1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
|
/*
Copyright (c) 2010, 2015, MariaDB
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/**
@file
@brief
Semi-join subquery optimizations code
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include <my_global.h>
#include "sql_base.h"
#include "sql_select.h"
#include "filesort.h"
#include "opt_subselect.h"
#include "sql_test.h"
#include <my_bit.h>
/*
This file contains optimizations for semi-join subqueries.
Contents
--------
1. What is a semi-join subquery
2. General idea about semi-join execution
2.1 Correlated vs uncorrelated semi-joins
2.2 Mergeable vs non-mergeable semi-joins
3. Code-level view of semi-join processing
3.1 Conversion
3.1.1 Merged semi-join TABLE_LIST object
3.1.2 Non-merged semi-join data structure
3.2 Semi-joins and query optimization
3.2.1 Non-merged semi-joins and join optimization
3.2.2 Merged semi-joins and join optimization
3.3 Semi-joins and query execution
1. What is a semi-join subquery
-------------------------------
We use this definition of semi-join:
outer_tbl SEMI JOIN inner_tbl ON cond = {set of outer_tbl.row such that
exist inner_tbl.row, for which
cond(outer_tbl.row,inner_tbl.row)
is satisfied}
That is, semi-join operation is similar to inner join operation, with
exception that we don't care how many matches a row from outer_tbl has in
inner_tbl.
In SQL terms: a semi-join subquery is an IN subquery that is an AND-part of
the WHERE/ON clause.
2. General idea about semi-join execution
-----------------------------------------
We can execute semi-join in a way similar to inner join, with exception that
we need to somehow ensure that we do not generate record combinations that
differ only in rows of inner tables.
There is a number of different ways to achieve this property, implemented by
a number of semi-join execution strategies.
Some strategies can handle any semi-joins, other can be applied only to
semi-joins that have certain properties that are described below:
2.1 Correlated vs uncorrelated semi-joins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Uncorrelated semi-joins are special in the respect that they allow to
- execute the subquery (possible as it's uncorrelated)
- somehow make sure that generated set does not have duplicates
- perform an inner join with outer tables.
or, rephrasing in SQL form:
SELECT ... FROM ot WHERE ot.col IN (SELECT it.col FROM it WHERE uncorr_cond)
->
SELECT ... FROM ot JOIN (SELECT DISTINCT it.col FROM it WHERE uncorr_cond)
2.2 Mergeable vs non-mergeable semi-joins
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Semi-join operation has some degree of commutability with inner join
operation: we can join subquery's tables with ouside table(s) and eliminate
duplicate record combination after that:
ot1 JOIN ot2 SEMI_JOIN{it1,it2} (it1 JOIN it2) ON sjcond(ot2,it*) ->
|
+-------------------------------+
v
ot1 SEMI_JOIN{it1,it2} (it1 JOIN it2 JOIN ot2) ON sjcond(ot2,it*)
In order for this to work, subquery's top-level operation must be join, and
grouping or ordering with limit (grouping or ordering with limit are not
commutative with duplicate removal). In other words, the conversion is
possible when the subquery doesn't have GROUP BY clause, any aggregate
functions*, or ORDER BY ... LIMIT clause.
Definitions:
- Subquery whose top-level operation is a join is called *mergeable semi-join*
- All other kinds of semi-join subqueries are considered non-mergeable.
*- this requirement is actually too strong, but its exceptions are too
complicated to be considered here.
3. Code-level view of semi-join processing
------------------------------------------
3.1 Conversion and pre-optimization data structures
---------------------------------------------------
* When doing JOIN::prepare for the subquery, we detect that it can be
converted into a semi-join and register it in parent_join->sj_subselects
* At the start of parent_join->optimize(), the predicate is converted into
a semi-join node. A semi-join node is a TABLE_LIST object that is linked
somewhere in parent_join->join_list (either it is just present there, or
it is a descendant of some of its members).
There are two kinds of semi-joins:
- Merged semi-joins
- Non-merged semi-joins
3.1.1 Merged semi-join TABLE_LIST object
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Merged semi-join object is a TABLE_LIST that contains a sub-join of
subquery tables and the semi-join ON expression (in this respect it is
very similar to nested outer join representation)
Merged semi-join represents this SQL:
... SEMI JOIN (inner_tbl1 JOIN ... JOIN inner_tbl_n) ON sj_on_expr
Semi-join objects of this kind have TABLE_LIST::sj_subq_pred set.
3.1.2 Non-merged semi-join data structure
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Non-merged semi-join object is a leaf TABLE_LIST object that has a subquery
that produces rows. It is similar to a base table and represents this SQL:
... SEMI_JOIN (SELECT non_mergeable_select) ON sj_on_expr
Subquery items that were converted into semi-joins are removed from the WHERE
clause. (They do remain in PS-saved WHERE clause, and they replace themselves
with Item_int(1) on subsequent re-executions).
3.2 Semi-joins and join optimization
------------------------------------
3.2.1 Non-merged semi-joins and join optimization
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
For join optimization purposes, non-merged semi-join nests are similar to
base tables. Each such nest is represented by one one JOIN_TAB, which has
two possible access strategies:
- full table scan (representing SJ-Materialization-Scan strategy)
- eq_ref-like table lookup (representing SJ-Materialization-Lookup)
Unlike regular base tables, non-merged semi-joins have:
- non-zero JOIN_TAB::startup_cost, and
- join_tab->table->is_filled_at_execution()==TRUE, which means one
cannot do const table detection, range analysis or other dataset-dependent
optimizations.
Instead, get_delayed_table_estimates() will run optimization for the
subquery and produce an E(materialized table size).
3.2.2 Merged semi-joins and join optimization
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- optimize_semijoin_nests() does pre-optimization
- during join optimization, the join has one JOIN_TAB (or is it POSITION?)
array, and suffix-based detection is used, see advance_sj_state()
- after join optimization is done, get_best_combination() switches
the data-structure to prefix-based, multiple JOIN_TAB ranges format.
3.3 Semi-joins and query execution
----------------------------------
* Join executor has hooks for all semi-join strategies.
TODO elaborate.
*/
/*
EqualityPropagationAndSjmNests
******************************
Equalities are used for:
P1. Equality propagation
P2. Equality substitution [for a certain join order]
The equality propagation is not affected by SJM nests. In fact, it is done
before we determine the execution plan, i.e. before we even know we will use
SJM-nests for execution.
The equality substitution is affected.
Substitution without SJMs
=========================
When one doesn't have SJM nests, tables have a strict join order:
--------------------------------->
t1 -- t2 -- t3 -- t4 --- t5
? ^
\
--(part-of-WHERE)
parts WHERE/ON and ref. expressions are attached at some point along the axis.
Expression is allowed to refer to a table column if the table is to the left of
the attachment point. For any given expression, we have a goal:
"Move leftmost allowed attachment point as much as possible to the left"
Substitution with SJMs - task setting
=====================================
When SJM nests are present, there is no global strict table ordering anymore:
--------------------------------->
ot1 -- ot2 --- sjm -- ot4 --- ot5
|
| Main execution
- - - - - - - - - - - - - - - - - - - - - - - -
| Materialization
it1 -- it2 --/
Besides that, we must take into account that
- values for outer table columns, otN.col, are inaccessible at
materialization step (SJM-RULE)
- values for inner table columns, itN.col, are inaccessible at Main execution
step, except for SJ-Materialization-Scan and columns that are in the
subquery's select list. (SJM-RULE)
Substitution with SJMs - solution
=================================
First, we introduce global strict table ordering like this:
ot1 - ot2 --\ /--- ot3 -- ot5
\--- it1 --- it2 --/
Now, let's see how to meet (SJM-RULE).
SJ-Materialization is only applicable for uncorrelated subqueries. From this, it
follows that any multiple equality will either
1. include only columns of outer tables, or
2. include only columns of inner tables, or
3. include columns of inner and outer tables, joined together through one
of IN-equalities.
Cases #1 and #2 can be handled in the same way as with regular inner joins.
Case #3 requires special handling, so that we don't construct violations of
(SJM-RULE). Let's consider possible ways to build violations.
Equality propagation starts with the clause in this form
top_query_where AND subquery_where AND in_equalities
First, it builds multi-equalities. It can also build a mixed multi-equality
multiple-equal(ot1.col, ot2.col, ... it1.col, itN.col)
Multi-equalities are pushed down the OR-clauses in top_query_where and in
subquery_where, so it's possible that clauses like this one are built:
subquery_cond OR (multiple-equal(it1.col, ot1.col,...) AND ...)
^^^^^^^^^^^^^ \
| this must be evaluated
\- can only be evaluated at the main phase.
at the materialization phase
Finally, equality substitution is started. It does two operations:
1. Field reference substitution
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(In the code, this is Item_field::replace_equal_field)
This is a process of replacing each reference to "tblX.col"
with the first element of the multi-equality. (REF-SUBST-ORIG)
This behaviour can cause problems with Semi-join nests. Suppose, we have a
condition:
func(it1.col, it2.col)
and a multi-equality(ot1.col, it1.col). Then, reference to "it1.col" will be
replaced with "ot1.col", constructing a condition
func(ot1.col, it2.col)
which will be a violation of (SJM-RULE).
In order to avoid this, (REF-SUBST-ORIG) is amended as follows:
- references to tables "itX.col" that are inner wrt some SJM nest, are
replaced with references to the first inner table from the same SJM nest.
- references to top-level tables "otX.col" are replaced with references to
the first element of the multi-equality, no matter if that first element is
a column of a top-level table or of table from some SJM nest.
(REF-SUBST-SJM)
The case where the first element is a table from an SJM nest $SJM is ok,
because it can be proven that $SJM uses SJ-Materialization-Scan, and
"unpacks" correct column values to the first element during the main
execution phase.
2. Item_equal elimination
~~~~~~~~~~~~~~~~~~~~~~~~~
(In the code: eliminate_item_equal) This is a process of taking
multiple-equal(a,b,c,d,e)
and replacing it with an equivalent expression which is an AND of pair-wise
equalities:
a=b AND a=c AND ...
The equalities are picked such that for any given join prefix (t1,t2...) the
subset of equalities that can be evaluated gives the most restrictive
filtering.
Without SJM nests, it is sufficient to compare every multi-equality member
with the first one:
elem1=elem2 AND elem1=elem3 AND elem1=elem4 ...
When SJM nests are present, we should take care not to construct equalities
that violate the (SJM-RULE). This is achieved by generating separate sets of
equalites for top-level tables and for inner tables. That is, for the join
order
ot1 - ot2 --\ /--- ot3 -- ot5
\--- it1 --- it2 --/
we will generate
ot1.col=ot2.col
ot1.col=ot3.col
ot1.col=ot5.col
it2.col=it1.col
2.1 The problem with Item_equals and ORs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
As has been mentioned above, multiple equalities are pushed down into OR
clauses, possibly building clauses like this:
func(it.col2) OR multiple-equal(it1.col1, it1.col2, ot1.col) (1)
where the first part of the clause has references to inner tables, while the
second has references to the top-level tables, which is a violation of
(SJM-RULE).
AND-clauses of this kind do not create problems, because make_cond_for_table()
will take them apart. OR-clauses will not be split. It is possible to
split-out the part that's dependent on the inner table:
func(it.col2) OR it1.col1=it1.col2
but this is a less-restrictive condition than condition (1). Current execution
scheme will still try to generate the "remainder" condition:
func(it.col2) OR it1.col1=ot1.col
which is a violation of (SJM-RULE).
QQ: "ot1.col=it1.col" is checked at the upper level. Why was it not removed
here?
AA: because has a proper subset of conditions that are found on this level.
consider a join order of ot, sjm(it)
and a condition
ot.col=it.col AND ( ot.col=it.col='foo' OR it.col2='bar')
we will produce:
table ot: nothing
table it: ot.col=it.col AND (ot.col='foo' OR it.col2='bar')
^^^^ ^^^^^^^^^^^^^^^^
| \ the problem is that
| this part condition didnt
| receive a substitution
|
+--- it was correct to subst, 'ot' is
the left-most.
Does it make sense to push "inner=outer" down into ORs?
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Yes. Consider the query:
select * from ot
where ot.col in (select it.col from it where (it.col='foo' OR it.col='bar'))
here, it may be useful to infer that
(ot.col='foo' OR ot.col='bar') (CASE-FOR-SUBST)
and attach that condition to the table 'ot'.
Possible solutions for Item_equals and ORs
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Solution #1
~~~~~~~~~~~
Let make_cond_for_table() chop analyze the OR clauses it has produced and
discard them if they violate (SJM-RULE). This solution would allow to handle
cases like (CASE-FOR-SUBST) at the expense of making semantics of
make_cond_for_table() complicated.
Solution #2
~~~~~~~~~~~
Before the equality propagation phase, none of the OR clauses violate the
(SJM-RULE). This way, if we remember which tables the original equality
referred to, we can only generate equalities that refer to the outer (or inner)
tables. Note that this will disallow handling of cases like (CASE-FOR-SUBST).
Currently, solution #2 is implemented.
*/
static
bool subquery_types_allow_materialization(Item_in_subselect *in_subs);
static bool replace_where_subcondition(JOIN *, Item **, Item *, Item *, bool);
static int subq_sj_candidate_cmp(Item_in_subselect* el1, Item_in_subselect* el2,
void *arg);
static bool convert_subq_to_sj(JOIN *parent_join, Item_in_subselect *subq_pred);
static bool convert_subq_to_jtbm(JOIN *parent_join,
Item_in_subselect *subq_pred, bool *remove);
static TABLE_LIST *alloc_join_nest(THD *thd);
static uint get_tmp_table_rec_length(Ref_ptr_array p_list, uint elements);
static double get_tmp_table_lookup_cost(THD *thd, double row_count,
uint row_size);
static double get_tmp_table_write_cost(THD *thd, double row_count,
uint row_size);
bool find_eq_ref_candidate(TABLE *table, table_map sj_inner_tables);
static SJ_MATERIALIZATION_INFO *
at_sjmat_pos(const JOIN *join, table_map remaining_tables, const JOIN_TAB *tab,
uint idx, bool *loose_scan);
void best_access_path(JOIN *join, JOIN_TAB *s,
table_map remaining_tables, uint idx,
bool disable_jbuf, double record_count,
POSITION *pos, POSITION *loose_scan_pos);
static Item *create_subq_in_equalities(THD *thd, SJ_MATERIALIZATION_INFO *sjm,
Item_in_subselect *subq_pred);
static void remove_sj_conds(THD *thd, Item **tree);
static bool is_cond_sj_in_equality(Item *item);
static bool sj_table_is_included(JOIN *join, JOIN_TAB *join_tab);
static Item *remove_additional_cond(Item* conds);
static void remove_subq_pushed_predicates(JOIN *join, Item **where);
enum_nested_loop_state
end_sj_materialize(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);
/*
Check if Materialization strategy is allowed for given subquery predicate.
@param thd Thread handle
@param in_subs The subquery predicate
@param child_select The select inside predicate (the function will
check it is the only one)
@return TRUE - Materialization is applicable
FALSE - Otherwise
*/
bool is_materialization_applicable(THD *thd, Item_in_subselect *in_subs,
st_select_lex *child_select)
{
st_select_lex_unit* parent_unit= child_select->master_unit();
/*
Check if the subquery predicate can be executed via materialization.
The required conditions are:
0. The materialization optimizer switch was set.
1. Subquery is a single SELECT (not a UNION).
TODO: this is a limitation that can be fixed
2. Subquery is not a table-less query. In this case there is no
point in materializing.
2A The upper query is not a table-less SELECT ... FROM DUAL. We
can't do materialization for SELECT .. FROM DUAL because it
does not call setup_subquery_materialization(). We could make
SELECT ... FROM DUAL call that function but that doesn't seem
to be the case that is worth handling.
3. Either the subquery predicate is a top-level predicate, or at
least one partial match strategy is enabled. If no partial match
strategy is enabled, then materialization cannot be used for
non-top-level queries because it cannot handle NULLs correctly.
4. Subquery is non-correlated
TODO:
This condition is too restrictive (limitation). It can be extended to:
(Subquery is non-correlated ||
Subquery is correlated to any query outer to IN predicate ||
(Subquery is correlated to the immediate outer query &&
Subquery !contains {GROUP BY, ORDER BY [LIMIT],
aggregate functions}) && subquery predicate is not under "NOT IN"))
5. Subquery does not contain recursive references
A note about prepared statements: we want the if-branch to be taken on
PREPARE and each EXECUTE. The rewrites are only done once, but we need
select_lex->sj_subselects list to be populated for every EXECUTE.
