summaryrefslogtreecommitdiff
path: root/sql/examples/ha_archive.cc
blob: 7b9f6e23548bd03120445f995fd68f5b20fb4019 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
/* Copyright (C) 2003 MySQL AB

  This program is free software; you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation; either version 2 of the License, or
  (at your option) any later version.

  This program is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with this program; if not, write to the Free Software
  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA */

#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation        // gcc: Class implementation
#endif

#include "../mysql_priv.h"

#ifdef HAVE_ARCHIVE_DB
#include "ha_archive.h"
#include <my_dir.h>

/*
  First, if you want to understand storage engines you should look at 
  ha_example.cc and ha_example.h. 
  This example was written as a test case for a customer who needed
  a storage engine without indexes that could compress data very well.
  So, welcome to a completely compressed storage engine. This storage
  engine only does inserts. No replace, deletes, or updates. All reads are 
  complete table scans. Compression is done through gzip (bzip compresses
  better, but only marginally, if someone asks I could add support for
  it too, but beaware that it costs a lot more in CPU time then gzip).
  
  We keep a file pointer open for each instance of ha_archive for each read
  but for writes we keep one open file handle just for that. We flush it
  only if we have a read occur. gzip handles compressing lots of records
  at once much better then doing lots of little records between writes.
  It is possible to not lock on writes but this would then mean we couldn't
  handle bulk inserts as well (that is if someone was trying to read at
  the same time since we would want to flush).

  A "meta" file is kept alongside the data file. This file serves two purpose.
  The first purpose is to track the number of rows in the table. The second 
  purpose is to determine if the table was closed properly or not. When the 
  meta file is first opened it is marked as dirty. It is opened when the table 
  itself is opened for writing. When the table is closed the new count for rows 
  is written to the meta file and the file is marked as clean. If the meta file 
  is opened and it is marked as dirty, it is assumed that a crash occured. At 
  this point an error occurs and the user is told to rebuild the file.
  A rebuild scans the rows and rewrites the meta file. If corruption is found
  in the data file then the meta file is not repaired.

  At some point a recovery method for such a drastic case needs to be divised.

  Locks are row level, and you will get a consistant read. 

  For performance as far as table scans go it is quite fast. I don't have
  good numbers but locally it has out performed both Innodb and MyISAM. For
  Innodb the question will be if the table can be fit into the buffer
  pool. For MyISAM its a question of how much the file system caches the
  MyISAM file. With enough free memory MyISAM is faster. Its only when the OS
  doesn't have enough memory to cache entire table that archive turns out 
  to be any faster. For writes it is always a bit slower then MyISAM. It has no
  internal limits though for row length.

  Examples between MyISAM (packed) and Archive.

  Table with 76695844 identical rows:
  29680807 a_archive.ARZ
  920350317 a.MYD


  Table with 8991478 rows (all of Slashdot's comments):
  1922964506 comment_archive.ARZ
  2944970297 comment_text.MYD


  TODO:
   Add bzip optional support.
   Allow users to set compression level.
   Add truncate table command.
   Implement versioning, should be easy.
   Allow for errors, find a way to mark bad rows.
   Talk to the gzip guys, come up with a writable format so that updates are doable
     without switching to a block method.
   Add optional feature so that rows can be flushed at interval (which will cause less
     compression but may speed up ordered searches).
   Checkpoint the meta file to allow for faster rebuilds.
   Dirty open (right now the meta file is repaired if a crash occured).
   Option to allow for dirty reads, this would lower the sync calls, which would make
     inserts a lot faster, but would mean highly arbitrary reads.

