1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
|
/* Copyright (C) 2005 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/*
This handler was developed by Mikael Ronstrom for version 5.1 of MySQL.
It is an abstraction layer on top of other handlers such as MyISAM,
InnoDB, Federated, Berkeley DB and so forth. Partitioned tables can also
be handled by a storage engine. The current example of this is NDB
Cluster that has internally handled partitioning. This have benefits in
that many loops needed in the partition handler can be avoided.
Partitioning has an inherent feature which in some cases is positive and
in some cases is negative. It splits the data into chunks. This makes
the data more manageable, queries can easily be parallelised towards the
parts and indexes are split such that there are less levels in the
index trees. The inherent disadvantage is that to use a split index
one has to scan all index parts which is ok for large queries but for
small queries it can be a disadvantage.
Partitioning lays the foundation for more manageable databases that are
extremely large. It does also lay the foundation for more parallelism
in the execution of queries. This functionality will grow with later
versions of MySQL.
You can enable it in your buld by doing the following during your build
process:
./configure --with-partition
The partition is setup to use table locks. It implements an partition "SHARE"
that is inserted into a hash by table name. You can use this to store
information of state that any partition handler object will be able to see
if it is using the same table.
Please read the object definition in ha_partition.h before reading the rest
if this file.
*/
#ifdef __GNUC__
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#ifdef WITH_PARTITION_STORAGE_ENGINE
#include "ha_partition.h"
#include <mysql/plugin.h>
static const char *ha_par_ext= ".par";
#ifdef NOT_USED
static int free_share(PARTITION_SHARE * share);
static PARTITION_SHARE *get_share(const char *table_name, TABLE * table);
#endif
/****************************************************************************
MODULE create/delete handler object
****************************************************************************/
static handler *partition_create_handler(handlerton *hton,
TABLE_SHARE *share,
MEM_ROOT *mem_root);
static uint partition_flags();
static uint alter_table_flags(uint flags);
static int partition_initialize(void *p)
{
handlerton *partition_hton;
partition_hton= (handlerton *)p;
partition_hton->state= SHOW_OPTION_YES;
partition_hton->db_type= DB_TYPE_PARTITION_DB;
partition_hton->create= partition_create_handler;
partition_hton->partition_flags= partition_flags;
partition_hton->alter_table_flags= alter_table_flags;
partition_hton->flags= HTON_NOT_USER_SELECTABLE | HTON_HIDDEN;
return 0;
}
/*
Create new partition handler
SYNOPSIS
partition_create_handler()
table Table object
RETURN VALUE
New partition object
*/
static handler *partition_create_handler(handlerton *hton,
TABLE_SHARE *share,
MEM_ROOT *mem_root)
{
ha_partition *file= new (mem_root) ha_partition(hton, share);
if (file && file->initialise_partition(mem_root))
{
delete file;
file= 0;
}
return file;
}
/*
HA_CAN_PARTITION:
Used by storage engines that can handle partitioning without this
partition handler
(Partition, NDB)
HA_CAN_UPDATE_PARTITION_KEY:
Set if the handler can update fields that are part of the partition
function.
HA_CAN_PARTITION_UNIQUE:
Set if the handler can handle unique indexes where the fields of the
unique key are not part of the fields of the partition function. Thus
a unique key can be set on all fields.
HA_USE_AUTO_PARTITION
Set if the handler sets all tables to be partitioned by default.
*/
static uint partition_flags()
{
return HA_CAN_PARTITION;
}
static uint alter_table_flags(uint flags __attribute__((unused)))
{
return (HA_PARTITION_FUNCTION_SUPPORTED |
HA_FAST_CHANGE_PARTITION);
}
const uint ha_partition::NO_CURRENT_PART_ID= 0xFFFFFFFF;
/*
Constructor method
SYNOPSIS
ha_partition()
table Table object
RETURN VALUE
NONE
*/
ha_partition::ha_partition(handlerton *hton, TABLE_SHARE *share)
:handler(hton, share), m_part_info(NULL), m_create_handler(FALSE),
m_is_sub_partitioned(0), is_clone(FALSE)
{
DBUG_ENTER("ha_partition::ha_partition(table)");
init_handler_variables();
DBUG_VOID_RETURN;
}
/*
Constructor method
SYNOPSIS
ha_partition()
part_info Partition info
RETURN VALUE
NONE
*/
ha_partition::ha_partition(handlerton *hton, partition_info *part_info)
:handler(hton, NULL), m_part_info(part_info),
m_create_handler(TRUE),
m_is_sub_partitioned(m_part_info->is_sub_partitioned()), is_clone(FALSE)
{
DBUG_ENTER("ha_partition::ha_partition(part_info)");
init_handler_variables();
DBUG_ASSERT(m_part_info);
DBUG_VOID_RETURN;
}
/*
Initialise handler object
SYNOPSIS
init_handler_variables()
RETURN VALUE
NONE
*/
void ha_partition::init_handler_variables()
{
active_index= MAX_KEY;
m_mode= 0;
m_open_test_lock= 0;
m_file_buffer= NULL;
m_name_buffer_ptr= NULL;
m_engine_array= NULL;
m_file= NULL;
m_file_tot_parts= 0;
m_reorged_file= NULL;
m_new_file= NULL;
m_reorged_parts= 0;
m_added_file= NULL;
m_tot_parts= 0;
m_pkey_is_clustered= 0;
m_lock_type= F_UNLCK;
m_part_spec.start_part= NO_CURRENT_PART_ID;
m_scan_value= 2;
m_ref_length= 0;
m_part_spec.end_part= NO_CURRENT_PART_ID;
m_index_scan_type= partition_no_index_scan;
m_start_key.key= NULL;
m_start_key.length= 0;
m_myisam= FALSE;
m_innodb= FALSE;
m_extra_cache= FALSE;
m_extra_cache_size= 0;
m_table_flags= HA_FILE_BASED | HA_REC_NOT_IN_SEQ;
m_low_byte_first= 1;
m_part_field_array= NULL;
m_ordered_rec_buffer= NULL;
m_top_entry= NO_CURRENT_PART_ID;
m_rec_length= 0;
m_last_part= 0;
m_rec0= 0;
m_curr_key_info= 0;
/*
this allows blackhole to work properly
*/
m_no_locks= 0;
#ifdef DONT_HAVE_TO_BE_INITALIZED
m_start_key.flag= 0;
m_ordered= TRUE;
#endif
}
const char *ha_partition::table_type() const
{
// we can do this since we only support a single engine type
return m_file[0]->table_type();
}
/*
Destructor method
SYNOPSIS
~ha_partition()
RETURN VALUE
NONE
*/
ha_partition::~ha_partition()
{
DBUG_ENTER("ha_partition::~ha_partition()");
if (m_file != NULL)
{
uint i;
for (i= 0; i < m_tot_parts; i++)
delete m_file[i];
}
my_free((char*) m_ordered_rec_buffer, MYF(MY_ALLOW_ZERO_PTR));
clear_handler_file();
DBUG_VOID_RETURN;
}
/*
Initialise partition handler object
SYNOPSIS
initialise_partition()
mem_root Allocate memory through this
RETURN VALUE
1 Error
0 Success
DESCRIPTION
The partition handler is only a layer on top of other engines. Thus it
can't really perform anything without the underlying handlers. Thus we
add this method as part of the allocation of a handler object.
1) Allocation of underlying handlers
If we have access to the partition info we will allocate one handler
instance for each partition.
2) Allocation without partition info
The cases where we don't have access to this information is when called
in preparation for delete_table and rename_table and in that case we
only need to set HA_FILE_BASED. In that case we will use the .par file
that contains information about the partitions and their engines and
the names of each partition.
3) Table flags initialisation
We need also to set table flags for the partition handler. This is not
static since it depends on what storage engines are used as underlying
handlers.
The table flags is set in this routine to simulate the behaviour of a
normal storage engine
The flag HA_FILE_BASED will be set independent of the underlying handlers
4) Index flags initialisation
When knowledge exists on the indexes it is also possible to initialise the
index flags. Again the index flags must be initialised by using the under-
lying handlers since this is storage engine dependent.
The flag HA_READ_ORDER will be reset for the time being to indicate no
ordered output is available from partition handler indexes. Later a merge
sort will be performed using the underlying handlers.
5) primary_key_is_clustered, has_transactions and low_byte_first is
calculated here.
*/
bool ha_partition::initialise_partition(MEM_ROOT *mem_root)
{
handler **file_array, *file;
DBUG_ENTER("ha_partition::initialise_partition");
if (m_create_handler)
{
m_tot_parts= m_part_info->get_tot_partitions();
DBUG_ASSERT(m_tot_parts > 0);
if (new_handlers_from_part_info(mem_root))
DBUG_RETURN(1);
}
else if (!table_share || !table_share->normalized_path.str)
{
/*
Called with dummy table share (delete, rename and alter table)
Don't need to set-up table flags other than
HA_FILE_BASED here
*/
m_table_flags|= HA_FILE_BASED | HA_REC_NOT_IN_SEQ;
DBUG_RETURN(0);
}
else if (get_from_handler_file(table_share->normalized_path.str, mem_root))
{
mem_alloc_error(2);
DBUG_RETURN(1);
}
/*
We create all underlying table handlers here. We do it in this special
method to be able to report allocation errors.
Set up table_flags, low_byte_first, primary_key_is_clustered and
has_transactions since they are called often in all kinds of places,
other parameters are calculated on demand.
HA_FILE_BASED is always set for partition handler since we use a
special file for handling names of partitions, engine types.
HA_CAN_GEOMETRY, HA_CAN_FULLTEXT, HA_CAN_SQL_HANDLER, HA_DUPLICATE_POS,
HA_CAN_INSERT_DELAYED is disabled until further investigated.
*/
m_table_flags= (ulong)m_file[0]->table_flags();
m_low_byte_first= m_file[0]->low_byte_first();
m_pkey_is_clustered= TRUE;
file_array= m_file;
do
{
file= *file_array;
if (m_low_byte_first != file->low_byte_first())
{
// Cannot have handlers with different endian
my_error(ER_MIX_HANDLER_ERROR, MYF(0));
DBUG_RETURN(1);
}
if (!file->primary_key_is_clustered())
m_pkey_is_clustered= FALSE;
m_table_flags&= file->table_flags();
} while (*(++file_array));
m_table_flags&= ~(HA_CAN_GEOMETRY | HA_CAN_FULLTEXT | HA_DUPLICATE_POS |
HA_CAN_SQL_HANDLER | HA_CAN_INSERT_DELAYED |
HA_PRIMARY_KEY_REQUIRED_FOR_POSITION);
m_table_flags|= HA_FILE_BASED | HA_REC_NOT_IN_SEQ;
DBUG_RETURN(0);
}
/****************************************************************************
MODULE meta data changes
****************************************************************************/
/*
Delete a table
SYNOPSIS
delete_table()
name Full path of table name
RETURN VALUE
>0 Error
0 Success
DESCRIPTION
Used to delete a table. By the time delete_table() has been called all
opened references to this table will have been closed (and your globally
shared references released. The variable name will just be the name of
the table. You will need to remove any files you have created at this
point.
If you do not implement this, the default delete_table() is called from
handler.cc and it will delete all files with the file extentions returned
by bas_ext().
Called from handler.cc by delete_table and ha_create_table(). Only used
during create if the table_flag HA_DROP_BEFORE_CREATE was specified for
the storage engine.
*/
int ha_partition::delete_table(const char *name)
{
int error;
DBUG_ENTER("ha_partition::delete_table");
if ((error= del_ren_cre_table(name, NULL, NULL, NULL)))
DBUG_RETURN(error);
DBUG_RETURN(handler::delete_table(name));
}
/*
Rename a table
SYNOPSIS
rename_table()
from Full path of old table name
to Full path of new table name
RETURN VALUE
>0 Error
0 Success
DESCRIPTION
Renames a table from one name to another from alter table call.
If you do not implement this, the default rename_table() is called from
handler.cc and it will rename all files with the file extentions returned
by bas_ext().
Called from sql_table.cc by mysql_rename_table().
*/
int ha_partition::rename_table(const char *from, const char *to)
{
int error;
DBUG_ENTER("ha_partition::rename_table");
if ((error= del_ren_cre_table(from, to, NULL, NULL)))
DBUG_RETURN(error);
DBUG_RETURN(handler::rename_table(from, to));
}
/*
Create the handler file (.par-file)
SYNOPSIS
create_handler_files()
name Full path of table name
create_info Create info generated for CREATE TABLE
RETURN VALUE
>0 Error
0 Success
DESCRIPTION
create_handler_files is called to create any handler specific files
before opening the file with openfrm to later call ::create on the
file object.
In the partition handler this is used to store the names of partitions
and types of engines in the partitions.
*/
int ha_partition::create_handler_files(const char *path,
const char *old_path,
int action_flag,
HA_CREATE_INFO *create_info)
{
DBUG_ENTER("ha_partition::create_handler_files()");
/*
We need to update total number of parts since we might write the handler
file as part of a partition management command
*/
if (action_flag == CHF_DELETE_FLAG ||
action_flag == CHF_RENAME_FLAG)
{
char name[FN_REFLEN];
char old_name[FN_REFLEN];
strxmov(name, path, ha_par_ext, NullS);
strxmov(old_name, old_path, ha_par_ext, NullS);
if ((action_flag == CHF_DELETE_FLAG &&
my_delete(name, MYF(MY_WME))) ||
(action_flag == CHF_RENAME_FLAG &&
my_rename(old_name, name, MYF(MY_WME))))
{
DBUG_RETURN(TRUE);
}
}
else if (action_flag == CHF_CREATE_FLAG)
{
if (create_handler_file(path))
{
my_error(ER_CANT_CREATE_HANDLER_FILE, MYF(0));
DBUG_RETURN(1);
}
}
DBUG_RETURN(0);
}
/*
Create a partitioned table
SYNOPSIS
create()
name Full path of table name
table_arg Table object
create_info Create info generated for CREATE TABLE
RETURN VALUE
>0 Error
0 Success
DESCRIPTION
create() is called to create a table. The variable name will have the name
of the table. When create() is called you do not need to worry about
opening the table. Also, the FRM file will have already been created so
adjusting create_info will not do you any good. You can overwrite the frm
file at this point if you wish to change the table definition, but there
are no methods currently provided for doing that.
Called from handler.cc by ha_create_table().
*/
int ha_partition::create(const char *name, TABLE *table_arg,
HA_CREATE_INFO *create_info)
{
char t_name[FN_REFLEN];
DBUG_ENTER("ha_partition::create");
strmov(t_name, name);
DBUG_ASSERT(*fn_rext((char*)name) == '\0');
if (del_ren_cre_table(t_name, NULL, table_arg, create_info))
{
handler::delete_table(t_name);
DBUG_RETURN(1);
}
DBUG_RETURN(0);
}
/*
Drop partitions as part of ALTER TABLE of partitions
SYNOPSIS
drop_partitions()
path Complete path of db and table name
RETURN VALUE
>0 Failure
0 Success
DESCRIPTION
Use part_info object on handler object to deduce which partitions to
drop (each partition has a state attached to it)
*/
int ha_partition::drop_partitions(const char *path)
{
List_iterator<partition_element> part_it(m_part_info->partitions);
char part_name_buff[FN_REFLEN];
uint no_parts= m_part_info->partitions.elements;
uint no_subparts= m_part_info->no_subparts;
uint i= 0;
uint name_variant;
int ret_error;
int error= 0;
DBUG_ENTER("ha_partition::drop_partitions");
do
{
partition_element *part_elem= part_it++;
if (part_elem->part_state == PART_TO_BE_DROPPED)
{
handler *file;
/*
This part is to be dropped, meaning the part or all its subparts.
*/
name_variant= NORMAL_PART_NAME;
if (m_is_sub_partitioned)
{
List_iterator<partition_element> sub_it(part_elem->subpartitions);
uint j= 0, part;
do
{
partition_element *sub_elem= sub_it++;
part= i * no_subparts + j;
create_subpartition_name(part_name_buff, path,
part_elem->partition_name,
sub_elem->partition_name, name_variant);
file= m_file[part];
DBUG_PRINT("info", ("Drop subpartition %s", part_name_buff));
if ((ret_error= file->delete_table((const char *) part_name_buff)))
error= ret_error;
if (deactivate_ddl_log_entry(sub_elem->log_entry->entry_pos))
error= 1;
} while (++j < no_subparts);
}
else
{
create_partition_name(part_name_buff, path,
part_elem->partition_name, name_variant,
TRUE);
file= m_file[i];
DBUG_PRINT("info", ("Drop partition %s", part_name_buff));
if ((ret_error= file->delete_table((const char *) part_name_buff)))
error= ret_error;
if (deactivate_ddl_log_entry(part_elem->log_entry->entry_pos))
error= 1;
}
if (part_elem->part_state == PART_IS_CHANGED)
part_elem->part_state= PART_NORMAL;
else
part_elem->part_state= PART_IS_DROPPED;
}
} while (++i < no_parts);
VOID(sync_ddl_log());
DBUG_RETURN(error);
}
/*
Rename partitions as part of ALTER TABLE of partitions
SYNOPSIS
rename_partitions()
path Complete path of db and table name
RETURN VALUE
TRUE Failure
FALSE Success
DESCRIPTION
When reorganising partitions, adding hash partitions and coalescing
partitions it can be necessary to rename partitions while holding
an exclusive lock on the table.
Which partitions to rename is given by state of partitions found by the
partition info struct referenced from the handler object
*/
int ha_partition::rename_partitions(const char *path)
{
List_iterator<partition_element> part_it(m_part_info->partitions);
List_iterator<partition_element> temp_it(m_part_info->temp_partitions);
char part_name_buff[FN_REFLEN];
char norm_name_buff[FN_REFLEN];
uint no_parts= m_part_info->partitions.elements;
uint part_count= 0;
uint no_subparts= m_part_info->no_subparts;
uint i= 0;
uint j= 0;
int error= 0;
int ret_error;
uint temp_partitions= m_part_info->temp_partitions.elements;
handler *file;
partition_element *part_elem, *sub_elem;
DBUG_ENTER("ha_partition::rename_partitions");
if (temp_partitions)
{
/*
These are the reorganised partitions that have already been copied.
We delete the partitions and log the delete by inactivating the
delete log entry in the table log. We only need to synchronise
these writes before moving to the next loop since there is no
interaction among reorganised partitions, they cannot have the
same name.
*/
do
{
part_elem= temp_it++;
if (m_is_sub_partitioned)
{
List_iterator<partition_element> sub_it(part_elem->subpartitions);
do
{
sub_elem= sub_it++;
file= m_reorged_file[part_count++];
create_subpartition_name(norm_name_buff, path,
part_elem->partition_name,
sub_elem->partition_name,
NORMAL_PART_NAME);
DBUG_PRINT("info", ("Delete subpartition %s", norm_name_buff));
if ((ret_error= file->delete_table((const char *) norm_name_buff)))
error= ret_error;
else if (deactivate_ddl_log_entry(sub_elem->log_entry->entry_pos))
error= 1;
else
sub_elem->log_entry= NULL; /* Indicate success */
} while (++j < no_subparts);
}
else
{
file= m_reorged_file[part_count++];
create_partition_name(norm_name_buff, path,
part_elem->partition_name, NORMAL_PART_NAME,
TRUE);
DBUG_PRINT("info", ("Delete partition %s", norm_name_buff));
if ((ret_error= file->delete_table((const char *) norm_name_buff)))
error= ret_error;
else if (deactivate_ddl_log_entry(part_elem->log_entry->entry_pos))
error= 1;
else
part_elem->log_entry= NULL; /* Indicate success */
}
} while (++i < temp_partitions);
VOID(sync_ddl_log());
}
i= 0;
do
{
/*
When state is PART_IS_CHANGED it means that we have created a new
TEMP partition that is to be renamed to normal partition name and
we are to delete the old partition with currently the normal name.
