summaryrefslogtreecommitdiff
path: root/sql/compat56.cc
blob: 16c25924d6e350d69044a1f97fa330c983eda9f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
/*
   Copyright (c) 2004, 2012, Oracle and/or its affiliates.
   Copyright (c) 2013, MariaDB Foundation.

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; version 2 of the License.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA */

#include "mariadb.h"
#include "compat56.h"
#include "myisampack.h"
#include "my_time.h"

/*** MySQL56 TIME low-level memory and disk representation routines ***/

/*
  In-memory format:

   1  bit sign          (Used for sign, when on disk)
   1  bit unused        (Reserved for wider hour range, e.g. for intervals)
   10 bit hour          (0-836)
   6  bit minute        (0-59)
   6  bit second        (0-59)
  24  bits microseconds (0-999999)

 Total: 48 bits = 6 bytes
   Suhhhhhh.hhhhmmmm.mmssssss.ffffffff.ffffffff.ffffffff
*/


/**
  Convert time value to MySQL56 numeric packed representation.
  
  @param    ltime   The value to convert.
  @return           Numeric packed representation.
*/
longlong TIME_to_longlong_time_packed(const MYSQL_TIME *ltime)
{
  DBUG_ASSERT(ltime->year == 0);
  DBUG_ASSERT(ltime->month == 0);
  // Mix days with hours: "1 00:10:10" -> "24:10:10"
  long hms= ((ltime->day * 24 + ltime->hour) << 12) |
            (ltime->minute << 6) | ltime->second;
  longlong tmp= MY_PACKED_TIME_MAKE(hms, ltime->second_part);
  return ltime->neg ? -tmp : tmp;
}



/**
  Convert MySQL56 time packed numeric representation to time.

  @param  OUT ltime  The MYSQL_TIME variable to set.
  @param      tmp    The packed numeric representation.
*/
void TIME_from_longlong_time_packed(MYSQL_TIME *ltime, longlong tmp)
{
  long hms;
  if ((ltime->neg= (tmp < 0)))
    tmp= -tmp;
  hms= (long) MY_PACKED_TIME_GET_INT_PART(tmp);
  ltime->year=   (uint) 0;
  ltime->month=  (uint) 0;
  ltime->day=    (uint) 0;
  ltime->hour=   (uint) (hms >> 12) % (1 << 10); /* 10 bits starting at 12th */
  ltime->minute= (uint) (hms >> 6)  % (1 << 6);  /* 6 bits starting at 6th   */
  ltime->second= (uint)  hms        % (1 << 6);  /* 6 bits starting at 0th   */
  ltime->second_part= MY_PACKED_TIME_GET_FRAC_PART(tmp);
  ltime->time_type= MYSQL_TIMESTAMP_TIME;
}


/**
  Calculate binary size of MySQL56 packed numeric time representation.
  
  @param   dec   Precision.
*/
uint my_time_binary_length(uint dec)
{
  DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
  return 3 + (dec + 1) / 2;
}


/*
  On disk we convert from signed representation to unsigned
  representation using TIMEF_OFS, so all values become binary comparable.
*/
#define TIMEF_OFS 0x800000000000LL
#define TIMEF_INT_OFS 0x800000LL


/**
  Convert MySQL56 in-memory numeric time representation to on-disk representation
  
  @param       nr   Value in packed numeric time format.
  @param   OUT ptr  The buffer to put value at.
  @param       dec  Precision.
*/
void my_time_packed_to_binary(longlong nr, uchar *ptr, uint dec)
{
  DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
  /* Make sure the stored value was previously properly rounded or truncated */
  DBUG_ASSERT((MY_PACKED_TIME_GET_FRAC_PART(nr) % 
              (int) log_10_int[TIME_SECOND_PART_DIGITS - dec]) == 0);

  switch (dec)
  {
  case 0:
  default:
    mi_int3store(ptr, TIMEF_INT_OFS + MY_PACKED_TIME_GET_INT_PART(nr));
    break;

  case 1:
  case 2:
    mi_int3store(ptr, TIMEF_INT_OFS + MY_PACKED_TIME_GET_INT_PART(nr));
    ptr[3]= (unsigned char) (char) (MY_PACKED_TIME_GET_FRAC_PART(nr) / 10000);
    break;

  case 4:
  case 3:
    mi_int3store(ptr, TIMEF_INT_OFS + MY_PACKED_TIME_GET_INT_PART(nr));
    mi_int2store(ptr + 3, MY_PACKED_TIME_GET_FRAC_PART(nr) / 100);
    break;

  case 5:
  case 6:
    mi_int6store(ptr, nr + TIMEF_OFS);
    break;
  }
}


/**
  Convert MySQL56 on-disk time representation to in-memory packed numeric 
  representation.
  