    -Brian
*/
/*
  Notes on file formats.
  The Meta file is layed out as:
  check - Just an int of 254 to make sure that the the file we are opening was
          never corrupted.
  version - The current version of the file format.
  rows - This is an unsigned long long which is the number of rows in the data
         file.
  check point - Reserved for future use
  dirty - Status of the file, whether or not its values are the latest. This
          flag is what causes a repair to occur

  The data file:
  check - Just an int of 254 to make sure that the the file we are opening was
          never corrupted.
  version - The current version of the file format.
  data - The data is stored in a "row +blobs" format.
*/

/* If the archive storage engine has been inited */
static bool archive_inited= 0;
/* Variables for archive share methods */
pthread_mutex_t archive_mutex;
static HASH archive_open_tables;

/* The file extension */
#define ARZ ".ARZ"               // The data file
#define ARN ".ARN"               // Files used during an optimize call
#define ARM ".ARM"               // Meta file
/*
  uchar + uchar + ulonglong + ulonglong + uchar
*/
#define META_BUFFER_SIZE 19      // Size of the data used in the meta file
/*
  uchar + uchar
*/
#define DATA_BUFFER_SIZE 2       // Size of the data used in the data file
#define ARCHIVE_CHECK_HEADER 254 // The number we use to determine corruption

/* dummy handlerton - only to have something to return from archive_db_init */
static handlerton archive_hton = {
  "archive",
  0,       /* slot */
  0,       /* savepoint size. */
  NULL,    /* close_connection */
  NULL,    /* savepoint */
  NULL,    /* rollback to savepoint */
  NULL,    /* releas savepoint */
  NULL,    /* commit */
  NULL,    /* rollback */
  NULL,    /* prepare */
  NULL,    /* recover */
  NULL,    /* commit_by_xid */
  NULL,    /* rollback_by_xid */
  NULL,    /* create_cursor_read_view */
  NULL,    /* set_cursor_read_view */
  NULL,    /* close_cursor_read_view */
  HTON_NO_FLAGS
};


/*
  Used for hash table that tracks open tables.
*/
static byte* archive_get_key(ARCHIVE_SHARE *share,uint *length,
                             my_bool not_used __attribute__((unused)))
{
  *length=share->table_name_length;
  return (byte*) share->table_name;
}


/*
  Initialize the archive handler.

  SYNOPSIS
    archive_db_init()
    void

  RETURN
    &archive_hton OK
    0             Error
*/

handlerton *archive_db_init()
{
  archive_inited= 1;
  VOID(pthread_mutex_init(&archive_mutex, MY_MUTEX_INIT_FAST));
  if (hash_init(&archive_open_tables, system_charset_info, 32, 0, 0,
                (hash_get_key) archive_get_key, 0, 0))
    return 0;
  return &archive_hton;
}

/*
  Release the archive handler.

  SYNOPSIS
    archive_db_end()
    void

  RETURN
    FALSE       OK
*/

bool archive_db_end()
{
  if (archive_inited)
  {
    hash_free(&archive_open_tables);
    VOID(pthread_mutex_destroy(&archive_mutex));
  }
  archive_inited= 0;
  return FALSE;
}

ha_archive::ha_archive(TABLE *table_arg)
  :handler(&archive_hton, table_arg), delayed_insert(0), bulk_insert(0)
{
  /* Set our original buffer from pre-allocated memory */
  buffer.set((char *)byte_buffer, IO_SIZE, system_charset_info);

  /* The size of the offset value we will use for position() */
  ref_length = sizeof(z_off_t);
}

/*
  This method reads the header of a datafile and returns whether or not it was successful.
*/
int ha_archive::read_data_header(gzFile file_to_read)
{
  uchar data_buffer[DATA_BUFFER_SIZE];
  DBUG_ENTER("ha_archive::read_data_header");

  if (gzrewind(file_to_read) == -1)
    DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);

  if (gzread(file_to_read, data_buffer, DATA_BUFFER_SIZE) != DATA_BUFFER_SIZE)
    DBUG_RETURN(errno ? errno : -1);
  
  DBUG_PRINT("ha_archive::read_data_header", ("Check %u", data_buffer[0]));
  DBUG_PRINT("ha_archive::read_data_header", ("Version %u", data_buffer[1]));
  
  if ((data_buffer[0] != (uchar)ARCHIVE_CHECK_HEADER) &&  
      (data_buffer[1] != (uchar)ARCHIVE_VERSION))
    DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);