We perform this operation by
1) Delete old partition with normal partition name
2) Signal this in table log entry
3) Synch table log to ensure we have consistency in crashes
4) Rename temporary partition name to normal partition name
5) Signal this to table log entry
It is not necessary to synch the last state since a new rename
should not corrupt things if there was no temporary partition.
The only other parts we need to cater for are new parts that
replace reorganised parts. The reorganised parts were deleted
by the code above that goes through the temp_partitions list.
Thus the synch above makes it safe to simply perform step 4 and 5
for those entries.
*/
part_elem= part_it++;
if (part_elem->part_state == PART_IS_CHANGED ||
part_elem->part_state == PART_TO_BE_DROPPED ||
(part_elem->part_state == PART_IS_ADDED && temp_partitions))
{
if (m_is_sub_partitioned)
{
List_iterator<partition_element> sub_it(part_elem->subpartitions);
uint part;
j= 0;
do
{
sub_elem= sub_it++;
part= i * no_subparts + j;
create_subpartition_name(norm_name_buff, path,
part_elem->partition_name,
sub_elem->partition_name,
NORMAL_PART_NAME);
if (part_elem->part_state == PART_IS_CHANGED)
{
file= m_reorged_file[part_count++];
DBUG_PRINT("info", ("Delete subpartition %s", norm_name_buff));
if ((ret_error= file->delete_table((const char *) norm_name_buff)))
error= ret_error;
else if (deactivate_ddl_log_entry(sub_elem->log_entry->entry_pos))
error= 1;
VOID(sync_ddl_log());
}
file= m_new_file[part];
create_subpartition_name(part_name_buff, path,
part_elem->partition_name,
sub_elem->partition_name,
TEMP_PART_NAME);
DBUG_PRINT("info", ("Rename subpartition from %s to %s",
part_name_buff, norm_name_buff));
if ((ret_error= file->rename_table((const char *) part_name_buff,
(const char *) norm_name_buff)))
error= ret_error;
else if (deactivate_ddl_log_entry(sub_elem->log_entry->entry_pos))
error= 1;
else
sub_elem->log_entry= NULL;
} while (++j < no_subparts);
}
else
{
create_partition_name(norm_name_buff, path,
part_elem->partition_name, NORMAL_PART_NAME,
TRUE);
if (part_elem->part_state == PART_IS_CHANGED)
{
file= m_reorged_file[part_count++];
DBUG_PRINT("info", ("Delete partition %s", norm_name_buff));
if ((ret_error= file->delete_table((const char *) norm_name_buff)))
error= ret_error;
else if (deactivate_ddl_log_entry(part_elem->log_entry->entry_pos))
error= 1;
VOID(sync_ddl_log());
}
file= m_new_file[i];
create_partition_name(part_name_buff, path,
part_elem->partition_name, TEMP_PART_NAME,
TRUE);
DBUG_PRINT("info", ("Rename partition from %s to %s",
part_name_buff, norm_name_buff));
if ((ret_error= file->rename_table((const char *) part_name_buff,
(const char *) norm_name_buff)))
error= ret_error;
else if (deactivate_ddl_log_entry(part_elem->log_entry->entry_pos))
error= 1;
else
part_elem->log_entry= NULL;
}
}
} while (++i < no_parts);
VOID(sync_ddl_log());
DBUG_RETURN(error);
}
#define OPTIMIZE_PARTS 1
#define ANALYZE_PARTS 2
#define CHECK_PARTS 3
#define REPAIR_PARTS 4
/*
Optimize table
SYNOPSIS
optimize()
thd Thread object
check_opt Check/analyze/repair/optimize options
RETURN VALUES
>0 Error
0 Success
*/
int ha_partition::optimize(THD *thd, HA_CHECK_OPT *check_opt)
{
DBUG_ENTER("ha_partition::optimize");
DBUG_RETURN(handle_opt_partitions(thd, &thd->lex->check_opt,
OPTIMIZE_PARTS, TRUE));
}
/*
Analyze table
SYNOPSIS
analyze()
thd Thread object
check_opt Check/analyze/repair/optimize options
RETURN VALUES
>0 Error
0 Success
*/
int ha_partition::analyze(THD *thd, HA_CHECK_OPT *check_opt)
{
DBUG_ENTER("ha_partition::analyze");
DBUG_RETURN(handle_opt_partitions(thd, &thd->lex->check_opt,
ANALYZE_PARTS, TRUE));
}
/*
Check table
SYNOPSIS
check()
thd Thread object
check_opt Check/analyze/repair/optimize options
RETURN VALUES
>0 Error
0 Success
*/
int ha_partition::check(THD *thd, HA_CHECK_OPT *check_opt)
{
DBUG_ENTER("ha_partition::check");
DBUG_RETURN(handle_opt_partitions(thd, &thd->lex->check_opt,
CHECK_PARTS, TRUE));
}
/*
Repair table
SYNOPSIS
repair()
thd Thread object
check_opt Check/analyze/repair/optimize options
RETURN VALUES
>0 Error
0 Success
*/
int ha_partition::repair(THD *thd, HA_CHECK_OPT *check_opt)
{
DBUG_ENTER("ha_partition::repair");
DBUG_RETURN(handle_opt_partitions(thd, &thd->lex->check_opt,
REPAIR_PARTS, TRUE));
}
/*
Optimize partitions
SYNOPSIS
optimize_partitions()
thd Thread object
RETURN VALUE
>0 Failure
0 Success
DESCRIPTION
Call optimize on each partition marked with partition state PART_CHANGED
*/
int ha_partition::optimize_partitions(THD *thd)
{
DBUG_ENTER("ha_partition::optimize_partitions");
DBUG_RETURN(handle_opt_partitions(thd, &thd->lex->check_opt,
OPTIMIZE_PARTS, FALSE));
}
/*
Analyze partitions
SYNOPSIS
analyze_partitions()
thd Thread object
RETURN VALUE
>0 Failure
0 Success
DESCRIPTION
Call analyze on each partition marked with partition state PART_CHANGED
*/
int ha_partition::analyze_partitions(THD *thd)
{
DBUG_ENTER("ha_partition::analyze_partitions");
DBUG_RETURN(handle_opt_partitions(thd, &thd->lex->check_opt,
ANALYZE_PARTS, FALSE));
}
/*
Check partitions
SYNOPSIS
check_partitions()
thd Thread object
RETURN VALUE
>0 Failure
0 Success
DESCRIPTION
Call check on each partition marked with partition state PART_CHANGED
*/
int ha_partition::check_partitions(THD *thd)
{
DBUG_ENTER("ha_partition::check_partitions");
DBUG_RETURN(handle_opt_partitions(thd, &thd->lex->check_opt,
CHECK_PARTS, FALSE));
}
/*
Repair partitions
SYNOPSIS
repair_partitions()
thd Thread object
RETURN VALUE
>0 Failure
0 Success
DESCRIPTION
Call repair on each partition marked with partition state PART_CHANGED
*/
int ha_partition::repair_partitions(THD *thd)
{
DBUG_ENTER("ha_partition::repair_partitions");
DBUG_RETURN(handle_opt_partitions(thd, &thd->lex->check_opt,
REPAIR_PARTS, FALSE));
}
/*
Handle optimize/analyze/check/repair of one partition
SYNOPSIS
handle_opt_part()
thd Thread object
check_opt Options
file Handler object of partition
flag Optimize/Analyze/Check/Repair flag
RETURN VALUE
>0 Failure
0 Success
*/
static int handle_opt_part(THD *thd, HA_CHECK_OPT *check_opt,
handler *file, uint flag)
{
int error;
DBUG_ENTER("handle_opt_part");
DBUG_PRINT("enter", ("flag = %u", flag));
if (flag == OPTIMIZE_PARTS)
error= file->optimize(thd, check_opt);
else if (flag == ANALYZE_PARTS)
error= file->analyze(thd, check_opt);
else if (flag == CHECK_PARTS)
error= file->ha_check(thd, check_opt);
else if (flag == REPAIR_PARTS)
error= file->ha_repair(thd, check_opt);
else
{
DBUG_ASSERT(FALSE);
error= 1;
}
if (error == HA_ADMIN_ALREADY_DONE)
error= 0;
DBUG_RETURN(error);
}
/*
Handle optimize/analyze/check/repair of partitions
SYNOPSIS
handle_opt_partitions()
thd Thread object
check_opt Options
flag Optimize/Analyze/Check/Repair flag
all_parts All partitions or only a subset
RETURN VALUE
>0 Failure
0 Success
*/
int ha_partition::handle_opt_partitions(THD *thd, HA_CHECK_OPT *check_opt,
uint flag, bool all_parts)
{
List_iterator<partition_element> part_it(m_part_info->partitions);
uint no_parts= m_part_info->no_parts;
uint no_subparts= m_part_info->no_subparts;
uint i= 0;
int error;
DBUG_ENTER("ha_partition::handle_opt_partitions");
DBUG_PRINT("enter", ("all_parts %u, flag= %u", all_parts, flag));
do
{
partition_element *part_elem= part_it++;
if (all_parts || part_elem->part_state == PART_CHANGED)
{
if (m_is_sub_partitioned)
{
uint j= 0, part;
do
{
part= i * no_subparts + j;
DBUG_PRINT("info", ("Optimize subpartition %u",
part));
if ((error= handle_opt_part(thd, check_opt, m_file[part], flag)))
{
DBUG_RETURN(error);
}
} while (++j < no_subparts);
}
else
{
DBUG_PRINT("info", ("Optimize partition %u", i));
if ((error= handle_opt_part(thd, check_opt, m_file[i], flag)))
{
DBUG_RETURN(error);
}
}
}
} while (++i < no_parts);
DBUG_RETURN(FALSE);
}
/*
Prepare by creating a new partition
SYNOPSIS
prepare_new_partition()
table Table object
create_info Create info from CREATE TABLE
file Handler object of new partition
part_name partition name
RETURN VALUE
>0 Error
0 Success
*/
int ha_partition::prepare_new_partition(TABLE *tbl,
HA_CREATE_INFO *create_info,
handler *file, const char *part_name,
partition_element *p_elem)
{
int error;
bool create_flag= FALSE;
DBUG_ENTER("prepare_new_partition");
if ((error= set_up_table_before_create(tbl, part_name, create_info,
0, p_elem)))
goto error;
if ((error= file->create(part_name, tbl, create_info)))
goto error;
create_flag= TRUE;
if ((error= file->ha_open(tbl, part_name, m_mode, m_open_test_lock)))
goto error;
/*
Note: if you plan to add another call that may return failure,
better to do it before external_lock() as cleanup_new_partition()
assumes that external_lock() is last call that may fail here.
Otherwise see description for cleanup_new_partition().
*/
if ((error= file->external_lock(current_thd, m_lock_type)))
goto error;
DBUG_RETURN(0);
error:
if (create_flag)
VOID(file->delete_table(part_name));
DBUG_RETURN(error);
}
/*
Cleanup by removing all created partitions after error
SYNOPSIS
cleanup_new_partition()
part_count Number of partitions to remove
RETURN VALUE
NONE
DESCRIPTION
This function is called immediately after prepare_new_partition() in
case the latter fails.
In prepare_new_partition() last call that may return failure is
external_lock(). That means if prepare_new_partition() fails,
partition does not have external lock. Thus no need to call
external_lock(F_UNLCK) here.
TODO:
We must ensure that in the case that we get an error during the process
that we call external_lock with F_UNLCK, close the table and delete the
table in the case where we have been successful with prepare_handler.
We solve this by keeping an array of successful calls to prepare_handler
which can then be used to undo the call.
*/
void ha_partition::cleanup_new_partition(uint part_count)
{
handler **save_m_file= m_file;
DBUG_ENTER("ha_partition::cleanup_new_partition");
if (m_added_file && m_added_file[0])
{
m_file= m_added_file;
m_added_file= NULL;
/* delete_table also needed, a bit more complex */
close();
m_added_file= m_file;
m_file= save_m_file;
}
DBUG_VOID_RETURN;
}
/*
Implement the partition changes defined by ALTER TABLE of partitions
SYNOPSIS
change_partitions()
create_info HA_CREATE_INFO object describing all
fields and indexes in table
path Complete path of db and table name
out: copied Output parameter where number of copied
records are added
out: deleted Output parameter where number of deleted
records are added
pack_frm_data Reference to packed frm file
pack_frm_len Length of packed frm file
RETURN VALUE
>0 Failure
0 Success
DESCRIPTION
Add and copy if needed a number of partitions, during this operation
no other operation is ongoing in the server. This is used by
ADD PARTITION all types as well as by REORGANIZE PARTITION. For
one-phased implementations it is used also by DROP and COALESCE
PARTITIONs.
One-phased implementation needs the new frm file, other handlers will
get zero length and a NULL reference here.
*/
int ha_partition::change_partitions(HA_CREATE_INFO *create_info,
const char *path,
ulonglong *copied,
ulonglong *deleted,
const uchar *pack_frm_data
__attribute__((unused)),
size_t pack_frm_len
__attribute__((unused)))
{
List_iterator<partition_element> part_it(m_part_info->partitions);
List_iterator <partition_element> t_it(m_part_info->temp_partitions);
char part_name_buff[FN_REFLEN];
uint no_parts= m_part_info->partitions.elements;
uint no_subparts= m_part_info->no_subparts;
uint i= 0;
uint no_remain_partitions, part_count, orig_count;
handler **new_file_array;
int error= 1;
bool first;
uint temp_partitions= m_part_info->temp_partitions.elements;
THD *thd= current_thd;
DBUG_ENTER("ha_partition::change_partitions");
m_reorged_parts= 0;
if (!m_part_info->is_sub_partitioned())
no_subparts= 1;
/*
Step 1:
Calculate number of reorganised partitions and allocate space for
their handler references.
*/
if (temp_partitions)
{
m_reorged_parts= temp_partitions * no_subparts;
}
else
{
do
{
partition_element *part_elem= part_it++;
if (part_elem->part_state == PART_CHANGED ||
part_elem->part_state == PART_REORGED_DROPPED)
{
m_reorged_parts+= no_subparts;
}
} while (++i < no_parts);
}
if (m_reorged_parts &&
!(m_reorged_file= (handler**)sql_calloc(sizeof(handler*)*
(m_reorged_parts + 1))))
{
mem_alloc_error(sizeof(handler*)*(m_reorged_parts+1));
DBUG_RETURN(ER_OUTOFMEMORY);
}
/*
Step 2:
Calculate number of partitions after change and allocate space for
their handler references.
*/
no_remain_partitions= 0;
if (temp_partitions)
{
no_remain_partitions= no_parts * no_subparts;
}
else
{
part_it.rewind();
i= 0;
do
{
partition_element *part_elem= part_it++;
if (part_elem->part_state == PART_NORMAL ||
part_elem->part_state == PART_TO_BE_ADDED ||
part_elem->part_state == PART_CHANGED)
{
no_remain_partitions+= no_subparts;
}
} while (++i < no_parts);
}
if (!(new_file_array= (handler**)sql_calloc(sizeof(handler*)*
(2*(no_remain_partitions + 1)))))
{
mem_alloc_error(sizeof(handler*)*2*(no_remain_partitions+1));
DBUG_RETURN(ER_OUTOFMEMORY);
}
m_added_file= &new_file_array[no_remain_partitions + 1];
/*
Step 3:
Fill m_reorged_file with handler references and NULL at the end
*/
if (m_reorged_parts)
{
i= 0;
part_count= 0;
first= TRUE;
part_it.rewind();
do
{
partition_element *part_elem= part_it++;
if (part_elem->part_state == PART_CHANGED ||
part_elem->part_state == PART_REORGED_DROPPED)
{
memcpy((void*)&m_reorged_file[part_count],
(void*)&m_file[i*no_subparts],
sizeof(handler*)*no_subparts);
part_count+= no_subparts;
}
else if (first && temp_partitions &&
part_elem->part_state == PART_TO_BE_ADDED)
{
/*
When doing an ALTER TABLE REORGANIZE PARTITION a number of
partitions is to be reorganised into a set of new partitions.
The reorganised partitions are in this case in the temp_partitions
list. We copy all of them in one batch and thus we only do this
until we find the first partition with state PART_TO_BE_ADDED
since this is where the new partitions go in and where the old
ones used to be.
*/
first= FALSE;
DBUG_ASSERT(((i*no_subparts) + m_reorged_parts) <= m_file_tot_parts);
memcpy((void*)m_reorged_file, &m_file[i*no_subparts],
sizeof(handler*)*m_reorged_parts);
}
} while (++i < no_parts);
}
/*
Step 4:
Fill new_array_file with handler references. Create the handlers if
needed.
*/
i= 0;
part_count= 0;
orig_count= 0;
first= TRUE;
part_it.rewind();
do
{
partition_element *part_elem= part_it++;
if (part_elem->part_state == PART_NORMAL)
{
DBUG_ASSERT(orig_count + no_subparts <= m_file_tot_parts);
memcpy((void*)&new_file_array[part_count], (void*)&m_file[orig_count],
sizeof(handler*)*no_subparts);
part_count+= no_subparts;
orig_count+= no_subparts;
}
else if (part_elem->part_state == PART_CHANGED ||
part_elem->part_state == PART_TO_BE_ADDED)
{
uint j= 0;
do
{
if (!(new_file_array[part_count++]=
get_new_handler(table->s,
thd->mem_root,
part_elem->engine_type)))
{
mem_alloc_error(sizeof(handler));
DBUG_RETURN(ER_OUTOFMEMORY);
}
} while (++j < no_subparts);
if (part_elem->part_state == PART_CHANGED)
orig_count+= no_subparts;
else if (temp_partitions && first)
{
orig_count+= (no_subparts * temp_partitions);
first= FALSE;
}
}
} while (++i < no_parts);
first= FALSE;
/*
Step 5:
Create the new partitions and also open, lock and call external_lock
on them to prepare them for copy phase and also for later close
calls
*/
i= 0;
part_count= 0;
part_it.rewind();
do
{
partition_element *part_elem= part_it++;
if (part_elem->part_state == PART_TO_BE_ADDED ||
part_elem->part_state == PART_CHANGED)
{
/*
A new partition needs to be created PART_TO_BE_ADDED means an
entirely new partition and PART_CHANGED means a changed partition
that will still exist with either more or less data in it.
