1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
|
/* Copyright (C) 2007 Google Inc.
Copyright (c) 2008, 2013, Oracle and/or its affiliates.
Copyright (c) 2011, 2016, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA */
#include <my_global.h>
#include "semisync_master.h"
#define TIME_THOUSAND 1000
#define TIME_MILLION 1000000
#define TIME_BILLION 1000000000
/* This indicates whether semi-synchronous replication is enabled. */
char rpl_semi_sync_master_enabled;
unsigned long rpl_semi_sync_master_wait_point =
SEMI_SYNC_MASTER_WAIT_POINT_AFTER_STORAGE_COMMIT;
unsigned long rpl_semi_sync_master_timeout;
unsigned long rpl_semi_sync_master_trace_level;
char rpl_semi_sync_master_status = 0;
unsigned long rpl_semi_sync_master_yes_transactions = 0;
unsigned long rpl_semi_sync_master_no_transactions = 0;
unsigned long rpl_semi_sync_master_off_times = 0;
unsigned long rpl_semi_sync_master_timefunc_fails = 0;
unsigned long rpl_semi_sync_master_wait_timeouts = 0;
unsigned long rpl_semi_sync_master_wait_sessions = 0;
unsigned long rpl_semi_sync_master_wait_pos_backtraverse = 0;
unsigned long rpl_semi_sync_master_avg_trx_wait_time = 0;
unsigned long long rpl_semi_sync_master_trx_wait_num = 0;
unsigned long rpl_semi_sync_master_avg_net_wait_time = 0;
unsigned long long rpl_semi_sync_master_net_wait_num = 0;
unsigned long rpl_semi_sync_master_clients = 0;
unsigned long long rpl_semi_sync_master_net_wait_time = 0;
unsigned long long rpl_semi_sync_master_trx_wait_time = 0;
char rpl_semi_sync_master_wait_no_slave = 1;
static int getWaitTime(const struct timespec& start_ts);
static unsigned long long timespec_to_usec(const struct timespec *ts)
{
return (unsigned long long) ts->tv_sec * TIME_MILLION + ts->tv_nsec / TIME_THOUSAND;
}
/*******************************************************************************
*
* <ActiveTranx> class : manage all active transaction nodes
*
******************************************************************************/
ActiveTranx::ActiveTranx(mysql_mutex_t *lock,
unsigned long trace_level)
: Trace(trace_level), allocator_(max_connections),
num_entries_(max_connections << 1), /* Transaction hash table size
* is set to double the size
* of max_connections */
lock_(lock)
{
/* No transactions are in the list initially. */
trx_front_ = NULL;
trx_rear_ = NULL;
/* Create the hash table to find a transaction's ending event. */
trx_htb_ = new TranxNode *[num_entries_];
for (int idx = 0; idx < num_entries_; ++idx)
trx_htb_[idx] = NULL;
sql_print_information("Semi-sync replication initialized for transactions.");
}
ActiveTranx::~ActiveTranx()
{
delete [] trx_htb_;
trx_htb_ = NULL;
num_entries_ = 0;
}
unsigned int ActiveTranx::calc_hash(const unsigned char *key,
unsigned int length)
{
unsigned int nr = 1, nr2 = 4;
/* The hash implementation comes from calc_hashnr() in mysys/hash.c. */
while (length--)
{
nr ^= (((nr & 63)+nr2)*((unsigned int) (unsigned char) *key++))+ (nr << 8);
nr2 += 3;
}
return((unsigned int) nr);
}
unsigned int ActiveTranx::get_hash_value(const char *log_file_name,
my_off_t log_file_pos)
{
unsigned int hash1 = calc_hash((const unsigned char *)log_file_name,
strlen(log_file_name));
unsigned int hash2 = calc_hash((const unsigned char *)(&log_file_pos),
sizeof(log_file_pos));
return (hash1 + hash2) % num_entries_;
}
int ActiveTranx::compare(const char *log_file_name1, my_off_t log_file_pos1,
const char *log_file_name2, my_off_t log_file_pos2)
{
int cmp = strcmp(log_file_name1, log_file_name2);
if (cmp != 0)
return cmp;
if (log_file_pos1 > log_file_pos2)
return 1;
else if (log_file_pos1 < log_file_pos2)
return -1;
return 0;
}
int ActiveTranx::insert_tranx_node(const char *log_file_name,
my_off_t log_file_pos)
{
const char *kWho = "ActiveTranx:insert_tranx_node";
TranxNode *ins_node;
int result = 0;
unsigned int hash_val;
function_enter(kWho);
ins_node = allocator_.allocate_node();
if (!ins_node)
{
sql_print_error("%s: transaction node allocation failed for: (%s, %lu)",
kWho, log_file_name, (unsigned long)log_file_pos);
result = -1;
goto l_end;
}
/* insert the binlog position in the active transaction list. */
strncpy(ins_node->log_name_, log_file_name, FN_REFLEN-1);
ins_node->log_name_[FN_REFLEN-1] = 0; /* make sure it ends properly */
ins_node->log_pos_ = log_file_pos;
if (!trx_front_)
{
/* The list is empty. */
trx_front_ = trx_rear_ = ins_node;
}
else
{
int cmp = compare(ins_node, trx_rear_);
if (cmp > 0)
{
/* Compare with the tail first. If the transaction happens later in
* binlog, then make it the new tail.