*/
if (optimizer_flag(thd, OPTIMIZER_SWITCH_MATERIALIZATION) && // 0
!child_select->is_part_of_union() && // 1
parent_unit->first_select()->leaf_tables.elements && // 2
child_select->outer_select()->leaf_tables.elements && // 2A
subquery_types_allow_materialization(in_subs) &&
(in_subs->is_top_level_item() || //3
optimizer_flag(thd,
OPTIMIZER_SWITCH_PARTIAL_MATCH_ROWID_MERGE) || //3
optimizer_flag(thd,
OPTIMIZER_SWITCH_PARTIAL_MATCH_TABLE_SCAN)) && //3
!in_subs->is_correlated && //4
!in_subs->with_recursive_reference) //5
{
return TRUE;
}
return FALSE;
}
/*
Check if we need JOIN::prepare()-phase subquery rewrites and if yes, do them
SYNOPSIS
check_and_do_in_subquery_rewrites()
join Subquery's join
DESCRIPTION
Check if we need to do
- subquery -> mergeable semi-join rewrite
- if the subquery can be handled with materialization
- 'substitution' rewrite for table-less subqueries like "(select 1)"
- IN->EXISTS rewrite
and, depending on the rewrite, either do it, or record it to be done at a
later phase.
RETURN
0 - OK
Other - Some sort of query error
*/
int check_and_do_in_subquery_rewrites(JOIN *join)
{
THD *thd=join->thd;
st_select_lex *select_lex= join->select_lex;
st_select_lex_unit* parent_unit= select_lex->master_unit();
DBUG_ENTER("check_and_do_in_subquery_rewrites");
/*
IN/ALL/ANY rewrites are not applicable for so called fake select
(this select exists only to filter results of union if it is needed).
*/
if (select_lex == select_lex->master_unit()->fake_select_lex)
DBUG_RETURN(0);
/*
If
1) this join is inside a subquery (of any type except FROM-clause
subquery) and
2) we aren't just normalizing a VIEW
Then perform early unconditional subquery transformations:
- Convert subquery predicate into semi-join, or
- Mark the subquery for execution using materialization, or
- Perform IN->EXISTS transformation, or
- Perform more/less ALL/ANY -> MIN/MAX rewrite
- Substitute trivial scalar-context subquery with its value
TODO: for PS, make the whole block execute only on the first execution
*/
Item_subselect *subselect;
if (!thd->lex->is_view_context_analysis() && // (1)
(subselect= parent_unit->item)) // (2)
{
Item_in_subselect *in_subs= NULL;
Item_allany_subselect *allany_subs= NULL;
switch (subselect->substype()) {
case Item_subselect::IN_SUBS:
in_subs= (Item_in_subselect *)subselect;
break;
case Item_subselect::ALL_SUBS:
case Item_subselect::ANY_SUBS:
allany_subs= (Item_allany_subselect *)subselect;
break;
default:
break;
}
/* Resolve expressions and perform semantic analysis for IN query */
if (in_subs != NULL)
/*
TODO: Add the condition below to this if statement when we have proper
support for is_correlated handling for materialized semijoins.
If we were to add this condition now, the fix_fields() call in
convert_subq_to_sj() would force the flag is_correlated to be set
erroneously for prepared queries.
thd->stmt_arena->state != Query_arena::PREPARED)
*/
{
SELECT_LEX *current= thd->lex->current_select;
thd->lex->current_select= current->return_after_parsing();
char const *save_where= thd->where;
thd->where= "IN/ALL/ANY subquery";
bool failure= !in_subs->left_expr->fixed &&
in_subs->left_expr->fix_fields(thd, &in_subs->left_expr);
thd->lex->current_select= current;
thd->where= save_where;
if (failure)
DBUG_RETURN(-1); /* purecov: deadcode */
/*
Check if the left and right expressions have the same # of
columns, i.e. we don't have a case like
(oe1, oe2) IN (SELECT ie1, ie2, ie3 ...)
TODO why do we have this duplicated in IN->EXISTS transformers?
psergey-todo: fix these: grep for duplicated_subselect_card_check
*/
if (select_lex->item_list.elements != in_subs->left_expr->cols())
{
my_error(ER_OPERAND_COLUMNS, MYF(0), in_subs->left_expr->cols());
DBUG_RETURN(-1);
}
}
DBUG_PRINT("info", ("Checking if subq can be converted to semi-join"));
/*
Check if we're in subquery that is a candidate for flattening into a
semi-join (which is done in flatten_subqueries()). The
requirements are:
1. Subquery predicate is an IN/=ANY subq predicate
2. Subquery is a single SELECT (not a UNION)
3. Subquery does not have GROUP BY or ORDER BY
4. Subquery does not use aggregate functions or HAVING
5. Subquery predicate is at the AND-top-level of ON/WHERE clause
6. We are not in a subquery of a single table UPDATE/DELETE that
doesn't have a JOIN (TODO: We should handle this at some
point by switching to multi-table UPDATE/DELETE)
7. We're not in a table-less subquery like "SELECT 1"
8. No execution method was already chosen (by a prepared statement)
9. Parent select is not a table-less select
10. Neither parent nor child select have STRAIGHT_JOIN option.
11. It is first optimisation (the subquery could be moved from ON
clause during first optimisation and then be considered for SJ
on the second when it is too late)
*/
if (optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN) &&
in_subs && // 1
!select_lex->is_part_of_union() && // 2
!select_lex->group_list.elements && !join->order && // 3
!join->having && !select_lex->with_sum_func && // 4
in_subs->emb_on_expr_nest && // 5
select_lex->outer_select()->join && // 6
parent_unit->first_select()->leaf_tables.elements && // 7
!in_subs->has_strategy() && // 8
select_lex->outer_select()->leaf_tables.elements && // 9
!((join->select_options | // 10
select_lex->outer_select()->join->select_options) // 10
& SELECT_STRAIGHT_JOIN) && // 10
select_lex->first_cond_optimization) // 11
{
DBUG_PRINT("info", ("Subquery is semi-join conversion candidate"));
(void)subquery_types_allow_materialization(in_subs);
in_subs->is_flattenable_semijoin= TRUE;
/* Register the subquery for further processing in flatten_subqueries() */
if (!in_subs->is_registered_semijoin)
{
Query_arena *arena, backup;
arena= thd->activate_stmt_arena_if_needed(&backup);
select_lex->outer_select()->sj_subselects.push_back(in_subs,
thd->mem_root);
if (arena)
thd->restore_active_arena(arena, &backup);
in_subs->is_registered_semijoin= TRUE;
}
}
else
{
DBUG_PRINT("info", ("Subquery can't be converted to merged semi-join"));
/* Test if the user has set a legal combination of optimizer switches. */
if (!optimizer_flag(thd, OPTIMIZER_SWITCH_IN_TO_EXISTS) &&
!optimizer_flag(thd, OPTIMIZER_SWITCH_MATERIALIZATION))
my_error(ER_ILLEGAL_SUBQUERY_OPTIMIZER_SWITCHES, MYF(0));
/*
Transform each subquery predicate according to its overloaded
transformer.
*/
if (subselect->select_transformer(join))
DBUG_RETURN(-1);
/*
If the subquery predicate is IN/=ANY, analyse and set all possible
subquery execution strategies based on optimizer switches and syntactic
properties.
*/
if (in_subs && !in_subs->has_strategy())
{
if (is_materialization_applicable(thd, in_subs, select_lex))
{
in_subs->add_strategy(SUBS_MATERIALIZATION);
/*
If the subquery is an AND-part of WHERE register for being processed
with jtbm strategy
*/
if (in_subs->emb_on_expr_nest == NO_JOIN_NEST &&
optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN))
{
in_subs->is_flattenable_semijoin= FALSE;
if (!in_subs->is_registered_semijoin)
{
Query_arena *arena, backup;
arena= thd->activate_stmt_arena_if_needed(&backup);
select_lex->outer_select()->sj_subselects.push_back(in_subs,
thd->mem_root);
if (arena)
thd->restore_active_arena(arena, &backup);
in_subs->is_registered_semijoin= TRUE;
}
}
}
/*
IN-TO-EXISTS is the only universal strategy. Choose it if the user
allowed it via an optimizer switch, or if materialization is not
possible.
*/
if (optimizer_flag(thd, OPTIMIZER_SWITCH_IN_TO_EXISTS) ||
!in_subs->has_strategy())
in_subs->add_strategy(SUBS_IN_TO_EXISTS);
}
/* Check if max/min optimization applicable */
if (allany_subs && !allany_subs->is_set_strategy())
{
uchar strategy= (allany_subs->is_maxmin_applicable(join) ?
(SUBS_MAXMIN_INJECTED | SUBS_MAXMIN_ENGINE) :
SUBS_IN_TO_EXISTS);
allany_subs->add_strategy(strategy);
}
}
}
DBUG_RETURN(0);
}
/**
@brief Check if subquery's compared types allow materialization.
@param in_subs Subquery predicate, updated as follows:
types_allow_materialization TRUE if subquery materialization is allowed.
sjm_scan_allowed If types_allow_materialization is TRUE,
indicates whether it is possible to use subquery
materialization and scan the materialized table.
@retval TRUE If subquery types allow materialization.
@retval FALSE Otherwise.
@details
This is a temporary fix for BUG#36752.
There are two subquery materialization strategies:
1. Materialize and do index lookups in the materialized table. See
BUG#36752 for description of restrictions we need to put on the
compared expressions.
2. Materialize and then do a full scan of the materialized table. At the
moment, this strategy's applicability criteria are even stricter than
in #1.
This is so because of the following: consider an uncorrelated subquery
...WHERE (ot1.col1, ot2.col2 ...) IN (SELECT ie1,ie2,... FROM it1 ...)
and a join order that could be used to do sjm-materialization:
SJM-Scan(it1, it1), ot1, ot2
IN-equalities will be parts of conditions attached to the outer tables:
ot1: ot1.col1 = ie1 AND ... (C1)
ot2: ot1.col2 = ie2 AND ... (C2)
besides those there may be additional references to ie1 and ie2
generated by equality propagation. The problem with evaluating C1 and
C2 is that ie{1,2} refer to subquery tables' columns, while we only have
current value of materialization temptable. Our solution is to
* require that all ie{N} are table column references. This allows
to copy the values of materialization temptable columns to the
original table's columns (see setup_sj_materialization for more
details)
* require that compared columns have exactly the same type. This is
a temporary measure to avoid BUG#36752-type problems.
*/
static
bool subquery_types_allow_materialization(Item_in_subselect *in_subs)
{
DBUG_ENTER("subquery_types_allow_materialization");
DBUG_ASSERT(in_subs->left_expr->fixed);
List_iterator<Item> it(in_subs->unit->first_select()->item_list);
uint elements= in_subs->unit->first_select()->item_list.elements;
in_subs->types_allow_materialization= FALSE; // Assign default values
in_subs->sjm_scan_allowed= FALSE;
bool all_are_fields= TRUE;
uint32 total_key_length = 0;
for (uint i= 0; i < elements; i++)
{
Item *outer= in_subs->left_expr->element_index(i);
Item *inner= it++;
all_are_fields &= (outer->real_item()->type() == Item::FIELD_ITEM &&
inner->real_item()->type() == Item::FIELD_ITEM);
total_key_length += inner->max_length;
if (outer->cmp_type() != inner->cmp_type())
DBUG_RETURN(FALSE);
switch (outer->cmp_type()) {
case STRING_RESULT:
if (!(outer->collation.collation == inner->collation.collation))
DBUG_RETURN(FALSE);
// Materialization does not work with BLOB columns
if (inner->field_type() == MYSQL_TYPE_BLOB ||
inner->field_type() == MYSQL_TYPE_GEOMETRY)
DBUG_RETURN(FALSE);
/*
Materialization also is unable to work when create_tmp_table() will
create a blob column because item->max_length is too big.
The following check is copied from Item::make_string_field():
*/
if (inner->too_big_for_varchar())
{
DBUG_RETURN(FALSE);
}
break;
case TIME_RESULT:
if (mysql_type_to_time_type(outer->field_type()) !=
mysql_type_to_time_type(inner->field_type()))
DBUG_RETURN(FALSE);
default:
/* suitable for materialization */
break;
}
}
/*
Make sure that create_tmp_table will not fail due to too long keys.
See MDEV-7122. This check is performed inside create_tmp_table also and
we must do it so that we know the table has keys created.
*/
if (total_key_length > tmp_table_max_key_length() ||
elements > tmp_table_max_key_parts())
DBUG_RETURN(FALSE);
in_subs->types_allow_materialization= TRUE;
in_subs->sjm_scan_allowed= all_are_fields;
DBUG_PRINT("info",("subquery_types_allow_materialization: ok, allowed"));
DBUG_RETURN(TRUE);
}
/**
Apply max min optimization of all/any subselect
*/
bool JOIN::transform_max_min_subquery()
{
DBUG_ENTER("JOIN::transform_max_min_subquery");
Item_subselect *subselect= unit->item;
if (!subselect || (subselect->substype() != Item_subselect::ALL_SUBS &&
subselect->substype() != Item_subselect::ANY_SUBS))
DBUG_RETURN(0);
DBUG_RETURN(((Item_allany_subselect *) subselect)->
transform_into_max_min(this));
}
/*
Finalize IN->EXISTS conversion in case we couldn't use materialization.
DESCRIPTION Invoke the IN->EXISTS converter
Replace the Item_in_subselect with its wrapper Item_in_optimizer in WHERE.
RETURN
FALSE - Ok
TRUE - Fatal error
*/
bool make_in_exists_conversion(THD *thd, JOIN *join, Item_in_subselect *item)
{
DBUG_ENTER("make_in_exists_conversion");
JOIN *child_join= item->unit->first_select()->join;
bool res;
/*
We're going to finalize IN->EXISTS conversion.
Normally, IN->EXISTS conversion takes place inside the
Item_subselect::fix_fields() call, where item_subselect->fixed==FALSE (as
fix_fields() haven't finished yet) and item_subselect->changed==FALSE (as
the conversion haven't been finalized)
At the end of Item_subselect::fix_fields() we had to set fixed=TRUE,
changed=TRUE (the only other option would have been to return error).
So, now we have to set these back for the duration of select_transformer()
call.
*/
item->changed= 0;
item->fixed= 0;
SELECT_LEX *save_select_lex= thd->lex->current_select;
thd->lex->current_select= item->unit->first_select();
res= item->select_transformer(child_join);
thd->lex->current_select= save_select_lex;
if (res)
DBUG_RETURN(TRUE);
item->changed= 1;
item->fixed= 1;
Item *substitute= item->substitution;
bool do_fix_fields= !item->substitution->fixed;
/*
The Item_subselect has already been wrapped with Item_in_optimizer, so we
should search for item->optimizer, not 'item'.
*/
Item *replace_me= item->optimizer;
DBUG_ASSERT(replace_me==substitute);
Item **tree= (item->emb_on_expr_nest == NO_JOIN_NEST)?
&join->conds : &(item->emb_on_expr_nest->on_expr);
if (replace_where_subcondition(join, tree, replace_me, substitute,
do_fix_fields))
DBUG_RETURN(TRUE);
item->substitution= NULL;
/*
If this is a prepared statement, repeat the above operation for
prep_where (or prep_on_expr).
*/
if (!thd->stmt_arena->is_conventional())
{
tree= (item->emb_on_expr_nest == (TABLE_LIST*)NO_JOIN_NEST)?
&join->select_lex->prep_where :
&(item->emb_on_expr_nest->prep_on_expr);
if (replace_where_subcondition(join, tree, replace_me, substitute,
FALSE))
DBUG_RETURN(TRUE);
}
DBUG_RETURN(FALSE);
}
bool check_for_outer_joins(List<TABLE_LIST> *join_list)
{
TABLE_LIST *table;
NESTED_JOIN *nested_join;
List_iterator<TABLE_LIST> li(*join_list);
while ((table= li++))
{
if ((nested_join= table->nested_join))
{
if (check_for_outer_joins(&nested_join->join_list))
return TRUE;
}
if (table->outer_join)
return TRUE;
}
return FALSE;
}
/*
Convert semi-join subquery predicates into semi-join join nests
SYNOPSIS
convert_join_subqueries_to_semijoins()
DESCRIPTION
Convert candidate subquery predicates into semi-join join nests. This
transformation is performed once in query lifetime and is irreversible.
Conversion of one subquery predicate
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
We start with a join that has a semi-join subquery:
SELECT ...
FROM ot, ...
WHERE oe IN (SELECT ie FROM it1 ... itN WHERE subq_where) AND outer_where
and convert it into a semi-join nest:
SELECT ...
FROM ot SEMI JOIN (it1 ... itN), ...
WHERE outer_where AND subq_where AND oe=ie
that is, in order to do the conversion, we need to
* Create the "SEMI JOIN (it1 .. itN)" part and add it into the parent
query's FROM structure.
