1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
|
/* Copyright (C) 2005 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
#ifdef __GNUC__
#pragma interface /* gcc class implementation */
#endif
/*
PARTITION_SHARE is a structure that will be shared amoung all open handlers
The partition implements the minimum of what you will probably need.
*/
typedef struct st_partition_share
{
char *table_name;
uint table_name_length, use_count;
pthread_mutex_t mutex;
THR_LOCK lock;
} PARTITION_SHARE;
#define PARTITION_BYTES_IN_POS 2
class ha_partition :public handler
{
private:
enum partition_index_scan_type
{
partition_index_read= 0,
partition_index_first= 1,
partition_index_last= 2,
partition_no_index_scan= 3
};
/* Data for the partition handler */
char *m_file_buffer; // Buffer with names
char *m_name_buffer_ptr; // Pointer to first partition name
uchar *m_engine_array; // Array of types of the handlers
handler **m_file; // Array of references to handler inst.
partition_info *m_part_info; // local reference to partition
byte *m_start_key_ref; // Reference of start key in current
// index scan info
Field **m_part_field_array; // Part field array locally to save acc
byte *m_ordered_rec_buffer; // Row and key buffer for ord. idx scan
KEY *m_curr_key_info; // Current index
byte *m_rec0; // table->record[0]
QUEUE queue; // Prio queue used by sorted read
/*
Since the partition handler is a handler on top of other handlers, it
is necessary to keep information about what the underlying handler
characteristics is. It is not possible to keep any handler instances
for this since the MySQL Server sometimes allocating the handler object
without freeing them.
*/
u_long m_table_flags;
u_long m_low_byte_first;
uint m_tot_parts; // Total number of partitions;
uint m_no_locks; // For engines like ha_blackhole, which needs no locks
uint m_last_part; // Last file that we update,write
int m_lock_type; // Remembers type of last
// external_lock
part_id_range m_part_spec; // Which parts to scan
uint m_scan_value; // Value passed in rnd_init
// call
uint m_ref_length; // Length of position in this
// handler object
key_range m_start_key; // index read key range
enum partition_index_scan_type m_index_scan_type;// What type of index
// scan
uint m_top_entry; // Which partition is to
// deliver next result
uint m_rec_length; // Local copy of record length
bool m_ordered; // Ordered/Unordered index scan
bool m_has_transactions; // Can we support transactions
bool m_pkey_is_clustered; // Is primary key clustered
bool m_create_handler; // Handler used to create table
bool m_is_sub_partitioned; // Is subpartitioned
bool m_ordered_scan_ongoing;
bool m_use_bit_array;
/*
We keep track if all underlying handlers are MyISAM since MyISAM has a
great number of extra flags not needed by other handlers.
*/
bool m_myisam; // Are all underlying handlers
// MyISAM
/*
We keep track of InnoDB handlers below since it requires proper setting
of query_id in fields at index_init and index_read calls.
*/
bool m_innodb; // Are all underlying handlers
// InnoDB
/*
When calling extra(HA_EXTRA_CACHE) we do not pass this to the underlying
handlers immediately. Instead we cache it and call the underlying
immediately before starting the scan on the partition. This is to
prevent allocating a READ CACHE for each partition in parallel when
performing a full table scan on MyISAM partitioned table.
This state is cleared by extra(HA_EXTRA_NO_CACHE).
*/
bool m_extra_cache;
uint m_extra_cache_size;
void init_handler_variables();
/*
Variables for lock structures.
*/
THR_LOCK_DATA lock; /* MySQL lock */
PARTITION_SHARE *share; /* Shared lock info */
public:
/*
-------------------------------------------------------------------------
MODULE create/delete handler object
-------------------------------------------------------------------------
Object create/delete methode. The normal called when a table object
exists. There is also a method to create the handler object with only
partition information. This is used from mysql_create_table when the
table is to be created and the engine type is deduced to be the
partition handler.
-------------------------------------------------------------------------
*/
ha_partition(TABLE * table);
ha_partition(partition_info * part_info);
~ha_partition();
/*
A partition handler has no characteristics in itself. It only inherits
those from the underlying handlers. Here we set-up those constants to
enable later calls of the methods to retrieve constants from the under-
lying handlers. Returns false if not successful.