*/
trx_rear_->next_ = ins_node;
trx_rear_ = ins_node;
}
else
{
/* Otherwise, it is an error because the transaction should hold the
* mysql_bin_log.LOCK_log when appending events.
*/
sql_print_error("%s: binlog write out-of-order, tail (%s, %lu), "
"new node (%s, %lu)", kWho,
trx_rear_->log_name_, (unsigned long)trx_rear_->log_pos_,
ins_node->log_name_, (unsigned long)ins_node->log_pos_);
result = -1;
goto l_end;
}
}
hash_val = get_hash_value(ins_node->log_name_, ins_node->log_pos_);
ins_node->hash_next_ = trx_htb_[hash_val];
trx_htb_[hash_val] = ins_node;
if (trace_level_ & kTraceDetail)
sql_print_information("%s: insert (%s, %lu) in entry(%u)", kWho,
ins_node->log_name_, (unsigned long)ins_node->log_pos_,
hash_val);
l_end:
return function_exit(kWho, result);
}
bool ActiveTranx::is_tranx_end_pos(const char *log_file_name,
my_off_t log_file_pos)
{
const char *kWho = "ActiveTranx::is_tranx_end_pos";
function_enter(kWho);
unsigned int hash_val = get_hash_value(log_file_name, log_file_pos);
TranxNode *entry = trx_htb_[hash_val];
while (entry != NULL)
{
if (compare(entry, log_file_name, log_file_pos) == 0)
break;
entry = entry->hash_next_;
}
if (trace_level_ & kTraceDetail)
sql_print_information("%s: probe (%s, %lu) in entry(%u)", kWho,
log_file_name, (unsigned long)log_file_pos, hash_val);
function_exit(kWho, (entry != NULL));
return (entry != NULL);
}
int ActiveTranx::clear_active_tranx_nodes(const char *log_file_name,
my_off_t log_file_pos)
{
const char *kWho = "ActiveTranx::::clear_active_tranx_nodes";
TranxNode *new_front;
function_enter(kWho);
if (log_file_name != NULL)
{
new_front = trx_front_;
while (new_front)
{
if (compare(new_front, log_file_name, log_file_pos) > 0)
break;
new_front = new_front->next_;
}
}
else
{
/* If log_file_name is NULL, clear everything. */
new_front = NULL;
}
if (new_front == NULL)
{
/* No active transaction nodes after the call. */
/* Clear the hash table. */
memset(trx_htb_, 0, num_entries_ * sizeof(TranxNode *));
allocator_.free_all_nodes();
/* Clear the active transaction list. */
if (trx_front_ != NULL)
{
trx_front_ = NULL;
trx_rear_ = NULL;
}
if (trace_level_ & kTraceDetail)
sql_print_information("%s: cleared all nodes", kWho);
}
else if (new_front != trx_front_)
{
TranxNode *curr_node, *next_node;
/* Delete all transaction nodes before the confirmation point. */
int n_frees = 0;
curr_node = trx_front_;
while (curr_node != new_front)
{
next_node = curr_node->next_;
n_frees++;
/* Remove the node from the hash table. */
unsigned int hash_val = get_hash_value(curr_node->log_name_, curr_node->log_pos_);
TranxNode **hash_ptr = &(trx_htb_[hash_val]);
while ((*hash_ptr) != NULL)
{
if ((*hash_ptr) == curr_node)
{
(*hash_ptr) = curr_node->hash_next_;
break;
}
hash_ptr = &((*hash_ptr)->hash_next_);
}
curr_node = next_node;
}
trx_front_ = new_front;
allocator_.free_nodes_before(trx_front_);
if (trace_level_ & kTraceDetail)
sql_print_information("%s: cleared %d nodes back until pos (%s, %lu)",
kWho, n_frees,
trx_front_->log_name_, (unsigned long)trx_front_->log_pos_);
}
return function_exit(kWho, 0);
}
/*******************************************************************************
*
* <ReplSemiSyncMaster> class: the basic code layer for sync-replication master.