* Add "AND subq_where AND oe=ie" into parent query's WHERE (or ON if
the subquery predicate was in an ON expression)
* Remove the subquery predicate from the parent query's WHERE
Considerations when converting many predicates
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A join may have at most MAX_TABLES tables. This may prevent us from
flattening all subqueries when the total number of tables in parent and
child selects exceeds MAX_TABLES.
We deal with this problem by flattening children's subqueries first and
then using a heuristic rule to determine each subquery predicate's
"priority".
RETURN
FALSE OK
TRUE Error
*/
bool convert_join_subqueries_to_semijoins(JOIN *join)
{
Query_arena *arena, backup;
Item_in_subselect *in_subq;
THD *thd= join->thd;
List_iterator<TABLE_LIST> ti(join->select_lex->leaf_tables);
DBUG_ENTER("convert_join_subqueries_to_semijoins");
if (join->select_lex->sj_subselects.is_empty())
DBUG_RETURN(FALSE);
List_iterator_fast<Item_in_subselect> li(join->select_lex->sj_subselects);
while ((in_subq= li++))
{
SELECT_LEX *subq_sel= in_subq->get_select_lex();
if (subq_sel->handle_derived(thd->lex, DT_OPTIMIZE))
DBUG_RETURN(1);
if (subq_sel->handle_derived(thd->lex, DT_MERGE))
DBUG_RETURN(TRUE);
subq_sel->update_used_tables();
}
li.rewind();
/* First, convert child join's subqueries. We proceed bottom-up here */
while ((in_subq= li++))
{
st_select_lex *child_select= in_subq->get_select_lex();
JOIN *child_join= child_select->join;
child_join->outer_tables = child_join->table_count;
/*
child_select->where contains only the WHERE predicate of the
subquery itself here. We may be selecting from a VIEW, which has its
own predicate. The combined predicates are available in child_join->conds,
which was built by setup_conds() doing prepare_where() for all views.
*/
child_select->where= child_join->conds;
if (convert_join_subqueries_to_semijoins(child_join))
DBUG_RETURN(TRUE);
in_subq->sj_convert_priority=
MY_TEST(in_subq->emb_on_expr_nest != NO_JOIN_NEST) * MAX_TABLES * 2 +
in_subq->is_correlated * MAX_TABLES + child_join->outer_tables;
}
// Temporary measure: disable semi-joins when they are together with outer
// joins.
#if 0
if (check_for_outer_joins(join->join_list))
{
in_subq= join->select_lex->sj_subselects.head();
arena= thd->activate_stmt_arena_if_needed(&backup);
goto skip_conversion;
}
#endif
//dump_TABLE_LIST_struct(select_lex, select_lex->leaf_tables);
/*
2. Pick which subqueries to convert:
sort the subquery array
- prefer correlated subqueries over uncorrelated;
- prefer subqueries that have greater number of outer tables;
*/
bubble_sort<Item_in_subselect>(&join->select_lex->sj_subselects,
subq_sj_candidate_cmp, NULL);
// #tables-in-parent-query + #tables-in-subquery < MAX_TABLES
/* Replace all subqueries to be flattened with Item_int(1) */
arena= thd->activate_stmt_arena_if_needed(&backup);
li.rewind();
while ((in_subq= li++))
{
bool remove_item= TRUE;
/* Stop processing if we've reached a subquery that's attached to the ON clause */
if (in_subq->emb_on_expr_nest != NO_JOIN_NEST)
break;
if (in_subq->is_flattenable_semijoin)
{
if (join->table_count +
in_subq->unit->first_select()->join->table_count >= MAX_TABLES)
break;
if (convert_subq_to_sj(join, in_subq))
goto restore_arena_and_fail;
}
else
{
if (join->table_count + 1 >= MAX_TABLES)
break;
if (convert_subq_to_jtbm(join, in_subq, &remove_item))
goto restore_arena_and_fail;
}
if (remove_item)
{
Item **tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
&join->conds : &(in_subq->emb_on_expr_nest->on_expr);
Item *replace_me= in_subq->original_item();
if (replace_where_subcondition(join, tree, replace_me,
new (thd->mem_root) Item_int(thd, 1),
FALSE))
goto restore_arena_and_fail;
}
}
//skip_conversion:
/*
3. Finalize (perform IN->EXISTS rewrite) the subqueries that we didn't
convert:
*/
while (in_subq)
{
JOIN *child_join= in_subq->unit->first_select()->join;
in_subq->changed= 0;
in_subq->fixed= 0;
SELECT_LEX *save_select_lex= thd->lex->current_select;
thd->lex->current_select= in_subq->unit->first_select();
bool res= in_subq->select_transformer(child_join);
thd->lex->current_select= save_select_lex;
if (res)
DBUG_RETURN(TRUE);
in_subq->changed= 1;
in_subq->fixed= 1;
Item *substitute= in_subq->substitution;
bool do_fix_fields= !in_subq->substitution->fixed;
Item **tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
&join->conds : &(in_subq->emb_on_expr_nest->on_expr);
Item *replace_me= in_subq->original_item();
if (replace_where_subcondition(join, tree, replace_me, substitute,
do_fix_fields))
DBUG_RETURN(TRUE);
in_subq->substitution= NULL;
/*
If this is a prepared statement, repeat the above operation for
prep_where (or prep_on_expr). Subquery-to-semijoin conversion is
done once for prepared statement.
*/
if (!thd->stmt_arena->is_conventional())
{
tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
&join->select_lex->prep_where :
&(in_subq->emb_on_expr_nest->prep_on_expr);
/*
prep_on_expr/ prep_where may be NULL in some cases.
If that is the case, do nothing - simplify_joins() will copy
ON/WHERE expression into prep_on_expr/prep_where.
*/
if (*tree && replace_where_subcondition(join, tree, replace_me, substitute,
FALSE))
DBUG_RETURN(TRUE);
}
/*
Revert to the IN->EXISTS strategy in the rare case when the subquery could
not be flattened.
*/
in_subq->reset_strategy(SUBS_IN_TO_EXISTS);
if (is_materialization_applicable(thd, in_subq,
in_subq->unit->first_select()))
{
in_subq->add_strategy(SUBS_MATERIALIZATION);
}
in_subq= li++;
}
if (arena)
thd->restore_active_arena(arena, &backup);
join->select_lex->sj_subselects.empty();
DBUG_RETURN(FALSE);
restore_arena_and_fail:
if (arena)
thd->restore_active_arena(arena, &backup);
DBUG_RETURN(TRUE);
}
/*
Get #output_rows and scan_time estimates for a "delayed" table.
SYNOPSIS
get_delayed_table_estimates()
table IN Table to get estimates for
out_rows OUT E(#rows in the table)
scan_time OUT E(scan_time).
startup_cost OUT cost to populate the table.
DESCRIPTION
Get #output_rows and scan_time estimates for a "delayed" table. By
"delayed" here we mean that the table is filled at the start of query
execution. This means that the optimizer can't use table statistics to
get #rows estimate for it, it has to call this function instead.
This function is expected to make different actions depending on the nature
of the table. At the moment there is only one kind of delayed tables,
non-flattenable semi-joins.
*/
void get_delayed_table_estimates(TABLE *table,
ha_rows *out_rows,
double *scan_time,
double *startup_cost)
{
Item_in_subselect *item= table->pos_in_table_list->jtbm_subselect;
DBUG_ASSERT(item->engine->engine_type() ==
subselect_engine::HASH_SJ_ENGINE);
subselect_hash_sj_engine *hash_sj_engine=
((subselect_hash_sj_engine*)item->engine);
*out_rows= (ha_rows)item->jtbm_record_count;
*startup_cost= item->jtbm_read_time;
/* Calculate cost of scanning the temptable */
double data_size= item->jtbm_record_count *
hash_sj_engine->tmp_table->s->reclength;
/* Do like in handler::read_time */
*scan_time= data_size/IO_SIZE + 2;
}
/**
@brief Replaces an expression destructively inside the expression tree of
the WHERE clase.
@note We substitute AND/OR structure because it was copied by
copy_andor_structure and some changes could be done in the copy but
should be left permanent, also there could be several layers of AND over
AND and OR over OR because ::fix_field() possibly is not called.
@param join The top-level query.
@param old_cond The expression to be replaced.
@param new_cond The expression to be substituted.
@param do_fix_fields If true, Item::fix_fields(THD*, Item**) is called for
the new expression.
@return <code>true</code> if there was an error, <code>false</code> if
successful.
*/
static bool replace_where_subcondition(JOIN *join, Item **expr,
Item *old_cond, Item *new_cond,
bool do_fix_fields)
{
if (*expr == old_cond)
{
*expr= new_cond;
if (do_fix_fields)
new_cond->fix_fields(join->thd, expr);
return FALSE;
}
if ((*expr)->type() == Item::COND_ITEM)
{
List_iterator<Item> li(*((Item_cond*)(*expr))->argument_list());
Item *item;
while ((item= li++))
{
if (item == old_cond)
{
li.replace(new_cond);
if (do_fix_fields)
new_cond->fix_fields(join->thd, li.ref());
return FALSE;
}
else if (item->type() == Item::COND_ITEM)
{
replace_where_subcondition(join, li.ref(),
old_cond, new_cond,
do_fix_fields);
}
}
}
/*
We can come to here when
- we're doing replace operations on both on_expr and prep_on_expr
- on_expr is the same as prep_on_expr, or they share a sub-tree
(so, when we do replace in on_expr, we replace in prep_on_expr, too,
and when we try doing a replace in prep_on_expr, the item we wanted
to replace there has already been replaced)
*/
return FALSE;
}
static int subq_sj_candidate_cmp(Item_in_subselect* el1, Item_in_subselect* el2,
void *arg)
{
return (el1->sj_convert_priority > el2->sj_convert_priority) ? -1 :
( (el1->sj_convert_priority == el2->sj_convert_priority)? 0 : 1);
}
/*
Convert a subquery predicate into a TABLE_LIST semi-join nest
SYNOPSIS
convert_subq_to_sj()
parent_join Parent join, the one that has subq_pred in its WHERE/ON
clause
subq_pred Subquery predicate to be converted
DESCRIPTION
Convert a subquery predicate into a TABLE_LIST semi-join nest. All the
prerequisites are already checked, so the conversion is always successfull.
Prepared Statements: the transformation is permanent:
- Changes in TABLE_LIST structures are naturally permanent
- Item tree changes are performed on statement MEM_ROOT:
= we activate statement MEM_ROOT
= this function is called before the first fix_prepare_information
call.
This is intended because the criteria for subquery-to-sj conversion remain
constant for the lifetime of the Prepared Statement.
RETURN
FALSE OK
TRUE Out of memory error
*/
static bool convert_subq_to_sj(JOIN *parent_join, Item_in_subselect *subq_pred)
{
SELECT_LEX *parent_lex= parent_join->select_lex;
TABLE_LIST *emb_tbl_nest= NULL;
List<TABLE_LIST> *emb_join_list= &parent_lex->top_join_list;
THD *thd= parent_join->thd;
DBUG_ENTER("convert_subq_to_sj");
/*
1. Find out where to put the predicate into.
Note: for "t1 LEFT JOIN t2" this will be t2, a leaf.
*/
if ((void*)subq_pred->emb_on_expr_nest != (void*)NO_JOIN_NEST)
{
if (subq_pred->emb_on_expr_nest->nested_join)
{
/*
We're dealing with
... [LEFT] JOIN ( ... ) ON (subquery AND whatever) ...
The sj-nest will be inserted into the brackets nest.
*/
emb_tbl_nest= subq_pred->emb_on_expr_nest;
emb_join_list= &emb_tbl_nest->nested_join->join_list;
}
else if (!subq_pred->emb_on_expr_nest->outer_join)
{
/*
We're dealing with
... INNER JOIN tblX ON (subquery AND whatever) ...
The sj-nest will be tblX's "sibling", i.e. another child of its
parent. This is ok because tblX is joined as an inner join.
*/
emb_tbl_nest= subq_pred->emb_on_expr_nest->embedding;
if (emb_tbl_nest)
emb_join_list= &emb_tbl_nest->nested_join->join_list;
}
else if (!subq_pred->emb_on_expr_nest->nested_join)
{
TABLE_LIST *outer_tbl= subq_pred->emb_on_expr_nest;
TABLE_LIST *wrap_nest;
/*
We're dealing with
... LEFT JOIN tbl ON (on_expr AND subq_pred) ...
we'll need to convert it into:
... LEFT JOIN ( tbl SJ (subq_tables) ) ON (on_expr AND subq_pred) ...
| |
|<----- wrap_nest ---->|
Q: other subqueries may be pointing to this element. What to do?
A1: simple solution: copy *subq_pred->expr_join_nest= *parent_nest.
But we'll need to fix other pointers.
A2: Another way: have TABLE_LIST::next_ptr so the following
subqueries know the table has been nested.
A3: changes in the TABLE_LIST::outer_join will make everything work
automatically.
*/
if (!(wrap_nest= alloc_join_nest(thd)))
{
DBUG_RETURN(TRUE);
}
wrap_nest->embedding= outer_tbl->embedding;
wrap_nest->join_list= outer_tbl->join_list;
wrap_nest->alias= (char*) "(sj-wrap)";
wrap_nest->nested_join->join_list.empty();
wrap_nest->nested_join->join_list.push_back(outer_tbl, thd->mem_root);
outer_tbl->embedding= wrap_nest;
outer_tbl->join_list= &wrap_nest->nested_join->join_list;
/*
wrap_nest will take place of outer_tbl, so move the outer join flag
and on_expr
*/
wrap_nest->outer_join= outer_tbl->outer_join;
outer_tbl->outer_join= 0;
wrap_nest->on_expr= outer_tbl->on_expr;
outer_tbl->on_expr= NULL;
List_iterator<TABLE_LIST> li(*wrap_nest->join_list);
TABLE_LIST *tbl;
while ((tbl= li++))
{
if (tbl == outer_tbl)
{
li.replace(wrap_nest);
break;
}
}
/*
Ok now wrap_nest 'contains' outer_tbl and we're ready to add the
semi-join nest into it
*/
emb_join_list= &wrap_nest->nested_join->join_list;
emb_tbl_nest= wrap_nest;
}
}
TABLE_LIST *sj_nest;
NESTED_JOIN *nested_join;
if (!(sj_nest= alloc_join_nest(thd)))
{
DBUG_RETURN(TRUE);
}
nested_join= sj_nest->nested_join;
sj_nest->join_list= emb_join_list;
sj_nest->embedding= emb_tbl_nest;
sj_nest->alias= (char*) "(sj-nest)";
sj_nest->sj_subq_pred= subq_pred;
sj_nest->original_subq_pred_used_tables= subq_pred->used_tables() |
subq_pred->left_expr->used_tables();
/* Nests do not participate in those 'chains', so: */
/* sj_nest->next_leaf= sj_nest->next_local= sj_nest->next_global == NULL*/
emb_join_list->push_back(sj_nest, thd->mem_root);
/*
nested_join->used_tables and nested_join->not_null_tables are
initialized in simplify_joins().
*/
/*
2. Walk through subquery's top list and set 'embedding' to point to the
sj-nest.
*/
st_select_lex *subq_lex= subq_pred->unit->first_select();
nested_join->join_list.empty();
List_iterator_fast<TABLE_LIST> li(subq_lex->top_join_list);
TABLE_LIST *tl;
while ((tl= li++))
{
tl->embedding= sj_nest;
tl->join_list= &nested_join->join_list;
nested_join->join_list.push_back(tl, thd->mem_root);
}
/*
Reconnect the next_leaf chain.
TODO: Do we have to put subquery's tables at the end of the chain?
Inserting them at the beginning would be a bit faster.
NOTE: We actually insert them at the front! That's because the order is
reversed in this list.