*/
int ha_initialise();
/*
-------------------------------------------------------------------------
MODULE meta data changes
-------------------------------------------------------------------------
Meta data routines to CREATE, DROP, RENAME table and often used at
ALTER TABLE (update_create_info used from ALTER TABLE and SHOW ..).
update_table_comment is used in SHOW TABLE commands to provide a
chance for the handler to add any interesting comments to the table
comments not provided by the users comment.
create_handler_files is called before opening a new handler object
with openfrm to call create. It is used to create any local handler
object needed in opening the object in openfrm
-------------------------------------------------------------------------
*/
virtual int delete_table(const char *from);
virtual int rename_table(const char *from, const char *to);
virtual int create(const char *name, TABLE * form,
HA_CREATE_INFO * create_info);
virtual int create_handler_files(const char *name);
virtual void update_create_info(HA_CREATE_INFO * create_info);
virtual char *update_table_comment(const char *comment);
virtual int drop_partitions(const char *path);
private:
/*
delete_table, rename_table and create uses very similar logic which
is packed into this routine.
*/
uint del_ren_cre_table(const char *from,
const char *to= NULL,
TABLE * table_arg= NULL,
HA_CREATE_INFO * create_info= NULL);
/*
One method to create the table_name.par file containing the names of the
underlying partitions, their engine and the number of partitions.
And one method to read it in.
*/
bool create_handler_file(const char *name);
bool get_from_handler_file(const char *name);
bool new_handlers_from_part_info();
bool create_handlers();
void clear_handler_file();
void set_up_table_before_create(TABLE * table_arg, HA_CREATE_INFO * info,
uint part_id);
partition_element *find_partition_element(uint part_id);
public:
/*
-------------------------------------------------------------------------
MODULE open/close object
-------------------------------------------------------------------------
Open and close handler object to ensure all underlying files and
objects allocated and deallocated for query handling is handled
properly.
-------------------------------------------------------------------------
A handler object is opened as part of its initialisation and before
being used for normal queries (not before meta-data changes always.
If the object was opened it will also be closed before being deleted.
*/
virtual int open(const char *name, int mode, uint test_if_locked);
virtual int close(void);
/*
-------------------------------------------------------------------------
MODULE start/end statement
-------------------------------------------------------------------------
This module contains methods that are used to understand start/end of
statements, transaction boundaries, and aid for proper concurrency
control.
The partition handler need not implement abort and commit since this
will be handled by any underlying handlers implementing transactions.
There is only one call to each handler type involved per transaction
and these go directly to the handlers supporting transactions
currently InnoDB, BDB and NDB).
-------------------------------------------------------------------------
*/
virtual THR_LOCK_DATA **store_lock(THD * thd, THR_LOCK_DATA ** to,
enum thr_lock_type lock_type);
virtual int external_lock(THD * thd, int lock_type);
/*
When table is locked a statement is started by calling start_stmt
instead of external_lock
*/
virtual int start_stmt(THD * thd, thr_lock_type lock_type);
/*
Lock count is number of locked underlying handlers (I assume)
*/
virtual uint lock_count(void) const;
/*
Call to unlock rows not to be updated in transaction
*/
virtual void unlock_row();
/*
-------------------------------------------------------------------------
MODULE change record
-------------------------------------------------------------------------
This part of the handler interface is used to change the records
after INSERT, DELETE, UPDATE, REPLACE method calls but also other
special meta-data operations as ALTER TABLE, LOAD DATA, TRUNCATE.
-------------------------------------------------------------------------
These methods are used for insert (write_row), update (update_row)
and delete (delete_row). All methods to change data always work on
one row at a time. update_row and delete_row also contains the old
row.
delete_all_rows will delete all rows in the table in one call as a
special optimisation for DELETE from table;
Bulk inserts are supported if all underlying handlers support it.
start_bulk_insert and end_bulk_insert is called before and after a
number of calls to write_row.
Not yet though.
*/
virtual int write_row(byte * buf);
virtual int update_row(const byte * old_data, byte * new_data);
virtual int delete_row(const byte * buf);
virtual int delete_all_rows(void);
virtual void start_bulk_insert(ha_rows rows);
virtual int end_bulk_insert();
/*
-------------------------------------------------------------------------
MODULE full table scan
-------------------------------------------------------------------------
This module is used for the most basic access method for any table
handler. This is to fetch all data through a full table scan. No
indexes are needed to implement this part.
It contains one method to start the scan (rnd_init) that can also be
called multiple times (typical in a nested loop join). Then proceeding
to the next record (rnd_next) and closing the scan (rnd_end).