*/
uint name_variant= NORMAL_PART_NAME;
if (part_elem->part_state == PART_CHANGED ||
(part_elem->part_state == PART_TO_BE_ADDED && temp_partitions))
name_variant= TEMP_PART_NAME;
if (m_part_info->is_sub_partitioned())
{
List_iterator<partition_element> sub_it(part_elem->subpartitions);
uint j= 0, part;
do
{
partition_element *sub_elem= sub_it++;
create_subpartition_name(part_name_buff, path,
part_elem->partition_name,
sub_elem->partition_name,
name_variant);
part= i * no_subparts + j;
DBUG_PRINT("info", ("Add subpartition %s", part_name_buff));
if ((error= prepare_new_partition(table, create_info,
new_file_array[part],
(const char *)part_name_buff,
sub_elem)))
{
cleanup_new_partition(part_count);
DBUG_RETURN(error);
}
m_added_file[part_count++]= new_file_array[part];
} while (++j < no_subparts);
}
else
{
create_partition_name(part_name_buff, path,
part_elem->partition_name, name_variant,
TRUE);
DBUG_PRINT("info", ("Add partition %s", part_name_buff));
if ((error= prepare_new_partition(table, create_info,
new_file_array[i],
(const char *)part_name_buff,
part_elem)))
{
cleanup_new_partition(part_count);
DBUG_RETURN(error);
}
m_added_file[part_count++]= new_file_array[i];
}
}
} while (++i < no_parts);
/*
Step 6:
State update to prepare for next write of the frm file.
*/
i= 0;
part_it.rewind();
do
{
partition_element *part_elem= part_it++;
if (part_elem->part_state == PART_TO_BE_ADDED)
part_elem->part_state= PART_IS_ADDED;
else if (part_elem->part_state == PART_CHANGED)
part_elem->part_state= PART_IS_CHANGED;
else if (part_elem->part_state == PART_REORGED_DROPPED)
part_elem->part_state= PART_TO_BE_DROPPED;
} while (++i < no_parts);
for (i= 0; i < temp_partitions; i++)
{
partition_element *part_elem= t_it++;
DBUG_ASSERT(part_elem->part_state == PART_TO_BE_REORGED);
part_elem->part_state= PART_TO_BE_DROPPED;
}
m_new_file= new_file_array;
DBUG_RETURN(copy_partitions(copied, deleted));
}
/*
Copy partitions as part of ALTER TABLE of partitions
SYNOPSIS
copy_partitions()
out:copied Number of records copied
out:deleted Number of records deleted
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
change_partitions has done all the preparations, now it is time to
actually copy the data from the reorganised partitions to the new
partitions.
*/
int ha_partition::copy_partitions(ulonglong *copied, ulonglong *deleted)
{
uint reorg_part= 0;
int result= 0;
longlong func_value;
DBUG_ENTER("ha_partition::copy_partitions");
if (m_part_info->linear_hash_ind)
{
if (m_part_info->part_type == HASH_PARTITION)
set_linear_hash_mask(m_part_info, m_part_info->no_parts);
else
set_linear_hash_mask(m_part_info, m_part_info->no_subparts);
}
while (reorg_part < m_reorged_parts)
{
handler *file= m_reorged_file[reorg_part];
uint32 new_part;
late_extra_cache(reorg_part);
if ((result= file->ha_rnd_init(1)))
goto error;
while (TRUE)
{
if ((result= file->rnd_next(m_rec0)))
{
if (result == HA_ERR_RECORD_DELETED)
continue; //Probably MyISAM
if (result != HA_ERR_END_OF_FILE)
goto error;
/*
End-of-file reached, break out to continue with next partition or
end the copy process.
*/
break;
}
/* Found record to insert into new handler */
if (m_part_info->get_partition_id(m_part_info, &new_part,
&func_value))
{
/*
This record is in the original table but will not be in the new
table since it doesn't fit into any partition any longer due to
changed partitioning ranges or list values.
*/
deleted++;
}
else
{
/* Copy record to new handler */
copied++;
if ((result= m_new_file[new_part]->write_row(m_rec0)))
goto error;
}
}
late_extra_no_cache(reorg_part);
file->rnd_end();
reorg_part++;
}
DBUG_RETURN(FALSE);
error:
DBUG_RETURN(result);
}
/*
Update create info as part of ALTER TABLE
SYNOPSIS
update_create_info()
create_info Create info from ALTER TABLE
RETURN VALUE
NONE
DESCRIPTION
Method empty so far
*/
void ha_partition::update_create_info(HA_CREATE_INFO *create_info)
{
m_file[0]->update_create_info(create_info);
create_info->data_file_name= create_info->index_file_name = NULL;
return;
}
void ha_partition::change_table_ptr(TABLE *table_arg, TABLE_SHARE *share)
{
handler **file_array= m_file;
table= table_arg;
table_share= share;
do
{
(*file_array)->change_table_ptr(table_arg, share);
} while (*(++file_array));
}
/*
Change comments specific to handler
SYNOPSIS
update_table_comment()
comment Original comment
RETURN VALUE
new comment
DESCRIPTION
No comment changes so far
*/
char *ha_partition::update_table_comment(const char *comment)
{
return (char*) comment; /* Nothing to change */
}
/*
Handle delete, rename and create table
SYNOPSIS
del_ren_cre_table()
from Full path of old table
to Full path of new table
table_arg Table object
create_info Create info
RETURN VALUE
>0 Error
0 Success
DESCRIPTION
Common routine to handle delete_table and rename_table.
The routine uses the partition handler file to get the
names of the partition instances. Both these routines
are called after creating the handler without table
object and thus the file is needed to discover the
names of the partitions and the underlying storage engines.
*/
uint ha_partition::del_ren_cre_table(const char *from,
const char *to,
TABLE *table_arg,
HA_CREATE_INFO *create_info)
{
int save_error= 0;
int error;
char from_buff[FN_REFLEN], to_buff[FN_REFLEN];
char *name_buffer_ptr;
uint i;
handler **file, **abort_file;
DBUG_ENTER("del_ren_cre_table()");
if (get_from_handler_file(from, current_thd->mem_root))
DBUG_RETURN(TRUE);
DBUG_ASSERT(m_file_buffer);
name_buffer_ptr= m_name_buffer_ptr;
file= m_file;
i= 0;
do
{
create_partition_name(from_buff, from, name_buffer_ptr, NORMAL_PART_NAME,
FALSE);
if (to != NULL)
{ // Rename branch
create_partition_name(to_buff, to, name_buffer_ptr, NORMAL_PART_NAME,
FALSE);
error= (*file)->rename_table((const char*) from_buff,
(const char*) to_buff);
}
else if (table_arg == NULL) // delete branch
error= (*file)->delete_table((const char*) from_buff);
else
{
if ((error= set_up_table_before_create(table_arg, from_buff,
create_info, i, NULL)) ||
((error= (*file)->create(from_buff, table_arg, create_info))))
goto create_error;
}
name_buffer_ptr= strend(name_buffer_ptr) + 1;
if (error)
save_error= error;
i++;
} while (*(++file));
DBUG_RETURN(save_error);
create_error:
name_buffer_ptr= m_name_buffer_ptr;
for (abort_file= file, file= m_file; file < abort_file; file++)
{
create_partition_name(from_buff, from, name_buffer_ptr, NORMAL_PART_NAME,
FALSE);
VOID((*file)->delete_table((const char*) from_buff));
name_buffer_ptr= strend(name_buffer_ptr) + 1;
}
DBUG_RETURN(error);
}
/*
Find partition based on partition id
SYNOPSIS
find_partition_element()
part_id Partition id of partition looked for
RETURN VALUE
>0 Reference to partition_element
0 Partition not found
*/
partition_element *ha_partition::find_partition_element(uint part_id)
{
uint i;
uint curr_part_id= 0;
List_iterator_fast <partition_element> part_it(m_part_info->partitions);
for (i= 0; i < m_part_info->no_parts; i++)
{
partition_element *part_elem;
part_elem= part_it++;
if (m_is_sub_partitioned)
{
uint j;
List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
for (j= 0; j < m_part_info->no_subparts; j++)
{
part_elem= sub_it++;
if (part_id == curr_part_id++)
return part_elem;
}
}
else if (part_id == curr_part_id++)
return part_elem;
}
DBUG_ASSERT(0);
my_error(ER_OUT_OF_RESOURCES, MYF(0));
current_thd->fatal_error(); // Abort
return NULL;
}
/*
Set up table share object before calling create on underlying handler
SYNOPSIS
set_up_table_before_create()
table Table object
info Create info
part_id Partition id of partition to set-up
RETURN VALUE
TRUE Error
FALSE Success
DESCRIPTION
Set up
1) Comment on partition
2) MAX_ROWS, MIN_ROWS on partition
3) Index file name on partition
4) Data file name on partition
*/
int ha_partition::set_up_table_before_create(TABLE *tbl,
const char *partition_name_with_path,
HA_CREATE_INFO *info,
uint part_id,
partition_element *part_elem)
{
int error= 0;
const char *partition_name;
THD *thd= current_thd;
DBUG_ENTER("set_up_table_before_create");
if (!part_elem)
{
part_elem= find_partition_element(part_id);
if (!part_elem)
DBUG_RETURN(1); // Fatal error
}
tbl->s->max_rows= part_elem->part_max_rows;
tbl->s->min_rows= part_elem->part_min_rows;
partition_name= strrchr(partition_name_with_path, FN_LIBCHAR);
if ((part_elem->index_file_name &&
(error= append_file_to_dir(thd,
(const char**)&part_elem->index_file_name,
partition_name+1))) ||
(part_elem->data_file_name &&
(error= append_file_to_dir(thd,
(const char**)&part_elem->data_file_name,
partition_name+1))))
{
DBUG_RETURN(error);
}
info->index_file_name= part_elem->index_file_name;
info->data_file_name= part_elem->data_file_name;
DBUG_RETURN(0);
}
/*
Add two names together
SYNOPSIS
name_add()
out:dest Destination string
first_name First name
sec_name Second name
RETURN VALUE
>0 Error
0 Success
DESCRIPTION
Routine used to add two names with '_' in between then. Service routine
to create_handler_file
Include the NULL in the count of characters since it is needed as separator
between the partition names.
*/
static uint name_add(char *dest, const char *first_name, const char *sec_name)
{
return (uint) (strxmov(dest, first_name, "#SP#", sec_name, NullS) -dest) + 1;
}
/*
Create the special .par file
SYNOPSIS
create_handler_file()
name Full path of table name
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
Method used to create handler file with names of partitions, their
engine types and the number of partitions.
*/
bool ha_partition::create_handler_file(const char *name)
{
partition_element *part_elem, *subpart_elem;
uint i, j, part_name_len, subpart_name_len;
uint tot_partition_words, tot_name_len, no_parts;
uint tot_parts= 0;
uint tot_len_words, tot_len_byte, chksum, tot_name_words;
char *name_buffer_ptr;
uchar *file_buffer, *engine_array;
bool result= TRUE;
char file_name[FN_REFLEN];
char part_name[FN_REFLEN];
char subpart_name[FN_REFLEN];
File file;
List_iterator_fast <partition_element> part_it(m_part_info->partitions);
DBUG_ENTER("create_handler_file");
no_parts= m_part_info->partitions.elements;
DBUG_PRINT("info", ("table name = %s, no_parts = %u", name,
no_parts));
tot_name_len= 0;
for (i= 0; i < no_parts; i++)
{
part_elem= part_it++;
if (part_elem->part_state != PART_NORMAL &&
part_elem->part_state != PART_TO_BE_ADDED &&
part_elem->part_state != PART_CHANGED)
continue;
tablename_to_filename(part_elem->partition_name, part_name,
FN_REFLEN);
part_name_len= strlen(part_name);
if (!m_is_sub_partitioned)
{
tot_name_len+= part_name_len + 1;
tot_parts++;
}
else
{
List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
for (j= 0; j < m_part_info->no_subparts; j++)
{
subpart_elem= sub_it++;
tablename_to_filename(subpart_elem->partition_name,
subpart_name,
FN_REFLEN);
subpart_name_len= strlen(subpart_name);
tot_name_len+= part_name_len + subpart_name_len + 5;
tot_parts++;
}
}
}
/*
File format:
Length in words 4 byte
Checksum 4 byte
Total number of partitions 4 byte
Array of engine types n * 4 bytes where
n = (m_tot_parts + 3)/4
Length of name part in bytes 4 bytes
Name part m * 4 bytes where
m = ((length_name_part + 3)/4)*4
All padding bytes are zeroed
*/
tot_partition_words= (tot_parts + 3) / 4;
tot_name_words= (tot_name_len + 3) / 4;
tot_len_words= 4 + tot_partition_words + tot_name_words;
tot_len_byte= 4 * tot_len_words;
if (!(file_buffer= (uchar *) my_malloc(tot_len_byte, MYF(MY_ZEROFILL))))
DBUG_RETURN(TRUE);
engine_array= (file_buffer + 12);
name_buffer_ptr= (char*) (file_buffer + ((4 + tot_partition_words) * 4));
part_it.rewind();
for (i= 0; i < no_parts; i++)
{
part_elem= part_it++;
if (part_elem->part_state != PART_NORMAL &&
part_elem->part_state != PART_TO_BE_ADDED &&
part_elem->part_state != PART_CHANGED)
continue;
if (!m_is_sub_partitioned)
{
tablename_to_filename(part_elem->partition_name, part_name, FN_REFLEN);
name_buffer_ptr= strmov(name_buffer_ptr, part_name)+1;
*engine_array= (uchar) ha_legacy_type(part_elem->engine_type);
DBUG_PRINT("info", ("engine: %u", *engine_array));
engine_array++;
}
else
{
List_iterator_fast <partition_element> sub_it(part_elem->subpartitions);
for (j= 0; j < m_part_info->no_subparts; j++)
{
subpart_elem= sub_it++;
tablename_to_filename(part_elem->partition_name, part_name,
FN_REFLEN);
tablename_to_filename(subpart_elem->partition_name, subpart_name,
FN_REFLEN);
name_buffer_ptr+= name_add(name_buffer_ptr,
part_name,
subpart_name);
*engine_array= (uchar) ha_legacy_type(subpart_elem->engine_type);
DBUG_PRINT("info", ("engine: %u", *engine_array));
engine_array++;
}
}
}
chksum= 0;
int4store(file_buffer, tot_len_words);
int4store(file_buffer + 8, tot_parts);
int4store(file_buffer + 12 + (tot_partition_words * 4), tot_name_len);
for (i= 0; i < tot_len_words; i++)
chksum^= uint4korr(file_buffer + 4 * i);
int4store(file_buffer + 4, chksum);
/*
Remove .frm extension and replace with .par
Create and write and close file
to be used at open, delete_table and rename_table
*/
fn_format(file_name, name, "", ha_par_ext, MY_APPEND_EXT);
if ((file= my_create(file_name, CREATE_MODE, O_RDWR | O_TRUNC,
MYF(MY_WME))) >= 0)
{
result= my_write(file, (uchar *) file_buffer, tot_len_byte,
MYF(MY_WME | MY_NABP)) != 0;
VOID(my_close(file, MYF(0)));
}
else
result= TRUE;
my_free((char*) file_buffer, MYF(0));
DBUG_RETURN(result);
}
/*
Clear handler variables and free some memory
SYNOPSIS
clear_handler_file()
RETURN VALUE
NONE
*/
void ha_partition::clear_handler_file()
{
if (m_engine_array)
plugin_unlock_list(NULL, m_engine_array, m_tot_parts);
my_free((char*) m_file_buffer, MYF(MY_ALLOW_ZERO_PTR));
my_free((char*) m_engine_array, MYF(MY_ALLOW_ZERO_PTR));
m_file_buffer= NULL;
m_engine_array= NULL;
}
/*
Create underlying handler objects
SYNOPSIS
create_handlers()
mem_root Allocate memory through this
RETURN VALUE
TRUE Error
FALSE Success
*/
bool ha_partition::create_handlers(MEM_ROOT *mem_root)
{
uint i;
uint alloc_len= (m_tot_parts + 1) * sizeof(handler*);
handlerton *hton0;
DBUG_ENTER("create_handlers");
if (!(m_file= (handler **) alloc_root(mem_root, alloc_len)))
DBUG_RETURN(TRUE);
m_file_tot_parts= m_tot_parts;
bzero((char*) m_file, alloc_len);
for (i= 0; i < m_tot_parts; i++)
{
handlerton *hton= plugin_data(m_engine_array[i], handlerton*);
if (!(m_file[i]= get_new_handler(table_share, mem_root,
hton)))
DBUG_RETURN(TRUE);
DBUG_PRINT("info", ("engine_type: %u", hton->db_type));
}
/* For the moment we only support partition over the same table engine */
hton0= plugin_data(m_engine_array[0], handlerton*);
if (hton0 == myisam_hton)
{
DBUG_PRINT("info", ("MyISAM"));
m_myisam= TRUE;
}
/* INNODB may not be compiled in... */
else if (ha_legacy_type(hton0) == DB_TYPE_INNODB)
{
DBUG_PRINT("info", ("InnoDB"));
m_innodb= TRUE;
}
DBUG_RETURN(FALSE);
}
/*
Create underlying handler objects from partition info
SYNOPSIS
new_handlers_from_part_info()
mem_root Allocate memory through this
RETURN VALUE
TRUE Error
FALSE Success
*/
bool ha_partition::new_handlers_from_part_info(MEM_ROOT *mem_root)
{
uint i, j, part_count;
partition_element *part_elem;
uint alloc_len= (m_tot_parts + 1) * sizeof(handler*);
List_iterator_fast <partition_element> part_it(m_part_info->partitions);
DBUG_ENTER("ha_partition::new_handlers_from_part_info");
if (!(m_file= (handler **) alloc_root(mem_root, alloc_len)))
{
mem_alloc_error(alloc_len);
goto error_end;
}
m_file_tot_parts= m_tot_parts;
bzero((char*) m_file, alloc_len);
DBUG_ASSERT(m_part_info->no_parts > 0);
i= 0;
part_count= 0;
/*
Don't know the size of the underlying storage engine, invent a number of
bytes allocated for error message if allocation fails
*/
do
{
part_elem= part_it++;
if (m_is_sub_partitioned)
{
for (j= 0; j < m_part_info->no_subparts; j++)
{
if (!(m_file[part_count++]= get_new_handler(table_share, mem_root,
part_elem->engine_type)))
goto error;
DBUG_PRINT("info", ("engine_type: %u",
(uint) ha_legacy_type(part_elem->engine_type)));
}
}
else
{
if (!(m_file[part_count++]= get_new_handler(table_share, mem_root,
part_elem->engine_type)))
goto error;
DBUG_PRINT("info", ("engine_type: %u",
(uint) ha_legacy_type(part_elem->engine_type)));
}
} while (++i < m_part_info->no_parts);
if (part_elem->engine_type == myisam_hton)
{
DBUG_PRINT("info", ("MyISAM"));
m_myisam= TRUE;
}
DBUG_RETURN(FALSE);
error:
mem_alloc_error(sizeof(handler));
error_end:
DBUG_RETURN(TRUE);
}
/*
Get info about partition engines and their names from the .par file
SYNOPSIS
get_from_handler_file()
name Full path of table name
mem_root Allocate memory through this
RETURN VALUE
TRUE Error
FALSE Success
DESCRIPTION
Open handler file to get partition names, engine types and number of
partitions.