*/
parent_lex->leaf_tables.append(&subq_lex->leaf_tables);
if (subq_lex->options & OPTION_SCHEMA_TABLE)
parent_lex->options |= OPTION_SCHEMA_TABLE;
/*
Same as above for next_local chain
(a theory: a next_local chain always starts with ::leaf_tables
because view's tables are inserted after the view)
*/
for (tl= (TABLE_LIST*)(parent_lex->table_list.first); tl->next_local; tl= tl->next_local)
{}
tl->next_local= subq_lex->join->tables_list;
/* A theory: no need to re-connect the next_global chain */
/* 3. Remove the original subquery predicate from the WHERE/ON */
// The subqueries were replaced for Item_int(1) earlier
subq_pred->reset_strategy(SUBS_SEMI_JOIN); // for subsequent executions
/*TODO: also reset the 'with_subselect' there. */
/* n. Adjust the parent_join->table_count counter */
uint table_no= parent_join->table_count;
/* n. Walk through child's tables and adjust table->map */
List_iterator_fast<TABLE_LIST> si(subq_lex->leaf_tables);
while ((tl= si++))
{
tl->set_tablenr(table_no);
if (tl->is_jtbm())
tl->jtbm_table_no= table_no;
SELECT_LEX *old_sl= tl->select_lex;
tl->select_lex= parent_join->select_lex;
for (TABLE_LIST *emb= tl->embedding;
emb && emb->select_lex == old_sl;
emb= emb->embedding)
emb->select_lex= parent_join->select_lex;
table_no++;
}
parent_join->table_count += subq_lex->join->table_count;
//parent_join->table_count += subq_lex->leaf_tables.elements;
/*
Put the subquery's WHERE into semi-join's sj_on_expr
Add the subquery-induced equalities too.
*/
SELECT_LEX *save_lex= thd->lex->current_select;
thd->lex->current_select=subq_lex;
if (!subq_pred->left_expr->fixed &&
subq_pred->left_expr->fix_fields(thd, &subq_pred->left_expr))
DBUG_RETURN(TRUE);
thd->lex->current_select=save_lex;
table_map subq_pred_used_tables= subq_pred->used_tables();
sj_nest->nested_join->sj_corr_tables= subq_pred_used_tables;
sj_nest->nested_join->sj_depends_on= subq_pred_used_tables |
subq_pred->left_expr->used_tables();
sj_nest->sj_on_expr= subq_lex->join->conds;
/*
Create the IN-equalities and inject them into semi-join's ON expression.
Additionally, for LooseScan strategy
- Record the number of IN-equalities.
- Create list of pointers to (oe1, ..., ieN). We'll need the list to
see which of the expressions are bound and which are not (for those
we'll produce a distinct stream of (ie_i1,...ie_ik).
(TODO: can we just create a list of pointers and hope the expressions
will not substitute themselves on fix_fields()? or we need to wrap
them into Item_direct_view_refs and store pointers to those. The
pointers to Item_direct_view_refs are guaranteed to be stable as
Item_direct_view_refs doesn't substitute itself with anything in
Item_direct_view_ref::fix_fields.
*/
sj_nest->sj_in_exprs= subq_pred->left_expr->cols();
sj_nest->nested_join->sj_outer_expr_list.empty();
if (subq_pred->left_expr->cols() == 1)
{
nested_join->sj_outer_expr_list.push_back(subq_pred->left_expr,
thd->mem_root);
/*
Create Item_func_eq. Note that
1. this is done on the statement, not execution, arena
2. if it's a PS then this happens only once - on the first execution.
On following re-executions, the item will be fix_field-ed normally.
3. Thus it should be created as if it was fix_field'ed, in particular
all pointers to items in the execution arena should be protected
with thd->change_item_tree
*/
Item_func_eq *item_eq=
new (thd->mem_root) Item_func_eq(thd, subq_pred->left_expr_orig,
subq_lex->ref_pointer_array[0]);
if (subq_pred->left_expr_orig != subq_pred->left_expr)
thd->change_item_tree(item_eq->arguments(), subq_pred->left_expr);
item_eq->in_equality_no= 0;
sj_nest->sj_on_expr= and_items(thd, sj_nest->sj_on_expr, item_eq);
}
else
{
for (uint i= 0; i < subq_pred->left_expr->cols(); i++)
{
nested_join->sj_outer_expr_list.push_back(subq_pred->left_expr->
element_index(i),
thd->mem_root);
Item_func_eq *item_eq=
new (thd->mem_root)
Item_func_eq(thd, subq_pred->left_expr->element_index(i),
subq_lex->ref_pointer_array[i]);
item_eq->in_equality_no= i;
sj_nest->sj_on_expr= and_items(thd, sj_nest->sj_on_expr, item_eq);
}
}
/*
Fix the created equality and AND
Note that fix_fields() can actually fail in a meaningful way here. One
example is when the IN-equality is not valid, because it compares columns
with incompatible collations. (One can argue it would be more appropriate
to check for this at name resolution stage, but as a legacy of IN->EXISTS
we have in here).
*/
if (!sj_nest->sj_on_expr->fixed &&
sj_nest->sj_on_expr->fix_fields(thd, &sj_nest->sj_on_expr))
{
DBUG_RETURN(TRUE);
}
/*
Walk through sj nest's WHERE and ON expressions and call
item->fix_table_changes() for all items.
*/
sj_nest->sj_on_expr->fix_after_pullout(parent_lex, &sj_nest->sj_on_expr);
fix_list_after_tbl_changes(parent_lex, &sj_nest->nested_join->join_list);
/* Unlink the child select_lex so it doesn't show up in EXPLAIN: */
subq_lex->master_unit()->exclude_level();
DBUG_EXECUTE("where",
print_where(sj_nest->sj_on_expr,"SJ-EXPR", QT_ORDINARY););
/* Inject sj_on_expr into the parent's WHERE or ON */
if (emb_tbl_nest)
{
emb_tbl_nest->on_expr= and_items(thd, emb_tbl_nest->on_expr,
sj_nest->sj_on_expr);
emb_tbl_nest->on_expr->top_level_item();
if (!emb_tbl_nest->on_expr->fixed &&
emb_tbl_nest->on_expr->fix_fields(thd,
&emb_tbl_nest->on_expr))
{
DBUG_RETURN(TRUE);
}
}
else
{
/* Inject into the WHERE */
parent_join->conds= and_items(thd, parent_join->conds, sj_nest->sj_on_expr);
parent_join->conds->top_level_item();
/*
fix_fields must update the properties (e.g. st_select_lex::cond_count of
the correct select_lex.
*/
save_lex= thd->lex->current_select;
thd->lex->current_select=parent_join->select_lex;
if (!parent_join->conds->fixed &&
parent_join->conds->fix_fields(thd,
&parent_join->conds))
{
DBUG_RETURN(1);
}
thd->lex->current_select=save_lex;
parent_join->select_lex->where= parent_join->conds;
}
if (subq_lex->ftfunc_list->elements)
{
Item_func_match *ifm;
List_iterator_fast<Item_func_match> li(*(subq_lex->ftfunc_list));
while ((ifm= li++))
parent_lex->ftfunc_list->push_front(ifm, thd->mem_root);
}
parent_lex->have_merged_subqueries= TRUE;
DBUG_RETURN(FALSE);
}
const int SUBQERY_TEMPTABLE_NAME_MAX_LEN= 20;
static void create_subquery_temptable_name(char *to, uint number)
{
DBUG_ASSERT(number < 10000);
to= strmov(to, "<subquery");
to= int10_to_str((int) number, to, 10);
to[0]= '>';
to[1]= 0;
}
/*
Convert subquery predicate into non-mergeable semi-join nest.
TODO:
why does this do IN-EXISTS conversion? Can't we unify it with mergeable
semi-joins? currently, convert_subq_to_sj() cannot fail to convert (unless
fatal errors)
RETURN
FALSE - Ok
TRUE - Fatal error
*/
static bool convert_subq_to_jtbm(JOIN *parent_join,
Item_in_subselect *subq_pred,
bool *remove_item)
{
SELECT_LEX *parent_lex= parent_join->select_lex;
List<TABLE_LIST> *emb_join_list= &parent_lex->top_join_list;
TABLE_LIST *emb_tbl_nest= NULL; // will change when we learn to handle outer joins
TABLE_LIST *tl;
bool optimization_delayed= TRUE;
TABLE_LIST *jtbm;
char *tbl_alias;
DBUG_ENTER("convert_subq_to_jtbm");
subq_pred->set_strategy(SUBS_MATERIALIZATION);
subq_pred->is_jtbm_merged= TRUE;
*remove_item= TRUE;
if (!(tbl_alias= (char*)parent_join->thd->calloc(SUBQERY_TEMPTABLE_NAME_MAX_LEN)) ||
!(jtbm= alloc_join_nest(parent_join->thd))) //todo: this is not a join nest!
{
DBUG_RETURN(TRUE);
}
jtbm->join_list= emb_join_list;
jtbm->embedding= emb_tbl_nest;
jtbm->jtbm_subselect= subq_pred;
jtbm->nested_join= NULL;
/* Nests do not participate in those 'chains', so: */
/* jtbm->next_leaf= jtbm->next_local= jtbm->next_global == NULL*/
emb_join_list->push_back(jtbm, parent_join->thd->mem_root);
/*
Inject the jtbm table into TABLE_LIST::next_leaf list, so that
make_join_statistics() and co. can find it.
*/
parent_lex->leaf_tables.push_back(jtbm, parent_join->thd->mem_root);
if (subq_pred->unit->first_select()->options & OPTION_SCHEMA_TABLE)
parent_lex->options |= OPTION_SCHEMA_TABLE;
/*
Same as above for TABLE_LIST::next_local chain
(a theory: a next_local chain always starts with ::leaf_tables
because view's tables are inserted after the view)
*/
for (tl= (TABLE_LIST*)(parent_lex->table_list.first); tl->next_local; tl= tl->next_local)
{}
tl->next_local= jtbm;
/* A theory: no need to re-connect the next_global chain */
if (optimization_delayed)
{
DBUG_ASSERT(parent_join->table_count < MAX_TABLES);
jtbm->jtbm_table_no= parent_join->table_count;
create_subquery_temptable_name(tbl_alias,
subq_pred->unit->first_select()->select_number);
jtbm->alias= tbl_alias;
parent_join->table_count++;
DBUG_RETURN(FALSE);
}
subselect_hash_sj_engine *hash_sj_engine=
((subselect_hash_sj_engine*)subq_pred->engine);
jtbm->table= hash_sj_engine->tmp_table;
jtbm->table->tablenr= parent_join->table_count;
jtbm->table->map= table_map(1) << (parent_join->table_count);
jtbm->jtbm_table_no= jtbm->table->tablenr;
parent_join->table_count++;
DBUG_ASSERT(parent_join->table_count < MAX_TABLES);
Item *conds= hash_sj_engine->semi_join_conds;
conds->fix_after_pullout(parent_lex, &conds);
DBUG_EXECUTE("where", print_where(conds,"SJ-EXPR", QT_ORDINARY););
create_subquery_temptable_name(tbl_alias, hash_sj_engine->materialize_join->
select_lex->select_number);
jtbm->alias= tbl_alias;
parent_lex->have_merged_subqueries= TRUE;
#if 0
/* Inject sj_on_expr into the parent's WHERE or ON */
if (emb_tbl_nest)
{
DBUG_ASSERT(0);
/*emb_tbl_nest->on_expr= and_items(emb_tbl_nest->on_expr,
sj_nest->sj_on_expr);
emb_tbl_nest->on_expr->fix_fields(parent_join->thd, &emb_tbl_nest->on_expr);
*/
}
else
{
/* Inject into the WHERE */
parent_join->conds= and_items(parent_join->conds, conds);
parent_join->conds->fix_fields(parent_join->thd, &parent_join->conds);
parent_join->select_lex->where= parent_join->conds;
}
#endif
/* Don't unlink the child subselect, as the subquery will be used. */
DBUG_RETURN(FALSE);
}
static TABLE_LIST *alloc_join_nest(THD *thd)
{
TABLE_LIST *tbl;
if (!(tbl= (TABLE_LIST*) thd->calloc(ALIGN_SIZE(sizeof(TABLE_LIST))+
sizeof(NESTED_JOIN))))
return NULL;
tbl->nested_join= (NESTED_JOIN*) ((uchar*)tbl +
ALIGN_SIZE(sizeof(TABLE_LIST)));
return tbl;
}
void fix_list_after_tbl_changes(SELECT_LEX *new_parent, List<TABLE_LIST> *tlist)
{
List_iterator<TABLE_LIST> it(*tlist);
TABLE_LIST *table;
while ((table= it++))
{
if (table->on_expr)
table->on_expr->fix_after_pullout(new_parent, &table->on_expr);
if (table->nested_join)
fix_list_after_tbl_changes(new_parent, &table->nested_join->join_list);
}
}
static void set_emb_join_nest(List<TABLE_LIST> *tables, TABLE_LIST *emb_sj_nest)
{
List_iterator<TABLE_LIST> it(*tables);
TABLE_LIST *tbl;
while ((tbl= it++))
{
/*
Note: check for nested_join first.
derived-merged tables have tbl->table!=NULL &&
tbl->table->reginfo==NULL.
*/
if (tbl->nested_join)
set_emb_join_nest(&tbl->nested_join->join_list, emb_sj_nest);
else if (tbl->table)
tbl->table->reginfo.join_tab->emb_sj_nest= emb_sj_nest;
}
}
/*
Pull tables out of semi-join nests, if possible
SYNOPSIS
pull_out_semijoin_tables()
join The join where to do the semi-join flattening
DESCRIPTION
Try to pull tables out of semi-join nests.
PRECONDITIONS
When this function is called, the join may have several semi-join nests
but it is guaranteed that one semi-join nest does not contain another.
ACTION
A table can be pulled out of the semi-join nest if
- It is a constant table, or
- It is accessed via eq_ref(outer_tables)
POSTCONDITIONS
* Tables that were pulled out have JOIN_TAB::emb_sj_nest == NULL
* Tables that were not pulled out have JOIN_TAB::emb_sj_nest pointing
to semi-join nest they are in.
* Semi-join nests' TABLE_LIST::sj_inner_tables is updated accordingly
This operation is (and should be) performed at each PS execution since
tables may become/cease to be constant across PS reexecutions.
NOTE
Table pullout may make uncorrelated subquery correlated. Consider this
example:
... WHERE oe IN (SELECT it1.primary_key WHERE p(it1, it2) ... )
here table it1 can be pulled out (we have it1.primary_key=oe which gives
us functional dependency). Once it1 is pulled out, all references to it1
from p(it1, it2) become references to outside of the subquery and thus
make the subquery (i.e. its semi-join nest) correlated.
Making the subquery (i.e. its semi-join nest) correlated prevents us from
using Materialization or LooseScan to execute it.
RETURN
0 - OK
1 - Out of memory error
*/
int pull_out_semijoin_tables(JOIN *join)
{
TABLE_LIST *sj_nest;
DBUG_ENTER("pull_out_semijoin_tables");
List_iterator<TABLE_LIST> sj_list_it(join->select_lex->sj_nests);
/* Try pulling out of the each of the semi-joins */
while ((sj_nest= sj_list_it++))
{
List_iterator<TABLE_LIST> child_li(sj_nest->nested_join->join_list);
TABLE_LIST *tbl;
/*
Don't do table pull-out for nested joins (if we get nested joins here, it
means these are outer joins. It is theoretically possible to do pull-out
for some of the outer tables but we dont support this currently.
*/
bool have_join_nest_children= FALSE;
set_emb_join_nest(&sj_nest->nested_join->join_list, sj_nest);
while ((tbl= child_li++))
{
if (tbl->nested_join)
{
have_join_nest_children= TRUE;
break;
}
}
table_map pulled_tables= 0;
table_map dep_tables= 0;
if (have_join_nest_children)
goto skip;
/*
Calculate set of tables within this semi-join nest that have
other dependent tables
*/
child_li.rewind();
while ((tbl= child_li++))
{
TABLE *const table= tbl->table;
if (table &&
(table->reginfo.join_tab->dependent &
sj_nest->nested_join->used_tables))
dep_tables|= table->reginfo.join_tab->dependent;
}
/* Action #1: Mark the constant tables to be pulled out */
child_li.rewind();
while ((tbl= child_li++))
{
if (tbl->table)
{
tbl->table->reginfo.join_tab->emb_sj_nest= sj_nest;
#if 0
/*
Do not pull out tables because they are constant. This operation has
a problem:
- Some constant tables may become/cease to be constant across PS
re-executions
- Contrary to our initial assumption, it turned out that table pullout
operation is not easily undoable.
The solution is to leave constant tables where they are. This will
affect only constant tables that are 1-row or empty, tables that are
constant because they are accessed via eq_ref(const) access will
still be pulled out as functionally-dependent.
This will cause us to miss the chance to flatten some of the
subqueries, but since const tables do not generate many duplicates,
it really doesn't matter that much whether they were pulled out or
not.
All of this was done as fix for BUG#43768.
*/
if (tbl->table->map & join->const_table_map)
{
pulled_tables |= tbl->table->map;
DBUG_PRINT("info", ("Table %s pulled out (reason: constant)",
tbl->table->alias));
}
#endif
}
}
/*
Action #2: Find which tables we can pull out based on
update_ref_and_keys() data. Note that pulling one table out can allow
us to pull out some other tables too.