To remember a record for later access there is a method (position)
and there is a method used to retrieve the record based on the stored
position.
The position can be a file position, a primary key, a ROWID dependent
on the handler below.
-------------------------------------------------------------------------
*/
/*
unlike index_init(), rnd_init() can be called two times
without rnd_end() in between (it only makes sense if scan=1).
then the second call should prepare for the new table scan
(e.g if rnd_init allocates the cursor, second call should
position it to the start of the table, no need to deallocate
and allocate it again
*/
virtual int rnd_init(bool scan);
virtual int rnd_end();
virtual int rnd_next(byte * buf);
virtual int rnd_pos(byte * buf, byte * pos);
virtual void position(const byte * record);
/*
-------------------------------------------------------------------------
MODULE index scan
-------------------------------------------------------------------------
This part of the handler interface is used to perform access through
indexes. The interface is defined as a scan interface but the handler
can also use key lookup if the index is a unique index or a primary
key index.
Index scans are mostly useful for SELECT queries but are an important
part also of UPDATE, DELETE, REPLACE and CREATE TABLE table AS SELECT
and so forth.
Naturally an index is needed for an index scan and indexes can either
be ordered, hash based. Some ordered indexes can return data in order
but not necessarily all of them.
There are many flags that define the behavior of indexes in the
various handlers. These methods are found in the optimizer module.
-------------------------------------------------------------------------
index_read is called to start a scan of an index. The find_flag defines
the semantics of the scan. These flags are defined in
include/my_base.h
index_read_idx is the same but also initializes index before calling doing
the same thing as index_read. Thus it is similar to index_init followed
by index_read. This is also how we implement it.
index_read/index_read_idx does also return the first row. Thus for
key lookups, the index_read will be the only call to the handler in
the index scan.
index_init initializes an index before using it and index_end does
any end processing needed.
*/
virtual int index_read(byte * buf, const byte * key,
uint key_len, enum ha_rkey_function find_flag);
virtual int index_read_idx(byte * buf, uint idx, const byte * key,
uint key_len, enum ha_rkey_function find_flag);
virtual int index_init(uint idx, bool sorted);
virtual int index_end();
/*
These methods are used to jump to next or previous entry in the index
scan. There are also methods to jump to first and last entry.
*/
virtual int index_next(byte * buf);
virtual int index_prev(byte * buf);
virtual int index_first(byte * buf);
virtual int index_last(byte * buf);
virtual int index_next_same(byte * buf, const byte * key, uint keylen);
virtual int index_read_last(byte * buf, const byte * key, uint keylen);
/*
read_first_row is virtual method but is only implemented by
handler.cc, no storage engine has implemented it so neither
will the partition handler.
virtual int read_first_row(byte *buf, uint primary_key);
*/
/*
We don't implement multi read range yet, will do later.
virtual int read_multi_range_first(KEY_MULTI_RANGE **found_range_p,
KEY_MULTI_RANGE *ranges, uint range_count,
bool sorted, HANDLER_BUFFER *buffer);
virtual int read_multi_range_next(KEY_MULTI_RANGE **found_range_p);
*/
virtual int read_range_first(const key_range * start_key,
const key_range * end_key,
bool eq_range, bool sorted);
virtual int read_range_next();
private:
int common_index_read(byte * buf, const byte * key,
uint key_len, enum ha_rkey_function find_flag);
int common_first_last(byte * buf);
int partition_scan_set_up(byte * buf, bool idx_read_flag);
int handle_unordered_next(byte * buf, bool next_same);
int handle_unordered_scan_next_partition(byte * buf);
byte *queue_buf(uint part_id)
{
return (m_ordered_rec_buffer +
(part_id * (m_rec_length + PARTITION_BYTES_IN_POS)));
}
byte *rec_buf(uint part_id)
{
return (queue_buf(part_id) +
PARTITION_BYTES_IN_POS);
}
int handle_ordered_index_scan(byte * buf);
int handle_ordered_next(byte * buf, bool next_same);
int handle_ordered_prev(byte * buf);
void return_top_record(byte * buf);
void include_partition_fields_in_used_fields();
public:
/*
-------------------------------------------------------------------------
MODULE information calls
-------------------------------------------------------------------------
This calls are used to inform the handler of specifics of the ongoing
scans and other actions. Most of these are used for optimisation
purposes.
