2 & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, 0, 0));
src2 = TMP_FREG2;
}
else
src2 <<= 1;
/* src2 and src1 are swapped. */
if (op & SLJIT_SET_E) {
FAIL_IF(push_inst(compiler, C_UEQ_S | FMT(op) | FT(src2) | FS(src1), UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, CFC1 | TA(EQUAL_FLAG) | DA(FCSR_REG), EQUAL_FLAG));
FAIL_IF(push_inst(compiler, SRL | TA(EQUAL_FLAG) | DA(EQUAL_FLAG) | SH_IMM(23), EQUAL_FLAG));
FAIL_IF(push_inst(compiler, ANDI | SA(EQUAL_FLAG) | TA(EQUAL_FLAG) | IMM(1), EQUAL_FLAG));
}
if (op & SLJIT_SET_S) {
/* Mixing the instructions for the two checks. */
FAIL_IF(push_inst(compiler, C_ULT_S | FMT(op) | FT(src2) | FS(src1), UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, CFC1 | TA(ULESS_FLAG) | DA(FCSR_REG), ULESS_FLAG));
FAIL_IF(push_inst(compiler, C_ULT_S | FMT(op) | FT(src1) | FS(src2), UNMOVABLE_INS));
FAIL_IF(push_inst(compiler, SRL | TA(ULESS_FLAG) | DA(ULESS_FLAG) | SH_IMM(23), ULESS_FLAG));
FAIL_IF(push_inst(compiler, ANDI | SA(ULESS_FLAG) | TA(ULESS_FLAG) | IMM(1), ULESS_FLAG));
FAIL_IF(push_inst(compiler, CFC1 | TA(UGREATER_FLAG) | DA(FCSR_REG), UGREATER_FLAG));
FAIL_IF(push_inst(compiler, SRL | TA(UGREATER_FLAG) | DA(UGREATER_FLAG) | SH_IMM(23), UGREATER_FLAG));
FAIL_IF(push_inst(compiler, ANDI | SA(UGREATER_FLAG) | TA(UGREATER_FLAG) | IMM(1), UGREATER_FLAG));
}
return push_inst(compiler, C_UN_S | FMT(op) | FT(src2) | FS(src1), FCSR_FCC);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop1(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw)
{
sljit_si dst_r;
CHECK_ERROR();
compiler->cache_arg = 0;
compiler->cache_argw = 0;
SLJIT_COMPILE_ASSERT((SLJIT_SINGLE_OP == 0x100) && !(DOUBLE_DATA & 0x2), float_transfer_bit_error);
SELECT_FOP1_OPERATION_WITH_CHECKS(compiler, op, dst, dstw, src, srcw);
if (GET_OPCODE(op) == SLJIT_CONVD_FROMS)
op ^= SLJIT_SINGLE_OP;
dst_r = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG1;
if (src & SLJIT_MEM) {
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op) | LOAD_DATA, dst_r, src, srcw, dst, dstw));
src = dst_r;
}
else
src <<= 1;
switch (GET_OPCODE(op)) {
case SLJIT_DMOV:
if (src != dst_r) {
if (dst_r != TMP_FREG1)
FAIL_IF(push_inst(compiler, MOV_S | FMT(op) | FS(src) | FD(dst_r), MOVABLE_INS));
else
dst_r = src;
}
break;
case SLJIT_DNEG:
FAIL_IF(push_inst(compiler, NEG_S | FMT(op) | FS(src) | FD(dst_r), MOVABLE_INS));
break;
case SLJIT_DABS:
FAIL_IF(push_inst(compiler, ABS_S | FMT(op) | FS(src) | FD(dst_r), MOVABLE_INS));
break;
case SLJIT_CONVD_FROMS:
FAIL_IF(push_inst(compiler, CVT_S_S | ((op & SLJIT_SINGLE_OP) ? 1 : (1 << 21)) | FS(src) | FD(dst_r), MOVABLE_INS));
op ^= SLJIT_SINGLE_OP;
break;
}
if (dst & SLJIT_MEM)
return emit_op_mem2(compiler, FLOAT_DATA(op), dst_r, dst, dstw, 0, 0);
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fop2(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
sljit_si dst_r, flags = 0;
CHECK_ERROR();
CHECK(check_sljit_emit_fop2(compiler, op, dst, dstw, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(dst, dstw);