  DBUG_RETURN(0);
}

/*
  This method writes out the header of a datafile and returns whether or not it was successful.
*/
int ha_archive::write_data_header(gzFile file_to_write)
{
  uchar data_buffer[DATA_BUFFER_SIZE];
  DBUG_ENTER("ha_archive::write_data_header");

  data_buffer[0]= (uchar)ARCHIVE_CHECK_HEADER;
  data_buffer[1]= (uchar)ARCHIVE_VERSION;

  if (gzwrite(file_to_write, &data_buffer, DATA_BUFFER_SIZE) != 
      DATA_BUFFER_SIZE)
    goto error;
  DBUG_PRINT("ha_archive::write_data_header", ("Check %u", (uint)data_buffer[0]));
  DBUG_PRINT("ha_archive::write_data_header", ("Version %u", (uint)data_buffer[1]));

  DBUG_RETURN(0);
error:
  DBUG_RETURN(errno);
}

/*
  This method reads the header of a meta file and returns whether or not it was successful.
  *rows will contain the current number of rows in the data file upon success.
*/
int ha_archive::read_meta_file(File meta_file, ha_rows *rows)
{
  uchar meta_buffer[META_BUFFER_SIZE];
  ulonglong check_point;

  DBUG_ENTER("ha_archive::read_meta_file");

  VOID(my_seek(meta_file, 0, MY_SEEK_SET, MYF(0)));
  if (my_read(meta_file, (byte*)meta_buffer, META_BUFFER_SIZE, 0) != META_BUFFER_SIZE)
    DBUG_RETURN(-1);
  
  /*
    Parse out the meta data, we ignore version at the moment
  */
  *rows= (ha_rows)uint8korr(meta_buffer + 2);
  check_point= uint8korr(meta_buffer + 10);

  DBUG_PRINT("ha_archive::read_meta_file", ("Check %d", (uint)meta_buffer[0]));
  DBUG_PRINT("ha_archive::read_meta_file", ("Version %d", (uint)meta_buffer[1]));
  DBUG_PRINT("ha_archive::read_meta_file", ("Rows %lld", *rows));
  DBUG_PRINT("ha_archive::read_meta_file", ("Checkpoint %lld", check_point));
  DBUG_PRINT("ha_archive::read_meta_file", ("Dirty %d", (int)meta_buffer[18]));

  if ((meta_buffer[0] != (uchar)ARCHIVE_CHECK_HEADER) || 
      ((bool)meta_buffer[18] == TRUE))
    DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);

  my_sync(meta_file, MYF(MY_WME));

  DBUG_RETURN(0);
}

/*
  This method writes out the header of a meta file and returns whether or not it was successful.
  By setting dirty you say whether or not the file represents the actual state of the data file.
  Upon ::open() we set to dirty, and upon ::close() we set to clean.
*/
int ha_archive::write_meta_file(File meta_file, ha_rows rows, bool dirty)
{
  uchar meta_buffer[META_BUFFER_SIZE];
  ulonglong check_point= 0; //Reserved for the future

  DBUG_ENTER("ha_archive::write_meta_file");

  meta_buffer[0]= (uchar)ARCHIVE_CHECK_HEADER;
  meta_buffer[1]= (uchar)ARCHIVE_VERSION;
  int8store(meta_buffer + 2, (ulonglong)rows); 
  int8store(meta_buffer + 10, check_point); 
  *(meta_buffer + 18)= (uchar)dirty;
  DBUG_PRINT("ha_archive::write_meta_file", ("Check %d", (uint)ARCHIVE_CHECK_HEADER));
  DBUG_PRINT("ha_archive::write_meta_file", ("Version %d", (uint)ARCHIVE_VERSION));
  DBUG_PRINT("ha_archive::write_meta_file", ("Rows %llu", (ulonglong)rows));
  DBUG_PRINT("ha_archive::write_meta_file", ("Checkpoint %llu", check_point));
  DBUG_PRINT("ha_archive::write_meta_file", ("Dirty %d", (uint)dirty));

  VOID(my_seek(meta_file, 0, MY_SEEK_SET, MYF(0)));
  if (my_write(meta_file, (byte *)meta_buffer, META_BUFFER_SIZE, 0) != META_BUFFER_SIZE)
    DBUG_RETURN(-1);
  
  my_sync(meta_file, MYF(MY_WME));

  DBUG_RETURN(0);
}


/*
  We create the shared memory space that we will use for the open table. 
  No matter what we try to get or create a share. This is so that a repair
  table operation can occur. 

