1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
|
/* Copyright (C) 2000-2006 MySQL AB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/* classes to use when handling where clause */
#ifndef _opt_range_h
#define _opt_range_h
#ifdef USE_PRAGMA_INTERFACE
#pragma interface /* gcc class implementation */
#endif
typedef struct st_key_part {
uint16 key,part, store_length, length;
uint8 null_bit;
/* Keypart flags (0 if partition pruning is used) */
uint8 flag;
Field *field;
Field::imagetype image_type;
} KEY_PART;
class QUICK_RANGE :public Sql_alloc {
public:
char *min_key,*max_key;
uint16 min_length,max_length,flag;
key_part_map min_keypart_map, // bitmap of used keyparts in min_key
max_keypart_map; // bitmap of used keyparts in max_key
#ifdef HAVE_purify
uint16 dummy; /* Avoid warnings on 'flag' */
#endif
QUICK_RANGE(); /* Full range */
QUICK_RANGE(const char *min_key_arg, uint min_length_arg,
key_part_map min_keypart_map_arg,
const char *max_key_arg, uint max_length_arg,
key_part_map max_keypart_map_arg,
uint flag_arg)
: min_key((char*) sql_memdup(min_key_arg,min_length_arg+1)),
max_key((char*) sql_memdup(max_key_arg,max_length_arg+1)),
min_length((uint16) min_length_arg),
max_length((uint16) max_length_arg),
min_keypart_map(min_keypart_map_arg),
max_keypart_map(max_keypart_map_arg),
flag((uint16) flag_arg)
{
#ifdef HAVE_purify
dummy=0;
#endif
}
};
/*
Quick select interface.
This class is a parent for all QUICK_*_SELECT and FT_SELECT classes.
The usage scenario is as follows:
1. Create quick select
quick= new QUICK_XXX_SELECT(...);
2. Perform lightweight initialization. This can be done in 2 ways:
2.a: Regular initialization
if (quick->init())
{
//the only valid action after failed init() call is delete
delete quick;
}
2.b: Special initialization for quick selects merged by QUICK_ROR_*_SELECT
if (quick->init_ror_merged_scan())
delete quick;
3. Perform zero, one, or more scans.
while (...)
{
// initialize quick select for scan. This may allocate
// buffers and/or prefetch rows.
if (quick->reset())
{
//the only valid action after failed reset() call is delete
delete quick;
//abort query
}
// perform the scan
do
{
res= quick->get_next();
} while (res && ...)
}
4. Delete the select:
delete quick;
*/
class QUICK_SELECT_I
{
public:
bool sorted;
ha_rows records; /* estimate of # of records to be retrieved */
double read_time; /* time to perform this retrieval */
TABLE *head;
/*
Index this quick select uses, or MAX_KEY for quick selects
that use several indexes
*/
uint index;
/*
Total length of first used_key_parts parts of the key.
Applicable if index!= MAX_KEY.
*/
uint max_used_key_length;
/*
Max. number of (first) key parts this quick select uses for retrieval.
eg. for "(key1p1=c1 AND key1p2=c2) OR key1p1=c2" used_key_parts == 2.
Applicable if index!= MAX_KEY.
For QUICK_GROUP_MIN_MAX_SELECT it includes MIN/MAX argument keyparts.
*/
uint used_key_parts;
QUICK_SELECT_I();
virtual ~QUICK_SELECT_I(){};
/*
Do post-constructor initialization.
SYNOPSIS
init()
init() performs initializations that should have been in constructor if
it was possible to return errors from constructors. The join optimizer may
create and then delete quick selects without retrieving any rows so init()
must not contain any IO or CPU intensive code.
If init() call fails the only valid action is to delete this quick select,
reset() and get_next() must not be called.
RETURN
0 OK
other Error code
*/
virtual int init() = 0;
/*
Initialize quick select for row retrieval.