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
dst_r = FAST_IS_REG(dst) ? (dst << 1) : TMP_FREG2;
if (src1 & SLJIT_MEM) {
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w)) {
FAIL_IF(compiler->error);
src1 = TMP_FREG1;
} else
flags |= SLOW_SRC1;
}
else
src1 <<= 1;
if (src2 & SLJIT_MEM) {
if (getput_arg_fast(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w)) {
FAIL_IF(compiler->error);
src2 = TMP_FREG2;
} else
flags |= SLOW_SRC2;
}
else
src2 <<= 1;
if ((flags & (SLOW_SRC1 | SLOW_SRC2)) == (SLOW_SRC1 | SLOW_SRC2)) {
if (!can_cache(src1, src1w, src2, src2w) && can_cache(src1, src1w, dst, dstw)) {
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, src1, src1w));
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
}
else {
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
}
}
else if (flags & SLOW_SRC1)
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG1, src1, src1w, dst, dstw));
else if (flags & SLOW_SRC2)
FAIL_IF(getput_arg(compiler, FLOAT_DATA(op) | LOAD_DATA, TMP_FREG2, src2, src2w, dst, dstw));
if (flags & SLOW_SRC1)
src1 = TMP_FREG1;
if (flags & SLOW_SRC2)
src2 = TMP_FREG2;
switch (GET_OPCODE(op)) {
case SLJIT_DADD:
FAIL_IF(push_inst(compiler, ADD_S | FMT(op) | FT(src2) | FS(src1) | FD(dst_r), MOVABLE_INS));
break;
case SLJIT_DSUB:
FAIL_IF(push_inst(compiler, SUB_S | FMT(op) | FT(src2) | FS(src1) | FD(dst_r), MOVABLE_INS));
break;
case SLJIT_DMUL:
FAIL_IF(push_inst(compiler, MUL_S | FMT(op) | FT(src2) | FS(src1) | FD(dst_r), MOVABLE_INS));
break;
case SLJIT_DDIV:
FAIL_IF(push_inst(compiler, DIV_S | FMT(op) | FT(src2) | FS(src1) | FD(dst_r), MOVABLE_INS));
break;
}
if (dst_r == TMP_FREG2)
FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(op), TMP_FREG2, dst, dstw, 0, 0));
return SLJIT_SUCCESS;
}
/* --------------------------------------------------------------------- */
/* Other instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_enter(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_enter(compiler, dst, dstw));
ADJUST_LOCAL_OFFSET(dst, dstw);
/* For UNUSED dst. Uncommon, but possible. */
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
if (FAST_IS_REG(dst))
return push_inst(compiler, ADDU_W | SA(RETURN_ADDR_REG) | TA(0) | D(dst), DR(dst));
/* Memory. */
return emit_op_mem(compiler, WORD_DATA, RETURN_ADDR_REG, dst, dstw);
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_fast_return(struct sljit_compiler *compiler, sljit_si src, sljit_sw srcw)
{
CHECK_ERROR();
CHECK(check_sljit_emit_fast_return(compiler, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src))
FAIL_IF(push_inst(compiler, ADDU_W | S(src) | TA(0) | DA(RETURN_ADDR_REG), RETURN_ADDR_REG));
else if (src & SLJIT_MEM)
FAIL_IF(emit_op_mem(compiler, WORD_DATA | LOAD_DATA, RETURN_ADDR_REG, src, srcw));
else if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, RETURN_ADDR_REG, srcw));
FAIL_IF(push_inst(compiler, JR | SA(RETURN_ADDR_REG), UNMOVABLE_INS));
return push_inst(compiler, NOP, UNMOVABLE_INS);
}