  See ha_example.cc for a longer description.
*/
ARCHIVE_SHARE *ha_archive::get_share(const char *table_name, TABLE *table)
{
  ARCHIVE_SHARE *share;
  char meta_file_name[FN_REFLEN];
  uint length;
  char *tmp_name;

  pthread_mutex_lock(&archive_mutex);
  length=(uint) strlen(table_name);

  if (!(share=(ARCHIVE_SHARE*) hash_search(&archive_open_tables,
                                           (byte*) table_name,
                                           length)))
  {
    if (!my_multi_malloc(MYF(MY_WME | MY_ZEROFILL),
                          &share, sizeof(*share),
                          &tmp_name, length+1,
                          NullS)) 
    {
      pthread_mutex_unlock(&archive_mutex);
      return NULL;
    }

    share->use_count= 0;
    share->table_name_length= length;
    share->table_name= tmp_name;
    share->crashed= FALSE;
    fn_format(share->data_file_name,table_name,"",ARZ,MY_REPLACE_EXT|MY_UNPACK_FILENAME);
    fn_format(meta_file_name,table_name,"",ARM,MY_REPLACE_EXT|MY_UNPACK_FILENAME);
    strmov(share->table_name,table_name);
    /*
      We will use this lock for rows.
    */
    VOID(pthread_mutex_init(&share->mutex,MY_MUTEX_INIT_FAST));
    if ((share->meta_file= my_open(meta_file_name, O_RDWR, MYF(0))) == -1)
      share->crashed= TRUE;
    
    /*
      After we read, we set the file to dirty. When we close, we will do the 
      opposite. If the meta file will not open we assume it is crashed and
      leave it up to the user to fix.
    */
    if (read_meta_file(share->meta_file, &share->rows_recorded))
      share->crashed= TRUE;
    else
      (void)write_meta_file(share->meta_file, share->rows_recorded, TRUE);

    /* 
      It is expensive to open and close the data files and since you can't have
      a gzip file that can be both read and written we keep a writer open
      that is shared amoung all open tables.
    */
    if ((share->archive_write= gzopen(share->data_file_name, "ab")) == NULL)
      share->crashed= TRUE;
    VOID(my_hash_insert(&archive_open_tables, (byte*) share));
    thr_lock_init(&share->lock);
  }
  share->use_count++;
  pthread_mutex_unlock(&archive_mutex);

  return share;
}


/* 
  Free the share.
  See ha_example.cc for a description.
*/
int ha_archive::free_share(ARCHIVE_SHARE *share)
{
  int rc= 0;
  pthread_mutex_lock(&archive_mutex);
  if (!--share->use_count)
  {
    hash_delete(&archive_open_tables, (byte*) share);
    thr_lock_delete(&share->lock);
    VOID(pthread_mutex_destroy(&share->mutex));
    (void)write_meta_file(share->meta_file, share->rows_recorded, FALSE);
    if (gzclose(share->archive_write) == Z_ERRNO)
      rc= 1;
    if (my_close(share->meta_file, MYF(0)))
      rc= 1;
    my_free((gptr) share, MYF(0));
  }
  pthread_mutex_unlock(&archive_mutex);

  return rc;
}


/*
  We just implement one additional file extension.
*/
static const char *ha_archive_exts[] = {
  ARZ,
  ARN,
  ARM,
  NullS
};

const char **ha_archive::bas_ext() const
{
  return ha_archive_exts;
}


/* 
  When opening a file we:
  Create/get our shared structure.
  Init out lock.
  We open the file we will read from.
*/
int ha_archive::open(const char *name, int mode, uint test_if_locked)
{
  DBUG_ENTER("ha_archive::open");

  if (!(share= get_share(name, table)))
    DBUG_RETURN(HA_ERR_OUT_OF_MEM); // Not handled well by calling code!
  thr_lock_data_init(&share->lock,&lock,NULL);

  if ((archive= gzopen(share->data_file_name, "rb")) == NULL)
  {
    if (errno == EROFS || errno == EACCES)
      DBUG_RETURN(my_errno= errno);
    DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
  }

  DBUG_RETURN(0);
}


/*
  Closes the file.