-------------------------------------------------------------------------
*/
virtual void info(uint);
virtual int extra(enum ha_extra_function operation);
virtual int extra_opt(enum ha_extra_function operation, ulong cachesize);
virtual int reset(void);
private:
static const uint NO_CURRENT_PART_ID= 0xFFFFFFFF;
int loop_extra(enum ha_extra_function operation);
void late_extra_cache(uint partition_id);
void late_extra_no_cache(uint partition_id);
void prepare_extra_cache(uint cachesize);
public:
/*
-------------------------------------------------------------------------
MODULE optimiser support
-------------------------------------------------------------------------
-------------------------------------------------------------------------
*/
/*
NOTE !!!!!!
-------------------------------------------------------------------------
-------------------------------------------------------------------------
One important part of the public handler interface that is not depicted in
the methods is the attribute records
which is defined in the base class. This is looked upon directly and is
set by calling info(HA_STATUS_INFO) ?
-------------------------------------------------------------------------
*/
/*
keys_to_use_for_scanning can probably be implemented as the
intersection of all underlying handlers if mixed handlers are used.
This method is used to derive whether an index can be used for
index-only scanning when performing an ORDER BY query.
Only called from one place in sql_select.cc
*/
virtual const key_map *keys_to_use_for_scanning();
/*
Called in test_quick_select to determine if indexes should be used.
*/
virtual double scan_time();
/*
The next method will never be called if you do not implement indexes.
*/
virtual double read_time(uint index, uint ranges, ha_rows rows);
/*
For the given range how many records are estimated to be in this range.
Used by optimiser to calculate cost of using a particular index.
*/
virtual ha_rows records_in_range(uint inx, key_range * min_key,
key_range * max_key);
/*
Upper bound of number records returned in scan is sum of all
underlying handlers.
*/
virtual ha_rows estimate_rows_upper_bound();
/*
table_cache_type is implemented by the underlying handler but all
underlying handlers must have the same implementation for it to work.
*/
virtual uint8 table_cache_type();
/*
-------------------------------------------------------------------------
MODULE print messages
-------------------------------------------------------------------------
This module contains various methods that returns text messages for
table types, index type and error messages.
-------------------------------------------------------------------------
*/
/*
The name of the index type that will be used for display
Here we must ensure that all handlers use the same index type
for each index created.
*/
virtual const char *index_type(uint inx);
/* The name of the table type that will be used for display purposes */
virtual const char *table_type() const
{ return "PARTITION"; }
/*
Handler specific error messages
*/
virtual void print_error(int error, myf errflag);
virtual bool get_error_message(int error, String * buf);
/*
-------------------------------------------------------------------------
MODULE handler characteristics
-------------------------------------------------------------------------
This module contains a number of methods defining limitations and
characteristics of the handler. The partition handler will calculate
this characteristics based on underlying handler characteristics.
-------------------------------------------------------------------------
This is a list of flags that says what the storage engine
implements. The current table flags are documented in handler.h
The partition handler will support whatever the underlying handlers
support except when specifically mentioned below about exceptions
to this rule.
HA_READ_RND_SAME:
Not currently used. (Means that the handler supports the rnd_same() call)
(MyISAM, HEAP)
HA_TABLE_SCAN_ON_INDEX:
Used to avoid scanning full tables on an index. If this flag is set then
the handler always has a primary key (hidden if not defined) and this
index is used for scanning rather than a full table scan in all
situations.
(InnoDB, BDB, Federated)
HA_REC_NOT_IN_SEQ:
This flag is set for handlers that cannot guarantee that the rows are
returned accroding to incremental positions (0, 1, 2, 3...).
This also means that rnd_next() should return HA_ERR_RECORD_DELETED
if it finds a deleted row.
(MyISAM (not fixed length row), BDB, HEAP, NDB, InooDB)
HA_CAN_GEOMETRY:
Can the storage engine handle spatial data.
Used to check that no spatial attributes are declared unless
the storage engine is capable of handling it.
(MyISAM)
HA_FAST_KEY_READ:
Setting this flag indicates that the handler is equally fast in
finding a row by key as by position.
This flag is used in a very special situation in conjunction with
filesort's. For further explanation see intro to init_read_record.
(BDB, HEAP, InnoDB)
HA_NULL_IN_KEY:
Is NULL values allowed in indexes.