*/
bool ha_partition::get_from_handler_file(const char *name, MEM_ROOT *mem_root)
{
char buff[FN_REFLEN], *address_tot_name_len;
File file;
char *file_buffer, *name_buffer_ptr;
handlerton **engine_array;
uint i, len_bytes, len_words, tot_partition_words, tot_name_words, chksum;
DBUG_ENTER("ha_partition::get_from_handler_file");
DBUG_PRINT("enter", ("table name: '%s'", name));
if (m_file_buffer)
DBUG_RETURN(FALSE);
fn_format(buff, name, "", ha_par_ext, MY_APPEND_EXT);
/* Following could be done with my_stat to read in whole file */
if ((file= my_open(buff, O_RDONLY | O_SHARE, MYF(0))) < 0)
DBUG_RETURN(TRUE);
if (my_read(file, (uchar *) & buff[0], 8, MYF(MY_NABP)))
goto err1;
len_words= uint4korr(buff);
len_bytes= 4 * len_words;
if (!(file_buffer= (char*) my_malloc(len_bytes, MYF(0))))
goto err1;
VOID(my_seek(file, 0, MY_SEEK_SET, MYF(0)));
if (my_read(file, (uchar *) file_buffer, len_bytes, MYF(MY_NABP)))
goto err2;
chksum= 0;
for (i= 0; i < len_words; i++)
chksum ^= uint4korr((file_buffer) + 4 * i);
if (chksum)
goto err2;
m_tot_parts= uint4korr((file_buffer) + 8);
DBUG_PRINT("info", ("No of parts = %u", m_tot_parts));
tot_partition_words= (m_tot_parts + 3) / 4;
engine_array= (handlerton **) my_alloca(m_tot_parts * sizeof(handlerton*));
for (i= 0; i < m_tot_parts; i++)
engine_array[i]= ha_resolve_by_legacy_type(current_thd,
(enum legacy_db_type)
*(uchar *) ((file_buffer) + 12 + i));
address_tot_name_len= file_buffer + 12 + 4 * tot_partition_words;
tot_name_words= (uint4korr(address_tot_name_len) + 3) / 4;
if (len_words != (tot_partition_words + tot_name_words + 4))
goto err3;
name_buffer_ptr= file_buffer + 16 + 4 * tot_partition_words;
VOID(my_close(file, MYF(0)));
m_file_buffer= file_buffer; // Will be freed in clear_handler_file()
m_name_buffer_ptr= name_buffer_ptr;
if (!(m_engine_array= (plugin_ref*)
my_malloc(m_tot_parts * sizeof(plugin_ref), MYF(MY_WME))))
goto err3;
for (i= 0; i < m_tot_parts; i++)
m_engine_array[i]= ha_lock_engine(NULL, engine_array[i]);
my_afree((gptr) engine_array);
if (!m_file && create_handlers(mem_root))
{
clear_handler_file();
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
err3:
my_afree((gptr) engine_array);
err2:
my_free(file_buffer, MYF(0));
err1:
VOID(my_close(file, MYF(0)));
DBUG_RETURN(TRUE);
}
/****************************************************************************
MODULE open/close object
****************************************************************************/
/*
Open handler object
SYNOPSIS
open()
name Full path of table name
mode Open mode flags
test_if_locked ?
RETURN VALUE
>0 Error
0 Success
DESCRIPTION
Used for opening tables. The name will be the name of the file.
A table is opened when it needs to be opened. For instance
when a request comes in for a select on the table (tables are not
open and closed for each request, they are cached).
Called from handler.cc by handler::ha_open(). The server opens all tables
by calling ha_open() which then calls the handler specific open().
*/
int ha_partition::open(const char *name, int mode, uint test_if_locked)
{
char *name_buffer_ptr= m_name_buffer_ptr;
int error;
uint alloc_len;
handler **file;
char name_buff[FN_REFLEN];
DBUG_ENTER("ha_partition::open");
ref_length= 0;
m_mode= mode;
m_open_test_lock= test_if_locked;
m_part_field_array= m_part_info->full_part_field_array;
if (get_from_handler_file(name, &table->mem_root))
DBUG_RETURN(1);
m_start_key.length= 0;
m_rec0= table->record[0];
m_rec_length= table->s->reclength;
alloc_len= m_tot_parts * (m_rec_length + PARTITION_BYTES_IN_POS);
alloc_len+= table->s->max_key_length;
if (!m_ordered_rec_buffer)
{
if (!(m_ordered_rec_buffer= (uchar*)my_malloc(alloc_len, MYF(MY_WME))))
{
DBUG_RETURN(1);
}
{
/*
We set-up one record per partition and each record has 2 bytes in
front where the partition id is written. This is used by ordered
index_read.
We also set-up a reference to the first record for temporary use in
setting up the scan.
*/
char *ptr= (char*)m_ordered_rec_buffer;
uint i= 0;
do
{
int2store(ptr, i);
ptr+= m_rec_length + PARTITION_BYTES_IN_POS;
} while (++i < m_tot_parts);
m_start_key.key= (const uchar*)ptr;
}
}
/* Initialise the bitmap we use to determine what partitions are used */
if (!is_clone)
{
if (bitmap_init(&(m_part_info->used_partitions), NULL, m_tot_parts, TRUE))
DBUG_RETURN(1);
bitmap_set_all(&(m_part_info->used_partitions));
}
/* Recalculate table flags as they may change after open */
m_table_flags= m_file[0]->table_flags();
file= m_file;
do
{
create_partition_name(name_buff, name, name_buffer_ptr, NORMAL_PART_NAME,
FALSE);
if ((error= (*file)->ha_open(table, (const char*) name_buff, mode,
test_if_locked)))
goto err_handler;
m_no_locks+= (*file)->lock_count();
name_buffer_ptr+= strlen(name_buffer_ptr) + 1;
set_if_bigger(ref_length, ((*file)->ref_length));
m_table_flags&= (*file)->table_flags();
} while (*(++file));
m_table_flags&= ~(HA_CAN_GEOMETRY | HA_CAN_FULLTEXT | HA_DUPLICATE_POS |
HA_CAN_SQL_HANDLER | HA_CAN_INSERT_DELAYED);
m_table_flags|= HA_FILE_BASED | HA_REC_NOT_IN_SEQ;
key_used_on_scan= m_file[0]->key_used_on_scan;
implicit_emptied= m_file[0]->implicit_emptied;
/*
Add 2 bytes for partition id in position ref length.
ref_length=max_in_all_partitions(ref_length) + PARTITION_BYTES_IN_POS
*/
ref_length+= PARTITION_BYTES_IN_POS;
m_ref_length= ref_length;
/*
Release buffer read from .par file. It will not be reused again after
being opened once.
*/
clear_handler_file();
/*
Initialise priority queue, initialised to reading forward.
*/
if ((error= init_queue(&m_queue, m_tot_parts, (uint) PARTITION_BYTES_IN_POS,
0, key_rec_cmp, (void*)this)))
goto err_handler;
/*
Some handlers update statistics as part of the open call. This will in
some cases corrupt the statistics of the partition handler and thus
to ensure we have correct statistics we call info from open after
calling open on all individual handlers.
*/
info(HA_STATUS_VARIABLE | HA_STATUS_CONST);
DBUG_RETURN(0);
err_handler:
while (file-- != m_file)
(*file)->close();
DBUG_RETURN(error);
}
handler *ha_partition::clone(MEM_ROOT *mem_root)
{
handler *new_handler= get_new_handler(table->s, mem_root,
table->s->db_type());
((ha_partition*)new_handler)->m_part_info= m_part_info;
((ha_partition*)new_handler)->is_clone= TRUE;
if (new_handler && !new_handler->ha_open(table,
table->s->normalized_path.str,
table->db_stat,
HA_OPEN_IGNORE_IF_LOCKED))
return new_handler;
return NULL;
}
/*
Close handler object
SYNOPSIS
close()
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
Called from sql_base.cc, sql_select.cc, and table.cc.
In sql_select.cc it is only used to close up temporary tables or during
the process where a temporary table is converted over to being a
myisam table.
For sql_base.cc look at close_data_tables().
*/
int ha_partition::close(void)
{
bool first= TRUE;
handler **file;
DBUG_ENTER("ha_partition::close");
delete_queue(&m_queue);
if (!is_clone)
bitmap_free(&(m_part_info->used_partitions));
file= m_file;
repeat:
do
{
(*file)->close();
} while (*(++file));
if (first && m_added_file && m_added_file[0])
{
file= m_added_file;
first= FALSE;
goto repeat;
}
DBUG_RETURN(0);
}
/****************************************************************************
MODULE start/end statement
****************************************************************************/
/*
A number of methods to define various constants for the handler. In
the case of the partition handler we need to use some max and min
of the underlying handlers in most cases.
*/
/*
Set external locks on table
SYNOPSIS
external_lock()
thd Thread object
lock_type Type of external lock
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
First you should go read the section "locking functions for mysql" in
lock.cc to understand this.
This create a lock on the table. If you are implementing a storage engine
that can handle transactions look at ha_berkeley.cc to see how you will
want to go about doing this. Otherwise you should consider calling
flock() here.
Originally this method was used to set locks on file level to enable
several MySQL Servers to work on the same data. For transactional
engines it has been "abused" to also mean start and end of statements
to enable proper rollback of statements and transactions. When LOCK
TABLES has been issued the start_stmt method takes over the role of
indicating start of statement but in this case there is no end of
statement indicator(?).
Called from lock.cc by lock_external() and unlock_external(). Also called
from sql_table.cc by copy_data_between_tables().
*/
int ha_partition::external_lock(THD *thd, int lock_type)
{
bool first= TRUE;
uint error;
handler **file;
DBUG_ENTER("ha_partition::external_lock");
file= m_file;
m_lock_type= lock_type;
repeat:
do
{
DBUG_PRINT("info", ("external_lock(thd, %d) iteration %d",
lock_type, (int) (file - m_file)));
if ((error= (*file)->external_lock(thd, lock_type)))
{
if (F_UNLCK != lock_type)
goto err_handler;
}
} while (*(++file));
if (first && m_added_file && m_added_file[0])
{
DBUG_ASSERT(lock_type == F_UNLCK);
file= m_added_file;
first= FALSE;
goto repeat;
}
DBUG_RETURN(0);
err_handler:
while (file-- != m_file)
{
(*file)->external_lock(thd, F_UNLCK);
}
DBUG_RETURN(error);
}
/*
Get the lock(s) for the table and perform conversion of locks if needed
SYNOPSIS
store_lock()
thd Thread object
to Lock object array
lock_type Table lock type
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
The idea with handler::store_lock() is the following:
The statement decided which locks we should need for the table
for updates/deletes/inserts we get WRITE locks, for SELECT... we get
read locks.
Before adding the lock into the table lock handler (see thr_lock.c)
mysqld calls store lock with the requested locks. Store lock can now
modify a write lock to a read lock (or some other lock), ignore the
lock (if we don't want to use MySQL table locks at all) or add locks
for many tables (like we do when we are using a MERGE handler).
Berkeley DB for partition changes all WRITE locks to TL_WRITE_ALLOW_WRITE
(which signals that we are doing WRITES, but we are still allowing other
reader's and writer's.
When releasing locks, store_lock() is also called. In this case one
usually doesn't have to do anything.
store_lock is called when holding a global mutex to ensure that only
one thread at a time changes the locking information of tables.
In some exceptional cases MySQL may send a request for a TL_IGNORE;
This means that we are requesting the same lock as last time and this
should also be ignored. (This may happen when someone does a flush
table when we have opened a part of the tables, in which case mysqld
closes and reopens the tables and tries to get the same locks as last
time). In the future we will probably try to remove this.
Called from lock.cc by get_lock_data().
*/
THR_LOCK_DATA **ha_partition::store_lock(THD *thd,
THR_LOCK_DATA **to,
enum thr_lock_type lock_type)
{
handler **file;
DBUG_ENTER("ha_partition::store_lock");
file= m_file;
do
{
DBUG_PRINT("info", ("store lock %d iteration", (int) (file - m_file)));
to= (*file)->store_lock(thd, to, lock_type);
} while (*(++file));
DBUG_RETURN(to);
}
/*
Start a statement when table is locked
SYNOPSIS
start_stmt()
thd Thread object
lock_type Type of external lock
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
This method is called instead of external lock when the table is locked
before the statement is executed.
*/
int ha_partition::start_stmt(THD *thd, thr_lock_type lock_type)
{
int error= 0;
handler **file;
DBUG_ENTER("ha_partition::start_stmt");
file= m_file;
do
{
if ((error= (*file)->start_stmt(thd, lock_type)))
break;
} while (*(++file));
DBUG_RETURN(error);
}
/*
Get number of lock objects returned in store_lock
SYNOPSIS
lock_count()
RETURN VALUE
Number of locks returned in call to store_lock
DESCRIPTION
Returns the number of store locks needed in call to store lock.
We return number of partitions since we call store_lock on each
underlying handler. Assists the above functions in allocating
sufficient space for lock structures.
*/
uint ha_partition::lock_count() const
{
DBUG_ENTER("ha_partition::lock_count");
DBUG_PRINT("info", ("m_no_locks %d", m_no_locks));
DBUG_RETURN(m_no_locks);
}
/*
Unlock last accessed row
SYNOPSIS
unlock_row()
RETURN VALUE
NONE
DESCRIPTION
Record currently processed was not in the result set of the statement
and is thus unlocked. Used for UPDATE and DELETE queries.
*/
void ha_partition::unlock_row()
{
m_file[m_last_part]->unlock_row();
return;
}
/****************************************************************************
MODULE change record
****************************************************************************/
/*
Insert a row to the table
SYNOPSIS
write_row()
buf The row in MySQL Row Format
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
write_row() inserts a row. buf() is a byte array of data, normally
record[0].
You can use the field information to extract the data from the native byte
array type.
Example of this would be:
for (Field **field=table->field ; *field ; field++)
{
...
}
See ha_tina.cc for a variant of extracting all of the data as strings.
ha_berkeley.cc has a variant of how to store it intact by "packing" it
for ha_berkeley's own native storage type.
Called from item_sum.cc, item_sum.cc, sql_acl.cc, sql_insert.cc,
sql_insert.cc, sql_select.cc, sql_table.cc, sql_udf.cc, and sql_update.cc.
ADDITIONAL INFO:
We have to set timestamp fields and auto_increment fields, because those
may be used in determining which partition the row should be written to.
*/
int ha_partition::write_row(uchar * buf)
{
uint32 part_id;
int error;
longlong func_value;
bool autoincrement_lock= FALSE;
my_bitmap_map *old_map;
#ifdef NOT_NEEDED
uchar *rec0= m_rec0;
#endif
DBUG_ENTER("ha_partition::write_row");
DBUG_ASSERT(buf == m_rec0);
/* If we have a timestamp column, update it to the current time */
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_INSERT)
table->timestamp_field->set_time();
/*
If we have an auto_increment column and we are writing a changed row
or a new row, then update the auto_increment value in the record.
*/
if (table->next_number_field && buf == table->record[0])
{
/*
Some engines (InnoDB for example) can change autoincrement
counter only after 'table->write_row' operation.
So if another thread gets inside the ha_partition::write_row
before it is complete, it gets same auto_increment value,
which means DUP_KEY error (bug #27405)
Here we separate the access using table_share->mutex, and
use autoincrement_lock variable to avoid unnecessary locks.
Probably not an ideal solution.
*/
if (table_share->tmp_table == NO_TMP_TABLE)
{
/*
Bug#30878 crash when alter table from non partitioned table
to partitioned.
Checking if tmp table then there is no need to lock,
and the table_share->mutex may not be initialised.
*/
autoincrement_lock= TRUE;
pthread_mutex_lock(&table_share->mutex);
}
error= update_auto_increment();
/*
If we have failed to set the auto-increment value for this row,
it is highly likely that we will not be able to insert it into
the correct partition. We must check and fail if neccessary.
*/
if (error)
goto exit;
}
old_map= dbug_tmp_use_all_columns(table, table->read_set);
#ifdef NOT_NEEDED
if (likely(buf == rec0))
#endif
error= m_part_info->get_partition_id(m_part_info, &part_id,
&func_value);
#ifdef NOT_NEEDED
else
{
set_field_ptr(m_part_field_array, buf, rec0);
error= m_part_info->get_partition_id(m_part_info, &part_id,
&func_value);
set_field_ptr(m_part_field_array, rec0, buf);
}
#endif
dbug_tmp_restore_column_map(table->read_set, old_map);
if (unlikely(error))
{
m_part_info->err_value= func_value;
goto exit;
}
m_last_part= part_id;
DBUG_PRINT("info", ("Insert in partition %d", part_id));
error= m_file[part_id]->write_row(buf);
exit:
if (autoincrement_lock)
pthread_mutex_unlock(&table_share->mutex);
DBUG_RETURN(error);
}
/*
Update an existing row
SYNOPSIS
update_row()
old_data Old record in MySQL Row Format
new_data New record in MySQL Row Format
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
Yes, update_row() does what you expect, it updates a row. old_data will
have the previous row record in it, while new_data will have the newest
data in it.
Keep in mind that the server can do updates based on ordering if an
ORDER BY clause was used. Consecutive ordering is not guarenteed.
Currently new_data will not have an updated auto_increament record, or
and updated timestamp field. You can do these for partition by doing these:
if (table->timestamp_field_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
table->timestamp_field->set_time();
if (table->next_number_field && record == table->record[0])
update_auto_increment();
Called from sql_select.cc, sql_acl.cc, sql_update.cc, and sql_insert.cc.
new_data is always record[0]
old_data is normally record[1] but may be anything
*/
int ha_partition::update_row(const uchar *old_data, uchar *new_data)
{
uint32 new_part_id, old_part_id;
int error= 0;
longlong func_value;
timestamp_auto_set_type orig_timestamp_type= table->timestamp_field_type;
DBUG_ENTER("ha_partition::update_row");
/*
We need to set timestamp field once before we calculate
the partition. Then we disable timestamp calculations
inside m_file[*]->update_row() methods
*/
if (orig_timestamp_type & TIMESTAMP_AUTO_SET_ON_UPDATE)
{
table->timestamp_field->set_time();
table->timestamp_field_type= TIMESTAMP_NO_AUTO_SET;
}
if ((error= get_parts_for_update(old_data, new_data, table->record[0],
m_part_info, &old_part_id, &new_part_id,
&func_value)))
{
m_part_info->err_value= func_value;
goto exit;
}
/*
TODO:
set_internal_auto_increment=
max(set_internal_auto_increment, new_data->auto_increment)
*/
m_last_part= new_part_id;
if (new_part_id == old_part_id)
{
DBUG_PRINT("info", ("Update in partition %d", new_part_id));
error= m_file[new_part_id]->update_row(old_data, new_data);
goto exit;
}
else
{
DBUG_PRINT("info", ("Update from partition %d to partition %d",
old_part_id, new_part_id));
if ((error= m_file[new_part_id]->write_row(new_data)))
goto exit;
if ((error= m_file[old_part_id]->delete_row(old_data)))
{
#ifdef IN_THE_FUTURE
(void) m_file[new_part_id]->delete_last_inserted_row(new_data);
#endif
goto exit;
}
}
exit:
table->timestamp_field_type= orig_timestamp_type;
DBUG_RETURN(error);
}
/*
Remove an existing row
SYNOPSIS
delete_row
buf Deleted row in MySQL Row Format
RETURN VALUE
>0 Error Code
0 Success
DESCRIPTION
This will delete a row. buf will contain a copy of the row to be deleted.
The server will call this right after the current row has been read
(from either a previous rnd_xxx() or index_xxx() call).
If you keep a pointer to the last row or can access a primary key it will
make doing the deletion quite a bit easier.
Keep in mind that the server does no guarentee consecutive deletions.
ORDER BY clauses can be used.
Called in sql_acl.cc and sql_udf.cc to manage internal table information.