* <ReplSemiSyncSlave> class: the basic code layer for sync-replication slave.
*
* The most important functions during semi-syn replication listed:
*
* Master:
* . reportReplyBinlog(): called by the binlog dump thread when it receives
* the slave's status information.
* . updateSyncHeader(): based on transaction waiting information, decide
* whether to request the slave to reply.
* . writeTranxInBinlog(): called by the transaction thread when it finishes
* writing all transaction events in binlog.
* . commitTrx(): transaction thread wait for the slave reply.
*
* Slave:
* . slaveReadSyncHeader(): read the semi-sync header from the master, get the
* sync status and get the payload for events.
* . slaveReply(): reply to the master about the replication progress.
*
******************************************************************************/
ReplSemiSyncMaster::ReplSemiSyncMaster()
: active_tranxs_(NULL),
init_done_(false),
reply_file_name_inited_(false),
reply_file_pos_(0L),
wait_file_name_inited_(false),
wait_file_pos_(0),
master_enabled_(false),
wait_timeout_(0L),
state_(0)
{
strcpy(reply_file_name_, "");
strcpy(wait_file_name_, "");
}
int ReplSemiSyncMaster::initObject()
{
int result;
const char *kWho = "ReplSemiSyncMaster::initObject";
if (init_done_)
{
fprintf(stderr, "%s called twice\n", kWho);
return 1;
}
init_done_ = true;
/* References to the parameter works after set_options(). */
setWaitTimeout(rpl_semi_sync_master_timeout);
setTraceLevel(rpl_semi_sync_master_trace_level);
/* Mutex initialization can only be done after MY_INIT(). */
mysql_mutex_init(key_ss_mutex_LOCK_binlog_,
&LOCK_binlog_, MY_MUTEX_INIT_FAST);
mysql_cond_init(key_ss_cond_COND_binlog_send_,
&COND_binlog_send_, NULL);
if (rpl_semi_sync_master_enabled)
result = enableMaster();
else
result = disableMaster();
return result;
}
int ReplSemiSyncMaster::enableMaster()
{
int result = 0;
/* Must have the lock when we do enable of disable. */
lock();
if (!getMasterEnabled())
{
active_tranxs_ = new ActiveTranx(&LOCK_binlog_, trace_level_);
if (active_tranxs_ != NULL)
{
commit_file_name_inited_ = false;
reply_file_name_inited_ = false;
wait_file_name_inited_ = false;
set_master_enabled(true);
state_ = true;
sql_print_information("Semi-sync replication enabled on the master.");
}
else
{
sql_print_error("Cannot allocate memory to enable semi-sync on the master.");
result = -1;
}
}
unlock();
return result;
}
int ReplSemiSyncMaster::disableMaster()
{
/* Must have the lock when we do enable of disable. */
lock();
if (getMasterEnabled())
{
/* Switch off the semi-sync first so that waiting transaction will be
* waken up.
*/
switch_off();
assert(active_tranxs_ != NULL);
delete active_tranxs_;
active_tranxs_ = NULL;
reply_file_name_inited_ = false;
wait_file_name_inited_ = false;
commit_file_name_inited_ = false;
set_master_enabled(false);
sql_print_information("Semi-sync replication disabled on the master.");
}
unlock();
return 0;
}
void ReplSemiSyncMaster::cleanup()
{
if (init_done_)
{
mysql_mutex_destroy(&LOCK_binlog_);
mysql_cond_destroy(&COND_binlog_send_);
init_done_= 0;
}
delete active_tranxs_;
}
void ReplSemiSyncMaster::lock()
{
mysql_mutex_lock(&LOCK_binlog_);
}
void ReplSemiSyncMaster::unlock()
{
mysql_mutex_unlock(&LOCK_binlog_);
}
void ReplSemiSyncMaster::cond_broadcast()
{
mysql_cond_broadcast(&COND_binlog_send_);
}
int ReplSemiSyncMaster::cond_timewait(struct timespec *wait_time)
{
const char *kWho = "ReplSemiSyncMaster::cond_timewait()";
int wait_res;
function_enter(kWho);
wait_res= mysql_cond_timedwait(&COND_binlog_send_,
&LOCK_binlog_, wait_time);
return function_exit(kWho, wait_res);
}
void ReplSemiSyncMaster::add_slave()
{
lock();
rpl_semi_sync_master_clients++;
unlock();
}
void ReplSemiSyncMaster::remove_slave()
{
lock();
rpl_semi_sync_master_clients--;
/* Only switch off if semi-sync is enabled and is on */
if (getMasterEnabled() && is_on())
{
/* If user has chosen not to wait if no semi-sync slave available
and the last semi-sync slave exits, turn off semi-sync on master
immediately.