SYNOPSIS
reset()
reset() should be called when it is certain that row retrieval will be
necessary. This call may do heavyweight initialization like buffering first
N records etc. If reset() call fails get_next() must not be called.
Note that reset() may be called several times if
* the quick select is executed in a subselect
* a JOIN buffer is used
RETURN
0 OK
other Error code
*/
virtual int reset(void) = 0;
virtual int get_next() = 0; /* get next record to retrieve */
/* Range end should be called when we have looped over the whole index */
virtual void range_end() {}
virtual bool reverse_sorted() = 0;
virtual bool unique_key_range() { return false; }
enum {
QS_TYPE_RANGE = 0,
QS_TYPE_INDEX_MERGE = 1,
QS_TYPE_RANGE_DESC = 2,
QS_TYPE_FULLTEXT = 3,
QS_TYPE_ROR_INTERSECT = 4,
QS_TYPE_ROR_UNION = 5,
QS_TYPE_GROUP_MIN_MAX = 6
};
/* Get type of this quick select - one of the QS_TYPE_* values */
virtual int get_type() = 0;
/*
Initialize this quick select as a merged scan inside a ROR-union or a ROR-
intersection scan. The caller must not additionally call init() if this
function is called.
SYNOPSIS
init_ror_merged_scan()
reuse_handler If true, the quick select may use table->handler,
otherwise it must create and use a separate handler
object.
RETURN
0 Ok
other Error
*/
virtual int init_ror_merged_scan(bool reuse_handler)
{ DBUG_ASSERT(0); return 1; }
/*
Save ROWID of last retrieved row in file->ref. This used in ROR-merging.
*/
virtual void save_last_pos(){};
/*
Append comma-separated list of keys this quick select uses to key_names;
append comma-separated list of corresponding used lengths to used_lengths.
This is used by select_describe.
*/
virtual void add_keys_and_lengths(String *key_names,
String *used_lengths)=0;
/*
Append text representation of quick select structure (what and how is
merged) to str. The result is added to "Extra" field in EXPLAIN output.
This function is implemented only by quick selects that merge other quick
selects output and/or can produce output suitable for merging.
*/
virtual void add_info_string(String *str) {};
/*
Return 1 if any index used by this quick select
uses field which is marked in passed bitmap.
*/
virtual bool is_keys_used(const MY_BITMAP *fields);
/*
rowid of last row retrieved by this quick select. This is used only when
doing ROR-index_merge selects
*/
byte *last_rowid;
/*
Table record buffer used by this quick select.
*/
byte *record;
#ifndef DBUG_OFF
/*
Print quick select information to DBUG_FILE. Caller is responsible
for locking DBUG_FILE before this call and unlocking it afterwards.
*/
virtual void dbug_dump(int indent, bool verbose)= 0;
#endif
};
struct st_qsel_param;
class PARAM;
class SEL_ARG;
/*
Quick select that does a range scan on a single key. The records are
returned in key order.
*/
class QUICK_RANGE_SELECT : public QUICK_SELECT_I
{
protected:
bool next,dont_free,in_ror_merged_scan;
public:
int error;
protected:
handler *file;
/*
If true, this quick select has its "own" handler object which should be
closed no later then this quick select is deleted.