Called in sql_delete.cc, sql_insert.cc, and sql_select.cc. In sql_select
it is used for removing duplicates while in insert it is used for REPLACE
calls.
buf is either record[0] or record[1]
*/
int ha_partition::delete_row(const uchar *buf)
{
uint32 part_id;
int error;
DBUG_ENTER("ha_partition::delete_row");
if ((error= get_part_for_delete(buf, m_rec0, m_part_info, &part_id)))
{
DBUG_RETURN(error);
}
m_last_part= part_id;
DBUG_RETURN(m_file[part_id]->delete_row(buf));
}
/*
Delete all rows in a table
SYNOPSIS
delete_all_rows()
RETURN VALUE
>0 Error Code
0 Success
DESCRIPTION
Used to delete all rows in a table. Both for cases of truncate and
for cases where the optimizer realizes that all rows will be
removed as a result of a SQL statement.
Called from item_sum.cc by Item_func_group_concat::clear(),
Item_sum_count_distinct::clear(), and Item_func_group_concat::clear().
Called from sql_delete.cc by mysql_delete().
Called from sql_select.cc by JOIN::reinit().
Called from sql_union.cc by st_select_lex_unit::exec().
*/
int ha_partition::delete_all_rows()
{
int error;
handler **file;
DBUG_ENTER("ha_partition::delete_all_rows");
file= m_file;
do
{
if ((error= (*file)->delete_all_rows()))
DBUG_RETURN(error);
} while (*(++file));
DBUG_RETURN(0);
}
/*
Start a large batch of insert rows
SYNOPSIS
start_bulk_insert()
rows Number of rows to insert
RETURN VALUE
NONE
DESCRIPTION
rows == 0 means we will probably insert many rows
*/
void ha_partition::start_bulk_insert(ha_rows rows)
{
handler **file;
DBUG_ENTER("ha_partition::start_bulk_insert");
rows= rows ? rows/m_tot_parts + 1 : 0;
file= m_file;
do
{
(*file)->ha_start_bulk_insert(rows);
} while (*(++file));
DBUG_VOID_RETURN;
}
/*
Finish a large batch of insert rows
SYNOPSIS
end_bulk_insert()
RETURN VALUE
>0 Error code
0 Success
*/
int ha_partition::end_bulk_insert()
{
int error= 0;
handler **file;
DBUG_ENTER("ha_partition::end_bulk_insert");
file= m_file;
do
{
int tmp;
if ((tmp= (*file)->ha_end_bulk_insert()))
error= tmp;
} while (*(++file));
DBUG_RETURN(error);
}
/****************************************************************************
MODULE full table scan
****************************************************************************/
/*
Initialize engine for random reads
SYNOPSIS
ha_partition::rnd_init()
scan 0 Initialize for random reads through rnd_pos()
1 Initialize for random scan through rnd_next()
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
rnd_init() is called when the server wants the storage engine to do a
table scan or when the server wants to access data through rnd_pos.
When scan is used we will scan one handler partition at a time.
When preparing for rnd_pos we will init all handler partitions.
No extra cache handling is needed when scannning is not performed.
Before initialising we will call rnd_end to ensure that we clean up from
any previous incarnation of a table scan.
Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc,
sql_table.cc, and sql_update.cc.
*/
int ha_partition::rnd_init(bool scan)
{
int error;
uint i= 0;
uint32 part_id;
DBUG_ENTER("ha_partition::rnd_init");
/*
For operations that may need to change data, we may need to extend
read_set.
*/
if (m_lock_type == F_WRLCK)
{
/*
If write_set contains any of the fields used in partition and
subpartition expression, we need to set all bits in read_set because
the row may need to be inserted in a different [sub]partition. In
other words update_row() can be converted into write_row(), which
requires a complete record.
*/
if (bitmap_is_overlapping(&m_part_info->full_part_field_set,
table->write_set))
bitmap_set_all(table->read_set);
else
{
/*
Some handlers only read fields as specified by the bitmap for the
read set. For partitioned handlers we always require that the
fields of the partition functions are read such that we can
calculate the partition id to place updated and deleted records.
*/
bitmap_union(table->read_set, &m_part_info->full_part_field_set);
}
}
/* Now we see what the index of our first important partition is */
DBUG_PRINT("info", ("m_part_info->used_partitions: 0x%lx",
(long) m_part_info->used_partitions.bitmap));
part_id= bitmap_get_first_set(&(m_part_info->used_partitions));
DBUG_PRINT("info", ("m_part_spec.start_part %d", part_id));
if (MY_BIT_NONE == part_id)
{
error= 0;
goto err1;
}
/*
We have a partition and we are scanning with rnd_next
so we bump our cache
*/
DBUG_PRINT("info", ("rnd_init on partition %d", part_id));
if (scan)
{
/*
rnd_end() is needed for partitioning to reset internal data if scan
is already in use
*/
rnd_end();
late_extra_cache(part_id);
if ((error= m_file[part_id]->ha_rnd_init(scan)))
goto err;
}
else
{
for (i= part_id; i < m_tot_parts; i++)
{
if (bitmap_is_set(&(m_part_info->used_partitions), i))
{
if ((error= m_file[i]->ha_rnd_init(scan)))
goto err;
}
}
}
m_scan_value= scan;
m_part_spec.start_part= part_id;
m_part_spec.end_part= m_tot_parts - 1;
DBUG_PRINT("info", ("m_scan_value=%d", m_scan_value));
DBUG_RETURN(0);
err:
while ((int)--i >= (int)part_id)
{
if (bitmap_is_set(&(m_part_info->used_partitions), i))
m_file[i]->ha_rnd_end();
}
err1:
m_scan_value= 2;
m_part_spec.start_part= NO_CURRENT_PART_ID;
DBUG_RETURN(error);
}
/*
End of a table scan
SYNOPSIS
rnd_end()
RETURN VALUE
>0 Error code
0 Success
*/
int ha_partition::rnd_end()
{
handler **file;
DBUG_ENTER("ha_partition::rnd_end");
switch (m_scan_value) {
case 2: // Error
break;
case 1:
if (NO_CURRENT_PART_ID != m_part_spec.start_part) // Table scan
{
late_extra_no_cache(m_part_spec.start_part);
m_file[m_part_spec.start_part]->ha_rnd_end();
}
break;
case 0:
file= m_file;
do
{
if (bitmap_is_set(&(m_part_info->used_partitions), (file - m_file)))
(*file)->ha_rnd_end();
} while (*(++file));
break;
}
m_scan_value= 2;
m_part_spec.start_part= NO_CURRENT_PART_ID;
DBUG_RETURN(0);
}
/*
read next row during full table scan (scan in random row order)
SYNOPSIS
rnd_next()
buf buffer that should be filled with data
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
This is called for each row of the table scan. When you run out of records
you should return HA_ERR_END_OF_FILE.
The Field structure for the table is the key to getting data into buf
in a manner that will allow the server to understand it.
Called from filesort.cc, records.cc, sql_handler.cc, sql_select.cc,
sql_table.cc, and sql_update.cc.
*/
int ha_partition::rnd_next(uchar *buf)
{
handler *file;
int result= HA_ERR_END_OF_FILE;
uint part_id= m_part_spec.start_part;
DBUG_ENTER("ha_partition::rnd_next");
if (NO_CURRENT_PART_ID == part_id)
{
/*
The original set of partitions to scan was empty and thus we report
the result here.
*/
goto end;
}
DBUG_ASSERT(m_scan_value == 1);
file= m_file[part_id];
while (TRUE)
{
int result= file->rnd_next(buf);
if (!result)
{
m_last_part= part_id;
m_part_spec.start_part= part_id;
table->status= 0;
DBUG_RETURN(0);
}
/*
if we get here, then the current partition rnd_next returned failure
*/
if (result == HA_ERR_RECORD_DELETED)
continue; // Probably MyISAM
if (result != HA_ERR_END_OF_FILE)
goto end_dont_reset_start_part; // Return error
/* End current partition */
late_extra_no_cache(part_id);
DBUG_PRINT("info", ("rnd_end on partition %d", part_id));
if ((result= file->ha_rnd_end()))
break;
/* Shift to next partition */
while (++part_id < m_tot_parts &&
!bitmap_is_set(&(m_part_info->used_partitions), part_id))
;
if (part_id >= m_tot_parts)
{
result= HA_ERR_END_OF_FILE;
break;
}
file= m_file[part_id];
DBUG_PRINT("info", ("rnd_init on partition %d", part_id));
if ((result= file->ha_rnd_init(1)))
break;
late_extra_cache(part_id);
}
end:
m_part_spec.start_part= NO_CURRENT_PART_ID;
end_dont_reset_start_part:
table->status= STATUS_NOT_FOUND;
DBUG_RETURN(result);
}
/*
Save position of current row
SYNOPSIS
position()
record Current record in MySQL Row Format
RETURN VALUE
NONE
DESCRIPTION
position() is called after each call to rnd_next() if the data needs
to be ordered. You can do something like the following to store
the position:
ha_store_ptr(ref, ref_length, current_position);
The server uses ref to store data. ref_length in the above case is
the size needed to store current_position. ref is just a byte array
that the server will maintain. If you are using offsets to mark rows, then
current_position should be the offset. If it is a primary key like in
BDB, then it needs to be a primary key.
Called from filesort.cc, sql_select.cc, sql_delete.cc and sql_update.cc.
*/
void ha_partition::position(const uchar *record)
{
handler *file= m_file[m_last_part];
DBUG_ENTER("ha_partition::position");
file->position(record);
int2store(ref, m_last_part);
memcpy((ref + PARTITION_BYTES_IN_POS), file->ref,
(ref_length - PARTITION_BYTES_IN_POS));
#ifdef SUPPORTING_PARTITION_OVER_DIFFERENT_ENGINES
#ifdef HAVE_purify
bzero(ref + PARTITION_BYTES_IN_POS + ref_length,
max_ref_length-ref_length);
#endif /* HAVE_purify */
#endif
DBUG_VOID_RETURN;
}
void ha_partition::column_bitmaps_signal()
{
handler::column_bitmaps_signal();
bitmap_union(table->read_set, &m_part_info->full_part_field_set);
}
/*
Read row using position
SYNOPSIS
rnd_pos()
out:buf Row read in MySQL Row Format
position Position of read row
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
This is like rnd_next, but you are given a position to use
to determine the row. The position will be of the type that you stored in
ref. You can use ha_get_ptr(pos,ref_length) to retrieve whatever key
or position you saved when position() was called.
Called from filesort.cc records.cc sql_insert.cc sql_select.cc
sql_update.cc.
*/
int ha_partition::rnd_pos(uchar * buf, uchar *pos)
{
uint part_id;
handler *file;
DBUG_ENTER("ha_partition::rnd_pos");
part_id= uint2korr((const uchar *) pos);
DBUG_ASSERT(part_id < m_tot_parts);
file= m_file[part_id];
m_last_part= part_id;
DBUG_RETURN(file->rnd_pos(buf, (pos + PARTITION_BYTES_IN_POS)));
}
/*
Read row using position using given record to find
SYNOPSIS
rnd_pos_by_record()
record Current record in MySQL Row Format
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
this works as position()+rnd_pos() functions, but does some extra work,
calculating m_last_part - the partition to where the 'record'
should go.
called from replication (log_event.cc)
*/
int ha_partition::rnd_pos_by_record(uchar *record)
{
DBUG_ENTER("ha_partition::rnd_pos_by_record");
if (unlikely(get_part_for_delete(record, m_rec0, m_part_info, &m_last_part)))
DBUG_RETURN(1);
DBUG_RETURN(handler::rnd_pos_by_record(record));
}
/****************************************************************************
MODULE index scan
****************************************************************************/
/*
Positions an index cursor to the index specified in the handle. Fetches the
row if available. If the key value is null, begin at the first key of the
index.
There are loads of optimisations possible here for the partition handler.
The same optimisations can also be checked for full table scan although
only through conditions and not from index ranges.
Phase one optimisations:
Check if the fields of the partition function are bound. If so only use
the single partition it becomes bound to.
Phase two optimisations:
If it can be deducted through range or list partitioning that only a
subset of the partitions are used, then only use those partitions.
*/
/*
Initialise handler before start of index scan
SYNOPSIS
index_init()
inx Index number
sorted Is rows to be returned in sorted order
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
index_init is always called before starting index scans (except when
starting through index_read_idx and using read_range variants).
*/
int ha_partition::index_init(uint inx, bool sorted)
{
int error= 0;
handler **file;
DBUG_ENTER("ha_partition::index_init");
active_index= inx;
m_part_spec.start_part= NO_CURRENT_PART_ID;
m_start_key.length= 0;
m_ordered= sorted;
m_curr_key_info= table->key_info+inx;
/*
Some handlers only read fields as specified by the bitmap for the
read set. For partitioned handlers we always require that the
fields of the partition functions are read such that we can
calculate the partition id to place updated and deleted records.
But this is required for operations that may need to change data only.
*/
if (m_lock_type == F_WRLCK)
bitmap_union(table->read_set, &m_part_info->full_part_field_set);
else if (sorted && m_table_flags & HA_PARTIAL_COLUMN_READ)
{
/*
An ordered scan is requested and necessary fields aren't in read_set.
This may happen e.g. with SELECT COUNT(*) FROM t1. We must ensure
that all fields of current key are included into read_set, as
partitioning requires them for sorting
(see ha_partition::handle_ordered_index_scan).
TODO: handle COUNT(*) queries via unordered scan.
*/
uint i;
for (i= 0; i < m_curr_key_info->key_parts; i++)
bitmap_set_bit(table->read_set,
m_curr_key_info->key_part[i].field->field_index);
}
file= m_file;
do
{
/* TODO RONM: Change to index_init() when code is stable */
if (bitmap_is_set(&(m_part_info->used_partitions), (file - m_file)))
if ((error= (*file)->ha_index_init(inx, sorted)))
{
DBUG_ASSERT(0); // Should never happen
break;
}
} while (*(++file));
DBUG_RETURN(error);
}
/*
End of index scan
SYNOPSIS
index_end()
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
index_end is called at the end of an index scan to clean up any
things needed to clean up.
*/
int ha_partition::index_end()
{
int error= 0;
handler **file;
DBUG_ENTER("ha_partition::index_end");
active_index= MAX_KEY;
m_part_spec.start_part= NO_CURRENT_PART_ID;
file= m_file;
do
{
int tmp;
/* TODO RONM: Change to index_end() when code is stable */
if (bitmap_is_set(&(m_part_info->used_partitions), (file - m_file)))
if ((tmp= (*file)->ha_index_end()))
error= tmp;
} while (*(++file));
DBUG_RETURN(error);
}
/*
Read one record in an index scan and start an index scan
SYNOPSIS
index_read()
buf Read row in MySQL Row Format
key Key parts in consecutive order
key_len Total length of key parts
find_flag What type of key condition is used
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
index_read starts a new index scan using a start key. The MySQL Server
will check the end key on its own. Thus to function properly the
partitioned handler need to ensure that it delivers records in the sort
order of the MySQL Server.
index_read can be restarted without calling index_end on the previous
index scan and without calling index_init. In this case the index_read
is on the same index as the previous index_scan. This is particularly
used in conjuntion with multi read ranges.
*/
int ha_partition::index_read_map(uchar *buf, const uchar *key,
key_part_map keypart_map,
enum ha_rkey_function find_flag)
{
DBUG_ENTER("ha_partition::index_read_map");
end_range= 0;
m_index_scan_type= partition_index_read;
DBUG_RETURN(common_index_read(buf, key, keypart_map, find_flag));
}
/*
Common routine for a number of index_read variants
SYNOPSIS
common_index_read
see index_read for rest
*/
int ha_partition::common_index_read(uchar *buf, const uchar *key,
key_part_map keypart_map,
enum ha_rkey_function find_flag)
{
int error;
bool reverse_order= FALSE;
uint key_len= calculate_key_len(table, active_index, key, keypart_map);
DBUG_ENTER("ha_partition::common_index_read");
memcpy((void*)m_start_key.key, key, key_len);
m_start_key.keypart_map= keypart_map;
m_start_key.length= key_len;
m_start_key.flag= find_flag;
if ((error= partition_scan_set_up(buf, TRUE)))
{
DBUG_RETURN(error);
}
if (find_flag == HA_READ_PREFIX_LAST ||
find_flag == HA_READ_PREFIX_LAST_OR_PREV ||
find_flag == HA_READ_BEFORE_KEY)
{
reverse_order= TRUE;
m_ordered_scan_ongoing= TRUE;
}
if (!m_ordered_scan_ongoing ||
(find_flag == HA_READ_KEY_EXACT &&
(key_len >= m_curr_key_info->key_length ||
key_len == 0)))
{
/*
We use unordered index scan either when read_range is used and flag
is set to not use ordered or when an exact key is used and in this
case all records will be sorted equal and thus the sort order of the
resulting records doesn't matter.
We also use an unordered index scan when the number of partitions to
scan is only one.
The unordered index scan will use the partition set created.
Need to set unordered scan ongoing since we can come here even when
it isn't set.
*/
m_ordered_scan_ongoing= FALSE;
error= handle_unordered_scan_next_partition(buf);
}
else
{
/*
In all other cases we will use the ordered index scan. This will use
the partition set created by the get_partition_set method.
*/
error= handle_ordered_index_scan(buf, reverse_order);
}
DBUG_RETURN(error);
}
/*
Start an index scan from leftmost record and return first record
SYNOPSIS
index_first()
buf Read row in MySQL Row Format
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
index_first() asks for the first key in the index.
This is similar to index_read except that there is no start key since
the scan starts from the leftmost entry and proceeds forward with
index_next.
Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
and sql_select.cc.
*/
int ha_partition::index_first(uchar * buf)
{
DBUG_ENTER("ha_partition::index_first");
end_range= 0;
m_index_scan_type= partition_index_first;
DBUG_RETURN(common_first_last(buf));
}
/*
Start an index scan from rightmost record and return first record
SYNOPSIS
index_last()
buf Read row in MySQL Row Format
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
index_last() asks for the last key in the index.
This is similar to index_read except that there is no start key since
the scan starts from the rightmost entry and proceeds forward with
index_prev.
Called from opt_range.cc, opt_sum.cc, sql_handler.cc,
and sql_select.cc.
*/
int ha_partition::index_last(uchar * buf)
{
DBUG_ENTER("ha_partition::index_last");
m_index_scan_type= partition_index_last;
DBUG_RETURN(common_first_last(buf));
}
/*
Common routine for index_first/index_last
SYNOPSIS
common_index_first_last
see index_first for rest
*/
int ha_partition::common_first_last(uchar *buf)
{
int error;
if ((error= partition_scan_set_up(buf, FALSE)))
return error;
if (!m_ordered_scan_ongoing &&
m_index_scan_type != partition_index_last)
return handle_unordered_scan_next_partition(buf);
return handle_ordered_index_scan(buf, FALSE);
}
/*
Read last using key
SYNOPSIS
index_read_last()
buf Read row in MySQL Row Format
key Key
keypart_map Which part of key is used
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
This is used in join_read_last_key to optimise away an ORDER BY.
Can only be used on indexes supporting HA_READ_ORDER
*/
int ha_partition::index_read_last_map(uchar *buf, const uchar *key,
key_part_map keypart_map)
{
DBUG_ENTER("ha_partition::index_read_last");
m_ordered= TRUE; // Safety measure
end_range= 0;
m_index_scan_type= partition_index_read_last;
DBUG_RETURN(common_index_read(buf, key, keypart_map, HA_READ_PREFIX_LAST));
}
/*
Read next record in a forward index scan
SYNOPSIS
index_next()
buf Read row in MySQL Row Format
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
Used to read forward through the index.