/* --------------------------------------------------------------------- */
/* Conditional instructions */
/* --------------------------------------------------------------------- */
SLJIT_API_FUNC_ATTRIBUTE struct sljit_label* sljit_emit_label(struct sljit_compiler *compiler)
{
struct sljit_label *label;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_label(compiler));
if (compiler->last_label && compiler->last_label->size == compiler->size)
return compiler->last_label;
label = (struct sljit_label*)ensure_abuf(compiler, sizeof(struct sljit_label));
PTR_FAIL_IF(!label);
set_label(label, compiler);
compiler->delay_slot = UNMOVABLE_INS;
return label;
}
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
#define JUMP_LENGTH 4
#else
#define JUMP_LENGTH 8
#endif
#define BR_Z(src) \
inst = BEQ | SA(src) | TA(0) | JUMP_LENGTH; \
flags = IS_BIT26_COND; \
delay_check = src;
#define BR_NZ(src) \
inst = BNE | SA(src) | TA(0) | JUMP_LENGTH; \
flags = IS_BIT26_COND; \
delay_check = src;
#define BR_T() \
inst = BC1T | JUMP_LENGTH; \
flags = IS_BIT16_COND; \
delay_check = FCSR_FCC;
#define BR_F() \
inst = BC1F | JUMP_LENGTH; \
flags = IS_BIT16_COND; \
delay_check = FCSR_FCC;
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_jump(struct sljit_compiler *compiler, sljit_si type)
{
struct sljit_jump *jump;
sljit_ins inst;
sljit_si flags = 0;
sljit_si delay_check = UNMOVABLE_INS;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_jump(compiler, type));
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
switch (type) {
case SLJIT_EQUAL:
case SLJIT_D_NOT_EQUAL:
BR_NZ(EQUAL_FLAG);
break;
case SLJIT_NOT_EQUAL:
case SLJIT_D_EQUAL:
BR_Z(EQUAL_FLAG);
break;
case SLJIT_LESS:
case SLJIT_D_LESS:
BR_Z(ULESS_FLAG);
break;
case SLJIT_GREATER_EQUAL:
case SLJIT_D_GREATER_EQUAL:
BR_NZ(ULESS_FLAG);
break;
case SLJIT_GREATER:
case SLJIT_D_GREATER:
BR_Z(UGREATER_FLAG);
break;
case SLJIT_LESS_EQUAL:
case SLJIT_D_LESS_EQUAL:
BR_NZ(UGREATER_FLAG);
break;
case SLJIT_SIG_LESS:
BR_Z(LESS_FLAG);
break;
case SLJIT_SIG_GREATER_EQUAL:
BR_NZ(LESS_FLAG);
break;
case SLJIT_SIG_GREATER:
BR_Z(GREATER_FLAG);
break;
case SLJIT_SIG_LESS_EQUAL:
BR_NZ(GREATER_FLAG);
break;
case SLJIT_OVERFLOW:
case SLJIT_MUL_OVERFLOW:
BR_Z(OVERFLOW_FLAG);
break;
case SLJIT_NOT_OVERFLOW:
case SLJIT_MUL_NOT_OVERFLOW:
BR_NZ(OVERFLOW_FLAG);
break;
case SLJIT_D_UNORDERED:
BR_F();
break;
case SLJIT_D_ORDERED:
BR_T();
break;
default:
/* Not conditional branch. */
inst = 0;
break;
}
jump->flags |= flags;
if (compiler->delay_slot == MOVABLE_INS || (compiler->delay_slot != UNMOVABLE_INS && compiler->delay_slot != delay_check))
jump->flags |= IS_MOVABLE;
if (inst)
PTR_FAIL_IF(push_inst(compiler, inst, UNMOVABLE_INS));
PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0));
if (type <= SLJIT_JUMP) {
PTR_FAIL_IF(push_inst(compiler, JR | S(TMP_REG2), UNMOVABLE_INS));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
} else {
SLJIT_ASSERT(DR(PIC_ADDR_REG) == 25 && PIC_ADDR_REG == TMP_REG2);
/* Cannot be optimized out if type is >= CALL0. */