If this is not allowed then it is not possible to use an index on a
NULLable field.
(BDB, HEAP, MyISAM, NDB, InnoDB)
HA_DUPP_POS:
Tells that we can the position for the conflicting duplicate key
record is stored in table->file->dupp_ref. (insert uses rnd_pos() on
this to find the duplicated row)
(MyISAM)
HA_CAN_INDEX_BLOBS:
Is the storage engine capable of defining an index of a prefix on
a BLOB attribute.
(BDB, Federated, MyISAM, InnoDB)
HA_AUTO_PART_KEY:
Auto increment fields can be part of a multi-part key. For second part
auto-increment keys, the auto_incrementing is done in handler.cc
(BDB, Federated, MyISAM, NDB)
HA_REQUIRE_PRIMARY_KEY:
Can't define a table without primary key (and cannot handle a table
with hidden primary key)
(No handler has this limitation currently)
HA_NOT_EXACT_COUNT:
Does the counter of records after the info call specify an exact
value or not. If it doesn't this flag is set.
Only MyISAM and HEAP uses exact count.
(MyISAM, HEAP, BDB, InnoDB, NDB, Federated)
HA_CAN_INSERT_DELAYED:
Can the storage engine support delayed inserts.
To start with the partition handler will not support delayed inserts.
Further investigation needed.
(HEAP, MyISAM)
HA_PRIMARY_KEY_IN_READ_INDEX:
This parameter is set when the handler will also return the primary key
when doing read-only-key on another index.
HA_NOT_DELETE_WITH_CACHE:
Seems to be an old MyISAM feature that is no longer used. No handler
has it defined but it is checked in init_read_record.
Further investigation needed.
(No handler defines it)
HA_NO_PREFIX_CHAR_KEYS:
Indexes on prefixes of character fields is not allowed.
(NDB)
HA_CAN_FULLTEXT:
Does the storage engine support fulltext indexes
The partition handler will start by not supporting fulltext indexes.
(MyISAM)
HA_CAN_SQL_HANDLER:
Can the HANDLER interface in the MySQL API be used towards this
storage engine.
(MyISAM, InnoDB)
HA_NO_AUTO_INCREMENT:
Set if the storage engine does not support auto increment fields.
(Currently not set by any handler)
HA_HAS_CHECKSUM:
Special MyISAM feature. Has special SQL support in CREATE TABLE.
No special handling needed by partition handler.
(MyISAM)
HA_FILE_BASED:
Should file names always be in lower case (used by engines
that map table names to file names.
Since partition handler has a local file this flag is set.
(BDB, Federated, MyISAM)
HA_CAN_BIT_FIELD:
Is the storage engine capable of handling bit fields?
(MyISAM, NDB)
HA_NEED_READ_RANGE_BUFFER:
Is Read Multi-Range supported => need multi read range buffer
This parameter specifies whether a buffer for read multi range
is needed by the handler. Whether the handler supports this
feature or not is dependent of whether the handler implements
read_multi_range* calls or not. The only handler currently
supporting this feature is NDB so the partition handler need
not handle this call. There are methods in handler.cc that will
transfer those calls into index_read and other calls in the
index scan module.
(NDB)
*/
virtual ulong alter_table_flags(void) const
{
//return HA_ONLINE_ADD_EMPTY_PARTITION + HA_ONLINE_DROP_PARTITION;
return HA_ONLINE_DROP_PARTITION;
}
virtual ulong table_flags() const
{ return m_table_flags; }
/*
HA_CAN_PARTITION:
Used by storage engines that can handle partitioning without this
partition handler
(Partition, NDB)
HA_CAN_UPDATE_PARTITION_KEY:
Set if the handler can update fields that are part of the partition
function.
HA_CAN_PARTITION_UNIQUE:
Set if the handler can handle unique indexes where the fields of the
unique key are not part of the fields of the partition function. Thus
a unique key can be set on all fields.
*/
virtual ulong partition_flags() const
{ return HA_CAN_PARTITION; }
/*
This is a bitmap of flags that says how the storage engine
implements indexes. The current index flags are documented in
handler.h. If you do not implement indexes, just return zero
here.
part is the key part to check. First key part is 0
If all_parts it's set, MySQL want to know the flags for the combined
index up to and including 'part'.
HA_READ_NEXT:
Does the index support read next, this is assumed in the server
code and never checked so all indexes must support this.