*/
bool free_file;
bool in_range;
uint multi_range_count; /* copy from thd->variables.multi_range_count */
uint multi_range_length; /* the allocated length for the array */
uint multi_range_bufsiz; /* copy from thd->variables.read_rnd_buff_size */
KEY_MULTI_RANGE *multi_range; /* the multi-range array (allocated and
freed by QUICK_RANGE_SELECT) */
HANDLER_BUFFER *multi_range_buff; /* the handler buffer (allocated and
freed by QUICK_RANGE_SELECT) */
MY_BITMAP column_bitmap, *save_read_set, *save_write_set;
friend class TRP_ROR_INTERSECT;
friend
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
struct st_table_ref *ref,
ha_rows records);
friend bool get_quick_keys(PARAM *param,
QUICK_RANGE_SELECT *quick,KEY_PART *key,
SEL_ARG *key_tree,
char *min_key, uint min_key_flag,
char *max_key, uint max_key_flag);
friend QUICK_RANGE_SELECT *get_quick_select(PARAM*,uint idx,
SEL_ARG *key_tree,
MEM_ROOT *alloc);
friend class QUICK_SELECT_DESC;
friend class QUICK_INDEX_MERGE_SELECT;
friend class QUICK_ROR_INTERSECT_SELECT;
friend class QUICK_GROUP_MIN_MAX_SELECT;
DYNAMIC_ARRAY ranges; /* ordered array of range ptrs */
QUICK_RANGE **cur_range; /* current element in ranges */
QUICK_RANGE *last_range;
KEY_PART *key_parts;
KEY_PART_INFO *key_part_info;
int cmp_next(QUICK_RANGE *range);
int cmp_prev(QUICK_RANGE *range);
bool row_in_ranges();
public:
MEM_ROOT alloc;
QUICK_RANGE_SELECT(THD *thd, TABLE *table,uint index_arg,bool no_alloc=0,
MEM_ROOT *parent_alloc=NULL);
~QUICK_RANGE_SELECT();
int init();
int reset(void);
int get_next();
void range_end();
int get_next_prefix(uint prefix_length, key_part_map keypart_map,
byte *cur_prefix);
bool reverse_sorted() { return 0; }
bool unique_key_range();
int init_ror_merged_scan(bool reuse_handler);
void save_last_pos()
{ file->position(record); }
int get_type() { return QS_TYPE_RANGE; }
void add_keys_and_lengths(String *key_names, String *used_lengths);
void add_info_string(String *str);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
private:
/* Used only by QUICK_SELECT_DESC */
QUICK_RANGE_SELECT(const QUICK_RANGE_SELECT& org) : QUICK_SELECT_I()
{
bcopy(&org, this, sizeof(*this));
multi_range_length= 0;
multi_range= NULL;
multi_range_buff= NULL;
}
};
class QUICK_RANGE_SELECT_GEOM: public QUICK_RANGE_SELECT
{
public:
QUICK_RANGE_SELECT_GEOM(THD *thd, TABLE *table, uint index_arg,
bool no_alloc, MEM_ROOT *parent_alloc)
:QUICK_RANGE_SELECT(thd, table, index_arg, no_alloc, parent_alloc)
{};
virtual int get_next();
};
/*
QUICK_INDEX_MERGE_SELECT - index_merge access method quick select.
QUICK_INDEX_MERGE_SELECT uses
* QUICK_RANGE_SELECTs to get rows
* Unique class to remove duplicate rows
INDEX MERGE OPTIMIZER
Current implementation doesn't detect all cases where index_merge could
be used, in particular:
* index_merge will never be used if range scan is possible (even if
range scan is more expensive)
* index_merge+'using index' is not supported (this the consequence of
the above restriction)
* If WHERE part contains complex nested AND and OR conditions, some ways
to retrieve rows using index_merge will not be considered. The choice
of read plan may depend on the order of conjuncts/disjuncts in WHERE
part of the query, see comments near imerge_list_or_list and
SEL_IMERGE::or_sel_tree_with_checks functions for details.
* There is no "index_merge_ref" method (but index_merge on non-first
table in join is possible with 'range checked for each record').
See comments around SEL_IMERGE class and test_quick_select for more
details.
ROW RETRIEVAL ALGORITHM
index_merge uses Unique class for duplicates removal. index_merge takes
advantage of Clustered Primary Key (CPK) if the table has one.