*/
if (!rpl_semi_sync_master_wait_no_slave &&
rpl_semi_sync_master_clients == 0)
switch_off();
}
unlock();
}
bool ReplSemiSyncMaster::is_semi_sync_slave()
{
int null_value;
long long val= 0;
get_user_var_int("rpl_semi_sync_slave", &val, &null_value);
return val;
}
int ReplSemiSyncMaster::reportReplyBinlog(uint32 server_id,
const char *log_file_name,
my_off_t log_file_pos)
{
const char *kWho = "ReplSemiSyncMaster::reportReplyBinlog";
int cmp;
bool can_release_threads = false;
bool need_copy_send_pos = true;
if (!(getMasterEnabled()))
return 0;
function_enter(kWho);
lock();
/* This is the real check inside the mutex. */
if (!getMasterEnabled())
goto l_end;
if (!is_on())
/* We check to see whether we can switch semi-sync ON. */
try_switch_on(server_id, log_file_name, log_file_pos);
/* The position should increase monotonically, if there is only one
* thread sending the binlog to the slave.
* In reality, to improve the transaction availability, we allow multiple
* sync replication slaves. So, if any one of them get the transaction,
* the transaction session in the primary can move forward.
*/
if (reply_file_name_inited_)
{
cmp = ActiveTranx::compare(log_file_name, log_file_pos,
reply_file_name_, reply_file_pos_);
/* If the requested position is behind the sending binlog position,
* would not adjust sending binlog position.
* We based on the assumption that there are multiple semi-sync slave,
* and at least one of them shou/ld be up to date.
* If all semi-sync slaves are behind, at least initially, the primary
* can find the situation after the waiting timeout. After that, some
* slaves should catch up quickly.
*/
if (cmp < 0)
{
/* If the position is behind, do not copy it. */
need_copy_send_pos = false;
}
}
if (need_copy_send_pos)
{
strcpy(reply_file_name_, log_file_name);
reply_file_pos_ = log_file_pos;
reply_file_name_inited_ = true;
/* Remove all active transaction nodes before this point. */
assert(active_tranxs_ != NULL);
active_tranxs_->clear_active_tranx_nodes(log_file_name, log_file_pos);
if (trace_level_ & kTraceDetail)
sql_print_information("%s: Got reply at (%s, %lu)", kWho,
log_file_name, (unsigned long)log_file_pos);
}
if (rpl_semi_sync_master_wait_sessions > 0)
{
/* Let us check if some of the waiting threads doing a trx
* commit can now proceed.
*/
cmp = ActiveTranx::compare(reply_file_name_, reply_file_pos_,
wait_file_name_, wait_file_pos_);
if (cmp >= 0)
{
/* Yes, at least one waiting thread can now proceed:
* let us release all waiting threads with a broadcast
*/
can_release_threads = true;
wait_file_name_inited_ = false;
}
}
l_end:
unlock();
if (can_release_threads)
{
if (trace_level_ & kTraceDetail)
sql_print_information("%s: signal all waiting threads.", kWho);
cond_broadcast();
}
return function_exit(kWho, 0);
}
int ReplSemiSyncMaster::commitTrx(const char* trx_wait_binlog_name,
my_off_t trx_wait_binlog_pos)
{
const char *kWho = "ReplSemiSyncMaster::commitTrx";
function_enter(kWho);
if (getMasterEnabled() && trx_wait_binlog_name)
{
struct timespec start_ts;
struct timespec abstime;
int wait_result;
PSI_stage_info old_stage;
set_timespec(start_ts, 0);
DEBUG_SYNC(current_thd, "rpl_semisync_master_commit_trx_before_lock");
/* Acquire the mutex. */
lock();
/* This must be called after acquired the lock */
THD_ENTER_COND(NULL, &COND_binlog_send_, &LOCK_binlog_,
& stage_waiting_for_semi_sync_ack_from_slave,
& old_stage);
/* This is the real check inside the mutex. */
if (!getMasterEnabled() || !is_on())
goto l_end;
if (trace_level_ & kTraceDetail)
{
sql_print_information("%s: wait pos (%s, %lu), repl(%d)\n", kWho,
trx_wait_binlog_name, (unsigned long)trx_wait_binlog_pos,
(int)is_on());
}
while (is_on() && !thd_killed(current_thd))
{
if (reply_file_name_inited_)
{
int cmp = ActiveTranx::compare(reply_file_name_, reply_file_pos_,
trx_wait_binlog_name, trx_wait_binlog_pos);
if (cmp >= 0)
{
/* We have already sent the relevant binlog to the slave: no need to
* wait here.