jump->flags |= IS_JAL | (type >= SLJIT_CALL0 ? IS_CALL : 0);
PTR_FAIL_IF(push_inst(compiler, JALR | S(TMP_REG2) | DA(RETURN_ADDR_REG), UNMOVABLE_INS));
jump->addr = compiler->size;
/* A NOP if type < CALL1. */
PTR_FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_R0) | TA(0) | DA(4), UNMOVABLE_INS));
}
return jump;
}
#define RESOLVE_IMM1() \
if (src1 & SLJIT_IMM) { \
if (src1w) { \
PTR_FAIL_IF(load_immediate(compiler, DR(TMP_REG1), src1w)); \
src1 = TMP_REG1; \
} \
else \
src1 = 0; \
}
#define RESOLVE_IMM2() \
if (src2 & SLJIT_IMM) { \
if (src2w) { \
PTR_FAIL_IF(load_immediate(compiler, DR(TMP_REG2), src2w)); \
src2 = TMP_REG2; \
} \
else \
src2 = 0; \
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_cmp(struct sljit_compiler *compiler, sljit_si type,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
struct sljit_jump *jump;
sljit_si flags;
sljit_ins inst;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_cmp(compiler, type, src1, src1w, src2, src2w));
ADJUST_LOCAL_OFFSET(src1, src1w);
ADJUST_LOCAL_OFFSET(src2, src2w);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
flags = ((type & SLJIT_INT_OP) ? INT_DATA : WORD_DATA) | LOAD_DATA;
if (src1 & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem2(compiler, flags, DR(TMP_REG1), src1, src1w, src2, src2w));
src1 = TMP_REG1;
}
if (src2 & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem2(compiler, flags, DR(TMP_REG2), src2, src2w, 0, 0));
src2 = TMP_REG2;
}
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
type &= 0xff;
if (type <= SLJIT_NOT_EQUAL) {
RESOLVE_IMM1();
RESOLVE_IMM2();
jump->flags |= IS_BIT26_COND;
if (compiler->delay_slot == MOVABLE_INS || (compiler->delay_slot != UNMOVABLE_INS && compiler->delay_slot != DR(src1) && compiler->delay_slot != DR(src2)))
jump->flags |= IS_MOVABLE;
PTR_FAIL_IF(push_inst(compiler, (type == SLJIT_EQUAL ? BNE : BEQ) | S(src1) | T(src2) | JUMP_LENGTH, UNMOVABLE_INS));
}
else if (type >= SLJIT_SIG_LESS && (((src1 & SLJIT_IMM) && (src1w == 0)) || ((src2 & SLJIT_IMM) && (src2w == 0)))) {
inst = NOP;
if ((src1 & SLJIT_IMM) && (src1w == 0)) {
RESOLVE_IMM2();
switch (type) {
case SLJIT_SIG_LESS:
inst = BLEZ;
jump->flags |= IS_BIT26_COND;
break;
case SLJIT_SIG_GREATER_EQUAL:
inst = BGTZ;
jump->flags |= IS_BIT26_COND;
break;
case SLJIT_SIG_GREATER:
inst = BGEZ;
jump->flags |= IS_BIT16_COND;
break;
case SLJIT_SIG_LESS_EQUAL:
inst = BLTZ;
jump->flags |= IS_BIT16_COND;
break;
}
src1 = src2;
}
else {
RESOLVE_IMM1();
switch (type) {
case SLJIT_SIG_LESS:
inst = BGEZ;
jump->flags |= IS_BIT16_COND;
break;
case SLJIT_SIG_GREATER_EQUAL:
inst = BLTZ;
jump->flags |= IS_BIT16_COND;
break;
case SLJIT_SIG_GREATER:
inst = BLEZ;
jump->flags |= IS_BIT26_COND;
break;
case SLJIT_SIG_LESS_EQUAL:
inst = BGTZ;
jump->flags |= IS_BIT26_COND;
break;
}
}
PTR_FAIL_IF(push_inst(compiler, inst | S(src1) | JUMP_LENGTH, UNMOVABLE_INS));
}
else {
if (type == SLJIT_LESS || type == SLJIT_GREATER_EQUAL || type == SLJIT_SIG_LESS || type == SLJIT_SIG_GREATER_EQUAL) {
RESOLVE_IMM1();