  @param   ptr  The pointer to read the value at.
  @param   dec  Precision.
  @return       Packed numeric time representation.
*/
longlong my_time_packed_from_binary(const uchar *ptr, uint dec)
{
  DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);

  switch (dec)
  {
  case 0:
  default:
    {
      longlong intpart= mi_uint3korr(ptr) - TIMEF_INT_OFS;
      return MY_PACKED_TIME_MAKE_INT(intpart);
    }
  case 1:
  case 2:
    {
      longlong intpart= mi_uint3korr(ptr) - TIMEF_INT_OFS;
      int frac= (uint) ptr[3];
      if (intpart < 0 && frac)
      {
        /*
          Negative values are stored with reverse fractional part order,
          for binary sort compatibility.

            Disk value  intpart frac   Time value   Memory value
            800000.00    0      0      00:00:00.00  0000000000.000000
            7FFFFF.FF   -1      255   -00:00:00.01  FFFFFFFFFF.FFD8F0
            7FFFFF.9D   -1      99    -00:00:00.99  FFFFFFFFFF.F0E4D0
            7FFFFF.00   -1      0     -00:00:01.00  FFFFFFFFFF.000000
            7FFFFE.FF   -1      255   -00:00:01.01  FFFFFFFFFE.FFD8F0
            7FFFFE.F6   -2      246   -00:00:01.10  FFFFFFFFFE.FE7960

            Formula to convert fractional part from disk format
            (now stored in "frac" variable) to absolute value: "0x100 - frac".
            To reconstruct in-memory value, we shift
            to the next integer value and then substruct fractional part.
        */
        intpart++;    /* Shift to the next integer value */
        frac-= 0x100; /* -(0x100 - frac) */
      }
      return MY_PACKED_TIME_MAKE(intpart, frac * 10000);
    }

  case 3:
  case 4:
    {
      longlong intpart= mi_uint3korr(ptr) - TIMEF_INT_OFS;
      int frac= mi_uint2korr(ptr + 3);
      if (intpart < 0 && frac)
      {
        /*
          Fix reverse fractional part order: "0x10000 - frac".
          See comments for FSP=1 and FSP=2 above.
        */
        intpart++;      /* Shift to the next integer value */
        frac-= 0x10000; /* -(0x10000-frac) */
      }
      return MY_PACKED_TIME_MAKE(intpart, frac * 100);
    }

  case 5:
  case 6:
    return ((longlong) mi_uint6korr(ptr)) - TIMEF_OFS;
  }
}


/*** MySQL56 DATETIME low-level memory and disk representation routines ***/

/*
    1 bit  sign            (used when on disk)
   17 bits year*13+month   (year 0-9999, month 0-12)
    5 bits day             (0-31)
    5 bits hour            (0-23)
    6 bits minute          (0-59)
    6 bits second          (0-59)
   24 bits microseconds    (0-999999)

   Total: 64 bits = 8 bytes

   SYYYYYYY.YYYYYYYY.YYdddddh.hhhhmmmm.mmssssss.ffffffff.ffffffff.ffffffff
*/

/**
  Convert datetime to MySQL56 packed numeric datetime representation.
  @param ltime  The value to convert.
  @return       Packed numeric representation of ltime.
*/
longlong TIME_to_longlong_datetime_packed(const MYSQL_TIME *ltime)
{
  longlong ymd= ((ltime->year * 13 + ltime->month) << 5) | ltime->day;
  longlong hms= (ltime->hour << 12) | (ltime->minute << 6) | ltime->second;
  longlong tmp= MY_PACKED_TIME_MAKE(((ymd << 17) | hms), ltime->second_part);
  DBUG_ASSERT(!check_datetime_range(ltime)); /* Make sure no overflow */
  return ltime->neg ? -tmp : tmp;
}


/**
  Convert MySQL56 packed numeric datetime representation to MYSQL_TIME.
  @param OUT  ltime The datetime variable to convert to.
  @param      tmp   The packed numeric datetime value.
*/
void TIME_from_longlong_datetime_packed(MYSQL_TIME *ltime, longlong tmp)
{
  longlong ymd, hms;
  longlong ymdhms, ym;
  if ((ltime->neg= (tmp < 0)))
    tmp= -tmp;

  ltime->second_part= MY_PACKED_TIME_GET_FRAC_PART(tmp);
  ymdhms= MY_PACKED_TIME_GET_INT_PART(tmp);

  ymd= ymdhms >> 17;
  ym= ymd >> 5;
  hms= ymdhms % (1 << 17);

  ltime->day= ymd % (1 << 5);
  ltime->month= ym % 13;
  ltime->year= (uint) (ym / 13);

  ltime->second= hms % (1 << 6);
  ltime->minute= (hms >> 6) % (1 << 6);
  ltime->hour= (uint) (hms >> 12);
  
  ltime->time_type= MYSQL_TIMESTAMP_DATETIME;
}


/**
  Calculate binary size of MySQL56 packed datetime representation.
  @param dec  Precision.
*/
uint my_datetime_binary_length(uint dec)
{
  DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
  return 5 + (dec + 1) / 2;
}


/*
  On disk we store as unsigned number with DATETIMEF_INT_OFS offset,
  for HA_KETYPE_BINARY compatibilty purposes.
*/
#define DATETIMEF_INT_OFS 0x8000000000LL


/**
  Convert MySQL56 on-disk datetime representation
  to in-memory packed numeric representation.