*/
int ha_partition::index_next(uchar * buf)
{
DBUG_ENTER("ha_partition::index_next");
/*
TODO(low priority):
If we want partition to work with the HANDLER commands, we
must be able to do index_last() -> index_prev() -> index_next()
*/
DBUG_ASSERT(m_index_scan_type != partition_index_last);
if (!m_ordered_scan_ongoing)
{
DBUG_RETURN(handle_unordered_next(buf, FALSE));
}
DBUG_RETURN(handle_ordered_next(buf, FALSE));
}
/*
Read next record special
SYNOPSIS
index_next_same()
buf Read row in MySQL Row Format
key Key
keylen Length of key
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
This routine is used to read the next but only if the key is the same
as supplied in the call.
*/
int ha_partition::index_next_same(uchar *buf, const uchar *key, uint keylen)
{
DBUG_ENTER("ha_partition::index_next_same");
DBUG_ASSERT(keylen == m_start_key.length);
DBUG_ASSERT(m_index_scan_type != partition_index_last);
if (!m_ordered_scan_ongoing)
DBUG_RETURN(handle_unordered_next(buf, TRUE));
DBUG_RETURN(handle_ordered_next(buf, TRUE));
}
/*
Read next record when performing index scan backwards
SYNOPSIS
index_prev()
buf Read row in MySQL Row Format
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
Used to read backwards through the index.
*/
int ha_partition::index_prev(uchar * buf)
{
DBUG_ENTER("ha_partition::index_prev");
/* TODO: read comment in index_next */
DBUG_ASSERT(m_index_scan_type != partition_index_first);
DBUG_RETURN(handle_ordered_prev(buf));
}
/*
Start a read of one range with start and end key
SYNOPSIS
read_range_first()
start_key Specification of start key
end_key Specification of end key
eq_range_arg Is it equal range
sorted Should records be returned in sorted order
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
We reimplement read_range_first since we don't want the compare_key
check at the end. This is already performed in the partition handler.
read_range_next is very much different due to that we need to scan
all underlying handlers.
*/
int ha_partition::read_range_first(const key_range *start_key,
const key_range *end_key,
bool eq_range_arg, bool sorted)
{
int error;
DBUG_ENTER("ha_partition::read_range_first");
m_ordered= sorted;
eq_range= eq_range_arg;
end_range= 0;
if (end_key)
{
end_range= &save_end_range;
save_end_range= *end_key;
key_compare_result_on_equal=
((end_key->flag == HA_READ_BEFORE_KEY) ? 1 :
(end_key->flag == HA_READ_AFTER_KEY) ? -1 : 0);
}
range_key_part= m_curr_key_info->key_part;
if (!start_key) // Read first record
{
if (m_ordered)
m_index_scan_type= partition_index_first;
else
m_index_scan_type= partition_index_first_unordered;
error= common_first_last(m_rec0);
}
else
{
m_index_scan_type= partition_index_read;
error= common_index_read(m_rec0,
start_key->key,
start_key->keypart_map, start_key->flag);
}
DBUG_RETURN(error);
}
/*
Read next record in read of a range with start and end key
SYNOPSIS
read_range_next()
RETURN VALUE
>0 Error code
0 Success
*/
int ha_partition::read_range_next()
{
DBUG_ENTER("ha_partition::read_range_next");
if (m_ordered)
{
DBUG_RETURN(handler::read_range_next());
}
DBUG_RETURN(handle_unordered_next(m_rec0, eq_range));
}
/*
Common routine to set up scans
SYNOPSIS
buf Buffer to later return record in
idx_read_flag Is it index scan
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
This is where we check which partitions to actually scan if not all
of them
*/
int ha_partition::partition_scan_set_up(uchar * buf, bool idx_read_flag)
{
DBUG_ENTER("ha_partition::partition_scan_set_up");
if (idx_read_flag)
get_partition_set(table,buf,active_index,&m_start_key,&m_part_spec);
else
{
m_part_spec.start_part= 0;
m_part_spec.end_part= m_tot_parts - 1;
}
if (m_part_spec.start_part > m_part_spec.end_part)
{
/*
We discovered a partition set but the set was empty so we report
key not found.
*/
DBUG_PRINT("info", ("scan with no partition to scan"));
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
if (m_part_spec.start_part == m_part_spec.end_part)
{
/*
We discovered a single partition to scan, this never needs to be
performed using the ordered index scan.
*/
DBUG_PRINT("info", ("index scan using the single partition %d",
m_part_spec.start_part));
m_ordered_scan_ongoing= FALSE;
}
else
{
/*
Set m_ordered_scan_ongoing according how the scan should be done
Only exact partitions are discovered atm by get_partition_set.
Verify this, also bitmap must have at least one bit set otherwise
the result from this table is the empty set.
*/
uint start_part= bitmap_get_first_set(&(m_part_info->used_partitions));
if (start_part == MY_BIT_NONE)
{
DBUG_PRINT("info", ("scan with no partition to scan"));
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
if (start_part > m_part_spec.start_part)
m_part_spec.start_part= start_part;
DBUG_ASSERT(m_part_spec.start_part < m_tot_parts);
m_ordered_scan_ongoing= m_ordered;
}
DBUG_ASSERT(m_part_spec.start_part < m_tot_parts &&
m_part_spec.end_part < m_tot_parts);
DBUG_RETURN(0);
}
/****************************************************************************
Unordered Index Scan Routines
****************************************************************************/
/*
Common routine to handle index_next with unordered results
SYNOPSIS
handle_unordered_next()
out:buf Read row in MySQL Row Format
next_same Called from index_next_same
RETURN VALUE
HA_ERR_END_OF_FILE End of scan
0 Success
other Error code
DESCRIPTION
These routines are used to scan partitions without considering order.
This is performed in two situations.
1) In read_multi_range this is the normal case
2) When performing any type of index_read, index_first, index_last where
all fields in the partition function is bound. In this case the index
scan is performed on only one partition and thus it isn't necessary to
perform any sort.
*/
int ha_partition::handle_unordered_next(uchar *buf, bool is_next_same)
{
handler *file= file= m_file[m_part_spec.start_part];
int error;
DBUG_ENTER("ha_partition::handle_unordered_next");
/*
We should consider if this should be split into two functions as
next_same is alwas a local constant
*/
if (is_next_same)
{
if (!(error= file->index_next_same(buf, m_start_key.key,
m_start_key.length)))
{
m_last_part= m_part_spec.start_part;
DBUG_RETURN(0);
}
}
else if (!(error= file->index_next(buf)))
{
if (!(file->table_flags() & HA_READ_ORDER) ||
compare_key(end_range) <= 0)
{
m_last_part= m_part_spec.start_part;
DBUG_RETURN(0); // Row was in range
}
error= HA_ERR_END_OF_FILE;
}
if (error == HA_ERR_END_OF_FILE)
{
m_part_spec.start_part++; // Start using next part
error= handle_unordered_scan_next_partition(buf);
}
DBUG_RETURN(error);
}
/*
Handle index_next when changing to new partition
SYNOPSIS
handle_unordered_scan_next_partition()
buf Read row in MySQL Row Format
RETURN VALUE
HA_ERR_END_OF_FILE End of scan
0 Success
other Error code
DESCRIPTION
This routine is used to start the index scan on the next partition.
Both initial start and after completing scan on one partition.
*/
int ha_partition::handle_unordered_scan_next_partition(uchar * buf)
{
uint i;
DBUG_ENTER("ha_partition::handle_unordered_scan_next_partition");
for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
{
int error;
handler *file;
if (!(bitmap_is_set(&(m_part_info->used_partitions), i)))
continue;
file= m_file[i];
m_part_spec.start_part= i;
switch (m_index_scan_type) {
case partition_index_read:
DBUG_PRINT("info", ("index_read on partition %d", i));
error= file->index_read_map(buf, m_start_key.key,
m_start_key.keypart_map,
m_start_key.flag);
break;
case partition_index_first:
DBUG_PRINT("info", ("index_first on partition %d", i));
error= file->index_first(buf);
break;
case partition_index_first_unordered:
/*
We perform a scan without sorting and this means that we
should not use the index_first since not all handlers
support it and it is also unnecessary to restrict sort
order.
*/
DBUG_PRINT("info", ("read_range_first on partition %d", i));
table->record[0]= buf;
error= file->read_range_first(0, end_range, eq_range, 0);
table->record[0]= m_rec0;
break;
default:
DBUG_ASSERT(FALSE);
DBUG_RETURN(1);
}
if (!error)
{
if (!(file->table_flags() & HA_READ_ORDER) ||
compare_key(end_range) <= 0)
{
m_last_part= i;
DBUG_RETURN(0);
}
error= HA_ERR_END_OF_FILE;
}
if ((error != HA_ERR_END_OF_FILE) && (error != HA_ERR_KEY_NOT_FOUND))
DBUG_RETURN(error);
DBUG_PRINT("info", ("HA_ERR_END_OF_FILE on partition %d", i));
}
m_part_spec.start_part= NO_CURRENT_PART_ID;
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
/*
Common routine to start index scan with ordered results
SYNOPSIS
handle_ordered_index_scan()
out:buf Read row in MySQL Row Format
RETURN VALUE
HA_ERR_END_OF_FILE End of scan
0 Success
other Error code
DESCRIPTION
This part contains the logic to handle index scans that require ordered
output. This includes all except those started by read_range_first with
the flag ordered set to FALSE. Thus most direct index_read and all
index_first and index_last.
We implement ordering by keeping one record plus a key buffer for each
partition. Every time a new entry is requested we will fetch a new
entry from the partition that is currently not filled with an entry.
Then the entry is put into its proper sort position.
Returning a record is done by getting the top record, copying the
record to the request buffer and setting the partition as empty on
entries.
*/
int ha_partition::handle_ordered_index_scan(uchar *buf, bool reverse_order)
{
uint i;
uint j= 0;
bool found= FALSE;
DBUG_ENTER("ha_partition::handle_ordered_index_scan");
m_top_entry= NO_CURRENT_PART_ID;
queue_remove_all(&m_queue);
DBUG_PRINT("info", ("m_part_spec.start_part %d", m_part_spec.start_part));
for (i= m_part_spec.start_part; i <= m_part_spec.end_part; i++)
{
if (!(bitmap_is_set(&(m_part_info->used_partitions), i)))
continue;
uchar *rec_buf_ptr= rec_buf(i);
int error;
handler *file= m_file[i];
switch (m_index_scan_type) {
case partition_index_read:
error= file->index_read_map(rec_buf_ptr,
m_start_key.key,
m_start_key.keypart_map,
m_start_key.flag);
break;
case partition_index_first:
error= file->index_first(rec_buf_ptr);
reverse_order= FALSE;
break;
case partition_index_last:
error= file->index_last(rec_buf_ptr);
reverse_order= TRUE;
break;
case partition_index_read_last:
error= file->index_read_last_map(rec_buf_ptr,
m_start_key.key,
m_start_key.keypart_map);
reverse_order= TRUE;
break;
default:
DBUG_ASSERT(FALSE);
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
if (!error)
{
found= TRUE;
/*
Initialise queue without order first, simply insert
*/
queue_element(&m_queue, j++)= (uchar*)queue_buf(i);
}
else if (error != HA_ERR_KEY_NOT_FOUND && error != HA_ERR_END_OF_FILE)
{
DBUG_RETURN(error);
}
}
if (found)
{
/*
We found at least one partition with data, now sort all entries and
after that read the first entry and copy it to the buffer to return in.
*/
queue_set_max_at_top(&m_queue, reverse_order);
queue_set_cmp_arg(&m_queue, (void*)m_curr_key_info);
m_queue.elements= j;
queue_fix(&m_queue);
return_top_record(buf);
table->status= 0;
DBUG_PRINT("info", ("Record returned from partition %d", m_top_entry));
DBUG_RETURN(0);
}
DBUG_RETURN(HA_ERR_END_OF_FILE);
}
/*
Return the top record in sort order
SYNOPSIS
return_top_record()
out:buf Row returned in MySQL Row Format
RETURN VALUE
NONE
*/
void ha_partition::return_top_record(uchar *buf)
{
uint part_id;
uchar *key_buffer= queue_top(&m_queue);
uchar *rec_buffer= key_buffer + PARTITION_BYTES_IN_POS;
part_id= uint2korr(key_buffer);
memcpy(buf, rec_buffer, m_rec_length);
m_last_part= part_id;
m_top_entry= part_id;
}
/*
Common routine to handle index_next with ordered results
SYNOPSIS
handle_ordered_next()
out:buf Read row in MySQL Row Format
next_same Called from index_next_same
RETURN VALUE
HA_ERR_END_OF_FILE End of scan
0 Success
other Error code
*/
int ha_partition::handle_ordered_next(uchar *buf, bool is_next_same)
{
int error;
uint part_id= m_top_entry;
handler *file= m_file[part_id];
DBUG_ENTER("ha_partition::handle_ordered_next");
if (!is_next_same)
error= file->index_next(rec_buf(part_id));
else
error= file->index_next_same(rec_buf(part_id), m_start_key.key,
m_start_key.length);
if (error)
{
if (error == HA_ERR_END_OF_FILE)
{
/* Return next buffered row */
queue_remove(&m_queue, (uint) 0);
if (m_queue.elements)
{
DBUG_PRINT("info", ("Record returned from partition %u (2)",
m_top_entry));
return_top_record(buf);
table->status= 0;
error= 0;
}
}
DBUG_RETURN(error);
}
queue_replaced(&m_queue);
return_top_record(buf);
DBUG_PRINT("info", ("Record returned from partition %u", m_top_entry));
DBUG_RETURN(0);
}
/*
Common routine to handle index_prev with ordered results
SYNOPSIS
handle_ordered_prev()
out:buf Read row in MySQL Row Format
RETURN VALUE
HA_ERR_END_OF_FILE End of scan
0 Success
other Error code
*/
int ha_partition::handle_ordered_prev(uchar *buf)
{
int error;
uint part_id= m_top_entry;
handler *file= m_file[part_id];
DBUG_ENTER("ha_partition::handle_ordered_prev");
if ((error= file->index_prev(rec_buf(part_id))))
{
if (error == HA_ERR_END_OF_FILE)
{
queue_remove(&m_queue, (uint) 0);
if (m_queue.elements)
{
return_top_record(buf);
DBUG_PRINT("info", ("Record returned from partition %d (2)",
m_top_entry));
error= 0;
table->status= 0;
}
}
DBUG_RETURN(error);
}
queue_replaced(&m_queue);
return_top_record(buf);
DBUG_PRINT("info", ("Record returned from partition %d", m_top_entry));
DBUG_RETURN(0);
}
/****************************************************************************
MODULE information calls
****************************************************************************/
/*
These are all first approximations of the extra, info, scan_time
and read_time calls
*/
/*
General method to gather info from handler
SYNOPSIS
info()
flag Specifies what info is requested
RETURN VALUE
NONE
DESCRIPTION
::info() is used to return information to the optimizer.
Currently this table handler doesn't implement most of the fields
really needed. SHOW also makes use of this data
Another note, if your handler doesn't proved exact record count,
you will probably want to have the following in your code:
if (records < 2)
records = 2;
The reason is that the server will optimize for cases of only a single
record. If in a table scan you don't know the number of records
it will probably be better to set records to two so you can return
as many records as you need.
Along with records a few more variables you may wish to set are:
records
deleted
data_file_length
index_file_length
delete_length
check_time
Take a look at the public variables in handler.h for more information.
Called in:
filesort.cc
ha_heap.cc
item_sum.cc
opt_sum.cc
sql_delete.cc
sql_delete.cc
sql_derived.cc
sql_select.cc
sql_select.cc
sql_select.cc
sql_select.cc
sql_select.cc
sql_show.cc
sql_show.cc
sql_show.cc
sql_show.cc
sql_table.cc
sql_union.cc
sql_update.cc
Some flags that are not implemented
HA_STATUS_POS:
This parameter is never used from the MySQL Server. It is checked in a
place in MyISAM so could potentially be used by MyISAM specific
programs.
HA_STATUS_NO_LOCK:
This is declared and often used. It's only used by MyISAM.
It means that MySQL doesn't need the absolute latest statistics
information. This may save the handler from doing internal locks while
retrieving statistics data.
*/
int ha_partition::info(uint flag)
{
handler *file, **file_array;
DBUG_ENTER("ha_partition:info");
if (flag & HA_STATUS_AUTO)
{
ulonglong auto_increment_value= 0;
DBUG_PRINT("info", ("HA_STATUS_AUTO"));
file_array= m_file;
do
{
file= *file_array;
file->info(HA_STATUS_AUTO);
set_if_bigger(auto_increment_value, file->stats.auto_increment_value);
} while (*(++file_array));
stats.auto_increment_value= auto_increment_value;
}
if (flag & HA_STATUS_VARIABLE)
{
DBUG_PRINT("info", ("HA_STATUS_VARIABLE"));
/*
Calculates statistical variables
records: Estimate of number records in table
We report sum (always at least 2)
deleted: Estimate of number holes in the table due to
deletes
We report sum
data_file_length: Length of data file, in principle bytes in table
We report sum
index_file_length: Length of index file, in principle bytes in
indexes in the table
We report sum
delete_length: Length of free space easily used by new records in table
We report sum
mean_record_length:Mean record length in the table
We calculate this
check_time: Time of last check (only applicable to MyISAM)
We report last time of all underlying handlers
*/
stats.records= 0;
stats.deleted= 0;
stats.data_file_length= 0;
stats.index_file_length= 0;
stats.check_time= 0;
stats.delete_length= 0;
file_array= m_file;
do
{
if (bitmap_is_set(&(m_part_info->used_partitions), (file_array - m_file)))
{
file= *file_array;
file->info(HA_STATUS_VARIABLE);
stats.records+= file->stats.records;
stats.deleted+= file->stats.deleted;
stats.data_file_length+= file->stats.data_file_length;
stats.index_file_length+= file->stats.index_file_length;
stats.delete_length+= file->stats.delete_length;
if (file->stats.check_time > stats.check_time)
stats.check_time= file->stats.check_time;
}
} while (*(++file_array));
if (stats.records < 2 &&
!(m_table_flags & HA_STATS_RECORDS_IS_EXACT))
stats.records= 2;
if (stats.records > 0)
stats.mean_rec_length= (ulong) (stats.data_file_length / stats.records);
else
stats.mean_rec_length= 1; //? What should we set here
}
if (flag & HA_STATUS_CONST)
{
DBUG_PRINT("info", ("HA_STATUS_CONST"));
/*
Recalculate loads of constant variables. MyISAM also sets things
directly on the table share object.
Check whether this should be fixed since handlers should not
change things directly on the table object.
Monty comment: This should NOT be changed! It's the handlers
responsibility to correct table->s->keys_xxxx information if keys
have been disabled.
The most important parameters set here is records per key on
all indexes. block_size and primar key ref_length.
For each index there is an array of rec_per_key.