if ((src2 & SLJIT_IMM) && src2w <= SIMM_MAX && src2w >= SIMM_MIN)
PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_LESS_EQUAL ? SLTIU : SLTI) | S(src1) | T(TMP_REG1) | IMM(src2w), DR(TMP_REG1)));
else {
RESOLVE_IMM2();
PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_LESS_EQUAL ? SLTU : SLT) | S(src1) | T(src2) | D(TMP_REG1), DR(TMP_REG1)));
}
type = (type == SLJIT_LESS || type == SLJIT_SIG_LESS) ? SLJIT_NOT_EQUAL : SLJIT_EQUAL;
}
else {
RESOLVE_IMM2();
if ((src1 & SLJIT_IMM) && src1w <= SIMM_MAX && src1w >= SIMM_MIN)
PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_LESS_EQUAL ? SLTIU : SLTI) | S(src2) | T(TMP_REG1) | IMM(src1w), DR(TMP_REG1)));
else {
RESOLVE_IMM1();
PTR_FAIL_IF(push_inst(compiler, (type <= SLJIT_LESS_EQUAL ? SLTU : SLT) | S(src2) | T(src1) | D(TMP_REG1), DR(TMP_REG1)));
}
type = (type == SLJIT_GREATER || type == SLJIT_SIG_GREATER) ? SLJIT_NOT_EQUAL : SLJIT_EQUAL;
}
jump->flags |= IS_BIT26_COND;
PTR_FAIL_IF(push_inst(compiler, (type == SLJIT_EQUAL ? BNE : BEQ) | S(TMP_REG1) | TA(0) | JUMP_LENGTH, UNMOVABLE_INS));
}
PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0));
PTR_FAIL_IF(push_inst(compiler, JR | S(TMP_REG2), UNMOVABLE_INS));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
return jump;
}
#undef RESOLVE_IMM1
#undef RESOLVE_IMM2
SLJIT_API_FUNC_ATTRIBUTE struct sljit_jump* sljit_emit_fcmp(struct sljit_compiler *compiler, sljit_si type,
sljit_si src1, sljit_sw src1w,
sljit_si src2, sljit_sw src2w)
{
struct sljit_jump *jump;
sljit_ins inst;
sljit_si if_true;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_fcmp(compiler, type, src1, src1w, src2, src2w));
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (src1 & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(type) | LOAD_DATA, TMP_FREG1, src1, src1w, src2, src2w));
src1 = TMP_FREG1;
}
else
src1 <<= 1;
if (src2 & SLJIT_MEM) {
PTR_FAIL_IF(emit_op_mem2(compiler, FLOAT_DATA(type) | LOAD_DATA, TMP_FREG2, src2, src2w, 0, 0));
src2 = TMP_FREG2;
}
else
src2 <<= 1;
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
PTR_FAIL_IF(!jump);
set_jump(jump, compiler, type & SLJIT_REWRITABLE_JUMP);
jump->flags |= IS_BIT16_COND;
switch (type & 0xff) {
case SLJIT_D_EQUAL:
inst = C_UEQ_S;
if_true = 1;
break;
case SLJIT_D_NOT_EQUAL:
inst = C_UEQ_S;
if_true = 0;
break;
case SLJIT_D_LESS:
inst = C_ULT_S;
if_true = 1;
break;
case SLJIT_D_GREATER_EQUAL:
inst = C_ULT_S;
if_true = 0;
break;
case SLJIT_D_GREATER:
inst = C_ULE_S;
if_true = 0;
break;
case SLJIT_D_LESS_EQUAL:
inst = C_ULE_S;
if_true = 1;
break;
case SLJIT_D_UNORDERED:
inst = C_UN_S;
if_true = 1;
break;
default: /* Make compilers happy. */
SLJIT_ASSERT_STOP();
case SLJIT_D_ORDERED:
inst = C_UN_S;
if_true = 0;
break;
}
PTR_FAIL_IF(push_inst(compiler, inst | FMT(type) | FT(src2) | FS(src1), UNMOVABLE_INS));
/* Intentionally the other opcode. */
PTR_FAIL_IF(push_inst(compiler, (if_true ? BC1F : BC1T) | JUMP_LENGTH, UNMOVABLE_INS));
PTR_FAIL_IF(emit_const(compiler, TMP_REG2, 0));