  SYNOPSIS
    close();
  
  IMPLEMENTATION:

  We first close this storage engines file handle to the archive and
  then remove our reference count to the table (and possibly free it
  as well).

  RETURN
    0  ok
    1  Error
*/

int ha_archive::close(void)
{
  int rc= 0;
  DBUG_ENTER("ha_archive::close");

  /* First close stream */
  if (gzclose(archive) == Z_ERRNO)
    rc= 1;
  /* then also close share */
  rc|= free_share(share);

  DBUG_RETURN(rc);
}


/*
  We create our data file here. The format is pretty simple. 
  You can read about the format of the data file above.
  Unlike other storage engines we do not "pack" our data. Since we 
  are about to do a general compression, packing would just be a waste of 
  CPU time. If the table has blobs they are written after the row in the order 
  of creation.
*/

int ha_archive::create(const char *name, TABLE *table_arg,
                       HA_CREATE_INFO *create_info)
{
  File create_file;  // We use to create the datafile and the metafile
  char name_buff[FN_REFLEN];
  int error;
  DBUG_ENTER("ha_archive::create");

  if ((create_file= my_create(fn_format(name_buff,name,"",ARM,
                                        MY_REPLACE_EXT|MY_UNPACK_FILENAME),0,
                              O_RDWR | O_TRUNC,MYF(MY_WME))) < 0)
  {
    error= my_errno;
    goto error;
  }
  write_meta_file(create_file, 0, FALSE);
  my_close(create_file,MYF(0));

  /* 
    We reuse name_buff since it is available.
  */
  if ((create_file= my_create(fn_format(name_buff,name,"",ARZ,
                                        MY_REPLACE_EXT|MY_UNPACK_FILENAME),0,
                              O_RDWR | O_TRUNC,MYF(MY_WME))) < 0)
  {
    error= my_errno;
    goto error;
  }
  if ((archive= gzdopen(create_file, "ab")) == NULL)
  {
    error= errno;
    goto error2;
  }
  if (write_data_header(archive))
  {
    error= errno;
    goto error3;
  }

  if (gzclose(archive))
  {
    error= errno;
    goto error2;
  }

  my_close(create_file, MYF(0));

  DBUG_RETURN(0);

error3:
  /* We already have an error, so ignore results of gzclose. */
  (void)gzclose(archive);
error2:
  my_close(create_file, MYF(0));
  delete_table(name);
error:
  /* Return error number, if we got one */
  DBUG_RETURN(error ? error : -1);
}

/*
  This is where the actual row is written out.
*/
int ha_archive::real_write_row(byte *buf, gzFile writer)
{
  z_off_t written;
  uint *ptr, *end;
  DBUG_ENTER("ha_archive::real_write_row");

  written= gzwrite(writer, buf, table->s->reclength);
  DBUG_PRINT("ha_archive::real_write_row", ("Wrote %d bytes expected %d", written, table->s->reclength));
  if (!delayed_insert || !bulk_insert)
    share->dirty= TRUE;

  if (written != (z_off_t)table->s->reclength)
    DBUG_RETURN(errno ? errno : -1);
  /*
    We should probably mark the table as damagaged if the record is written
    but the blob fails.
  */
  for (ptr= table->s->blob_field, end= ptr + table->s->blob_fields ;
       ptr != end ;
       ptr++)
  {
    char *data_ptr;
    uint32 size= ((Field_blob*) table->field[*ptr])->get_length();

    if (size)
    {
      ((Field_blob*) table->field[*ptr])->get_ptr(&data_ptr);
      written= gzwrite(writer, data_ptr, (unsigned)size);
      if (written != (z_off_t)size)
        DBUG_RETURN(errno ? errno : -1);
    }
  }
  DBUG_RETURN(0);
}


/* 
  Look at ha_archive::open() for an explanation of the row format.
  Here we just write out the row.