The index_merge algorithm consists of two phases:
Phase 1 (implemented in QUICK_INDEX_MERGE_SELECT::prepare_unique):
prepare()
{
activate 'index only';
while(retrieve next row for non-CPK scan)
{
if (there is a CPK scan and row will be retrieved by it)
skip this row;
else
put its rowid into Unique;
}
deactivate 'index only';
}
Phase 2 (implemented as sequence of QUICK_INDEX_MERGE_SELECT::get_next
calls):
fetch()
{
retrieve all rows from row pointers stored in Unique;
free Unique;
retrieve all rows for CPK scan;
}
*/
class QUICK_INDEX_MERGE_SELECT : public QUICK_SELECT_I
{
public:
QUICK_INDEX_MERGE_SELECT(THD *thd, TABLE *table);
~QUICK_INDEX_MERGE_SELECT();
int init();
int reset(void);
int get_next();
bool reverse_sorted() { return false; }
bool unique_key_range() { return false; }
int get_type() { return QS_TYPE_INDEX_MERGE; }
void add_keys_and_lengths(String *key_names, String *used_lengths);
void add_info_string(String *str);
bool is_keys_used(const MY_BITMAP *fields);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
bool push_quick_back(QUICK_RANGE_SELECT *quick_sel_range);
/* range quick selects this index_merge read consists of */
List<QUICK_RANGE_SELECT> quick_selects;
/* quick select that uses clustered primary key (NULL if none) */
QUICK_RANGE_SELECT* pk_quick_select;
/* true if this select is currently doing a clustered PK scan */
bool doing_pk_scan;
MEM_ROOT alloc;
THD *thd;
int read_keys_and_merge();
/* used to get rows collected in Unique */
READ_RECORD read_record;
};
/*
Rowid-Ordered Retrieval (ROR) index intersection quick select.
This quick select produces intersection of row sequences returned
by several QUICK_RANGE_SELECTs it "merges".
All merged QUICK_RANGE_SELECTs must return rowids in rowid order.
QUICK_ROR_INTERSECT_SELECT will return rows in rowid order, too.
All merged quick selects retrieve {rowid, covered_fields} tuples (not full
table records).
QUICK_ROR_INTERSECT_SELECT retrieves full records if it is not being used
by QUICK_ROR_INTERSECT_SELECT and all merged quick selects together don't
cover needed all fields.
If one of the merged quick selects is a Clustered PK range scan, it is
used only to filter rowid sequence produced by other merged quick selects.
*/
class QUICK_ROR_INTERSECT_SELECT : public QUICK_SELECT_I
{
public:
QUICK_ROR_INTERSECT_SELECT(THD *thd, TABLE *table,
bool retrieve_full_rows,
MEM_ROOT *parent_alloc);
~QUICK_ROR_INTERSECT_SELECT();
int init();
int reset(void);
int get_next();
bool reverse_sorted() { return false; }
bool unique_key_range() { return false; }
int get_type() { return QS_TYPE_ROR_INTERSECT; }
void add_keys_and_lengths(String *key_names, String *used_lengths);
void add_info_string(String *str);
bool is_keys_used(const MY_BITMAP *fields);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
int init_ror_merged_scan(bool reuse_handler);
bool push_quick_back(QUICK_RANGE_SELECT *quick_sel_range);
/*
Range quick selects this intersection consists of, not including
cpk_quick.
*/
List<QUICK_RANGE_SELECT> quick_selects;
/*
Merged quick select that uses Clustered PK, if there is one. This quick
select is not used for row retrieval, it is used for row retrieval.
*/
QUICK_RANGE_SELECT *cpk_quick;
MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */
THD *thd; /* current thread */
bool need_to_fetch_row; /* if true, do retrieve full table records. */
/* in top-level quick select, true if merged scans where initialized */
bool scans_inited;
};
/*
Rowid-Ordered Retrieval index union select.
This quick select produces union of row sequences returned by several
quick select it "merges".
All merged quick selects must return rowids in rowid order.
QUICK_ROR_UNION_SELECT will return rows in rowid order, too.
All merged quick selects are set not to retrieve full table records.
ROR-union quick select always retrieves full records.