PTR_FAIL_IF(push_inst(compiler, JR | S(TMP_REG2), UNMOVABLE_INS));
jump->addr = compiler->size;
PTR_FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
return jump;
}
#undef JUMP_LENGTH
#undef BR_Z
#undef BR_NZ
#undef BR_T
#undef BR_F
#undef FLOAT_DATA
#undef FMT
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_ijump(struct sljit_compiler *compiler, sljit_si type, sljit_si src, sljit_sw srcw)
{
sljit_si src_r = TMP_REG2;
struct sljit_jump *jump = NULL;
CHECK_ERROR();
CHECK(check_sljit_emit_ijump(compiler, type, src, srcw));
ADJUST_LOCAL_OFFSET(src, srcw);
if (FAST_IS_REG(src)) {
if (DR(src) != 4)
src_r = src;
else
FAIL_IF(push_inst(compiler, ADDU_W | S(src) | TA(0) | D(TMP_REG2), DR(TMP_REG2)));
}
if (type >= SLJIT_CALL0) {
SLJIT_ASSERT(DR(PIC_ADDR_REG) == 25 && PIC_ADDR_REG == TMP_REG2);
if (src & (SLJIT_IMM | SLJIT_MEM)) {
if (src & SLJIT_IMM)
FAIL_IF(load_immediate(compiler, DR(PIC_ADDR_REG), srcw));
else {
SLJIT_ASSERT(src_r == TMP_REG2 && (src & SLJIT_MEM));
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
}
FAIL_IF(push_inst(compiler, JALR | S(PIC_ADDR_REG) | DA(RETURN_ADDR_REG), UNMOVABLE_INS));
/* We need an extra instruction in any case. */
return push_inst(compiler, ADDU_W | S(SLJIT_R0) | TA(0) | DA(4), UNMOVABLE_INS);
}
/* Register input. */
if (type >= SLJIT_CALL1)
FAIL_IF(push_inst(compiler, ADDU_W | S(SLJIT_R0) | TA(0) | DA(4), 4));
FAIL_IF(push_inst(compiler, JALR | S(src_r) | DA(RETURN_ADDR_REG), UNMOVABLE_INS));
return push_inst(compiler, ADDU_W | S(src_r) | TA(0) | D(PIC_ADDR_REG), UNMOVABLE_INS);
}
if (src & SLJIT_IMM) {
jump = (struct sljit_jump*)ensure_abuf(compiler, sizeof(struct sljit_jump));
FAIL_IF(!jump);
set_jump(jump, compiler, JUMP_ADDR | ((type >= SLJIT_FAST_CALL) ? IS_JAL : 0));
jump->u.target = srcw;
if (compiler->delay_slot != UNMOVABLE_INS)
jump->flags |= IS_MOVABLE;
FAIL_IF(emit_const(compiler, TMP_REG2, 0));
}
else if (src & SLJIT_MEM)
FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, TMP_REG2, 0, TMP_REG1, 0, src, srcw));
FAIL_IF(push_inst(compiler, JR | S(src_r), UNMOVABLE_INS));
if (jump)
jump->addr = compiler->size;
FAIL_IF(push_inst(compiler, NOP, UNMOVABLE_INS));
return SLJIT_SUCCESS;
}
SLJIT_API_FUNC_ATTRIBUTE sljit_si sljit_emit_op_flags(struct sljit_compiler *compiler, sljit_si op,
sljit_si dst, sljit_sw dstw,
sljit_si src, sljit_sw srcw,
sljit_si type)
{
sljit_si sugg_dst_ar, dst_ar;
sljit_si flags = GET_ALL_FLAGS(op);
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# define mem_type WORD_DATA
#else
sljit_si mem_type = (op & SLJIT_INT_OP) ? (INT_DATA | SIGNED_DATA) : WORD_DATA;
#endif
CHECK_ERROR();
CHECK(check_sljit_emit_op_flags(compiler, op, dst, dstw, src, srcw, type));
ADJUST_LOCAL_OFFSET(dst, dstw);
if (dst == SLJIT_UNUSED)
return SLJIT_SUCCESS;
op = GET_OPCODE(op);
#if (defined SLJIT_CONFIG_MIPS_64 && SLJIT_CONFIG_MIPS_64)
if (op == SLJIT_MOV_SI || op == SLJIT_MOV_UI)
mem_type = INT_DATA | SIGNED_DATA;
#endif
sugg_dst_ar = DR((op < SLJIT_ADD && FAST_IS_REG(dst)) ? dst : TMP_REG2);
compiler->cache_arg = 0;