*/
if (trace_level_ & kTraceDetail)
sql_print_information("%s: Binlog reply is ahead (%s, %lu),",
kWho, reply_file_name_, (unsigned long)reply_file_pos_);
break;
}
}
/* Let us update the info about the minimum binlog position of waiting
* threads.
*/
if (wait_file_name_inited_)
{
int cmp = ActiveTranx::compare(trx_wait_binlog_name, trx_wait_binlog_pos,
wait_file_name_, wait_file_pos_);
if (cmp <= 0)
{
/* This thd has a lower position, let's update the minimum info. */
strcpy(wait_file_name_, trx_wait_binlog_name);
wait_file_pos_ = trx_wait_binlog_pos;
rpl_semi_sync_master_wait_pos_backtraverse++;
if (trace_level_ & kTraceDetail)
sql_print_information("%s: move back wait position (%s, %lu),",
kWho, wait_file_name_, (unsigned long)wait_file_pos_);
}
}
else
{
strcpy(wait_file_name_, trx_wait_binlog_name);
wait_file_pos_ = trx_wait_binlog_pos;
wait_file_name_inited_ = true;
if (trace_level_ & kTraceDetail)
sql_print_information("%s: init wait position (%s, %lu),",
kWho, wait_file_name_, (unsigned long)wait_file_pos_);
}
/* Calcuate the waiting period. */
long diff_secs = (long) (wait_timeout_ / TIME_THOUSAND);
long diff_nsecs = (long) ((wait_timeout_ % TIME_THOUSAND) * TIME_MILLION);
long nsecs = start_ts.tv_nsec + diff_nsecs;
abstime.tv_sec = start_ts.tv_sec + diff_secs + nsecs/TIME_BILLION;
abstime.tv_nsec = nsecs % TIME_BILLION;
/* In semi-synchronous replication, we wait until the binlog-dump
* thread has received the reply on the relevant binlog segment from the
* replication slave.
*
* Let us suspend this thread to wait on the condition;
* when replication has progressed far enough, we will release
* these waiting threads.
*/
rpl_semi_sync_master_wait_sessions++;
if (trace_level_ & kTraceDetail)
sql_print_information("%s: wait %lu ms for binlog sent (%s, %lu)",
kWho, wait_timeout_,
wait_file_name_, (unsigned long)wait_file_pos_);
wait_result = cond_timewait(&abstime);
rpl_semi_sync_master_wait_sessions--;
if (wait_result != 0)
{
/* This is a real wait timeout. */
sql_print_warning("Timeout waiting for reply of binlog (file: %s, pos: %lu), "
"semi-sync up to file %s, position %lu.",
trx_wait_binlog_name, (unsigned long)trx_wait_binlog_pos,
reply_file_name_, (unsigned long)reply_file_pos_);
rpl_semi_sync_master_wait_timeouts++;
/* switch semi-sync off */
switch_off();
}
else
{
int wait_time;
wait_time = getWaitTime(start_ts);
if (wait_time < 0)
{
if (trace_level_ & kTraceGeneral)
{
sql_print_error("Replication semi-sync getWaitTime fail at "
"wait position (%s, %lu)",
trx_wait_binlog_name, (unsigned long)trx_wait_binlog_pos);
}
rpl_semi_sync_master_timefunc_fails++;
}
else
{
rpl_semi_sync_master_trx_wait_num++;
rpl_semi_sync_master_trx_wait_time += wait_time;
}
}
}
/*
At this point, the binlog file and position of this transaction
must have been removed from ActiveTranx.
active_tranxs_ may be NULL if someone disabled semi sync during
cond_timewait()
*/
assert(thd_killed(current_thd) || !active_tranxs_ ||
!active_tranxs_->is_tranx_end_pos(trx_wait_binlog_name,
trx_wait_binlog_pos));
l_end:
/* Update the status counter. */
if (is_on())
rpl_semi_sync_master_yes_transactions++;
else
rpl_semi_sync_master_no_transactions++;
/* The lock held will be released by thd_exit_cond, so no need to
call unlock() here */
THD_EXIT_COND(NULL, & old_stage);
}
return function_exit(kWho, 0);
}
/* Indicate that semi-sync replication is OFF now.
