1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
|
/* Copyright (c) 2000, 2010 Oracle and/or its affiliates. All rights reserved.
Copyright (C) 2011 Monty Program Ab.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifndef GCALC_TOOLS_INCLUDED
#define GCALC_TOOLS_INCLUDED
#include "gcalc_slicescan.h"
#include "sql_string.h"
/*
The Gcalc_function class objects are used to check for a binary relation.
The relation can be constructed with the prefix notation using predicates as
op_not (as !A)
op_union ( A || B || C... )
op_intersection ( A && B && C ... )
op_symdifference ( A+B+C+... == 1 )
op_difference ( A && !(B||C||..))
with the calls of the add_operation(operation, n_operands) method.
The relation is calculated over a set of shapes, that in turn have
to be added with the add_new_shape() method. All the 'shapes' can
be set to 0 with clear_shapes() method and single value
can be changed with the invert_state() method.
Then the value of the relation can be calculated with the count() method.
Frequently used method is find_function(Gcalc_scan_iterator it) that
iterates through the 'it' until the relation becomes TRUE.
*/
class Gcalc_function
{
private:
String shapes_buffer;
String function_buffer;
int *i_states;
int *b_states;
uint32 cur_object_id;
uint n_shapes;
int count_internal(const char *cur_func, uint set_type,
const char **end);
public:
enum value
{
v_empty= 0x0000000,
v_find_t= 0x1000000,
v_find_f= 0x2000000,
v_t_found= 0x3000000,
v_f_found= 0x4000000,
v_mask= 0x7000000
};
enum op_type
{
op_not= 0x80000000,
op_shape= 0x00000000,
op_union= 0x10000000,
op_intersection= 0x20000000,
op_symdifference= 0x30000000,
op_difference= 0x40000000,
op_repeat= 0x50000000,
op_border= 0x60000000,
op_internals= 0x70000000,
op_false= 0x08000000,
op_any= 0x78000000 /* The mask to get any of the operations */
};
enum shape_type
{
shape_point= 0,
shape_line= 1,
shape_polygon= 2,
shape_hole= 3
};
enum count_result
{
result_false= 0,
result_true= 1,
result_unknown= 2
};
Gcalc_function() : n_shapes(0) {}
gcalc_shape_info add_new_shape(uint32 shape_id, shape_type shape_kind);
/*
Adds the leaf operation that returns the shape value.
Also adds the shape to the list of operands.
*/
int single_shape_op(shape_type shape_kind, gcalc_shape_info *si);
void add_operation(uint operation, uint32 n_operands);
void add_not_operation(op_type operation, uint32 n_operands);
uint32 get_next_expression_pos() { return function_buffer.length(); }
void add_operands_to_op(uint32 operation_pos, uint32 n_operands);
int repeat_expression(uint32 exp_pos);
void set_cur_obj(uint32 cur_obj) { cur_object_id= cur_obj; }
int reserve_shape_buffer(uint n_shapes);
int reserve_op_buffer(uint n_ops);
uint get_nshapes() const { return n_shapes; }
shape_type get_shape_kind(gcalc_shape_info si) const
{
return (shape_type) uint4korr(shapes_buffer.ptr() + (si*4));
}
void set_states(int *shape_states) { i_states= shape_states; }
int alloc_states();
void invert_i_state(gcalc_shape_info shape) { i_states[shape]^= 1; }
void set_i_state(gcalc_shape_info shape) { i_states[shape]= 1; }
void clear_i_state(gcalc_shape_info shape) { i_states[shape]= 0; }
void set_b_state(gcalc_shape_info shape) { b_states[shape]= 1; }
void clear_b_state(gcalc_shape_info shape) { b_states[shape]= 0; }
int get_state(gcalc_shape_info shape)
{ return i_states[shape] | b_states[shape]; }
int get_i_state(gcalc_shape_info shape) { return i_states[shape]; }
int get_b_state(gcalc_shape_info shape) { return b_states[shape]; }
int count()
{ return count_internal(function_buffer.ptr(), 0, 0); }
int count_last()
{ return count_internal(function_buffer.ptr(), 1, 0); }
void clear_i_states();
void clear_b_states();
void reset();
int check_function(Gcalc_scan_iterator &scan_it);
};
/*
Gcalc_operation_transporter class extends the Gcalc_shape_transporter.
In addition to the parent's functionality, it fills the Gcalc_function
object so it has the function that determines the proper shape.
For example Multipolyline will be represented as an union of polylines.
*/
class Gcalc_operation_transporter : public Gcalc_shape_transporter
{
protected:
Gcalc_function *m_fn;
gcalc_shape_info m_si;
public:
Gcalc_operation_transporter(Gcalc_function *fn, Gcalc_heap *heap) :
Gcalc_shape_transporter(heap), m_fn(fn) {}
int single_point(double x, double y);
int start_line();
int complete_line();
int start_poly();
int complete_poly();
int start_ring();
int complete_ring();
int add_point(double x, double y);
int start_collection(int n_objects);
int empty_shape();
};
/*
When we calculate the result of an spatial operation like
Union or Intersection, we receive vertexes of the result
one-by-one, and probably need to treat them in variative ways.