As an example if we have an index with three attributes a,b and c
we will have an array of 3 rec_per_key.
rec_per_key[0] is an estimate of number of records divided by
number of unique values of the field a.
rec_per_key[1] is an estimate of the number of records divided
by the number of unique combinations of the fields a and b.
rec_per_key[2] is an estimate of the number of records divided
by the number of unique combinations of the fields a,b and c.
Many handlers only set the value of rec_per_key when all fields
are bound (rec_per_key[2] in the example above).
If the handler doesn't support statistics, it should set all of the
above to 0.
We will allow the first handler to set the rec_per_key and use
this as an estimate on the total table.
max_data_file_length: Maximum data file length
We ignore it, is only used in
SHOW TABLE STATUS
max_index_file_length: Maximum index file length
We ignore it since it is never used
block_size: Block size used
We set it to the value of the first handler
ref_length: We set this to the value calculated
and stored in local object
create_time: Creation time of table
Set by first handler
So we calculate these constants by using the variables on the first
handler.
*/
file= m_file[0];
file->info(HA_STATUS_CONST);
stats.create_time= file->stats.create_time;
ref_length= m_ref_length;
}
if (flag & HA_STATUS_ERRKEY)
{
handler *file= m_file[m_last_part];
DBUG_PRINT("info", ("info: HA_STATUS_ERRKEY"));
/*
This flag is used to get index number of the unique index that
reported duplicate key
We will report the errkey on the last handler used and ignore the rest
*/
file->info(HA_STATUS_ERRKEY);
if (file->errkey != (uint) -1)
errkey= file->errkey;
}
if (flag & HA_STATUS_TIME)
{
DBUG_PRINT("info", ("info: HA_STATUS_TIME"));
/*
This flag is used to set the latest update time of the table.
Used by SHOW commands
We will report the maximum of these times
*/
stats.update_time= 0;
file_array= m_file;
do
{
file= *file_array;
file->info(HA_STATUS_TIME);
if (file->stats.update_time > stats.update_time)
stats.update_time= file->stats.update_time;
} while (*(++file_array));
}
DBUG_RETURN(0);
}
void ha_partition::get_dynamic_partition_info(PARTITION_INFO *stat_info,
uint part_id)
{
handler *file= m_file[part_id];
file->info(HA_STATUS_CONST | HA_STATUS_TIME | HA_STATUS_VARIABLE |
HA_STATUS_NO_LOCK);
stat_info->records= file->stats.records;
stat_info->mean_rec_length= file->stats.mean_rec_length;
stat_info->data_file_length= file->stats.data_file_length;
stat_info->max_data_file_length= file->stats.max_data_file_length;
stat_info->index_file_length= file->stats.index_file_length;
stat_info->delete_length= file->stats.delete_length;
stat_info->create_time= file->stats.create_time;
stat_info->update_time= file->stats.update_time;
stat_info->check_time= file->stats.check_time;
stat_info->check_sum= 0;
if (file->ha_table_flags() & HA_HAS_CHECKSUM)
stat_info->check_sum= file->checksum();
return;
}
/*
General function to prepare handler for certain behavior
SYNOPSIS
extra()
operation Operation type for extra call
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
extra() is called whenever the server wishes to send a hint to
the storage engine. The MyISAM engine implements the most hints.
We divide the parameters into the following categories:
1) Parameters used by most handlers
2) Parameters used by some non-MyISAM handlers
3) Parameters used only by MyISAM
4) Parameters only used by temporary tables for query processing
5) Parameters only used by MyISAM internally
6) Parameters not used at all
7) Parameters only used by federated tables for query processing
8) Parameters only used by NDB
The partition handler need to handle category 1), 2) and 3).
1) Parameters used by most handlers
-----------------------------------
HA_EXTRA_RESET:
This option is used by most handlers and it resets the handler state
to the same state as after an open call. This includes releasing
any READ CACHE or WRITE CACHE or other internal buffer used.
It is called from the reset method in the handler interface. There are
three instances where this is called.
1) After completing a INSERT ... SELECT ... query the handler for the
table inserted into is reset
2) It is called from close_thread_table which in turn is called from
close_thread_tables except in the case where the tables are locked
in which case ha_commit_stmt is called instead.
It is only called from here if refresh_version hasn't changed and the
table is not an old table when calling close_thread_table.
close_thread_tables is called from many places as a general clean up
function after completing a query.
3) It is called when deleting the QUICK_RANGE_SELECT object if the
QUICK_RANGE_SELECT object had its own handler object. It is called
immediatley before close of this local handler object.
HA_EXTRA_KEYREAD:
HA_EXTRA_NO_KEYREAD:
These parameters are used to provide an optimisation hint to the handler.
If HA_EXTRA_KEYREAD is set it is enough to read the index fields, for
many handlers this means that the index-only scans can be used and it
is not necessary to use the real records to satisfy this part of the
query. Index-only scans is a very important optimisation for disk-based
indexes. For main-memory indexes most indexes contain a reference to the
record and thus KEYREAD only says that it is enough to read key fields.
HA_EXTRA_NO_KEYREAD disables this for the handler, also HA_EXTRA_RESET
will disable this option.
The handler will set HA_KEYREAD_ONLY in its table flags to indicate this
feature is supported.
HA_EXTRA_FLUSH:
Indication to flush tables to disk, is supposed to be used to
ensure disk based tables are flushed at end of query execution.
Currently is never used.
2) Parameters used by some non-MyISAM handlers
----------------------------------------------
HA_EXTRA_KEYREAD_PRESERVE_FIELDS:
This is a strictly InnoDB feature that is more or less undocumented.
When it is activated InnoDB copies field by field from its fetch
cache instead of all fields in one memcpy. Have no idea what the
purpose of this is.
Cut from include/my_base.h:
When using HA_EXTRA_KEYREAD, overwrite only key member fields and keep
other fields intact. When this is off (by default) InnoDB will use memcpy
to overwrite entire row.
HA_EXTRA_IGNORE_DUP_KEY:
HA_EXTRA_NO_IGNORE_DUP_KEY:
Informs the handler to we will not stop the transaction if we get an
duplicate key errors during insert/upate.
Always called in pair, triggered by INSERT IGNORE and other similar
SQL constructs.
Not used by MyISAM.
3) Parameters used only by MyISAM
---------------------------------
HA_EXTRA_NORMAL:
Only used in MyISAM to reset quick mode, not implemented by any other
handler. Quick mode is also reset in MyISAM by HA_EXTRA_RESET.
It is called after completing a successful DELETE query if the QUICK
option is set.
HA_EXTRA_QUICK:
When the user does DELETE QUICK FROM table where-clause; this extra
option is called before the delete query is performed and
HA_EXTRA_NORMAL is called after the delete query is completed.
Temporary tables used internally in MySQL always set this option
The meaning of quick mode is that when deleting in a B-tree no merging
of leafs is performed. This is a common method and many large DBMS's
actually only support this quick mode since it is very difficult to
merge leaves in a tree used by many threads concurrently.
HA_EXTRA_CACHE:
This flag is usually set with extra_opt along with a cache size.
The size of this buffer is set by the user variable
record_buffer_size. The value of this cache size is the amount of
data read from disk in each fetch when performing a table scan.
This means that before scanning a table it is normal to call
extra with HA_EXTRA_CACHE and when the scan is completed to call
HA_EXTRA_NO_CACHE to release the cache memory.
Some special care is taken when using this extra parameter since there
could be a write ongoing on the table in the same statement. In this
one has to take special care since there might be a WRITE CACHE as
well. HA_EXTRA_CACHE specifies using a READ CACHE and using
READ CACHE and WRITE CACHE at the same time is not possible.
Only MyISAM currently use this option.
It is set when doing full table scans using rr_sequential and
reset when completing such a scan with end_read_record
(resetting means calling extra with HA_EXTRA_NO_CACHE).
It is set in filesort.cc for MyISAM internal tables and it is set in
a multi-update where HA_EXTRA_CACHE is called on a temporary result
table and after that ha_rnd_init(0) on table to be updated
and immediately after that HA_EXTRA_NO_CACHE on table to be updated.
Apart from that it is always used from init_read_record but not when
used from UPDATE statements. It is not used from DELETE statements
with ORDER BY and LIMIT but it is used in normal scan loop in DELETE
statements. The reason here is that DELETE's in MyISAM doesn't move
existings data rows.
It is also set in copy_data_between_tables when scanning the old table
to copy over to the new table.
And it is set in join_init_read_record where quick objects are used
to perform a scan on the table. In this case the full table scan can
even be performed multiple times as part of the nested loop join.
For purposes of the partition handler it is obviously necessary to have
special treatment of this extra call. If we would simply pass this
extra call down to each handler we would allocate
cache size * no of partitions amount of memory and this is not
necessary since we will only scan one partition at a time when doing
full table scans.
Thus we treat it by first checking whether we have MyISAM handlers in
the table, if not we simply ignore the call and if we have we will
record the call but will not call any underlying handler yet. Then
when performing the sequential scan we will check this recorded value
and call extra_opt whenever we start scanning a new partition.
monty: Neads to be fixed so that it's passed to all handlers when we
move to another partition during table scan.
HA_EXTRA_NO_CACHE:
When performing a UNION SELECT HA_EXTRA_NO_CACHE is called from the
flush method in the select_union class.
It is used to some extent when insert delayed inserts.
See HA_EXTRA_RESET_STATE for use in conjunction with delete_all_rows().
It should be ok to call HA_EXTRA_NO_CACHE on all underlying handlers
if they are MyISAM handlers. Other handlers we can ignore the call
for. If no cache is in use they will quickly return after finding
this out. And we also ensure that all caches are disabled and no one
is left by mistake.
In the future this call will probably be deleted an we will instead call
::reset();
HA_EXTRA_WRITE_CACHE:
See above, called from various places. It is mostly used when we
do INSERT ... SELECT
No special handling to save cache space is developed currently.
HA_EXTRA_PREPARE_FOR_UPDATE:
This is called as part of a multi-table update. When the table to be
updated is also scanned then this informs MyISAM handler to drop any
caches if dynamic records are used (fixed size records do not care
about this call). We pass this along to all underlying MyISAM handlers
and ignore it for the rest.
HA_EXTRA_PREPARE_FOR_DELETE:
Only used by MyISAM, called in preparation for a DROP TABLE.
It's used mostly by Windows that cannot handle dropping an open file.
On other platforms it has the same effect as HA_EXTRA_FORCE_REOPEN.
HA_EXTRA_READCHECK:
HA_EXTRA_NO_READCHECK:
Only one call to HA_EXTRA_NO_READCHECK from ha_open where it says that
this is not needed in SQL. The reason for this call is that MyISAM sets
the READ_CHECK_USED in the open call so the call is needed for MyISAM
to reset this feature.
The idea with this parameter was to inform of doing/not doing a read
check before applying an update. Since SQL always performs a read before
applying the update No Read Check is needed in MyISAM as well.
This is a cut from Docs/myisam.txt
Sometimes you might want to force an update without checking whether
another user has changed the record since you last read it. This is
somewhat dangerous, so it should ideally not be used. That can be
accomplished by wrapping the mi_update() call in two calls to mi_extra(),
using these functions:
HA_EXTRA_NO_READCHECK=5 No readcheck on update
HA_EXTRA_READCHECK=6 Use readcheck (def)
HA_EXTRA_FORCE_REOPEN:
Only used by MyISAM, called when altering table, closing tables to
enforce a reopen of the table files.
4) Parameters only used by temporary tables for query processing
----------------------------------------------------------------
HA_EXTRA_RESET_STATE:
Same as reset() except that buffers are not released. If there is
a READ CACHE it is reinit'ed. A cache is reinit'ed to restart reading
or to change type of cache between READ CACHE and WRITE CACHE.
This extra function is always called immediately before calling
delete_all_rows on the handler for temporary tables.
There are cases however when HA_EXTRA_RESET_STATE isn't called in
a similar case for a temporary table in sql_union.cc and in two other
cases HA_EXTRA_NO_CACHE is called before and HA_EXTRA_WRITE_CACHE
called afterwards.
The case with HA_EXTRA_NO_CACHE and HA_EXTRA_WRITE_CACHE means
disable caching, delete all rows and enable WRITE CACHE. This is
used for temporary tables containing distinct sums and a
functional group.
The only case that delete_all_rows is called on non-temporary tables
is in sql_delete.cc when DELETE FROM table; is called by a user.
In this case no special extra calls are performed before or after this
call.
The partition handler should not need to bother about this one. It
should never be called.
HA_EXTRA_NO_ROWS:
Don't insert rows indication to HEAP and MyISAM, only used by temporary
tables used in query processing.
Not handled by partition handler.
5) Parameters only used by MyISAM internally
--------------------------------------------
HA_EXTRA_REINIT_CACHE:
This call reinitialises the READ CACHE described above if there is one
and otherwise the call is ignored.
We can thus safely call it on all underlying handlers if they are
MyISAM handlers. It is however never called so we don't handle it at all.
HA_EXTRA_FLUSH_CACHE:
Flush WRITE CACHE in MyISAM. It is only from one place in the code.
This is in sql_insert.cc where it is called if the table_flags doesn't
contain HA_DUPLICATE_POS. The only handler having the HA_DUPLICATE_POS
set is the MyISAM handler and so the only handler not receiving this
call is MyISAM.
Thus in effect this call is called but never used. Could be removed
from sql_insert.cc
HA_EXTRA_NO_USER_CHANGE:
Only used by MyISAM, never called.
Simulates lock_type as locked.
HA_EXTRA_WAIT_LOCK:
HA_EXTRA_WAIT_NOLOCK:
Only used by MyISAM, called from MyISAM handler but never from server
code on top of the handler.
Sets lock_wait on/off
HA_EXTRA_NO_KEYS:
Only used MyISAM, only used internally in MyISAM handler, never called
from server level.
HA_EXTRA_KEYREAD_CHANGE_POS:
HA_EXTRA_REMEMBER_POS:
HA_EXTRA_RESTORE_POS:
HA_EXTRA_PRELOAD_BUFFER_SIZE:
HA_EXTRA_CHANGE_KEY_TO_DUP:
HA_EXTRA_CHANGE_KEY_TO_UNIQUE:
Only used by MyISAM, never called.
6) Parameters not used at all
-----------------------------
HA_EXTRA_KEY_CACHE:
HA_EXTRA_NO_KEY_CACHE:
This parameters are no longer used and could be removed.
7) Parameters only used by federated tables for query processing
----------------------------------------------------------------
HA_EXTRA_INSERT_WITH_UPDATE:
Inform handler that an "INSERT...ON DUPLICATE KEY UPDATE" will be
executed. This condition is unset by HA_EXTRA_NO_IGNORE_DUP_KEY.
8) Parameters only used by NDB
------------------------------
HA_EXTRA_DELETE_CANNOT_BATCH:
HA_EXTRA_UPDATE_CANNOT_BATCH:
Inform handler that delete_row()/update_row() cannot batch deletes/updates
and should perform them immediately. This may be needed when table has
AFTER DELETE/UPDATE triggers which access to subject table.
These flags are reset by the handler::extra(HA_EXTRA_RESET) call.
*/
int ha_partition::extra(enum ha_extra_function operation)
{
DBUG_ENTER("ha_partition:extra");
DBUG_PRINT("info", ("operation: %d", (int) operation));
switch (operation) {
/* Category 1), used by most handlers */
case HA_EXTRA_KEYREAD:
case HA_EXTRA_NO_KEYREAD:
case HA_EXTRA_FLUSH:
DBUG_RETURN(loop_extra(operation));
/* Category 2), used by non-MyISAM handlers */
case HA_EXTRA_IGNORE_DUP_KEY:
case HA_EXTRA_NO_IGNORE_DUP_KEY:
case HA_EXTRA_KEYREAD_PRESERVE_FIELDS:
{
if (!m_myisam)
DBUG_RETURN(loop_extra(operation));
break;
}
/* Category 3), used by MyISAM handlers */
case HA_EXTRA_PREPARE_FOR_DELETE:
DBUG_RETURN(prepare_for_delete());
break;
case HA_EXTRA_NORMAL:
case HA_EXTRA_QUICK:
case HA_EXTRA_NO_READCHECK:
case HA_EXTRA_PREPARE_FOR_UPDATE:
case HA_EXTRA_FORCE_REOPEN:
case HA_EXTRA_FLUSH_CACHE:
{
if (m_myisam)
DBUG_RETURN(loop_extra(operation));
break;
}
case HA_EXTRA_CACHE:
{
prepare_extra_cache(0);
break;
}
case HA_EXTRA_NO_CACHE:
case HA_EXTRA_WRITE_CACHE:
{
m_extra_cache= FALSE;
m_extra_cache_size= 0;
DBUG_RETURN(loop_extra(operation));
}
case HA_EXTRA_IGNORE_NO_KEY:
case HA_EXTRA_NO_IGNORE_NO_KEY:
{
/*
Ignore as these are specific to NDB for handling
idempotency
*/
break;
}
case HA_EXTRA_WRITE_CAN_REPLACE:
case HA_EXTRA_WRITE_CANNOT_REPLACE:
{
/*
Informs handler that write_row() can replace rows which conflict
with row being inserted by PK/unique key without reporting error
to the SQL-layer.
This optimization is not safe for partitioned table in general case
since we may have to put new version of row into partition which is
different from partition in which old version resides (for example
when we partition by non-PK column or by some column which is not
part of unique key which were violated).
And since NDB which is the only engine at the moment that supports
this optimization handles partitioning on its own we simple disable
it here. (BTW for NDB this optimization is safe since it supports
only KEY partitioning and won't use this optimization for tables
which have additional unique constraints).
*/
break;
}
/* Category 7), used by federated handlers */
case HA_EXTRA_INSERT_WITH_UPDATE:
DBUG_RETURN(loop_extra(operation));
/* Category 8) Parameters only used by NDB */
case HA_EXTRA_DELETE_CANNOT_BATCH:
case HA_EXTRA_UPDATE_CANNOT_BATCH:
{
/* Currently only NDB use the *_CANNOT_BATCH */
break;
}
default:
{
/* Temporary crash to discover what is wrong */
DBUG_ASSERT(0);
break;
}
}
DBUG_RETURN(0);
}
/*
Special extra call to reset extra parameters
SYNOPSIS
reset()
RETURN VALUE
>0 Error code
0 Success
DESCRIPTION
Called at end of each statement to reste buffers
*/
int ha_partition::reset(void)
{
int result= 0, tmp;
handler **file;
DBUG_ENTER("ha_partition::reset");
if (m_part_info)
bitmap_set_all(&m_part_info->used_partitions);
file= m_file;
do
{
if ((tmp= (*file)->reset()))
result= tmp;
} while (*(++file));
DBUG_RETURN(result);
}
/*
Special extra method for HA_EXTRA_CACHE with cachesize as extra parameter
SYNOPSIS
extra_opt()
operation Must be HA_EXTRA_CACHE
cachesize Size of cache in full table scan
RETURN VALUE
>0 Error code
0 Success
*/
int ha_partition::extra_opt(enum ha_extra_function operation, ulong cachesize)
{
DBUG_ENTER("ha_partition::extra_opt()");
DBUG_ASSERT(HA_EXTRA_CACHE == operation);
prepare_extra_cache(cachesize);
DBUG_RETURN(0);
}
/*
Call extra on handler with HA_EXTRA_CACHE and cachesize
SYNOPSIS
prepare_extra_cache()
cachesize Size of cache for full table scan
RETURN VALUE
NONE
*/
void ha_partition::prepare_extra_cache(uint cachesize)
{
DBUG_ENTER("ha_partition::prepare_extra_cache()");
m_extra_cache= TRUE;
m_extra_cache_size= cachesize;
if (m_part_spec.start_part != NO_CURRENT_PART_ID)
{
late_extra_cache(m_part_spec.start_part);
}
DBUG_VOID_RETURN;
}
/*
Prepares our new and reorged handlers for rename or delete
SYNOPSIS
prepare_for_delete()
RETURN VALUE
>0 Error code
0 Success
*/
int ha_partition::prepare_for_delete()
{
int result= 0, tmp;
handler **file;
DBUG_ENTER("ha_partition::prepare_for_delete()");
if (m_new_file != NULL)
{
for (file= m_new_file; *file; file++)
if ((tmp= (*file)->extra(HA_EXTRA_PREPARE_FOR_DELETE)))
result= tmp;
for (file= m_reorged_file; *file; file++)
if ((tmp= (*file)->extra(HA_EXTRA_PREPARE_FOR_DELETE)))
result= tmp;
DBUG_RETURN(result);
}
DBUG_RETURN(loop_extra(HA_EXTRA_PREPARE_FOR_DELETE));
}
/*
Call extra on all partitions
SYNOPSIS
loop_extra()
operation extra operation type
RETURN VALUE
>0 Error code
0 Success
*/
int ha_partition::loop_extra(enum ha_extra_function operation)
{
int result= 0, tmp;
handler **file;
DBUG_ENTER("ha_partition::loop_extra()");
/*
TODO, 5.2: this is where you could possibly add optimisations to add the bitmap
_if_ a SELECT.