  Wondering about start_bulk_insert()? We don't implement it for
  archive since it optimizes for lots of writes. The only save
  for implementing start_bulk_insert() is that we could skip 
  setting dirty to true each time.
*/
int ha_archive::write_row(byte *buf)
{
  int rc;
  DBUG_ENTER("ha_archive::write_row");

  if (share->crashed)
      DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);

  statistic_increment(table->in_use->status_var.ha_write_count, &LOCK_status);
  if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT)
    table->timestamp_field->set_time();
  pthread_mutex_lock(&share->mutex);
  share->rows_recorded++;
  rc= real_write_row(buf, share->archive_write);
  pthread_mutex_unlock(&share->mutex);

  DBUG_RETURN(rc);
}

/*
  All calls that need to scan the table start with this method. If we are told
  that it is a table scan we rewind the file to the beginning, otherwise
  we assume the position will be set.
*/

int ha_archive::rnd_init(bool scan)
{
  DBUG_ENTER("ha_archive::rnd_init");
  
  if (share->crashed)
      DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);

  /* We rewind the file so that we can read from the beginning if scan */
  if (scan)
  {
    scan_rows= share->rows_recorded;
    records= 0;

    /* 
      If dirty, we lock, and then reset/flush the data.
      I found that just calling gzflush() doesn't always work.
    */
    if (share->dirty == TRUE)
    {
      pthread_mutex_lock(&share->mutex);
      if (share->dirty == TRUE)
      {
        gzflush(share->archive_write, Z_SYNC_FLUSH);
        share->dirty= FALSE;
      }
      pthread_mutex_unlock(&share->mutex);
    }

    if (read_data_header(archive))
      DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);
  }

  DBUG_RETURN(0);
}


/*
  This is the method that is used to read a row. It assumes that the row is 
  positioned where you want it.
*/
int ha_archive::get_row(gzFile file_to_read, byte *buf)
{
  int read; // Bytes read, gzread() returns int
  uint *ptr, *end;
  char *last;
  size_t total_blob_length= 0;
  DBUG_ENTER("ha_archive::get_row");

  read= gzread(file_to_read, buf, table->s->reclength);
  DBUG_PRINT("ha_archive::get_row", ("Read %d bytes expected %d", read, table->s->reclength));

  if (read == Z_STREAM_ERROR)
    DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);

  /* If we read nothing we are at the end of the file */
  if (read == 0)
    DBUG_RETURN(HA_ERR_END_OF_FILE);

  /* 
    If the record is the wrong size, the file is probably damaged, unless 
    we are dealing with a delayed insert or a bulk insert.
  */
  if ((ulong) read != table->s->reclength)
    DBUG_RETURN(HA_ERR_END_OF_FILE);

  /* Calculate blob length, we use this for our buffer */
  for (ptr= table->s->blob_field, end=ptr + table->s->blob_fields ;
       ptr != end ;
       ptr++)
    total_blob_length += ((Field_blob*) table->field[*ptr])->get_length();

  /* Adjust our row buffer if we need be */
  buffer.alloc(total_blob_length);
  last= (char *)buffer.ptr();

  /* Loop through our blobs and read them */
  for (ptr= table->s->blob_field, end=ptr + table->s->blob_fields ;
       ptr != end ;
       ptr++)
  {
    size_t size= ((Field_blob*) table->field[*ptr])->get_length();
    if (size)
    {
      read= gzread(file_to_read, last, size);
      if ((size_t) read != size)
        DBUG_RETURN(HA_ERR_END_OF_FILE);
      ((Field_blob*) table->field[*ptr])->set_ptr(size, last);
      last += size;
    }
  }
  DBUG_RETURN(0);
}


/* 
  Called during ORDER BY. Its position is either from being called sequentially
  or by having had ha_archive::rnd_pos() called before it is called.
*/

int ha_archive::rnd_next(byte *buf)
{
  int rc;
  DBUG_ENTER("ha_archive::rnd_next");

  if (share->crashed)
      DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE);

  if (!scan_rows)
    DBUG_RETURN(HA_ERR_END_OF_FILE);
  scan_rows--;

  statistic_increment(table->in_use->status_var.ha_read_rnd_next_count,
		      &LOCK_status);
  current_position= gztell(archive);
  rc= get_row(archive, buf);


  if (rc != HA_ERR_END_OF_FILE)
    records++;