Note that the handler can be used even if it doesn't have any index.
(BDB, HEAP, MyISAM, Federated, NDB, InnoDB)
HA_READ_PREV:
Can the index be used to scan backwards.
(BDB, HEAP, MyISAM, NDB, InnoDB)
HA_READ_ORDER:
Can the index deliver its record in index order. Typically true for
all ordered indexes and not true for hash indexes.
In first step this is not true for partition handler until a merge
sort has been implemented in partition handler.
Used to set keymap part_of_sortkey
This keymap is only used to find indexes usable for resolving an ORDER BY
in the query. Thus in most cases index_read will work just fine without
order in result production. When this flag is set it is however safe to
order all output started by index_read since most engines do this. With
read_multi_range calls there is a specific flag setting order or not
order so in those cases ordering of index output can be avoided.
(BDB, InnoDB, HEAP, MyISAM, NDB)
HA_READ_RANGE:
Specify whether index can handle ranges, typically true for all
ordered indexes and not true for hash indexes.
Used by optimiser to check if ranges (as key >= 5) can be optimised
by index.
(BDB, InnoDB, NDB, MyISAM, HEAP)
HA_ONLY_WHOLE_INDEX:
Can't use part key searches. This is typically true for hash indexes
and typically not true for ordered indexes.
(Federated, NDB, HEAP)
HA_KEYREAD_ONLY:
Does the storage engine support index-only scans on this index.
Enables use of HA_EXTRA_KEYREAD and HA_EXTRA_NO_KEYREAD
Used to set key_map keys_for_keyread and to check in optimiser for
index-only scans. When doing a read under HA_EXTRA_KEYREAD the handler
only have to fill in the columns the key covers. If
HA_PRIMARY_KEY_IN_READ_INDEX is set then also the PRIMARY KEY columns
must be updated in the row.
(BDB, InnoDB, MyISAM)
*/
virtual ulong index_flags(uint inx, uint part, bool all_parts) const
{
return m_file[0]->index_flags(inx, part, all_parts);
}
/*
extensions of table handler files
*/
virtual const char **bas_ext() const;
/*
unireg.cc will call the following to make sure that the storage engine
can handle the data it is about to send.
The maximum supported values is the minimum of all handlers in the table
*/
uint min_of_the_max_uint(uint (handler::*operator_func)(void) const) const;
virtual uint max_supported_record_length() const;
virtual uint max_supported_keys() const;
virtual uint max_supported_key_parts() const;
virtual uint max_supported_key_length() const;
virtual uint max_supported_key_part_length() const;
/*
All handlers in a partitioned table must have the same low_byte_first
*/
virtual bool low_byte_first() const
{ return m_low_byte_first; }
/*
The extra record buffer length is the maximum needed by all handlers.
The minimum record length is the maximum of all involved handlers.
*/
virtual uint extra_rec_buf_length() const;
virtual uint min_record_length(uint options) const;
/*
Transactions on the table is supported if all handlers below support
transactions.
*/
virtual bool has_transactions()
{ return m_has_transactions; }
/*
Primary key is clustered can only be true if all underlying handlers have
this feature.
*/
virtual bool primary_key_is_clustered()
{ return m_pkey_is_clustered; }
/*
-------------------------------------------------------------------------
MODULE compare records
-------------------------------------------------------------------------
cmp_ref checks if two references are the same. For most handlers this is
a simple memcmp of the reference. However some handlers use primary key
as reference and this can be the same even if memcmp says they are
different. This is due to character sets and end spaces and so forth.
For the partition handler the reference is first two bytes providing the
partition identity of the referred record and then the reference of the
underlying handler.
Thus cmp_ref for the partition handler always returns FALSE for records
not in the same partition and uses cmp_ref on the underlying handler
to check whether the rest of the reference part is also the same.
-------------------------------------------------------------------------
*/
virtual int cmp_ref(const byte * ref1, const byte * ref2);
/*
-------------------------------------------------------------------------
MODULE auto increment
-------------------------------------------------------------------------
This module is used to handle the support of auto increments.
This variable in the handler is used as part of the handler interface
It is maintained by the parent handler object and should not be
touched by child handler objects (see handler.cc for its use).
auto_increment_column_changed
-------------------------------------------------------------------------
*/
virtual void restore_auto_increment();
virtual ulonglong get_auto_increment();
/*
-------------------------------------------------------------------------
MODULE initialise handler for HANDLER call
-------------------------------------------------------------------------
This method is a special InnoDB method called before a HANDLER query.