compiler->cache_argw = 0;
if (op >= SLJIT_ADD && (src & SLJIT_MEM)) {
ADJUST_LOCAL_OFFSET(src, srcw);
FAIL_IF(emit_op_mem2(compiler, mem_type | LOAD_DATA, DR(TMP_REG1), src, srcw, dst, dstw));
src = TMP_REG1;
srcw = 0;
}
switch (type & 0xff) {
case SLJIT_EQUAL:
case SLJIT_NOT_EQUAL:
FAIL_IF(push_inst(compiler, SLTIU | SA(EQUAL_FLAG) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
dst_ar = sugg_dst_ar;
break;
case SLJIT_LESS:
case SLJIT_GREATER_EQUAL:
case SLJIT_D_LESS:
case SLJIT_D_GREATER_EQUAL:
dst_ar = ULESS_FLAG;
break;
case SLJIT_GREATER:
case SLJIT_LESS_EQUAL:
case SLJIT_D_GREATER:
case SLJIT_D_LESS_EQUAL:
dst_ar = UGREATER_FLAG;
break;
case SLJIT_SIG_LESS:
case SLJIT_SIG_GREATER_EQUAL:
dst_ar = LESS_FLAG;
break;
case SLJIT_SIG_GREATER:
case SLJIT_SIG_LESS_EQUAL:
dst_ar = GREATER_FLAG;
break;
case SLJIT_OVERFLOW:
case SLJIT_NOT_OVERFLOW:
dst_ar = OVERFLOW_FLAG;
break;
case SLJIT_MUL_OVERFLOW:
case SLJIT_MUL_NOT_OVERFLOW:
FAIL_IF(push_inst(compiler, SLTIU | SA(OVERFLOW_FLAG) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
dst_ar = sugg_dst_ar;
type ^= 0x1; /* Flip type bit for the XORI below. */
break;
case SLJIT_D_EQUAL:
case SLJIT_D_NOT_EQUAL:
dst_ar = EQUAL_FLAG;
break;
case SLJIT_D_UNORDERED:
case SLJIT_D_ORDERED:
FAIL_IF(push_inst(compiler, CFC1 | TA(sugg_dst_ar) | DA(FCSR_REG), sugg_dst_ar));
FAIL_IF(push_inst(compiler, SRL | TA(sugg_dst_ar) | DA(sugg_dst_ar) | SH_IMM(23), sugg_dst_ar));
FAIL_IF(push_inst(compiler, ANDI | SA(sugg_dst_ar) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
dst_ar = sugg_dst_ar;
break;
default:
SLJIT_ASSERT_STOP();
dst_ar = sugg_dst_ar;
break;
}
if (type & 0x1) {
FAIL_IF(push_inst(compiler, XORI | SA(dst_ar) | TA(sugg_dst_ar) | IMM(1), sugg_dst_ar));
dst_ar = sugg_dst_ar;
}
if (op >= SLJIT_ADD) {
if (DR(TMP_REG2) != dst_ar)
FAIL_IF(push_inst(compiler, ADDU_W | SA(dst_ar) | TA(0) | D(TMP_REG2), DR(TMP_REG2)));
return emit_op(compiler, op | flags, mem_type | CUMULATIVE_OP | LOGICAL_OP | IMM_OP | ALT_KEEP_CACHE, dst, dstw, src, srcw, TMP_REG2, 0);
}
if (dst & SLJIT_MEM)
return emit_op_mem(compiler, mem_type, dst_ar, dst, dstw);
if (sugg_dst_ar != dst_ar)
return push_inst(compiler, ADDU_W | SA(dst_ar) | TA(0) | DA(sugg_dst_ar), sugg_dst_ar);
return SLJIT_SUCCESS;
#if (defined SLJIT_CONFIG_MIPS_32 && SLJIT_CONFIG_MIPS_32)
# undef mem_type
#endif
}
SLJIT_API_FUNC_ATTRIBUTE struct sljit_const* sljit_emit_const(struct sljit_compiler *compiler, sljit_si dst, sljit_sw dstw, sljit_sw init_value)
{
struct sljit_const *const_;
sljit_si reg;
CHECK_ERROR_PTR();
CHECK_PTR(check_sljit_emit_const(compiler, dst, dstw, init_value));
ADJUST_LOCAL_OFFSET(dst, dstw);
const_ = (struct sljit_const*)ensure_abuf(compiler, sizeof(struct sljit_const));
PTR_FAIL_IF(!const_);
set_const(const_, compiler);
reg = SLOW_IS_REG(dst) ? dst : TMP_REG2;
PTR_FAIL_IF(emit_const(compiler, reg, init_value));
if (dst & SLJIT_MEM)
PTR_FAIL_IF(emit_op(compiler, SLJIT_MOV, WORD_DATA, dst, dstw, TMP_REG1, 0, TMP_REG2, 0));
return const_;
}
|