*/
bool pulled_a_table;
do
{
pulled_a_table= FALSE;
child_li.rewind();
while ((tbl= child_li++))
{
if (tbl->table && !(pulled_tables & tbl->table->map) &&
!(dep_tables & tbl->table->map))
{
if (find_eq_ref_candidate(tbl->table,
sj_nest->nested_join->used_tables &
~pulled_tables))
{
pulled_a_table= TRUE;
pulled_tables |= tbl->table->map;
DBUG_PRINT("info", ("Table %s pulled out (reason: func dep)",
tbl->table->alias.c_ptr()));
/*
Pulling a table out of uncorrelated subquery in general makes
makes it correlated. See the NOTE to this funtion.
*/
sj_nest->sj_subq_pred->is_correlated= TRUE;
sj_nest->nested_join->sj_corr_tables|= tbl->table->map;
sj_nest->nested_join->sj_depends_on|= tbl->table->map;
}
}
}
} while (pulled_a_table);
child_li.rewind();
skip:
/*
Action #3: Move the pulled out TABLE_LIST elements to the parents.
*/
table_map inner_tables= sj_nest->nested_join->used_tables &
~pulled_tables;
/* Record the bitmap of inner tables */
sj_nest->sj_inner_tables= inner_tables;
if (pulled_tables)
{
List<TABLE_LIST> *upper_join_list= (sj_nest->embedding != NULL)?
(&sj_nest->embedding->nested_join->join_list):
(&join->select_lex->top_join_list);
Query_arena *arena, backup;
arena= join->thd->activate_stmt_arena_if_needed(&backup);
while ((tbl= child_li++))
{
if (tbl->table)
{
if (inner_tables & tbl->table->map)
{
/* This table is not pulled out */
tbl->table->reginfo.join_tab->emb_sj_nest= sj_nest;
}
else
{
/* This table has been pulled out of the semi-join nest */
tbl->table->reginfo.join_tab->emb_sj_nest= NULL;
/*
Pull the table up in the same way as simplify_joins() does:
update join_list and embedding pointers but keep next[_local]
pointers.
*/
child_li.remove();
sj_nest->nested_join->used_tables &= ~tbl->table->map;
upper_join_list->push_back(tbl, join->thd->mem_root);
tbl->join_list= upper_join_list;
tbl->embedding= sj_nest->embedding;
}
}
}
/* Remove the sj-nest itself if we've removed everything from it */
if (!inner_tables)
{
List_iterator<TABLE_LIST> li(*upper_join_list);
/* Find the sj_nest in the list. */
while (sj_nest != li++) ;
li.remove();
/* Also remove it from the list of SJ-nests: */
sj_list_it.remove();
}
if (arena)
join->thd->restore_active_arena(arena, &backup);
}
}
DBUG_RETURN(0);
}
/*
Optimize semi-join nests that could be run with sj-materialization
SYNOPSIS
optimize_semijoin_nests()
join The join to optimize semi-join nests for
all_table_map Bitmap of all tables in the join
DESCRIPTION
Optimize each of the semi-join nests that can be run with
materialization. For each of the nests, we
- Generate the best join order for this "sub-join" and remember it;
- Remember the sub-join execution cost (it's part of materialization
cost);
- Calculate other costs that will be incurred if we decide
to use materialization strategy for this semi-join nest.
All obtained information is saved and will be used by the main join
optimization pass.
NOTES
Because of Join::reoptimize(), this function may be called multiple times.
RETURN
FALSE Ok
TRUE Out of memory error
*/
bool optimize_semijoin_nests(JOIN *join, table_map all_table_map)
{
DBUG_ENTER("optimize_semijoin_nests");
List_iterator<TABLE_LIST> sj_list_it(join->select_lex->sj_nests);
TABLE_LIST *sj_nest;
while ((sj_nest= sj_list_it++))
{
/* semi-join nests with only constant tables are not valid */
/// DBUG_ASSERT(sj_nest->sj_inner_tables & ~join->const_table_map);
sj_nest->sj_mat_info= NULL;
/*
The statement may have been executed with 'semijoin=on' earlier.
We need to verify that 'semijoin=on' still holds.
*/
if (optimizer_flag(join->thd, OPTIMIZER_SWITCH_SEMIJOIN) &&
optimizer_flag(join->thd, OPTIMIZER_SWITCH_MATERIALIZATION))
{
if ((sj_nest->sj_inner_tables & ~join->const_table_map) && /* not everything was pulled out */
!sj_nest->sj_subq_pred->is_correlated &&
sj_nest->sj_subq_pred->types_allow_materialization)
{
join->emb_sjm_nest= sj_nest;
if (choose_plan(join, all_table_map &~join->const_table_map))
DBUG_RETURN(TRUE); /* purecov: inspected */
/*
The best plan to run the subquery is now in join->best_positions,
save it.
*/
uint n_tables= my_count_bits(sj_nest->sj_inner_tables & ~join->const_table_map);
SJ_MATERIALIZATION_INFO* sjm;
if (!(sjm= new SJ_MATERIALIZATION_INFO) ||
!(sjm->positions= (POSITION*)join->thd->alloc(sizeof(POSITION)*
n_tables)))
DBUG_RETURN(TRUE); /* purecov: inspected */
sjm->tables= n_tables;
sjm->is_used= FALSE;
double subjoin_out_rows, subjoin_read_time;
/*
join->get_partial_cost_and_fanout(n_tables + join->const_tables,
table_map(-1),
&subjoin_read_time,
&subjoin_out_rows);
*/
join->get_prefix_cost_and_fanout(n_tables,
&subjoin_read_time,
&subjoin_out_rows);
sjm->materialization_cost.convert_from_cost(subjoin_read_time);
sjm->rows= subjoin_out_rows;
// Don't use the following list because it has "stale" items. use
// ref_pointer_array instead:
//
//List<Item> &right_expr_list=
// sj_nest->sj_subq_pred->unit->first_select()->item_list;
/*
Adjust output cardinality estimates. If the subquery has form
... oe IN (SELECT t1.colX, t2.colY, func(X,Y,Z) )
then the number of distinct output record combinations has an
upper bound of product of number of records matching the tables
that are used by the SELECT clause.
TODO:
We can get a more precise estimate if we
- use rec_per_key cardinality estimates. For simple cases like
"oe IN (SELECT t.key ...)" it is trivial.
- Functional dependencies between the tables in the semi-join
nest (the payoff is probably less here?)
See also get_post_group_estimate().
*/
SELECT_LEX *subq_select= sj_nest->sj_subq_pred->unit->first_select();
{
for (uint i=0 ; i < join->const_tables + sjm->tables ; i++)
{
JOIN_TAB *tab= join->best_positions[i].table;
join->map2table[tab->table->tablenr]= tab;
}
table_map map= 0;
for (uint i=0; i < subq_select->item_list.elements; i++)
map|= subq_select->ref_pointer_array[i]->used_tables();
map= map & ~PSEUDO_TABLE_BITS;
Table_map_iterator tm_it(map);
int tableno;
double rows= 1.0;
while ((tableno = tm_it.next_bit()) != Table_map_iterator::BITMAP_END)
rows *= join->map2table[tableno]->table->quick_condition_rows;
sjm->rows= MY_MIN(sjm->rows, rows);
}
memcpy((uchar*) sjm->positions,
(uchar*) (join->best_positions + join->const_tables),
sizeof(POSITION) * n_tables);
/*
Calculate temporary table parameters and usage costs
*/
uint rowlen= get_tmp_table_rec_length(subq_select->ref_pointer_array,
subq_select->item_list.elements);
double lookup_cost= get_tmp_table_lookup_cost(join->thd,
subjoin_out_rows, rowlen);
double write_cost= get_tmp_table_write_cost(join->thd,
subjoin_out_rows, rowlen);
/*
Let materialization cost include the cost to write the data into the
temporary table:
*/
sjm->materialization_cost.add_io(subjoin_out_rows, write_cost);
/*
Set the cost to do a full scan of the temptable (will need this to
consider doing sjm-scan):
*/
sjm->scan_cost.reset();
sjm->scan_cost.add_io(sjm->rows, lookup_cost);
sjm->lookup_cost.convert_from_cost(lookup_cost);
sj_nest->sj_mat_info= sjm;
DBUG_EXECUTE("opt", print_sjm(sjm););
}
}
}
join->emb_sjm_nest= NULL;
DBUG_RETURN(FALSE);
}
/*
Get estimated record length for semi-join materialization temptable
SYNOPSIS
get_tmp_table_rec_length()
items IN subquery's select list.
DESCRIPTION
Calculate estimated record length for semi-join materialization
temptable. It's an estimate because we don't follow every bit of
create_tmp_table()'s logic. This isn't necessary as the return value of
this function is used only for cost calculations.
RETURN
Length of the temptable record, in bytes
*/
static uint get_tmp_table_rec_length(Ref_ptr_array p_items, uint elements)
{
uint len= 0;
Item *item;
//List_iterator<Item> it(items);
for (uint i= 0; i < elements ; i++)
{
item = p_items[i];
switch (item->result_type()) {
case REAL_RESULT:
len += sizeof(double);
break;
case INT_RESULT:
if (item->max_length >= (MY_INT32_NUM_DECIMAL_DIGITS - 1))
len += 8;
else
len += 4;
break;
case STRING_RESULT:
enum enum_field_types type;
/* DATE/TIME and GEOMETRY fields have STRING_RESULT result type. */
if ((type= item->field_type()) == MYSQL_TYPE_DATETIME ||
type == MYSQL_TYPE_TIME || type == MYSQL_TYPE_DATE ||
type == MYSQL_TYPE_TIMESTAMP || type == MYSQL_TYPE_GEOMETRY)
len += 8;
else
len += item->max_length;
break;
case DECIMAL_RESULT:
len += 10;
break;
case ROW_RESULT:
default:
DBUG_ASSERT(0); /* purecov: deadcode */
break;
}
}
return len;
}
/**
The cost of a lookup into a unique hash/btree index on a temporary table
with 'row_count' rows each of size 'row_size'.
@param thd current query context
@param row_count number of rows in the temp table
@param row_size average size in bytes of the rows
@return the cost of one lookup
*/
static double
get_tmp_table_lookup_cost(THD *thd, double row_count, uint row_size)
{
if (row_count * row_size > thd->variables.max_heap_table_size)
return (double) DISK_TEMPTABLE_LOOKUP_COST;
else
return (double) HEAP_TEMPTABLE_LOOKUP_COST;
}
/**
The cost of writing a row into a temporary table with 'row_count' unique
rows each of size 'row_size'.
@param thd current query context
@param row_count number of rows in the temp table
@param row_size average size in bytes of the rows
@return the cost of writing one row
*/
static double
get_tmp_table_write_cost(THD *thd, double row_count, uint row_size)
{
double lookup_cost= get_tmp_table_lookup_cost(thd, row_count, row_size);
/*
TODO:
This is an optimistic estimate. Add additional costs resulting from
actually writing the row to memory/disk and possible index reorganization.
*/
return lookup_cost;
}
/*
Check if table's KEYUSE elements have an eq_ref(outer_tables) candidate
SYNOPSIS
find_eq_ref_candidate()
table Table to be checked
sj_inner_tables Bitmap of inner tables. eq_ref(inner_table) doesn't
count.
DESCRIPTION
Check if table's KEYUSE elements have an eq_ref(outer_tables) candidate
TODO
Check again if it is feasible to factor common parts with constant table
search
Also check if it's feasible to factor common parts with table elimination
RETURN
TRUE - There exists an eq_ref(outer-tables) candidate
FALSE - Otherwise
*/
bool find_eq_ref_candidate(TABLE *table, table_map sj_inner_tables)
{
KEYUSE *keyuse= table->reginfo.join_tab->keyuse;
if (keyuse)
{
do
{
uint key= keyuse->key;
KEY *keyinfo;
key_part_map bound_parts= 0;
bool is_excluded_key= keyuse->is_for_hash_join();
if (!is_excluded_key)
{
keyinfo= table->key_info + key;
is_excluded_key= !MY_TEST(keyinfo->flags & HA_NOSAME);
}
if (!is_excluded_key)
{
do /* For all equalities on all key parts */
{
/* Check if this is "t.keypart = expr(outer_tables) */
if (!(keyuse->used_tables & sj_inner_tables) &&
!(keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL))
{
bound_parts |= 1 << keyuse->keypart;
}
keyuse++;
} while (keyuse->key == key && keyuse->table == table);
if (bound_parts == PREV_BITS(uint, keyinfo->user_defined_key_parts))
return TRUE;
}
else
{
do
{
keyuse++;
} while (keyuse->key == key && keyuse->table == table);
}
} while (keyuse->table == table);
}
return FALSE;
}
/*
Do semi-join optimization step after we've added a new tab to join prefix
SYNOPSIS
advance_sj_state()
join The join we're optimizing
remaining_tables Tables not in the join prefix
new_join_tab Join tab we've just added to the join prefix
idx Index of this join tab (i.e. number of tables
in the prefix minus one)
current_record_count INOUT Estimate of #records in join prefix's output
current_read_time INOUT Cost to execute the join prefix
loose_scan_pos IN A POSITION with LooseScan plan to access
table new_join_tab
(produced by the last best_access_path call)
DESCRIPTION
Update semi-join optimization state after we've added another tab (table
and access method) to the join prefix.
The state is maintained in join->positions[#prefix_size]. Each of the
available strategies has its own state variables.
for each semi-join strategy
{
update strategy's state variables;
if (join prefix has all the tables that are needed to consider
using this strategy for the semi-join(s))
{
calculate cost of using the strategy
if ((this is the first strategy to handle the semi-join nest(s) ||
the cost is less than other strategies))
{
// Pick this strategy
pos->sj_strategy= ..
..
}
}
Most of the new state is saved join->positions[idx] (and hence no undo
is necessary). Several members of class JOIN are updated also, these
changes can be rolled back with restore_prev_sj_state().
See setup_semijoin_dups_elimination() for a description of what kinds of
join prefixes each strategy can handle.
*/
bool is_multiple_semi_joins(JOIN *join, POSITION *prefix, uint idx, table_map inner_tables)
{
for (int i= (int)idx; i >= 0; i--)
{
TABLE_LIST *emb_sj_nest;
if ((emb_sj_nest= prefix[i].table->emb_sj_nest))
{
if (inner_tables & emb_sj_nest->sj_inner_tables)
return !MY_TEST(inner_tables == (emb_sj_nest->sj_inner_tables &
~join->const_table_map));
}
}
return FALSE;
}
void advance_sj_state(JOIN *join, table_map remaining_tables, uint idx,
double *current_record_count, double *current_read_time,
POSITION *loose_scan_pos)
{
POSITION *pos= join->positions + idx;
const JOIN_TAB *new_join_tab= pos->table;
Semi_join_strategy_picker *pickers[]=
{
&pos->firstmatch_picker,
&pos->loosescan_picker,
&pos->sjmat_picker,
&pos->dups_weedout_picker,
NULL,
};
if (join->emb_sjm_nest)
{
/*
We're performing optimization inside SJ-Materialization nest:
- there are no other semi-joins inside semi-join nests
- attempts to build semi-join strategies here will confuse
the optimizer, so bail out.
*/
pos->sj_strategy= SJ_OPT_NONE;
return;
}
/*
Update join->cur_sj_inner_tables (Used by FirstMatch in this function and
LooseScan detector in best_access_path)
*/
remaining_tables &= ~new_join_tab->table->map;
table_map dups_producing_tables;
if (idx == join->const_tables)
dups_producing_tables= 0;
else
dups_producing_tables= pos[-1].dups_producing_tables;
TABLE_LIST *emb_sj_nest;
if ((emb_sj_nest= new_join_tab->emb_sj_nest))
dups_producing_tables |= emb_sj_nest->sj_inner_tables;
Semi_join_strategy_picker **strategy;
if (idx == join->const_tables)
{
/* First table, initialize pickers */
for (strategy= pickers; *strategy != NULL; strategy++)
(*strategy)->set_empty();
pos->inner_tables_handled_with_other_sjs= 0;
}
else
{
for (strategy= pickers; *strategy != NULL; strategy++)
{
(*strategy)->set_from_prev(pos - 1);
}
pos->inner_tables_handled_with_other_sjs=
pos[-1].inner_tables_handled_with_other_sjs;
}
pos->prefix_cost.convert_from_cost(*current_read_time);
pos->prefix_record_count= *current_record_count;
{
pos->sj_strategy= SJ_OPT_NONE;
for (strategy= pickers; *strategy != NULL; strategy++)
{
table_map handled_fanout;
sj_strategy_enum sj_strategy;
double rec_count= *current_record_count;
double read_time= *current_read_time;
if ((*strategy)->check_qep(join, idx, remaining_tables,
new_join_tab,
&rec_count,
&read_time,
&handled_fanout,
&sj_strategy,
loose_scan_pos))
{
/*
It's possible to use the strategy. Use it, if
- it removes semi-join fanout that was not removed before
- using it is cheaper than using something else,
and {if some other strategy has removed fanout
that this strategy is trying to remove, then it
did remove the fanout only for one semi-join}
This is to avoid a situation when
1. strategy X removes fanout for semijoin X,Y
2. using strategy Z is cheaper, but it only removes
fanout from semijoin X.