So, the Gcalc_result_receiver class designed to get these
vertexes and construct shapes/objects out of them.
and to store the result in an appropriate format
*/
class Gcalc_result_receiver
{
String buffer;
uint32 n_points;
Gcalc_function::shape_type common_shapetype;
bool collection_result;
uint32 n_shapes;
uint32 n_holes;
Gcalc_function::shape_type cur_shape;
uint32 shape_pos;
double first_x, first_y, prev_x, prev_y;
double shape_area;
public:
Gcalc_result_receiver() : collection_result(FALSE), n_shapes(0), n_holes(0)
{}
int start_shape(Gcalc_function::shape_type shape);
int add_point(double x, double y);
int complete_shape();
int single_point(double x, double y);
int done();
void reset();
const char *result() { return buffer.ptr(); }
uint length() { return buffer.length(); }
int get_nshapes() { return n_shapes; }
int get_nholes() { return n_holes; }
int get_result_typeid();
uint32 position() { return buffer.length(); }
int move_hole(uint32 dest_position, uint32 source_position,
uint32 *position_shift);
};
/*
Gcalc_operation_reducer class incapsulates the spatial
operation functionality. It analyses the slices generated by
the slicescan and calculates the shape of the result defined
by some Gcalc_function.
*/
class Gcalc_operation_reducer : public Gcalc_dyn_list
{
public:
enum modes
{
/* Numeric values important here - careful with changing */
default_mode= 0,
prefer_big_with_holes= 1,
polygon_selfintersections_allowed= 2, /* allowed in the result */
line_selfintersections_allowed= 4 /* allowed in the result */
};
Gcalc_operation_reducer(size_t blk_size=8192);
void init(Gcalc_function *fn, modes mode= default_mode);
Gcalc_operation_reducer(Gcalc_function *fn, modes mode= default_mode,
size_t blk_size=8192);
GCALC_DECL_TERMINATED_STATE(killed)
int count_slice(Gcalc_scan_iterator *si);
int count_all(Gcalc_heap *hp);
int get_result(Gcalc_result_receiver *storage);
void reset();
#ifndef GCALC_DBUG_OFF
int n_res_points;
#endif /*GCALC_DBUG_OFF*/
class res_point : public Gcalc_dyn_list::Item
{
public:
int intersection_point;
union
{
const Gcalc_heap::Info *pi;
res_point *first_poly_node;
};
union
{
res_point *outer_poly;
uint32 poly_position;
};
res_point *up;
res_point *down;
res_point *glue;
Gcalc_function::shape_type type;
Gcalc_dyn_list::Item **prev_hook;
#ifndef GCALC_DBUG_OFF
int point_n;
#endif /*GCALC_DBUG_OFF*/
void set(const Gcalc_scan_iterator *si);
res_point *get_next() { return (res_point *)next; }
};
class active_thread : public Gcalc_dyn_list::Item
{
public:
res_point *rp;
res_point *thread_start;
const Gcalc_heap::Info *p1, *p2;
res_point *enabled() { return rp; }
active_thread *get_next() { return (active_thread *)next; }
};
class poly_instance : public Gcalc_dyn_list::Item
{
public:
uint32 *after_poly_position;
poly_instance *get_next() { return (poly_instance *)next; }
};
class line : public Gcalc_dyn_list::Item
{
public:
active_thread *t;
int incoming;
const Gcalc_scan_iterator::point *p;
line *get_next() { return (line *)next; }
};
class poly_border : public Gcalc_dyn_list::Item
{
public:
active_thread *t;
int incoming;
int prev_state;
const Gcalc_scan_iterator::point *p;
poly_border *get_next() { return (poly_border *)next; }
};
line *m_lines;
Gcalc_dyn_list::Item **m_lines_hook;
poly_border *m_poly_borders;
Gcalc_dyn_list::Item **m_poly_borders_hook;
line *new_line() { return (line *) new_item(); }
poly_border *new_poly_border() { return (poly_border *) new_item(); }
int add_line(int incoming, active_thread *t,
const Gcalc_scan_iterator::point *p);
int add_poly_border(int incoming, active_thread *t, int prev_state,
const Gcalc_scan_iterator::point *p);
protected:
Gcalc_function *m_fn;
Gcalc_dyn_list::Item **m_res_hook;
res_point *m_result;
int m_mode;
res_point *result_heap;
active_thread *m_first_active_thread;
res_point *add_res_point(Gcalc_function::shape_type type);
active_thread *new_active_thread() { return (active_thread *)new_item(); }
poly_instance *new_poly() { return (poly_instance *) new_item(); }
private:
int start_line(active_thread *t, const Gcalc_scan_iterator::point *p,
const Gcalc_scan_iterator *si);
int end_line(active_thread *t, const Gcalc_scan_iterator *si);
int connect_threads(int incoming_a, int incoming_b,
active_thread *ta, active_thread *tb,
const Gcalc_scan_iterator::point *pa,
const Gcalc_scan_iterator::point *pb,
active_thread *prev_range,
const Gcalc_scan_iterator *si,
Gcalc_function::shape_type s_t);
int add_single_point(const Gcalc_scan_iterator *si);
poly_border *get_pair_border(poly_border *b1);
int continue_range(active_thread *t, const Gcalc_heap::Info *p,
const Gcalc_heap::Info *p_next);
int continue_i_range(active_thread *t,
const Gcalc_heap::Info *ii);
int end_couple(active_thread *t0, active_thread *t1, const Gcalc_heap::Info *p);
int get_single_result(res_point *res, Gcalc_result_receiver *storage);
int get_result_thread(res_point *cur, Gcalc_result_receiver *storage,
int move_upward, res_point *first_poly_node);
int get_polygon_result(res_point *cur, Gcalc_result_receiver *storage,
res_point *first_poly_node);
int get_line_result(res_point *cur, Gcalc_result_receiver *storage);
void free_result(res_point *res);
};
#endif /*GCALC_TOOLS_INCLUDED*/
|