*/
class QUICK_ROR_UNION_SELECT : public QUICK_SELECT_I
{
public:
QUICK_ROR_UNION_SELECT(THD *thd, TABLE *table);
~QUICK_ROR_UNION_SELECT();
int init();
int reset(void);
int get_next();
bool reverse_sorted() { return false; }
bool unique_key_range() { return false; }
int get_type() { return QS_TYPE_ROR_UNION; }
void add_keys_and_lengths(String *key_names, String *used_lengths);
void add_info_string(String *str);
bool is_keys_used(const MY_BITMAP *fields);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
bool push_quick_back(QUICK_SELECT_I *quick_sel_range);
List<QUICK_SELECT_I> quick_selects; /* Merged quick selects */
QUEUE queue; /* Priority queue for merge operation */
MEM_ROOT alloc; /* Memory pool for this and merged quick selects data. */
THD *thd; /* current thread */
byte *cur_rowid; /* buffer used in get_next() */
byte *prev_rowid; /* rowid of last row returned by get_next() */
bool have_prev_rowid; /* true if prev_rowid has valid data */
uint rowid_length; /* table rowid length */
private:
static int queue_cmp(void *arg, byte *val1, byte *val2);
bool scans_inited;
};
/*
Index scan for GROUP-BY queries with MIN/MAX aggregate functions.
This class provides a specialized index access method for GROUP-BY queries
of the forms:
SELECT A_1,...,A_k, [B_1,...,B_m], [MIN(C)], [MAX(C)]
FROM T
WHERE [RNG(A_1,...,A_p ; where p <= k)]
[AND EQ(B_1,...,B_m)]
[AND PC(C)]
[AND PA(A_i1,...,A_iq)]
GROUP BY A_1,...,A_k;
or
SELECT DISTINCT A_i1,...,A_ik
FROM T
WHERE [RNG(A_1,...,A_p ; where p <= k)]
[AND PA(A_i1,...,A_iq)];
where all selected fields are parts of the same index.
The class of queries that can be processed by this quick select is fully
specified in the description of get_best_trp_group_min_max() in opt_range.cc.
The get_next() method directly produces result tuples, thus obviating the
need to call end_send_group() because all grouping is already done inside
get_next().
Since one of the requirements is that all select fields are part of the same
index, this class produces only index keys, and not complete records.
*/
class QUICK_GROUP_MIN_MAX_SELECT : public QUICK_SELECT_I
{
private:
handler *file; /* The handler used to get data. */
JOIN *join; /* Descriptor of the current query */
KEY *index_info; /* The index chosen for data access */
byte *record; /* Buffer where the next record is returned. */
byte *tmp_record; /* Temporary storage for next_min(), next_max(). */
byte *group_prefix; /* Key prefix consisting of the GROUP fields. */
uint group_prefix_len; /* Length of the group prefix. */
uint group_key_parts; /* A number of keyparts in the group prefix */
byte *last_prefix; /* Prefix of the last group for detecting EOF. */
bool have_min; /* Specify whether we are computing */
bool have_max; /* a MIN, a MAX, or both. */
bool seen_first_key; /* Denotes whether the first key was retrieved.*/
KEY_PART_INFO *min_max_arg_part; /* The keypart of the only argument field */
/* of all MIN/MAX functions. */
uint min_max_arg_len; /* The length of the MIN/MAX argument field */
byte *key_infix; /* Infix of constants from equality predicates. */
uint key_infix_len;
DYNAMIC_ARRAY min_max_ranges; /* Array of range ptrs for the MIN/MAX field. */
uint real_prefix_len; /* Length of key prefix extended with key_infix. */
uint real_key_parts; /* A number of keyparts in the above value. */
List<Item_sum> *min_functions;