3. We have no clue what to do about fanount of semi-join Y.
*/
if ((dups_producing_tables & handled_fanout) ||
(read_time < *current_read_time &&
!(handled_fanout & pos->inner_tables_handled_with_other_sjs)))
{
/* Mark strategy as used */
(*strategy)->mark_used();
pos->sj_strategy= sj_strategy;
if (sj_strategy == SJ_OPT_MATERIALIZE)
join->sjm_lookup_tables |= handled_fanout;
else
join->sjm_lookup_tables &= ~handled_fanout;
*current_read_time= read_time;
*current_record_count= rec_count;
dups_producing_tables &= ~handled_fanout;
//TODO: update bitmap of semi-joins that were handled together with
// others.
if (is_multiple_semi_joins(join, join->positions, idx, handled_fanout))
pos->inner_tables_handled_with_other_sjs |= handled_fanout;
}
else
{
/* We decided not to apply the strategy. */
(*strategy)->set_empty();
}
}
}
}
if ((emb_sj_nest= new_join_tab->emb_sj_nest))
{
join->cur_sj_inner_tables |= emb_sj_nest->sj_inner_tables;
/* Remove the sj_nest if all of its SJ-inner tables are in cur_table_map */
if (!(remaining_tables &
emb_sj_nest->sj_inner_tables & ~new_join_tab->table->map))
join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
}
pos->prefix_cost.convert_from_cost(*current_read_time);
pos->prefix_record_count= *current_record_count;
pos->dups_producing_tables= dups_producing_tables;
}
void Sj_materialization_picker::set_from_prev(struct st_position *prev)
{
if (prev->sjmat_picker.is_used)
set_empty();
else
{
sjm_scan_need_tables= prev->sjmat_picker.sjm_scan_need_tables;
sjm_scan_last_inner= prev->sjmat_picker.sjm_scan_last_inner;
}
is_used= FALSE;
}
bool Sj_materialization_picker::check_qep(JOIN *join,
uint idx,
table_map remaining_tables,
const JOIN_TAB *new_join_tab,
double *record_count,
double *read_time,
table_map *handled_fanout,
sj_strategy_enum *strategy,
POSITION *loose_scan_pos)
{
bool sjm_scan;
SJ_MATERIALIZATION_INFO *mat_info;
if ((mat_info= at_sjmat_pos(join, remaining_tables,
new_join_tab, idx, &sjm_scan)))
{
if (sjm_scan)
{
/*
We can't yet evaluate this option yet. This is because we can't
accout for fanout of sj-inner tables yet:
ntX SJM-SCAN(it1 ... itN) | ot1 ... otN |
^(1) ^(2)
we're now at position (1). SJM temptable in general has multiple
records, so at point (1) we'll get the fanout from sj-inner tables (ie
there will be multiple record combinations).
The final join result will not contain any semi-join produced
fanout, i.e. tables within SJM-SCAN(...) will not contribute to
the cardinality of the join output. Extra fanout produced by
SJM-SCAN(...) will be 'absorbed' into fanout produced by ot1 ... otN.
The simple way to model this is to remove SJM-SCAN(...) fanout once
we reach the point #2.
*/
sjm_scan_need_tables=
new_join_tab->emb_sj_nest->sj_inner_tables |
new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
sjm_scan_last_inner= idx;
}
else
{
/* This is SJ-Materialization with lookups */
Cost_estimate prefix_cost;
signed int first_tab= (int)idx - mat_info->tables;
double prefix_rec_count;
if (first_tab < (int)join->const_tables)
{
prefix_cost.reset();
prefix_rec_count= 1.0;
}
else
{
prefix_cost= join->positions[first_tab].prefix_cost;
prefix_rec_count= join->positions[first_tab].prefix_record_count;
}
double mat_read_time= prefix_cost.total_cost();
mat_read_time += mat_info->materialization_cost.total_cost() +
prefix_rec_count * mat_info->lookup_cost.total_cost();
/*
NOTE: When we pick to use SJM[-Scan] we don't memcpy its POSITION
elements to join->positions as that makes it hard to return things
back when making one step back in join optimization. That's done
after the QEP has been chosen.
*/
*read_time= mat_read_time;
*record_count= prefix_rec_count;
*handled_fanout= new_join_tab->emb_sj_nest->sj_inner_tables;
*strategy= SJ_OPT_MATERIALIZE;
return TRUE;
}
}
/* 4.A SJM-Scan second phase check */
if (sjm_scan_need_tables && /* Have SJM-Scan prefix */
!(sjm_scan_need_tables & remaining_tables))
{
TABLE_LIST *mat_nest=
join->positions[sjm_scan_last_inner].table->emb_sj_nest;
SJ_MATERIALIZATION_INFO *mat_info= mat_nest->sj_mat_info;
double prefix_cost;
double prefix_rec_count;
int first_tab= sjm_scan_last_inner + 1 - mat_info->tables;
/* Get the prefix cost */
if (first_tab == (int)join->const_tables)
{
prefix_rec_count= 1.0;
prefix_cost= 0.0;
}
else
{
prefix_cost= join->positions[first_tab - 1].prefix_cost.total_cost();
prefix_rec_count= join->positions[first_tab - 1].prefix_record_count;
}
/* Add materialization cost */
prefix_cost += mat_info->materialization_cost.total_cost() +
prefix_rec_count * mat_info->scan_cost.total_cost();
prefix_rec_count *= mat_info->rows;
uint i;
table_map rem_tables= remaining_tables;
for (i= idx; i != (first_tab + mat_info->tables - 1); i--)
rem_tables |= join->positions[i].table->table->map;
POSITION curpos, dummy;
/* Need to re-run best-access-path as we prefix_rec_count has changed */
bool disable_jbuf= (join->thd->variables.join_cache_level == 0);
for (i= first_tab + mat_info->tables; i <= idx; i++)
{
best_access_path(join, join->positions[i].table, rem_tables, i,
disable_jbuf, prefix_rec_count, &curpos, &dummy);
prefix_rec_count *= curpos.records_read;
prefix_cost += curpos.read_time;
}
*strategy= SJ_OPT_MATERIALIZE_SCAN;
*read_time= prefix_cost;
*record_count= prefix_rec_count;
*handled_fanout= mat_nest->sj_inner_tables;
return TRUE;
}
return FALSE;
}
void LooseScan_picker::set_from_prev(struct st_position *prev)
{
if (prev->loosescan_picker.is_used)
set_empty();
else
{
first_loosescan_table= prev->loosescan_picker.first_loosescan_table;
loosescan_need_tables= prev->loosescan_picker.loosescan_need_tables;
}
is_used= FALSE;
}
bool LooseScan_picker::check_qep(JOIN *join,
uint idx,
table_map remaining_tables,
const JOIN_TAB *new_join_tab,
double *record_count,
double *read_time,
table_map *handled_fanout,
sj_strategy_enum *strategy,
struct st_position *loose_scan_pos)
{
POSITION *first= join->positions + first_loosescan_table;
/*
LooseScan strategy can't handle interleaving between tables from the
semi-join that LooseScan is handling and any other tables.
If we were considering LooseScan for the join prefix (1)
and the table we're adding creates an interleaving (2)
then
stop considering loose scan
*/
if ((first_loosescan_table != MAX_TABLES) && // (1)
(first->table->emb_sj_nest->sj_inner_tables & remaining_tables) && //(2)
new_join_tab->emb_sj_nest != first->table->emb_sj_nest) //(2)
{
first_loosescan_table= MAX_TABLES;
}
/*
If we got an option to use LooseScan for the current table, start
considering using LooseScan strategy
*/
if (loose_scan_pos->read_time != DBL_MAX && !join->outer_join)
{
first_loosescan_table= idx;
loosescan_need_tables=
new_join_tab->emb_sj_nest->sj_inner_tables |
new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
}
if ((first_loosescan_table != MAX_TABLES) &&
!(remaining_tables & loosescan_need_tables) &&
(new_join_tab->table->map & loosescan_need_tables))
{
/*
Ok we have LooseScan plan and also have all LooseScan sj-nest's
inner tables and outer correlated tables into the prefix.
*/
first= join->positions + first_loosescan_table;
uint n_tables= my_count_bits(first->table->emb_sj_nest->sj_inner_tables);
/* Got a complete LooseScan range. Calculate its cost */
/*
The same problem as with FirstMatch - we need to save POSITIONs
somewhere but reserving space for all cases would require too
much space. We will re-calculate POSITION structures later on.
*/
bool disable_jbuf= (join->thd->variables.join_cache_level == 0);
optimize_wo_join_buffering(join, first_loosescan_table, idx,
remaining_tables,
TRUE, //first_alt
disable_jbuf ? join->table_count :
first_loosescan_table + n_tables,
record_count,
read_time);
/*
We don't yet have any other strategies that could handle this
semi-join nest (the other options are Duplicate Elimination or
Materialization, which need at least the same set of tables in
the join prefix to be considered) so unconditionally pick the
LooseScan.
*/
*strategy= SJ_OPT_LOOSE_SCAN;
*handled_fanout= first->table->emb_sj_nest->sj_inner_tables;
return TRUE;
}
return FALSE;
}
void Firstmatch_picker::set_from_prev(struct st_position *prev)
{
if (prev->firstmatch_picker.is_used)
invalidate_firstmatch_prefix();
else
{
first_firstmatch_table= prev->firstmatch_picker.first_firstmatch_table;
first_firstmatch_rtbl= prev->firstmatch_picker.first_firstmatch_rtbl;
firstmatch_need_tables= prev->firstmatch_picker.firstmatch_need_tables;
}
is_used= FALSE;
}
bool Firstmatch_picker::check_qep(JOIN *join,
uint idx,
table_map remaining_tables,
const JOIN_TAB *new_join_tab,
double *record_count,
double *read_time,
table_map *handled_fanout,
sj_strategy_enum *strategy,
POSITION *loose_scan_pos)
{
if (new_join_tab->emb_sj_nest &&
optimizer_flag(join->thd, OPTIMIZER_SWITCH_FIRSTMATCH) &&
!join->outer_join)
{
const table_map outer_corr_tables=
new_join_tab->emb_sj_nest->nested_join->sj_corr_tables |
new_join_tab->emb_sj_nest->nested_join->sj_depends_on;
const table_map sj_inner_tables=
new_join_tab->emb_sj_nest->sj_inner_tables & ~join->const_table_map;
/*
Enter condition:
1. The next join tab belongs to semi-join nest
(verified for the encompassing code block above).
2. We're not in a duplicate producer range yet
3. All outer tables that
- the subquery is correlated with, or
- referred to from the outer_expr
are in the join prefix
4. All inner tables are still part of remaining_tables.
*/
if (!join->cur_sj_inner_tables && // (2)
!(remaining_tables & outer_corr_tables) && // (3)
(sj_inner_tables == // (4)
((remaining_tables | new_join_tab->table->map) & sj_inner_tables)))
{
/* Start tracking potential FirstMatch range */
first_firstmatch_table= idx;
firstmatch_need_tables= sj_inner_tables;
first_firstmatch_rtbl= remaining_tables;
}
if (in_firstmatch_prefix())
{
if (outer_corr_tables & first_firstmatch_rtbl)
{
/*
Trying to add an sj-inner table whose sj-nest has an outer correlated
table that was not in the prefix. This means FirstMatch can't be used.
*/
invalidate_firstmatch_prefix();
}
else
{
/* Record that we need all of this semi-join's inner tables, too */
firstmatch_need_tables|= sj_inner_tables;
}
if (in_firstmatch_prefix() &&
!(firstmatch_need_tables & remaining_tables))
{
/*
Got a complete FirstMatch range. Calculate correct costs and fanout
*/
if (idx == first_firstmatch_table &&
optimizer_flag(join->thd, OPTIMIZER_SWITCH_SEMIJOIN_WITH_CACHE))
{
/*
An important special case: only one inner table, and @@optimizer_switch
allows join buffering.
- read_time is the same (i.e. FirstMatch doesn't add any cost
- remove fanout added by the last table
*/
if (*record_count)
*record_count /= join->positions[idx].records_read;
}
else
{
optimize_wo_join_buffering(join, first_firstmatch_table, idx,
remaining_tables, FALSE, idx,
record_count,
read_time);
}
/*
We ought to save the alternate POSITIONs produced by
optimize_wo_join_buffering but the problem is that providing save
space uses too much space. Instead, we will re-calculate the
alternate POSITIONs after we've picked the best QEP.
*/
*handled_fanout= firstmatch_need_tables;
/* *record_count and *read_time were set by the above call */
*strategy= SJ_OPT_FIRST_MATCH;
return TRUE;
}
}
}
else
invalidate_firstmatch_prefix();
return FALSE;
}
void Duplicate_weedout_picker::set_from_prev(POSITION *prev)
{
if (prev->dups_weedout_picker.is_used)
set_empty();
else
{
dupsweedout_tables= prev->dups_weedout_picker.dupsweedout_tables;
first_dupsweedout_table= prev->dups_weedout_picker.first_dupsweedout_table;
}
is_used= FALSE;
}
bool Duplicate_weedout_picker::check_qep(JOIN *join,
uint idx,
table_map remaining_tables,
const JOIN_TAB *new_join_tab,
double *record_count,
double *read_time,
table_map *handled_fanout,
sj_strategy_enum *strategy,
POSITION *loose_scan_pos
)
{
TABLE_LIST *nest;
if ((nest= new_join_tab->emb_sj_nest))
{
if (!dupsweedout_tables)
first_dupsweedout_table= idx;
dupsweedout_tables |= nest->sj_inner_tables |
nest->nested_join->sj_depends_on |
nest->nested_join->sj_corr_tables;
}
if (dupsweedout_tables)
{
/* we're in the process of constructing a DuplicateWeedout range */
TABLE_LIST *emb= new_join_tab->table->pos_in_table_list->embedding;
/* and we've entered an inner side of an outer join*/
if (emb && emb->on_expr)
dupsweedout_tables |= emb->nested_join->used_tables;
}
/* If this is the last table that we need for DuplicateWeedout range */
if (dupsweedout_tables && !(remaining_tables & ~new_join_tab->table->map &
dupsweedout_tables))
{
/*
Ok, reached a state where we could put a dups weedout point.
Walk back and calculate
- the join cost (this is needed as the accumulated cost may assume
some other duplicate elimination method)
- extra fanout that will be removed by duplicate elimination
- duplicate elimination cost
There are two cases:
1. We have other strategy/ies to remove all of the duplicates.
2. We don't.
We need to calculate the cost in case #2 also because we need to make
choice between this join order and others.
*/
uint first_tab= first_dupsweedout_table;
double dups_cost;
double prefix_rec_count;
double sj_inner_fanout= 1.0;
double sj_outer_fanout= 1.0;
uint temptable_rec_size;
if (first_tab == join->const_tables)
{
prefix_rec_count= 1.0;
temptable_rec_size= 0;
dups_cost= 0.0;
}
else
{
dups_cost= join->positions[first_tab - 1].prefix_cost.total_cost();
prefix_rec_count= join->positions[first_tab - 1].prefix_record_count;
temptable_rec_size= 8; /* This is not true but we'll make it so */
}
table_map dups_removed_fanout= 0;
double current_fanout= prefix_rec_count;
for (uint j= first_dupsweedout_table; j <= idx; j++)
{
POSITION *p= join->positions + j;
current_fanout *= p->records_read;
dups_cost += p->read_time + current_fanout / TIME_FOR_COMPARE;
if (p->table->emb_sj_nest)
{
sj_inner_fanout *= p->records_read;
dups_removed_fanout |= p->table->table->map;
}
else
{
sj_outer_fanout *= p->records_read;
temptable_rec_size += p->table->table->file->ref_length;
}
}
/*
Add the cost of temptable use. The table will have sj_outer_fanout
records, and we will make
- sj_outer_fanout table writes
- sj_inner_fanout*sj_outer_fanout lookups.