*/
for (file= m_file; *file; file++)
{
if ((tmp= (*file)->extra(operation)))
result= tmp;
}
DBUG_RETURN(result);
}
/*
Call extra(HA_EXTRA_CACHE) on next partition_id
SYNOPSIS
late_extra_cache()
partition_id Partition id to call extra on
RETURN VALUE
NONE
*/
void ha_partition::late_extra_cache(uint partition_id)
{
handler *file;
DBUG_ENTER("ha_partition::late_extra_cache");
if (!m_extra_cache)
DBUG_VOID_RETURN;
file= m_file[partition_id];
if (m_extra_cache_size == 0)
VOID(file->extra(HA_EXTRA_CACHE));
else
VOID(file->extra_opt(HA_EXTRA_CACHE, m_extra_cache_size));
DBUG_VOID_RETURN;
}
/*
Call extra(HA_EXTRA_NO_CACHE) on next partition_id
SYNOPSIS
late_extra_no_cache()
partition_id Partition id to call extra on
RETURN VALUE
NONE
*/
void ha_partition::late_extra_no_cache(uint partition_id)
{
handler *file;
DBUG_ENTER("ha_partition::late_extra_no_cache");
if (!m_extra_cache)
DBUG_VOID_RETURN;
file= m_file[partition_id];
VOID(file->extra(HA_EXTRA_NO_CACHE));
DBUG_VOID_RETURN;
}
/****************************************************************************
MODULE optimiser support
****************************************************************************/
/*
Get keys to use for scanning
SYNOPSIS
keys_to_use_for_scanning()
RETURN VALUE
key_map of keys usable for scanning
*/
const key_map *ha_partition::keys_to_use_for_scanning()
{
DBUG_ENTER("ha_partition::keys_to_use_for_scanning");
DBUG_RETURN(m_file[0]->keys_to_use_for_scanning());
}
/*
Return time for a scan of the table
SYNOPSIS
scan_time()
RETURN VALUE
time for scan
*/
double ha_partition::scan_time()
{
double scan_time= 0;
handler **file;
DBUG_ENTER("ha_partition::scan_time");
for (file= m_file; *file; file++)
if (bitmap_is_set(&(m_part_info->used_partitions), (file - m_file)))
scan_time+= (*file)->scan_time();
DBUG_RETURN(scan_time);
}
/*
Get time to read
SYNOPSIS
read_time()
index Index number used
ranges Number of ranges
rows Number of rows
RETURN VALUE
time for read
DESCRIPTION
This will be optimised later to include whether or not the index can
be used with partitioning. To achieve we need to add another parameter
that specifies how many of the index fields that are bound in the ranges.
Possibly added as a new call to handlers.
*/
double ha_partition::read_time(uint index, uint ranges, ha_rows rows)
{
DBUG_ENTER("ha_partition::read_time");
DBUG_RETURN(m_file[0]->read_time(index, ranges, rows));
}
/*
Find number of records in a range
SYNOPSIS
records_in_range()
inx Index number
min_key Start of range
max_key End of range
RETURN VALUE
Number of rows in range
DESCRIPTION
Given a starting key, and an ending key estimate the number of rows that
will exist between the two. end_key may be empty which in case determine
if start_key matches any rows.
Called from opt_range.cc by check_quick_keys().
monty: MUST be called for each range and added.
Note that MySQL will assume that if this returns 0 there is no
matching rows for the range!
*/
ha_rows ha_partition::records_in_range(uint inx, key_range *min_key,
key_range *max_key)
{
handler **file;
ha_rows in_range= 0;
DBUG_ENTER("ha_partition::records_in_range");
file= m_file;
do
{
if (bitmap_is_set(&(m_part_info->used_partitions), (file - m_file)))
{
ha_rows tmp_in_range= (*file)->records_in_range(inx, min_key, max_key);
if (tmp_in_range == HA_POS_ERROR)
DBUG_RETURN(tmp_in_range);
in_range+= tmp_in_range;
}
} while (*(++file));
DBUG_RETURN(in_range);
}
/*
Estimate upper bound of number of rows
SYNOPSIS
estimate_rows_upper_bound()
RETURN VALUE
Number of rows
*/
ha_rows ha_partition::estimate_rows_upper_bound()
{
ha_rows rows, tot_rows= 0;
handler **file;
DBUG_ENTER("ha_partition::estimate_rows_upper_bound");
file= m_file;
do
{
if (bitmap_is_set(&(m_part_info->used_partitions), (file - m_file)))
{
rows= (*file)->estimate_rows_upper_bound();
if (rows == HA_POS_ERROR)
DBUG_RETURN(HA_POS_ERROR);
tot_rows+= rows;
}
} while (*(++file));
DBUG_RETURN(tot_rows);
}
/*
Is it ok to switch to a new engine for this table
SYNOPSIS
can_switch_engine()
RETURN VALUE
TRUE Ok
FALSE Not ok
DESCRIPTION
Used to ensure that tables with foreign key constraints are not moved
to engines without foreign key support.
*/
bool ha_partition::can_switch_engines()
{
handler **file;
DBUG_ENTER("ha_partition::can_switch_engines");
file= m_file;
do
{
if (!(*file)->can_switch_engines())
DBUG_RETURN(FALSE);
} while (*(++file));
DBUG_RETURN(TRUE);
}
/*
Is table cache supported
SYNOPSIS
table_cache_type()
*/
uint8 ha_partition::table_cache_type()
{
DBUG_ENTER("ha_partition::table_cache_type");
DBUG_RETURN(m_file[0]->table_cache_type());
}
/****************************************************************************
MODULE print messages
****************************************************************************/
const char *ha_partition::index_type(uint inx)
{
DBUG_ENTER("ha_partition::index_type");
DBUG_RETURN(m_file[0]->index_type(inx));
}
enum row_type ha_partition::get_row_type() const
{
handler **file;
enum row_type type= (*m_file)->get_row_type();
for (file= m_file, file++; *file; file++)
{
enum row_type part_type= (*file)->get_row_type();
if (part_type != type)
return ROW_TYPE_NOT_USED;
}
return type;
}
void ha_partition::print_error(int error, myf errflag)
{
DBUG_ENTER("ha_partition::print_error");
/* Should probably look for my own errors first */
DBUG_PRINT("enter", ("error: %d", error));
if (error == HA_ERR_NO_PARTITION_FOUND)
m_part_info->print_no_partition_found(table);
else
m_file[m_last_part]->print_error(error, errflag);
DBUG_VOID_RETURN;
}
bool ha_partition::get_error_message(int error, String *buf)
{
DBUG_ENTER("ha_partition::get_error_message");
/* Should probably look for my own errors first */
DBUG_RETURN(m_file[m_last_part]->get_error_message(error, buf));
}
/****************************************************************************
MODULE handler characteristics
****************************************************************************/
/*
If frm_error() is called then we will use this to to find out what file
extensions exist for the storage engine. This is also used by the default
rename_table and delete_table method in handler.cc.
*/
static const char *ha_partition_ext[]=
{
ha_par_ext, NullS
};
const char **ha_partition::bas_ext() const
{ return ha_partition_ext; }
uint ha_partition::min_of_the_max_uint(
uint (handler::*operator_func)(void) const) const
{
handler **file;
uint min_of_the_max= ((*m_file)->*operator_func)();
for (file= m_file+1; *file; file++)
{
uint tmp= ((*file)->*operator_func)();
set_if_smaller(min_of_the_max, tmp);
}
return min_of_the_max;
}
uint ha_partition::max_supported_key_parts() const
{
return min_of_the_max_uint(&handler::max_supported_key_parts);
}
uint ha_partition::max_supported_key_length() const
{
return min_of_the_max_uint(&handler::max_supported_key_length);
}
uint ha_partition::max_supported_key_part_length() const
{
return min_of_the_max_uint(&handler::max_supported_key_part_length);
}
uint ha_partition::max_supported_record_length() const
{
return min_of_the_max_uint(&handler::max_supported_record_length);
}
uint ha_partition::max_supported_keys() const
{
return min_of_the_max_uint(&handler::max_supported_keys);
}
uint ha_partition::extra_rec_buf_length() const
{
handler **file;
uint max= (*m_file)->extra_rec_buf_length();
for (file= m_file, file++; *file; file++)
if (max < (*file)->extra_rec_buf_length())
max= (*file)->extra_rec_buf_length();
return max;
}
uint ha_partition::min_record_length(uint options) const
{
handler **file;
uint max= (*m_file)->min_record_length(options);
for (file= m_file, file++; *file; file++)
if (max < (*file)->min_record_length(options))
max= (*file)->min_record_length(options);
return max;
}
/****************************************************************************
MODULE compare records
****************************************************************************/
/*
Compare two positions
SYNOPSIS
cmp_ref()
ref1 First position
ref2 Second position
RETURN VALUE
<0 ref1 < ref2
0 Equal
>0 ref1 > ref2
DESCRIPTION
We get two references and need to check if those records are the same.
If they belong to different partitions we decide that they are not
the same record. Otherwise we use the particular handler to decide if
they are the same. Sort in partition id order if not equal.
*/
int ha_partition::cmp_ref(const uchar *ref1, const uchar *ref2)
{
uint part_id;
my_ptrdiff_t diff1, diff2;
handler *file;
DBUG_ENTER("ha_partition::cmp_ref");
if ((ref1[0] == ref2[0]) && (ref1[1] == ref2[1]))
{
part_id= uint2korr(ref1);
file= m_file[part_id];
DBUG_ASSERT(part_id < m_tot_parts);
DBUG_RETURN(file->cmp_ref((ref1 + PARTITION_BYTES_IN_POS),
(ref2 + PARTITION_BYTES_IN_POS)));
}
diff1= ref2[1] - ref1[1];
diff2= ref2[0] - ref1[0];
if (diff1 > 0)
{
DBUG_RETURN(-1);
}
if (diff1 < 0)
{
DBUG_RETURN(+1);
}
if (diff2 > 0)
{
DBUG_RETURN(-1);
}
DBUG_RETURN(+1);
}
/****************************************************************************
MODULE auto increment
****************************************************************************/
void ha_partition::restore_auto_increment(ulonglong)
{
DBUG_ENTER("ha_partition::restore_auto_increment");
DBUG_VOID_RETURN;
}
/*
This method is called by update_auto_increment which in turn is called
by the individual handlers as part of write_row. We will always let
the first handler keep track of the auto increment value for all
partitions.
*/
void ha_partition::get_auto_increment(ulonglong offset, ulonglong increment,
ulonglong nb_desired_values,
ulonglong *first_value,
ulonglong *nb_reserved_values)
{
ulonglong first_value_part, last_value_part, nb_reserved_values_part,
last_value= ~ (ulonglong) 0;
handler **pos, **end;
bool retry= TRUE;
DBUG_ENTER("ha_partition::get_auto_increment");
again:
for (pos=m_file, end= m_file+ m_tot_parts; pos != end ; pos++)
{
first_value_part= *first_value;
(*pos)->get_auto_increment(offset, increment, nb_desired_values,
&first_value_part, &nb_reserved_values_part);
if (first_value_part == ~(ulonglong)(0)) // error in one partition
{
*first_value= first_value_part;
sql_print_error("Partition failed to reserve auto_increment value");
DBUG_VOID_RETURN;
}
/*
Partition has reserved an interval. Intersect it with the intervals
already reserved for the previous partitions.
*/
last_value_part= (nb_reserved_values_part == ULONGLONG_MAX) ?
ULONGLONG_MAX : (first_value_part + nb_reserved_values_part * increment);
set_if_bigger(*first_value, first_value_part);
set_if_smaller(last_value, last_value_part);
}
if (last_value < *first_value) /* empty intersection, error */
{
/*
When we have an empty intersection, it means that one or more
partitions may have a significantly different autoinc next value.
We should not fail here - it just means that we should try to
find a new reservation making use of the current *first_value
wbich should now be compatible with all partitions.
*/
if (retry)
{
retry= FALSE;
last_value= ~ (ulonglong) 0;
release_auto_increment();
goto again;
}
/*
We should not get here.
*/
sql_print_error("Failed to calculate auto_increment value for partition");
*first_value= ~(ulonglong)(0);
}
if (increment) // If not check for values
*nb_reserved_values= (last_value == ULONGLONG_MAX) ?
ULONGLONG_MAX : ((last_value - *first_value) / increment);
DBUG_VOID_RETURN;
}
void ha_partition::release_auto_increment()
{
DBUG_ENTER("ha_partition::release_auto_increment");
for (uint i= 0; i < m_tot_parts; i++)
{
m_file[i]->release_auto_increment();
}
DBUG_VOID_RETURN;
}
/****************************************************************************
MODULE initialise handler for HANDLER call
****************************************************************************/
void ha_partition::init_table_handle_for_HANDLER()
{
return;
}
/****************************************************************************
MODULE enable/disable indexes
****************************************************************************/
/*
Disable indexes for a while
SYNOPSIS
disable_indexes()
mode Mode
RETURN VALUES
0 Success
!= 0 Error
*/
int ha_partition::disable_indexes(uint mode)
{
handler **file;
int error= 0;
for (file= m_file; *file; file++)
{
if ((error= (*file)->disable_indexes(mode)))
break;
}
return error;
}
/*
Enable indexes again
SYNOPSIS
enable_indexes()
mode Mode
RETURN VALUES
0 Success
!= 0 Error
*/
int ha_partition::enable_indexes(uint mode)
{
handler **file;
int error= 0;
for (file= m_file; *file; file++)
{
if ((error= (*file)->enable_indexes(mode)))
break;
}
return error;
}
/*
Check if indexes are disabled
SYNOPSIS
indexes_are_disabled()
RETURN VALUES
0 Indexes are enabled
!= 0 Indexes are disabled
*/
int ha_partition::indexes_are_disabled(void)
{
handler **file;
int error= 0;
for (file= m_file; *file; file++)
{
if ((error= (*file)->indexes_are_disabled()))
break;
}
return error;
}
/****************************************************************************
MODULE Partition Share
****************************************************************************/
/*
Service routines for ... methods.
-------------------------------------------------------------------------
Variables for partition share methods. A hash used to track open tables.
A mutex for the hash table and an init variable to check if hash table
is initialised.
There is also a constant ending of the partition handler file name.
*/
#ifdef NOT_USED
static HASH partition_open_tables;
static pthread_mutex_t partition_mutex;
static int partition_init= 0;
/*
Function we use in the creation of our hash to get key.
*/
static uchar *partition_get_key(PARTITION_SHARE *share, size_t *length,
my_bool not_used __attribute__ ((unused)))
{
*length= share->table_name_length;
return (uchar *) share->table_name;
}
/*
Example of simple lock controls. The "share" it creates is structure we
will pass to each partition handler. Do you have to have one of these?
Well, you have pieces that are used for locking, and they are needed to
function.
*/
static PARTITION_SHARE *get_share(const char *table_name, TABLE *table)
{
PARTITION_SHARE *share;
uint length;
char *tmp_name;
/*
So why does this exist? There is no way currently to init a storage
engine.
Innodb and BDB both have modifications to the server to allow them to
do this. Since you will not want to do this, this is probably the next
best method.
*/
if (!partition_init)
{
/* Hijack a mutex for init'ing the storage engine */
pthread_mutex_lock(&LOCK_mysql_create_db);
if (!partition_init)
{
partition_init++;
VOID(pthread_mutex_init(&partition_mutex, MY_MUTEX_INIT_FAST));
(void) hash_init(&partition_open_tables, system_charset_info, 32, 0, 0,
(hash_get_key) partition_get_key, 0, 0);
}
pthread_mutex_unlock(&LOCK_mysql_create_db);
}
pthread_mutex_lock(&partition_mutex);
length= (uint) strlen(table_name);
if (!(share= (PARTITION_SHARE *) hash_search(&partition_open_tables,
(uchar *) table_name, length)))
{
if (!(share= (PARTITION_SHARE *)
my_multi_malloc(MYF(MY_WME | MY_ZEROFILL),
&share, (uint) sizeof(*share),
&tmp_name, (uint) length + 1, NullS)))
{
pthread_mutex_unlock(&partition_mutex);
return NULL;
}
share->use_count= 0;
share->table_name_length= length;
share->table_name= tmp_name;
strmov(share->table_name, table_name);
if (my_hash_insert(&partition_open_tables, (uchar *) share))
goto error;
thr_lock_init(&share->lock);
pthread_mutex_init(&share->mutex, MY_MUTEX_INIT_FAST);
}
share->use_count++;
pthread_mutex_unlock(&partition_mutex);
return share;
error:
pthread_mutex_unlock(&partition_mutex);
my_free((uchar*) share, MYF(0));
return NULL;
}
/*
Free lock controls. We call this whenever we close a table. If the table
had the last reference to the share then we free memory associated with
it.
*/
static int free_share(PARTITION_SHARE *share)
{
pthread_mutex_lock(&partition_mutex);
if (!--share->use_count)
{
hash_delete(&partition_open_tables, (uchar *) share);
thr_lock_delete(&share->lock);
pthread_mutex_destroy(&share->mutex);
my_free((uchar*) share, MYF(0));
}
pthread_mutex_unlock(&partition_mutex);
return 0;
}
#endif /* NOT_USED */
struct st_mysql_storage_engine partition_storage_engine=
{ MYSQL_HANDLERTON_INTERFACE_VERSION };
mysql_declare_plugin(partition)
{
MYSQL_STORAGE_ENGINE_PLUGIN,
&partition_storage_engine,
"partition",
"Mikael Ronstrom, MySQL AB",
"Partition Storage Engine Helper",
PLUGIN_LICENSE_GPL,
partition_initialize, /* Plugin Init */
NULL, /* Plugin Deinit */
0x0100, /* 1.0 */
NULL, /* status variables */
NULL, /* system variables */
NULL /* config options */
}
mysql_declare_plugin_end;
#endif
|