  DBUG_RETURN(rc);
}


/*
  Thanks to the table flag HA_REC_NOT_IN_SEQ this will be called after
  each call to ha_archive::rnd_next() if an ordering of the rows is
  needed.
*/

void ha_archive::position(const byte *record)
{
  DBUG_ENTER("ha_archive::position");
  my_store_ptr(ref, ref_length, current_position);
  DBUG_VOID_RETURN;
}


/*
  This is called after a table scan for each row if the results of the
  scan need to be ordered. It will take *pos and use it to move the
  cursor in the file so that the next row that is called is the
  correctly ordered row.
*/

int ha_archive::rnd_pos(byte * buf, byte *pos)
{
  DBUG_ENTER("ha_archive::rnd_pos");
  statistic_increment(table->in_use->status_var.ha_read_rnd_next_count,
		      &LOCK_status);
  current_position= (z_off_t)my_get_ptr(pos, ref_length);
  (void)gzseek(archive, current_position, SEEK_SET);

  DBUG_RETURN(get_row(archive, buf));
}

/*
  This method repairs the meta file. It does this by walking the datafile and 
  rewriting the meta file. Currently it does this by calling optimize with
  the extended flag.
*/
int ha_archive::repair(THD* thd, HA_CHECK_OPT* check_opt)
{
  DBUG_ENTER("ha_archive::repair");
  check_opt->flags= T_EXTEND;
  int rc= optimize(thd, check_opt);

  if (rc)
    DBUG_RETURN(HA_ERR_CRASHED_ON_REPAIR);

  share->crashed= FALSE;
  DBUG_RETURN(0);
}

/*
  The table can become fragmented if data was inserted, read, and then
  inserted again. What we do is open up the file and recompress it completely. 
*/
int ha_archive::optimize(THD* thd, HA_CHECK_OPT* check_opt)
{
  DBUG_ENTER("ha_archive::optimize");
  int rc;
  gzFile writer;
  char writer_filename[FN_REFLEN];

  /* Flush any waiting data */
  gzflush(share->archive_write, Z_SYNC_FLUSH);

  /* Lets create a file to contain the new data */
  fn_format(writer_filename, share->table_name, "", ARN, 
            MY_REPLACE_EXT|MY_UNPACK_FILENAME);

  if ((writer= gzopen(writer_filename, "wb")) == NULL)
    DBUG_RETURN(HA_ERR_CRASHED_ON_USAGE); 

  /* 
    An extended rebuild is a lot more effort. We open up each row and re-record it. 
    Any dead rows are removed (aka rows that may have been partially recorded). 
  */

  if (check_opt->flags == T_EXTEND)
  {
    byte *buf; 

    /* 
      First we create a buffer that we can use for reading rows, and can pass
      to get_row().
    */
    if (!(buf= (byte*) my_malloc(table->s->reclength, MYF(MY_WME))))
    {
      rc= HA_ERR_OUT_OF_MEM;
      goto error;
    }

    /*
      Now we will rewind the archive file so that we are positioned at the 
      start of the file.
    */
    rc= read_data_header(archive);
    
    /*
      Assuming now error from rewinding the archive file, we now write out the 
      new header for out data file.
    */
    if (!rc)
      rc= write_data_header(writer);

    /* 
      On success of writing out the new header, we now fetch each row and
      insert it into the new archive file. 
    */
    if (!rc)
    {
      share->rows_recorded= 0;
      while (!(rc= get_row(archive, buf)))
      {
        real_write_row(buf, writer);
        share->rows_recorded++;
      }
    }

    my_free((char*)buf, MYF(0));
    if (rc && rc != HA_ERR_END_OF_FILE)
      goto error;
  } 
  else
  {
    /* 
      The quick method is to just read the data raw, and then compress it directly.
    */
    int read; // Bytes read, gzread() returns int
    char block[IO_SIZE];
    if (gzrewind(archive) == -1)
    {
      rc= HA_ERR_CRASHED_ON_USAGE;
      goto error;
    }

    while ((read= gzread(archive, block, IO_SIZE)))
      gzwrite(writer, block, read);
  }

  gzflush(writer, Z_SYNC_FLUSH);
  gzclose(share->archive_write);
  share->archive_write= writer; 

  my_rename(writer_filename,share->data_file_name,MYF(0));