*/
double one_lookup_cost= get_tmp_table_lookup_cost(join->thd,
sj_outer_fanout,
temptable_rec_size);
double one_write_cost= get_tmp_table_write_cost(join->thd,
sj_outer_fanout,
temptable_rec_size);
double write_cost= join->positions[first_tab].prefix_record_count*
sj_outer_fanout * one_write_cost;
double full_lookup_cost= join->positions[first_tab].prefix_record_count*
sj_outer_fanout* sj_inner_fanout *
one_lookup_cost;
dups_cost += write_cost + full_lookup_cost;
*read_time= dups_cost;
*record_count= prefix_rec_count * sj_outer_fanout;
*handled_fanout= dups_removed_fanout;
*strategy= SJ_OPT_DUPS_WEEDOUT;
return TRUE;
}
return FALSE;
}
/*
Remove the last join tab from from join->cur_sj_inner_tables bitmap
we assume remaining_tables doesnt contain @tab.
*/
void restore_prev_sj_state(const table_map remaining_tables,
const JOIN_TAB *tab, uint idx)
{
TABLE_LIST *emb_sj_nest;
if (tab->emb_sj_nest)
{
table_map subq_tables= tab->emb_sj_nest->sj_inner_tables;
tab->join->sjm_lookup_tables &= ~subq_tables;
}
if ((emb_sj_nest= tab->emb_sj_nest))
{
/* If we're removing the last SJ-inner table, remove the sj-nest */
if ((remaining_tables & emb_sj_nest->sj_inner_tables) ==
(emb_sj_nest->sj_inner_tables & ~tab->table->map))
{
tab->join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
}
}
}
/*
Given a semi-join nest, find out which of the IN-equalities are bound
SYNOPSIS
get_bound_sj_equalities()
sj_nest Semi-join nest
remaining_tables Tables that are not yet bound
DESCRIPTION
Given a semi-join nest, find out which of the IN-equalities have their
left part expression bound (i.e. the said expression doesn't refer to
any of remaining_tables and can be evaluated).
RETURN
Bitmap of bound IN-equalities.
*/
ulonglong get_bound_sj_equalities(TABLE_LIST *sj_nest,
table_map remaining_tables)
{
List_iterator<Item> li(sj_nest->nested_join->sj_outer_expr_list);
Item *item;
uint i= 0;
ulonglong res= 0;
while ((item= li++))
{
/*
Q: should this take into account equality propagation and how?
A: If e->outer_side is an Item_field, walk over the equality
class and see if there is an element that is bound?
(this is an optional feature)
*/
if (!(item->used_tables() & remaining_tables))
{
res |= 1ULL << i;
}
i++;
}
return res;
}
/*
Check if the last tables of the partial join order allow to use
sj-materialization strategy for them
SYNOPSIS
at_sjmat_pos()
join
remaining_tables
tab the last table's join tab
idx last table's index
loose_scan OUT TRUE <=> use LooseScan
RETURN
TRUE Yes, can apply sj-materialization
FALSE No, some of the requirements are not met
*/
static SJ_MATERIALIZATION_INFO *
at_sjmat_pos(const JOIN *join, table_map remaining_tables, const JOIN_TAB *tab,
uint idx, bool *loose_scan)
{
/*
Check if
1. We're in a semi-join nest that can be run with SJ-materialization
2. All the tables correlated through the IN subquery are in the prefix
*/
TABLE_LIST *emb_sj_nest= tab->emb_sj_nest;
table_map suffix= remaining_tables & ~tab->table->map;
if (emb_sj_nest && emb_sj_nest->sj_mat_info &&
!(suffix & emb_sj_nest->sj_inner_tables))
{
/*
Walk back and check if all immediately preceding tables are from
this semi-join.
*/
uint n_tables= my_count_bits(tab->emb_sj_nest->sj_inner_tables);
for (uint i= 1; i < n_tables ; i++)
{
if (join->positions[idx - i].table->emb_sj_nest != tab->emb_sj_nest)
return NULL;
}
*loose_scan= MY_TEST(remaining_tables & ~tab->table->map &
(emb_sj_nest->sj_inner_tables |
emb_sj_nest->nested_join->sj_depends_on));
if (*loose_scan && !emb_sj_nest->sj_subq_pred->sjm_scan_allowed)
return NULL;
else
return emb_sj_nest->sj_mat_info;
}
return NULL;
}
/*
Re-calculate values of join->best_positions[start..end].prefix_record_count
*/
static void recalculate_prefix_record_count(JOIN *join, uint start, uint end)
{
for (uint j= start; j < end ;j++)
{
double prefix_count;
if (j == join->const_tables)
prefix_count= 1.0;
else
prefix_count= join->best_positions[j-1].prefix_record_count *
join->best_positions[j-1].records_read;
join->best_positions[j].prefix_record_count= prefix_count;
}
}
/*
Fix semi-join strategies for the picked join order
SYNOPSIS
fix_semijoin_strategies_for_picked_join_order()
join The join with the picked join order
DESCRIPTION
Fix semi-join strategies for the picked join order. This is a step that
needs to be done right after we have fixed the join order. What we do
here is switch join's semi-join strategy description from backward-based
to forwards based.
When join optimization is in progress, we re-consider semi-join
strategies after we've added another table. Here's an illustration.
Suppose the join optimization is underway:
1) ot1 it1 it2
sjX -- looking at (ot1, it1, it2) join prefix, we decide
to use semi-join strategy sjX.
2) ot1 it1 it2 ot2
sjX sjY -- Having added table ot2, we now may consider
another semi-join strategy and decide to use a
different strategy sjY. Note that the record
of sjX has remained under it2. That is
necessary because we need to be able to get
back to (ot1, it1, it2) join prefix.
what makes things even worse is that there are cases where the choice
of sjY changes the way we should access it2.
3) [ot1 it1 it2 ot2 ot3]
sjX sjY -- This means that after join optimization is
finished, semi-join info should be read
right-to-left (while nearly all plan refinement
functions, EXPLAIN, etc proceed from left to
right)
This function does the needed reversal, making it possible to read the
join and semi-join order from left to right.
*/
void fix_semijoin_strategies_for_picked_join_order(JOIN *join)
{
uint table_count=join->table_count;
uint tablenr;
table_map remaining_tables= 0;
table_map handled_tabs= 0;
join->sjm_lookup_tables= 0;
for (tablenr= table_count - 1 ; tablenr != join->const_tables - 1; tablenr--)
{
POSITION *pos= join->best_positions + tablenr;
JOIN_TAB *s= pos->table;
uint UNINIT_VAR(first); // Set by every branch except SJ_OPT_NONE which doesn't use it
if ((handled_tabs & s->table->map) || pos->sj_strategy == SJ_OPT_NONE)
{
remaining_tables |= s->table->map;
continue;
}
if (pos->sj_strategy == SJ_OPT_MATERIALIZE)
{
SJ_MATERIALIZATION_INFO *sjm= s->emb_sj_nest->sj_mat_info;
sjm->is_used= TRUE;
sjm->is_sj_scan= FALSE;
memcpy((uchar*) (pos - sjm->tables + 1), (uchar*) sjm->positions,
sizeof(POSITION) * sjm->tables);
recalculate_prefix_record_count(join, tablenr - sjm->tables + 1,
tablenr);
first= tablenr - sjm->tables + 1;
join->best_positions[first].n_sj_tables= sjm->tables;
join->best_positions[first].sj_strategy= SJ_OPT_MATERIALIZE;
join->sjm_lookup_tables|= s->table->map;
}
else if (pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
{
POSITION *first_inner= join->best_positions + pos->sjmat_picker.sjm_scan_last_inner;
SJ_MATERIALIZATION_INFO *sjm= first_inner->table->emb_sj_nest->sj_mat_info;
sjm->is_used= TRUE;
sjm->is_sj_scan= TRUE;
first= pos->sjmat_picker.sjm_scan_last_inner - sjm->tables + 1;
memcpy((uchar*) (join->best_positions + first),
(uchar*) sjm->positions, sizeof(POSITION) * sjm->tables);
recalculate_prefix_record_count(join, first, first + sjm->tables);
join->best_positions[first].sj_strategy= SJ_OPT_MATERIALIZE_SCAN;
join->best_positions[first].n_sj_tables= sjm->tables;
/*
Do what advance_sj_state did: re-run best_access_path for every table
in the [last_inner_table + 1; pos..) range
*/
double prefix_rec_count;
/* Get the prefix record count */
if (first == join->const_tables)
prefix_rec_count= 1.0;
else
prefix_rec_count= join->best_positions[first-1].prefix_record_count;
/* Add materialization record count*/
prefix_rec_count *= sjm->rows;
uint i;
table_map rem_tables= remaining_tables;
for (i= tablenr; i != (first + sjm->tables - 1); i--)
rem_tables |= join->best_positions[i].table->table->map;
POSITION dummy;
join->cur_sj_inner_tables= 0;
for (i= first + sjm->tables; i <= tablenr; i++)
{
best_access_path(join, join->best_positions[i].table, rem_tables, i,
FALSE, prefix_rec_count,
join->best_positions + i, &dummy);
prefix_rec_count *= join->best_positions[i].records_read;
rem_tables &= ~join->best_positions[i].table->table->map;
}
}
if (pos->sj_strategy == SJ_OPT_FIRST_MATCH)
{
first= pos->firstmatch_picker.first_firstmatch_table;
join->best_positions[first].sj_strategy= SJ_OPT_FIRST_MATCH;
join->best_positions[first].n_sj_tables= tablenr - first + 1;
POSITION dummy; // For loose scan paths
double record_count= (first== join->const_tables)? 1.0:
join->best_positions[tablenr - 1].prefix_record_count;
table_map rem_tables= remaining_tables;
uint idx;
for (idx= first; idx <= tablenr; idx++)
{
rem_tables |= join->best_positions[idx].table->table->map;
}
/*
Re-run best_access_path to produce best access methods that do not use
join buffering
*/
join->cur_sj_inner_tables= 0;
for (idx= first; idx <= tablenr; idx++)
{
if (join->best_positions[idx].use_join_buffer)
{
best_access_path(join, join->best_positions[idx].table,
rem_tables, idx, TRUE /* no jbuf */,
record_count, join->best_positions + idx, &dummy);
}
record_count *= join->best_positions[idx].records_read;
rem_tables &= ~join->best_positions[idx].table->table->map;
}
}
if (pos->sj_strategy == SJ_OPT_LOOSE_SCAN)
{
first= pos->loosescan_picker.first_loosescan_table;
POSITION *first_pos= join->best_positions + first;
POSITION loose_scan_pos; // For loose scan paths
double record_count= (first== join->const_tables)? 1.0:
join->best_positions[tablenr - 1].prefix_record_count;
table_map rem_tables= remaining_tables;
uint idx;
for (idx= first; idx <= tablenr; idx++)
rem_tables |= join->best_positions[idx].table->table->map;
/*
Re-run best_access_path to produce best access methods that do not use
join buffering
*/
join->cur_sj_inner_tables= 0;
for (idx= first; idx <= tablenr; idx++)
{
if (join->best_positions[idx].use_join_buffer || (idx == first))
{
best_access_path(join, join->best_positions[idx].table,
rem_tables, idx, TRUE /* no jbuf */,
record_count, join->best_positions + idx,
&loose_scan_pos);
if (idx==first)
{
join->best_positions[idx]= loose_scan_pos;
/*
If LooseScan is based on ref access (including the "degenerate"
one with 0 key parts), we should use full index scan.
Unfortunately, lots of code assumes that if tab->type==JT_ALL &&
tab->quick!=NULL, then quick select should be used. The only
simple way to fix this is to remove the quick select:
*/
if (join->best_positions[idx].key)
{
delete join->best_positions[idx].table->quick;
join->best_positions[idx].table->quick= NULL;
}
}
}
rem_tables &= ~join->best_positions[idx].table->table->map;
record_count *= join->best_positions[idx].records_read;
}
first_pos->sj_strategy= SJ_OPT_LOOSE_SCAN;
first_pos->n_sj_tables= my_count_bits(first_pos->table->emb_sj_nest->sj_inner_tables);
}
if (pos->sj_strategy == SJ_OPT_DUPS_WEEDOUT)
{
/*
Duplicate Weedout starting at pos->first_dupsweedout_table, ending at
this table.
*/
first= pos->dups_weedout_picker.first_dupsweedout_table;
join->best_positions[first].sj_strategy= SJ_OPT_DUPS_WEEDOUT;
join->best_positions[first].n_sj_tables= tablenr - first + 1;
}
uint i_end= first + join->best_positions[first].n_sj_tables;
for (uint i= first; i < i_end; i++)
{
if (i != first)
join->best_positions[i].sj_strategy= SJ_OPT_NONE;
handled_tabs |= join->best_positions[i].table->table->map;
}
if (tablenr != first)
pos->sj_strategy= SJ_OPT_NONE;
remaining_tables |= s->table->map;
join->join_tab[first].sj_strategy= join->best_positions[first].sj_strategy;
join->join_tab[first].n_sj_tables= join->best_positions[first].n_sj_tables;
}
}
/*
Setup semi-join materialization strategy for one semi-join nest
SYNOPSIS
setup_sj_materialization()
tab The first tab in the semi-join
DESCRIPTION
Setup execution structures for one semi-join materialization nest:
- Create the materialization temporary table
- If we're going to do index lookups
create TABLE_REF structure to make the lookus
- else (if we're going to do a full scan of the temptable)
create Copy_field structures to do copying.
RETURN
FALSE Ok
TRUE Error
*/
bool setup_sj_materialization_part1(JOIN_TAB *sjm_tab)
{
JOIN_TAB *tab= sjm_tab->bush_children->start;
TABLE_LIST *emb_sj_nest= tab->table->pos_in_table_list->embedding;
SJ_MATERIALIZATION_INFO *sjm;
THD *thd;
DBUG_ENTER("setup_sj_materialization");
/* Walk out of outer join nests until we reach the semi-join nest we're in */
while (!emb_sj_nest->sj_mat_info)
emb_sj_nest= emb_sj_nest->embedding;
sjm= emb_sj_nest->sj_mat_info;
thd= tab->join->thd;
/* First the calls come to the materialization function */
//List<Item> &item_list= emb_sj_nest->sj_subq_pred->unit->first_select()->item_list;
DBUG_ASSERT(sjm->is_used);
/*
Set up the table to write to, do as select_union::create_result_table does
*/
sjm->sjm_table_param.init();
sjm->sjm_table_param.bit_fields_as_long= TRUE;
SELECT_LEX *subq_select= emb_sj_nest->sj_subq_pred->unit->first_select();
Ref_ptr_array p_items= subq_select->ref_pointer_array;
for (uint i= 0; i < subq_select->item_list.elements; i++)
sjm->sjm_table_cols.push_back(p_items[i], thd->mem_root);
sjm->sjm_table_param.field_count= subq_select->item_list.elements;
sjm->sjm_table_param.force_not_null_cols= TRUE;
if (!(sjm->table= create_tmp_table(thd, &sjm->sjm_table_param,
sjm->sjm_table_cols, (ORDER*) 0,
TRUE /* distinct */,
1, /*save_sum_fields*/
thd->variables.option_bits | TMP_TABLE_ALL_COLUMNS,
HA_POS_ERROR /*rows_limit */,
(char*)"sj-materialize")))
DBUG_RETURN(TRUE); /* purecov: inspected */
sjm->table->map= emb_sj_nest->nested_join->used_tables;
sjm->table->file->extra(HA_EXTRA_WRITE_CACHE);
sjm->table->file->extra(HA_EXTRA_IGNORE_DUP_KEY);
tab->join->sj_tmp_tables.push_back(sjm->table, thd->mem_root);
tab->join->sjm_info_list.push_back(sjm, thd->mem_root);
sjm->materialized= FALSE;
sjm_tab->table= sjm->table;
sjm->table->pos_in_table_list= emb_sj_nest;
DBUG_RETURN(FALSE);
}
bool setup_sj_materialization_part2(JOIN_TAB *sjm_tab)
{
DBUG_ENTER("setup_sj_materialization_part2");
JOIN_TAB *tab= sjm_tab->bush_children->start;
TABLE_LIST *emb_sj_nest= tab->table->pos_in_table_list->embedding;
/* Walk out of outer join nests until we reach the semi-join nest we're in */
while (!emb_sj_nest->sj_mat_info)
emb_sj_nest= emb_sj_nest->embedding;
SJ_MATERIALIZATION_INFO *sjm= emb_sj_nest->sj_mat_info;
THD *thd= tab->join->thd;
uint i;
//List<Item> &item_list= emb_sj_nest->sj_subq_pred->unit->first_select()->item_list;
//List_iterator<Item> it(item_list);
if (!sjm->is_sj_scan)
{
KEY *tmp_key; /* The only index on the temporary table. */
uint tmp_key_parts; /* Number of keyparts in tmp_key. */
tmp_key= sjm->table->key_info;
tmp_key_parts= tmp_key->user_defined_key_parts;
/*
Create/initialize everything we will need to index lookups into the
temptable.