*
* What should we do when it is disabled? The problem is that we want
* the semi-sync replication enabled again when the slave catches up
* later. But, it is not that easy to detect that the slave has caught
* up. This is caused by the fact that MySQL's replication protocol is
* asynchronous, meaning that if the master does not use the semi-sync
* protocol, the slave would not send anything to the master.
* Still, if the master is sending (N+1)-th event, we assume that it is
* an indicator that the slave has received N-th event and earlier ones.
*
* If semi-sync is disabled, all transactions still update the wait
* position with the last position in binlog. But no transactions will
* wait for confirmations and the active transaction list would not be
* maintained. In binlog dump thread, updateSyncHeader() checks whether
* the current sending event catches up with last wait position. If it
* does match, semi-sync will be switched on again.
*/
int ReplSemiSyncMaster::switch_off()
{
const char *kWho = "ReplSemiSyncMaster::switch_off";
int result;
function_enter(kWho);
state_ = false;
/* Clear the active transaction list. */
assert(active_tranxs_ != NULL);
result = active_tranxs_->clear_active_tranx_nodes(NULL, 0);
rpl_semi_sync_master_off_times++;
wait_file_name_inited_ = false;
reply_file_name_inited_ = false;
sql_print_information("Semi-sync replication switched OFF.");
cond_broadcast(); /* wake up all waiting threads */
return function_exit(kWho, result);
}
int ReplSemiSyncMaster::try_switch_on(int server_id,
const char *log_file_name,
my_off_t log_file_pos)
{
const char *kWho = "ReplSemiSyncMaster::try_switch_on";
bool semi_sync_on = false;
function_enter(kWho);
/* If the current sending event's position is larger than or equal to the
* 'largest' commit transaction binlog position, the slave is already
* catching up now and we can switch semi-sync on here.
* If commit_file_name_inited_ indicates there are no recent transactions,
* we can enable semi-sync immediately.
*/
if (commit_file_name_inited_)
{
int cmp = ActiveTranx::compare(log_file_name, log_file_pos,
commit_file_name_, commit_file_pos_);
semi_sync_on = (cmp >= 0);
}
else
{
semi_sync_on = true;
}
if (semi_sync_on)
{
/* Switch semi-sync replication on. */
state_ = true;
sql_print_information("Semi-sync replication switched ON with slave (server_id: %d) "
"at (%s, %lu)",
server_id, log_file_name,
(unsigned long)log_file_pos);
}
return function_exit(kWho, 0);
}
int ReplSemiSyncMaster::reserveSyncHeader(unsigned char *header,
unsigned long size)
{
const char *kWho = "ReplSemiSyncMaster::reserveSyncHeader";
function_enter(kWho);
int hlen=0;
if (!is_semi_sync_slave())
{
hlen= 0;
}
else
{
/* No enough space for the extra header, disable semi-sync master */
if (sizeof(kSyncHeader) > size)
{
sql_print_warning("No enough space in the packet "
"for semi-sync extra header, "
"semi-sync replication disabled");
disableMaster();
return 0;
}
/* Set the magic number and the sync status. By default, no sync
* is required.
*/
memcpy(header, kSyncHeader, sizeof(kSyncHeader));
hlen= sizeof(kSyncHeader);
}
return function_exit(kWho, hlen);
}
int ReplSemiSyncMaster::updateSyncHeader(unsigned char *packet,
const char *log_file_name,
my_off_t log_file_pos,
uint32 server_id)
{
const char *kWho = "ReplSemiSyncMaster::updateSyncHeader";
int cmp = 0;
bool sync = false;
/* If the semi-sync master is not enabled, or the slave is not a semi-sync
* target, do not request replies from the slave.
*/
if (!getMasterEnabled() || !is_semi_sync_slave())
return 0;
function_enter(kWho);
lock();
/* This is the real check inside the mutex. */
if (!getMasterEnabled())
goto l_end; // sync= false at this point in time
if (is_on())
{
/* semi-sync is ON */
/* sync= false; No sync unless a transaction is involved. */
if (reply_file_name_inited_)
{
cmp = ActiveTranx::compare(log_file_name, log_file_pos,
reply_file_name_, reply_file_pos_);
if (cmp <= 0)
{
/* If we have already got the reply for the event, then we do
* not need to sync the transaction again.