-------------------------------------------------------------------------
*/
virtual void init_table_handle_for_HANDLER();
/*
The remainder of this file defines the handler methods not implemented
by the partition handler
*/
/*
-------------------------------------------------------------------------
MODULE foreign key support
-------------------------------------------------------------------------
The following methods are used to implement foreign keys as supported by
InnoDB. Implement this ??
get_foreign_key_create_info is used by SHOW CREATE TABLE to get a textual
description of how the CREATE TABLE part to define FOREIGN KEY's is done.
free_foreign_key_create_info is used to free the memory area that provided
this description.
-------------------------------------------------------------------------
virtual char* get_foreign_key_create_info()
virtual void free_foreign_key_create_info(char* str)
virtual int get_foreign_key_list(THD *thd,
List<FOREIGN_KEY_INFO> *f_key_list)
virtual uint referenced_by_foreign_key()
*/
/*
-------------------------------------------------------------------------
MODULE fulltext index
-------------------------------------------------------------------------
Fulltext stuff not yet.
-------------------------------------------------------------------------
virtual int ft_init() { return HA_ERR_WRONG_COMMAND; }
virtual FT_INFO *ft_init_ext(uint flags,uint inx,const byte *key,
uint keylen)
{ return NULL; }
virtual int ft_read(byte *buf) { return HA_ERR_WRONG_COMMAND; }
*/
/*
-------------------------------------------------------------------------
MODULE restart full table scan at position (MyISAM)
-------------------------------------------------------------------------
The following method is only used by MyISAM when used as
temporary tables in a join.
virtual int restart_rnd_next(byte *buf, byte *pos);
*/
/*
-------------------------------------------------------------------------
MODULE on-line ALTER TABLE
-------------------------------------------------------------------------
These methods are in the handler interface but never used (yet)
They are to be used by on-line alter table add/drop index:
-------------------------------------------------------------------------
virtual ulong index_ddl_flags(KEY *wanted_index) const
virtual int add_index(TABLE *table_arg,KEY *key_info,uint num_of_keys);
virtual int drop_index(TABLE *table_arg,uint *key_num,uint num_of_keys);
*/
/*
-------------------------------------------------------------------------
MODULE tablespace support
-------------------------------------------------------------------------
Admin of table spaces is not applicable to the partition handler (InnoDB)
This means that the following method is not implemented:
-------------------------------------------------------------------------
virtual int discard_or_import_tablespace(my_bool discard)
*/
/*
-------------------------------------------------------------------------
MODULE admin MyISAM
-------------------------------------------------------------------------
Admin commands not supported currently (almost purely MyISAM routines)
This means that the following methods are not implemented:
-------------------------------------------------------------------------
virtual int check(THD* thd, HA_CHECK_OPT *check_opt);
virtual int backup(TD* thd, HA_CHECK_OPT *check_opt);
virtual int restore(THD* thd, HA_CHECK_OPT *check_opt);
virtual int repair(THD* thd, HA_CHECK_OPT *check_opt);
virtual int optimize(THD* thd, HA_CHECK_OPT *check_opt);
virtual int analyze(THD* thd, HA_CHECK_OPT *check_opt);
virtual int assign_to_keycache(THD* thd, HA_CHECK_OPT *check_opt);
virtual int preload_keys(THD *thd, HA_CHECK_OPT *check_opt);
virtual bool check_and_repair(THD *thd);
virtual int dump(THD* thd, int fd = -1);
virtual int net_read_dump(NET* net);
virtual uint checksum() const;
virtual bool is_crashed() const;
virtual bool auto_repair() const;
-------------------------------------------------------------------------
MODULE enable/disable indexes
-------------------------------------------------------------------------
Enable/Disable Indexes are not supported currently (Heap, MyISAM)
This means that the following methods are not implemented:
-------------------------------------------------------------------------
virtual int disable_indexes(uint mode);
virtual int enable_indexes(uint mode);
virtual int indexes_are_disabled(void);
*/
/*
-------------------------------------------------------------------------
MODULE append_create_info
-------------------------------------------------------------------------
append_create_info is only used by MyISAM MERGE tables and the partition
handler will not support this handler as underlying handler.
Implement this??
-------------------------------------------------------------------------
virtual void append_create_info(String *packet)
*/
};
|