  @param ptr   The pointer to read value at.
  @param dec   Precision.
  @return      In-memory packed numeric datetime representation.
*/
longlong my_datetime_packed_from_binary(const uchar *ptr, uint dec)
{
  longlong intpart= mi_uint5korr(ptr) - DATETIMEF_INT_OFS;
  int frac;
  DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
  switch (dec)
  {
  case 0:
  default:
    return MY_PACKED_TIME_MAKE_INT(intpart);
  case 1:
  case 2:
    frac= ((int) (signed char) ptr[5]) * 10000;
    break;
  case 3:
  case 4:
    frac= mi_sint2korr(ptr + 5) * 100;
    break;
  case 5:
  case 6:
    frac= mi_sint3korr(ptr + 5);
    break;
  }
  return MY_PACKED_TIME_MAKE(intpart, frac);
}


/**
  Store MySQL56 in-memory numeric packed datetime representation to disk.

  @param      nr  In-memory numeric packed datetime representation.
  @param OUT  ptr The pointer to store at.
  @param      dec Precision, 1-6.
*/
void my_datetime_packed_to_binary(longlong nr, uchar *ptr, uint dec)
{
  DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
  /* The value being stored must have been properly rounded or truncated */
  DBUG_ASSERT((MY_PACKED_TIME_GET_FRAC_PART(nr) %
              (int) log_10_int[TIME_SECOND_PART_DIGITS - dec]) == 0);

  mi_int5store(ptr, MY_PACKED_TIME_GET_INT_PART(nr) + DATETIMEF_INT_OFS);
  switch (dec)
  {
  case 0:
  default:
    break;
  case 1:
  case 2:
    ptr[5]= (unsigned char) (char) (MY_PACKED_TIME_GET_FRAC_PART(nr) / 10000);
    break;
  case 3:
  case 4:
    mi_int2store(ptr + 5, MY_PACKED_TIME_GET_FRAC_PART(nr) / 100);
    break;
  case 5:
  case 6:
    mi_int3store(ptr + 5, MY_PACKED_TIME_GET_FRAC_PART(nr));
  }
}


/*** MySQL56 TIMESTAMP low-level memory and disk representation routines ***/

/**
  Calculate on-disk size of a timestamp value.

  @param  dec  Precision.
*/
uint my_timestamp_binary_length(uint dec)
{
  DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
  return 4 + (dec + 1) / 2;
}


/**
  Convert MySQL56 binary timestamp representation to in-memory representation.

  @param  OUT tm  The variable to convert to.
  @param      ptr The pointer to read the value from.
  @param      dec Precision.
*/
void my_timestamp_from_binary(struct timeval *tm, const uchar *ptr, uint dec)
{
  DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
  tm->tv_sec= mi_uint4korr(ptr);
  switch (dec)
  {
    case 0:
    default:
      tm->tv_usec= 0;
      break;
    case 1:
    case 2:
      tm->tv_usec= ((int) ptr[4]) * 10000;
      break;
    case 3:
    case 4:
      tm->tv_usec= mi_sint2korr(ptr + 4) * 100;
      break;
    case 5:
    case 6:
      tm->tv_usec= mi_sint3korr(ptr + 4);
  }
}


/**
  Convert MySQL56 in-memory timestamp representation to on-disk representation.

  @param        tm   The value to convert.
  @param  OUT   ptr  The pointer to store the value to.
  @param        dec  Precision.
*/
void my_timestamp_to_binary(const struct timeval *tm, uchar *ptr, uint dec)
{
  DBUG_ASSERT(dec <= TIME_SECOND_PART_DIGITS);
  /* Stored value must have been previously properly rounded or truncated */
  DBUG_ASSERT((tm->tv_usec %
               (int) log_10_int[TIME_SECOND_PART_DIGITS - dec]) == 0);
  mi_int4store(ptr, tm->tv_sec);
  switch (dec)
  {
    case 0:
    default:
      break;
    case 1:
    case 2:
      ptr[4]= (unsigned char) (char) (tm->tv_usec / 10000);
      break;
    case 3:
    case 4:
      mi_int2store(ptr + 4, tm->tv_usec / 100);
      break;
      /* Impossible second precision. Fall through */
    case 5:
    case 6:
      mi_int3store(ptr + 4, tm->tv_usec);
  }
}

/****************************************/