*/
goto l_end;
}
}
if (wait_file_name_inited_)
{
cmp = ActiveTranx::compare(log_file_name, log_file_pos,
wait_file_name_, wait_file_pos_);
}
else
{
cmp = 1;
}
/* If we are already waiting for some transaction replies which
* are later in binlog, do not wait for this one event.
*/
if (cmp >= 0)
{
/*
* We only wait if the event is a transaction's ending event.
*/
assert(active_tranxs_ != NULL);
sync = active_tranxs_->is_tranx_end_pos(log_file_name,
log_file_pos);
}
}
else
{
if (commit_file_name_inited_)
{
int cmp = ActiveTranx::compare(log_file_name, log_file_pos,
commit_file_name_, commit_file_pos_);
sync = (cmp >= 0);
}
else
{
sync = true;
}
}
if (trace_level_ & kTraceDetail)
sql_print_information("%s: server(%d), (%s, %lu) sync(%d), repl(%d)",
kWho, server_id, log_file_name,
(unsigned long)log_file_pos, sync, (int)is_on());
l_end:
unlock();
/* We do not need to clear sync flag because we set it to 0 when we
* reserve the packet header.
*/
if (sync)
{
(packet)[2] = kPacketFlagSync;
}
return function_exit(kWho, 0);
}
int ReplSemiSyncMaster::writeTranxInBinlog(const char* log_file_name,
my_off_t log_file_pos)
{
const char *kWho = "ReplSemiSyncMaster::writeTranxInBinlog";
int result = 0;
function_enter(kWho);
lock();
/* This is the real check inside the mutex. */
if (!getMasterEnabled())
goto l_end;
/* Update the 'largest' transaction commit position seen so far even
* though semi-sync is switched off.
* It is much better that we update commit_file_* here, instead of
* inside commitTrx(). This is mostly because updateSyncHeader()
* will watch for commit_file_* to decide whether to switch semi-sync
* on. The detailed reason is explained in function updateSyncHeader().
*/
if (commit_file_name_inited_)
{
int cmp = ActiveTranx::compare(log_file_name, log_file_pos,
commit_file_name_, commit_file_pos_);
if (cmp > 0)
{
/* This is a larger position, let's update the maximum info. */
strncpy(commit_file_name_, log_file_name, FN_REFLEN-1);
commit_file_name_[FN_REFLEN-1] = 0; /* make sure it ends properly */
commit_file_pos_ = log_file_pos;
}
}
else
{
strncpy(commit_file_name_, log_file_name, FN_REFLEN-1);
commit_file_name_[FN_REFLEN-1] = 0; /* make sure it ends properly */
commit_file_pos_ = log_file_pos;
commit_file_name_inited_ = true;
}
if (is_on())
{
assert(active_tranxs_ != NULL);
if(active_tranxs_->insert_tranx_node(log_file_name, log_file_pos))
{
/*
if insert tranx_node failed, print a warning message
and turn off semi-sync
*/
sql_print_warning("Semi-sync failed to insert tranx_node for binlog file: %s, position: %lu",
log_file_name, (ulong)log_file_pos);
switch_off();
}
}
l_end:
unlock();
return function_exit(kWho, result);
}
int ReplSemiSyncMaster::readSlaveReply(NET *net, uint32 server_id,
const char *event_buf)
{
const char *kWho = "ReplSemiSyncMaster::readSlaveReply";
const unsigned char *packet;
char log_file_name[FN_REFLEN];
my_off_t log_file_pos;
ulong log_file_len = 0;
ulong packet_len;
int result = -1;
struct timespec start_ts;
ulong trc_level = trace_level_;
LINT_INIT_STRUCT(start_ts);
function_enter(kWho);
assert((unsigned char)event_buf[1] == kPacketMagicNum);
if ((unsigned char)event_buf[2] != kPacketFlagSync)
{
/* current event does not require reply */
result = 0;
goto l_end;
}
if (trc_level & kTraceNetWait)
set_timespec(start_ts, 0);
/* We flush to make sure that the current event is sent to the network,
* instead of being buffered in the TCP/IP stack.