  DBUG_RETURN(0); 

error:
  gzclose(writer);

  DBUG_RETURN(rc); 
}

/* 
  Below is an example of how to setup row level locking.
*/
THR_LOCK_DATA **ha_archive::store_lock(THD *thd,
                                       THR_LOCK_DATA **to,
                                       enum thr_lock_type lock_type)
{
  if (lock_type == TL_WRITE_DELAYED)
    delayed_insert= TRUE;
  else
    delayed_insert= FALSE;

  if (lock_type != TL_IGNORE && lock.type == TL_UNLOCK) 
  {
    /* 
      Here is where we get into the guts of a row level lock.
      If TL_UNLOCK is set 
      If we are not doing a LOCK TABLE or DISCARD/IMPORT
      TABLESPACE, then allow multiple writers 
    */

    if ((lock_type >= TL_WRITE_CONCURRENT_INSERT &&
         lock_type <= TL_WRITE) && !thd->in_lock_tables
        && !thd->tablespace_op)
      lock_type = TL_WRITE_ALLOW_WRITE;

    /* 
      In queries of type INSERT INTO t1 SELECT ... FROM t2 ...
      MySQL would use the lock TL_READ_NO_INSERT on t2, and that
      would conflict with TL_WRITE_ALLOW_WRITE, blocking all inserts
      to t2. Convert the lock to a normal read lock to allow
      concurrent inserts to t2. 
    */

    if (lock_type == TL_READ_NO_INSERT && !thd->in_lock_tables) 
      lock_type = TL_READ;

    lock.type=lock_type;
  }

  *to++= &lock;

  return to;
}


/*
  Hints for optimizer, see ha_tina for more information
*/
void ha_archive::info(uint flag)
{
  DBUG_ENTER("ha_archive::info");
  /* 
    This should be an accurate number now, though bulk and delayed inserts can
    cause the number to be inaccurate.
  */
  records= share->rows_recorded;
  deleted= 0;
  /* Costs quite a bit more to get all information */
  if (flag & HA_STATUS_TIME)
  {
    MY_STAT file_stat;  // Stat information for the data file

    VOID(my_stat(share->data_file_name, &file_stat, MYF(MY_WME)));

    mean_rec_length= table->s->reclength + buffer.alloced_length();
    data_file_length= file_stat.st_size;
    create_time= file_stat.st_ctime;
    update_time= file_stat.st_mtime;
    max_data_file_length= share->rows_recorded * mean_rec_length;
  }
  delete_length= 0;
  index_file_length=0;

  DBUG_VOID_RETURN;
}


/*
  This method tells us that a bulk insert operation is about to occur. We set
  a flag which will keep write_row from saying that its data is dirty. This in
  turn will keep selects from causing a sync to occur.
  Basically, yet another optimizations to keep compression working well.
*/
void ha_archive::start_bulk_insert(ha_rows rows)
{
  DBUG_ENTER("ha_archive::start_bulk_insert");
  bulk_insert= TRUE;
  DBUG_VOID_RETURN;
}


/* 
  Other side of start_bulk_insert, is end_bulk_insert. Here we turn off the bulk insert
  flag, and set the share dirty so that the next select will call sync for us.
*/
int ha_archive::end_bulk_insert()
{
  DBUG_ENTER("ha_archive::end_bulk_insert");
  bulk_insert= FALSE;
  share->dirty= TRUE;
  DBUG_RETURN(0);
}

/*
  We cancel a truncate command. The only way to delete an archive table is to drop it.
  This is done for security reasons. In a later version we will enable this by 
  allowing the user to select a different row format.
*/
int ha_archive::delete_all_rows()
{
  DBUG_ENTER("ha_archive::delete_all_rows");
  DBUG_RETURN(0);
}
#endif /* HAVE_ARCHIVE_DB */