List<Item_sum> *max_functions;
List_iterator<Item_sum> *min_functions_it;
List_iterator<Item_sum> *max_functions_it;
public:
/*
The following two members are public to allow easy access from
TRP_GROUP_MIN_MAX::make_quick()
*/
MEM_ROOT alloc; /* Memory pool for this and quick_prefix_select data. */
QUICK_RANGE_SELECT *quick_prefix_select;/* For retrieval of group prefixes. */
private:
int next_prefix();
int next_min_in_range();
int next_max_in_range();
int next_min();
int next_max();
void update_min_result();
void update_max_result();
public:
QUICK_GROUP_MIN_MAX_SELECT(TABLE *table, JOIN *join, bool have_min,
bool have_max, KEY_PART_INFO *min_max_arg_part,
uint group_prefix_len, uint group_key_parts,
uint used_key_parts, KEY *index_info, uint
use_index, double read_cost, ha_rows records, uint
key_infix_len, byte *key_infix, MEM_ROOT
*parent_alloc);
~QUICK_GROUP_MIN_MAX_SELECT();
bool add_range(SEL_ARG *sel_range);
void update_key_stat();
void adjust_prefix_ranges();
bool alloc_buffers();
int init();
int reset();
int get_next();
bool reverse_sorted() { return false; }
bool unique_key_range() { return false; }
int get_type() { return QS_TYPE_GROUP_MIN_MAX; }
void add_keys_and_lengths(String *key_names, String *used_lengths);
#ifndef DBUG_OFF
void dbug_dump(int indent, bool verbose);
#endif
};
class QUICK_SELECT_DESC: public QUICK_RANGE_SELECT
{
public:
QUICK_SELECT_DESC(QUICK_RANGE_SELECT *q, uint used_key_parts);
int get_next();
bool reverse_sorted() { return 1; }
int get_type() { return QS_TYPE_RANGE_DESC; }
private:
bool range_reads_after_key(QUICK_RANGE *range);
#ifdef NOT_USED
bool test_if_null_range(QUICK_RANGE *range, uint used_key_parts);
#endif
int reset(void) { rev_it.rewind(); return QUICK_RANGE_SELECT::reset(); }
List<QUICK_RANGE> rev_ranges;
List_iterator<QUICK_RANGE> rev_it;
};
class SQL_SELECT :public Sql_alloc {
public:
QUICK_SELECT_I *quick; // If quick-select used
COND *cond; // where condition
TABLE *head;
IO_CACHE file; // Positions to used records
ha_rows records; // Records in use if read from file
double read_time; // Time to read rows
key_map quick_keys; // Possible quick keys
key_map needed_reg; // Possible quick keys after prev tables.
table_map const_tables,read_tables;
bool free_cond;
SQL_SELECT();
~SQL_SELECT();
void cleanup();
bool check_quick(THD *thd, bool force_quick_range, ha_rows limit)
{
key_map tmp;
tmp.set_all();
return test_quick_select(thd, tmp, 0, limit, force_quick_range) < 0;
}
inline bool skip_record() { return cond ? cond->val_int() == 0 : 0; }
int test_quick_select(THD *thd, key_map keys, table_map prev_tables,
ha_rows limit, bool force_quick_range);
};
class FT_SELECT: public QUICK_RANGE_SELECT {
public:
FT_SELECT(THD *thd, TABLE *table, uint key) :
QUICK_RANGE_SELECT (thd, table, key, 1) { VOID(init()); }
~FT_SELECT() { file->ft_end(); }
int init() { return error=file->ft_init(); }
int reset() { return 0; }
int get_next() { return error=file->ft_read(record); }
int get_type() { return QS_TYPE_FULLTEXT; }
};
QUICK_RANGE_SELECT *get_quick_select_for_ref(THD *thd, TABLE *table,
struct st_table_ref *ref,
ha_rows records);
uint get_index_for_order(TABLE *table, ORDER *order, ha_rows limit);
#ifdef WITH_PARTITION_STORAGE_ENGINE
bool prune_partitions(THD *thd, TABLE *table, Item *pprune_cond);
void store_key_image_to_rec(Field *field, char *ptr, uint len);
#endif
#endif
|