*/
if (net_flush(net))
{
sql_print_error("Semi-sync master failed on net_flush() "
"before waiting for slave reply");
goto l_end;
}
net_clear(net, 0);
if (trc_level & kTraceDetail)
sql_print_information("%s: Wait for replica's reply", kWho);
/* Wait for the network here. Though binlog dump thread can indefinitely wait
* here, transactions would not wait indefintely.
* Transactions wait on binlog replies detected by binlog dump threads. If
* binlog dump threads wait too long, transactions will timeout and continue.
*/
packet_len = my_net_read(net);
if (trc_level & kTraceNetWait)
{
int wait_time = getWaitTime(start_ts);
if (wait_time < 0)
{
sql_print_error("Semi-sync master wait for reply "
"fail to get wait time.");
rpl_semi_sync_master_timefunc_fails++;
}
else
{
rpl_semi_sync_master_net_wait_num++;
rpl_semi_sync_master_net_wait_time += wait_time;
}
}
if (packet_len == packet_error || packet_len < REPLY_BINLOG_NAME_OFFSET)
{
if (packet_len == packet_error)
sql_print_error("Read semi-sync reply network error: %s (errno: %d)",
net->last_error, net->last_errno);
else
sql_print_error("Read semi-sync reply length error: %s (errno: %d)",
net->last_error, net->last_errno);
goto l_end;
}
packet = net->read_pos;
if (packet[REPLY_MAGIC_NUM_OFFSET] != ReplSemiSyncMaster::kPacketMagicNum)
{
sql_print_error("Read semi-sync reply magic number error");
goto l_end;
}
log_file_pos = uint8korr(packet + REPLY_BINLOG_POS_OFFSET);
log_file_len = packet_len - REPLY_BINLOG_NAME_OFFSET;
if (log_file_len >= FN_REFLEN)
{
sql_print_error("Read semi-sync reply binlog file length too large");
goto l_end;
}
strncpy(log_file_name, (const char*)packet + REPLY_BINLOG_NAME_OFFSET, log_file_len);
log_file_name[log_file_len] = 0;
if (trc_level & kTraceDetail)
sql_print_information("%s: Got reply (%s, %lu)",
kWho, log_file_name, (ulong)log_file_pos);
result = reportReplyBinlog(server_id, log_file_name, log_file_pos);
l_end:
return function_exit(kWho, result);
}
int ReplSemiSyncMaster::resetMaster()
{
const char *kWho = "ReplSemiSyncMaster::resetMaster";
int result = 0;
function_enter(kWho);
lock();
state_ = getMasterEnabled()? 1 : 0;
wait_file_name_inited_ = false;
reply_file_name_inited_ = false;
commit_file_name_inited_ = false;
rpl_semi_sync_master_yes_transactions = 0;
rpl_semi_sync_master_no_transactions = 0;
rpl_semi_sync_master_off_times = 0;
rpl_semi_sync_master_timefunc_fails = 0;
rpl_semi_sync_master_wait_sessions = 0;
rpl_semi_sync_master_wait_pos_backtraverse = 0;
rpl_semi_sync_master_trx_wait_num = 0;
rpl_semi_sync_master_trx_wait_time = 0;
rpl_semi_sync_master_net_wait_num = 0;
rpl_semi_sync_master_net_wait_time = 0;
unlock();
return function_exit(kWho, result);
}
void ReplSemiSyncMaster::setExportStats()
{
lock();
rpl_semi_sync_master_status = state_;
rpl_semi_sync_master_avg_trx_wait_time=
((rpl_semi_sync_master_trx_wait_num) ?
(unsigned long)((double)rpl_semi_sync_master_trx_wait_time /
((double)rpl_semi_sync_master_trx_wait_num)) : 0);
rpl_semi_sync_master_avg_net_wait_time=
((rpl_semi_sync_master_net_wait_num) ?
(unsigned long)((double)rpl_semi_sync_master_net_wait_time /
((double)rpl_semi_sync_master_net_wait_num)) : 0);
unlock();
}
/* Get the waiting time given the wait's staring time.
*
* Return:
* >= 0: the waiting time in microsecons(us)
* < 0: error in get time or time back traverse
*/
static int getWaitTime(const struct timespec& start_ts)
{
unsigned long long start_usecs, end_usecs;
struct timespec end_ts;
/* Starting time in microseconds(us). */
start_usecs = timespec_to_usec(&start_ts);
/* Get the wait time interval. */
set_timespec(end_ts, 0);
/* Ending time in microseconds(us). */
end_usecs = timespec_to_usec(&end_ts);
if (end_usecs < start_usecs)
return -1;
return (int)(end_usecs - start_usecs);
}
|