*/
TABLE_REF *tab_ref;
tab_ref= &sjm_tab->ref;
tab_ref->key= 0; /* The only temp table index. */
tab_ref->key_length= tmp_key->key_length;
if (!(tab_ref->key_buff=
(uchar*) thd->calloc(ALIGN_SIZE(tmp_key->key_length) * 2)) ||
!(tab_ref->key_copy=
(store_key**) thd->alloc((sizeof(store_key*) *
(tmp_key_parts + 1)))) ||
!(tab_ref->items=
(Item**) thd->alloc(sizeof(Item*) * tmp_key_parts)))
DBUG_RETURN(TRUE); /* purecov: inspected */
tab_ref->key_buff2=tab_ref->key_buff+ALIGN_SIZE(tmp_key->key_length);
tab_ref->key_err=1;
tab_ref->null_rejecting= 1;
tab_ref->disable_cache= FALSE;
KEY_PART_INFO *cur_key_part= tmp_key->key_part;
store_key **ref_key= tab_ref->key_copy;
uchar *cur_ref_buff= tab_ref->key_buff;
for (i= 0; i < tmp_key_parts; i++, cur_key_part++, ref_key++)
{
tab_ref->items[i]= emb_sj_nest->sj_subq_pred->left_expr->element_index(i);
int null_count= MY_TEST(cur_key_part->field->real_maybe_null());
*ref_key= new store_key_item(thd, cur_key_part->field,
/* TODO:
the NULL byte is taken into account in
cur_key_part->store_length, so instead of
cur_ref_buff + MY_TEST(maybe_null), we could
use that information instead.
*/
cur_ref_buff + null_count,
null_count ? cur_ref_buff : 0,
cur_key_part->length, tab_ref->items[i],
FALSE);
cur_ref_buff+= cur_key_part->store_length;
}
*ref_key= NULL; /* End marker. */
/*
We don't ever have guarded conditions for SJM tables, but code at SQL
layer depends on cond_guards array being alloced.
*/
if (!(tab_ref->cond_guards= (bool**) thd->calloc(sizeof(uint*)*tmp_key_parts)))
{
DBUG_RETURN(TRUE);
}
tab_ref->key_err= 1;
tab_ref->key_parts= tmp_key_parts;
sjm->tab_ref= tab_ref;
/*
Remove the injected semi-join IN-equalities from join_tab conds. This
needs to be done because the IN-equalities refer to columns of
sj-inner tables which are not available after the materialization
has been finished.
*/
for (i= 0; i < sjm->tables; i++)
{
remove_sj_conds(thd, &tab[i].select_cond);
if (tab[i].select)
remove_sj_conds(thd, &tab[i].select->cond);
}
if (!(sjm->in_equality= create_subq_in_equalities(thd, sjm,
emb_sj_nest->sj_subq_pred)))
DBUG_RETURN(TRUE); /* purecov: inspected */
sjm_tab->type= JT_EQ_REF;
sjm_tab->select_cond= sjm->in_equality;
}
else
{
/*
We'll be doing full scan of the temptable.
Setup copying of temptable columns back to the record buffers
for their source tables. We need this because IN-equalities
refer to the original tables.
EXAMPLE
Consider the query:
SELECT * FROM ot WHERE ot.col1 IN (SELECT it.col2 FROM it)
Suppose it's executed with SJ-Materialization-scan. We choose to do scan
if we can't do the lookup, i.e. the join order is (it, ot). The plan
would look as follows:
table access method condition
it materialize+scan -
ot (whatever) ot1.col1=it.col2 (C2)
The condition C2 refers to current row of table it. The problem is
that by the time we evaluate C2, we would have finished with scanning
it itself and will be scanning the temptable.
At the moment, our solution is to copy back: when we get the next
temptable record, we copy its columns to their corresponding columns
in the record buffers for the source tables.
*/
sjm->copy_field= new Copy_field[sjm->sjm_table_cols.elements];
//it.rewind();
Ref_ptr_array p_items= emb_sj_nest->sj_subq_pred->unit->first_select()->ref_pointer_array;
for (uint i=0; i < sjm->sjm_table_cols.elements; i++)
{
bool dummy;
Item_equal *item_eq;
//Item *item= (it++)->real_item();
Item *item= p_items[i]->real_item();
DBUG_ASSERT(item->type() == Item::FIELD_ITEM);
Field *copy_to= ((Item_field*)item)->field;
/*
Tricks with Item_equal are due to the following: suppose we have a
query:
... WHERE cond(ot.col) AND ot.col IN (SELECT it2.col FROM it1,it2
WHERE it1.col= it2.col)
then equality propagation will create an
Item_equal(it1.col, it2.col, ot.col)
then substitute_for_best_equal_field() will change the conditions
according to the join order:
table | attached condition
------+--------------------
it1 |
it2 | it1.col=it2.col
ot | cond(it1.col)
although we've originally had "SELECT it2.col", conditions attached
to subsequent outer tables will refer to it1.col, so SJM-Scan will
need to unpack data to there.
That is, if an element from subquery's select list participates in
equality propagation, then we need to unpack it to the first
element equality propagation member that refers to table that is
within the subquery.
*/
item_eq= find_item_equal(tab->join->cond_equal, copy_to, &dummy);
if (item_eq)
{
List_iterator<Item> it(item_eq->equal_items);
/* We're interested in field items only */
if (item_eq->get_const())
it++;
Item *item;
while ((item= it++))
{
if (!(item->used_tables() & ~emb_sj_nest->sj_inner_tables))
{
DBUG_ASSERT(item->real_item()->type() == Item::FIELD_ITEM);
copy_to= ((Item_field *) (item->real_item()))->field;
break;
}
}
}
sjm->copy_field[i].set(copy_to, sjm->table->field[i], FALSE);
/* The write_set for source tables must be set up to allow the copying */
bitmap_set_bit(copy_to->table->write_set, copy_to->field_index);
}
sjm_tab->type= JT_ALL;
/* Initialize full scan */
sjm_tab->read_first_record= join_read_record_no_init;
sjm_tab->read_record.copy_field= sjm->copy_field;
sjm_tab->read_record.copy_field_end= sjm->copy_field +
sjm->sjm_table_cols.elements;
sjm_tab->read_record.read_record= rr_sequential_and_unpack;
}
sjm_tab->bush_children->end[-1].next_select= end_sj_materialize;
DBUG_RETURN(FALSE);
}
/*
Create subquery IN-equalities assuming use of materialization strategy
SYNOPSIS
create_subq_in_equalities()
thd Thread handle
sjm Semi-join materialization structure
subq_pred The subquery predicate
DESCRIPTION
Create subquery IN-equality predicates. That is, for a subquery
(oe1, oe2, ...) IN (SELECT ie1, ie2, ... FROM ...)
create "oe1=ie1 AND ie1=ie2 AND ..." expression, such that ie1, ie2, ..
refer to the columns of the table that's used to materialize the
subquery.
RETURN
Created condition
*/
static Item *create_subq_in_equalities(THD *thd, SJ_MATERIALIZATION_INFO *sjm,
Item_in_subselect *subq_pred)
{
Item *res= NULL;
if (subq_pred->left_expr->cols() == 1)
{
if (!(res= new (thd->mem_root) Item_func_eq(thd, subq_pred->left_expr,
new (thd->mem_root) Item_field(thd, sjm->table->field[0]))))
return NULL; /* purecov: inspected */
}
else
{
Item *conj;
for (uint i= 0; i < subq_pred->left_expr->cols(); i++)
{
if (!(conj= new (thd->mem_root) Item_func_eq(thd, subq_pred->left_expr->element_index(i),
new (thd->mem_root) Item_field(thd, sjm->table->field[i]))) ||
!(res= and_items(thd, res, conj)))
return NULL; /* purecov: inspected */
}
}
if (res->fix_fields(thd, &res))
return NULL; /* purecov: inspected */
return res;
}
static void remove_sj_conds(THD *thd, Item **tree)
{
if (*tree)
{
if (is_cond_sj_in_equality(*tree))
{
*tree= NULL;
return;
}
else if ((*tree)->type() == Item::COND_ITEM)
{
Item *item;
List_iterator<Item> li(*(((Item_cond*)*tree)->argument_list()));
while ((item= li++))
{
if (is_cond_sj_in_equality(item))
li.replace(new (thd->mem_root) Item_int(thd, 1));
}
}
}
}
/* Check if given Item was injected by semi-join equality */
static bool is_cond_sj_in_equality(Item *item)
{
if (item->type() == Item::FUNC_ITEM &&
((Item_func*)item)->functype()== Item_func::EQ_FUNC)
{
Item_func_eq *item_eq= (Item_func_eq*)item;
return MY_TEST(item_eq->in_equality_no != UINT_MAX);
}
return FALSE;
}
/*
Create a temporary table to weed out duplicate rowid combinations
SYNOPSIS
create_sj_weedout_tmp_table()
thd Thread handle
DESCRIPTION
Create a temporary table to weed out duplicate rowid combinations. The
table has a single column that is a concatenation of all rowids in the
combination.
Depending on the needed length, there are two cases:
1. When the length of the column < max_key_length:
CREATE TABLE tmp (col VARBINARY(n) NOT NULL, UNIQUE KEY(col));
2. Otherwise (not a valid SQL syntax but internally supported):
CREATE TABLE tmp (col VARBINARY NOT NULL, UNIQUE CONSTRAINT(col));
The code in this function was produced by extraction of relevant parts
from create_tmp_table().
RETURN
created table
NULL on error
*/
bool
SJ_TMP_TABLE::create_sj_weedout_tmp_table(THD *thd)
{
MEM_ROOT *mem_root_save, own_root;
TABLE *table;
TABLE_SHARE *share;
uint temp_pool_slot=MY_BIT_NONE;
char *tmpname,path[FN_REFLEN];
Field **reg_field;
KEY_PART_INFO *key_part_info;
KEY *keyinfo;
uchar *group_buff;
uchar *bitmaps;
uint *blob_field;
bool using_unique_constraint=FALSE;
bool use_packed_rows= FALSE;
Field *field, *key_field;
uint null_pack_length, null_count;
uchar *null_flags;
uchar *pos;
DBUG_ENTER("create_sj_weedout_tmp_table");
DBUG_ASSERT(!is_degenerate);
tmp_table= NULL;
uint uniq_tuple_length_arg= rowid_len + null_bytes;
/*
STEP 1: Get temporary table name
*/
if (use_temp_pool && !(test_flags & TEST_KEEP_TMP_TABLES))
temp_pool_slot = bitmap_lock_set_next(&temp_pool);
if (temp_pool_slot != MY_BIT_NONE) // we got a slot
sprintf(path, "%s_%lx_%i", tmp_file_prefix,
current_pid, temp_pool_slot);
else
{
/* if we run out of slots or we are not using tempool */
sprintf(path,"%s%lx_%lx_%x", tmp_file_prefix,current_pid,
(ulong) thd->thread_id, thd->tmp_table++);
}
fn_format(path, path, mysql_tmpdir, "", MY_REPLACE_EXT|MY_UNPACK_FILENAME);
/* STEP 2: Figure if we'll be using a key or blob+constraint */
/* it always has my_charset_bin, so mbmaxlen==1 */
if (uniq_tuple_length_arg >= CONVERT_IF_BIGGER_TO_BLOB)
using_unique_constraint= TRUE;
/* STEP 3: Allocate memory for temptable description */
init_sql_alloc(&own_root, TABLE_ALLOC_BLOCK_SIZE, 0, MYF(MY_THREAD_SPECIFIC));
if (!multi_alloc_root(&own_root,
&table, sizeof(*table),
&share, sizeof(*share),
®_field, sizeof(Field*) * (1+1),
&blob_field, sizeof(uint)*2,
&keyinfo, sizeof(*keyinfo),
&key_part_info, sizeof(*key_part_info) * 2,
&start_recinfo,
sizeof(*recinfo)*(1*2+4),
&tmpname, (uint) strlen(path)+1,
&group_buff, (!using_unique_constraint ?
uniq_tuple_length_arg : 0),
&bitmaps, bitmap_buffer_size(1)*5,
NullS))
{
if (temp_pool_slot != MY_BIT_NONE)
bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
DBUG_RETURN(TRUE);
}
strmov(tmpname,path);
/* STEP 4: Create TABLE description */
bzero((char*) table,sizeof(*table));
bzero((char*) reg_field,sizeof(Field*)*2);
table->mem_root= own_root;
mem_root_save= thd->mem_root;
thd->mem_root= &table->mem_root;
table->field=reg_field;
table->alias.set("weedout-tmp", sizeof("weedout-tmp")-1,
table_alias_charset);
table->reginfo.lock_type=TL_WRITE; /* Will be updated */
table->db_stat=HA_OPEN_KEYFILE+HA_OPEN_RNDFILE;
table->map=1;
table->temp_pool_slot = temp_pool_slot;
table->copy_blobs= 1;
table->in_use= thd;
table->quick_keys.init();
table->covering_keys.init();
table->keys_in_use_for_query.init();
table->s= share;
init_tmp_table_share(thd, share, "", 0, tmpname, tmpname);
share->blob_field= blob_field;
share->table_charset= NULL;
share->primary_key= MAX_KEY; // Indicate no primary key
share->keys_for_keyread.init();
share->keys_in_use.init();
/* Create the field */
{
/*
For the sake of uniformity, always use Field_varstring (altough we could
use Field_string for shorter keys)
*/
field= new Field_varstring(uniq_tuple_length_arg, FALSE, "rowids", share,
&my_charset_bin);
if (!field)
DBUG_RETURN(0);
field->table= table;
field->key_start.init(0);
field->part_of_key.init(0);
field->part_of_sortkey.init(0);
field->unireg_check= Field::NONE;
field->flags= (NOT_NULL_FLAG | BINARY_FLAG | NO_DEFAULT_VALUE_FLAG);
field->reset_fields();
field->init(table);
field->orig_table= NULL;
field->field_index= 0;
*(reg_field++)= field;
*blob_field= 0;
*reg_field= 0;
share->fields= 1;
share->blob_fields= 0;
}
uint reclength= field->pack_length();
if (using_unique_constraint)
{
share->db_plugin= ha_lock_engine(0, TMP_ENGINE_HTON);
table->file= get_new_handler(share, &table->mem_root,
share->db_type());
DBUG_ASSERT(uniq_tuple_length_arg <= table->file->max_key_length());
}
else
{
share->db_plugin= ha_lock_engine(0, heap_hton);
table->file= get_new_handler(share, &table->mem_root,
share->db_type());
}
if (!table->file)
goto err;
if (table->file->set_ha_share_ref(&share->ha_share))
{
delete table->file;
goto err;
}
null_count=1;
null_pack_length= 1;
reclength += null_pack_length;
share->reclength= reclength;
{
uint alloc_length=ALIGN_SIZE(share->reclength + MI_UNIQUE_HASH_LENGTH+1);
share->rec_buff_length= alloc_length;
if (!(table->record[0]= (uchar*)
alloc_root(&table->mem_root, alloc_length*3)))
goto err;
table->record[1]= table->record[0]+alloc_length;
share->default_values= table->record[1]+alloc_length;
}
setup_tmp_table_column_bitmaps(table, bitmaps);
recinfo= start_recinfo;
null_flags=(uchar*) table->record[0];
pos=table->record[0]+ null_pack_length;
if (null_pack_length)
{
bzero((uchar*) recinfo,sizeof(*recinfo));
recinfo->type=FIELD_NORMAL;
recinfo->length=null_pack_length;
recinfo++;
bfill(null_flags,null_pack_length,255); // Set null fields
table->null_flags= (uchar*) table->record[0];
share->null_fields= null_count;
share->null_bytes= null_pack_length;
}
null_count=1;
{
//Field *field= *reg_field;
uint length;
bzero((uchar*) recinfo,sizeof(*recinfo));
field->move_field(pos,(uchar*) 0,0);
field->reset();
/*
Test if there is a default field value. The test for ->ptr is to skip
'offset' fields generated by initalize_tables
*/
// Initialize the table field:
bzero(field->ptr, field->pack_length());
length=field->pack_length();
pos+= length;
/* Make entry for create table */
recinfo->length=length;
if (field->flags & BLOB_FLAG)
recinfo->type= FIELD_BLOB;
else if (use_packed_rows &&
field->real_type() == MYSQL_TYPE_STRING &&
length >= MIN_STRING_LENGTH_TO_PACK_ROWS)
recinfo->type=FIELD_SKIP_ENDSPACE;
else
recinfo->type=FIELD_NORMAL;
field->set_table_name(&table->alias);
}
if (thd->variables.tmp_table_size == ~ (ulonglong) 0) // No limit
share->max_rows= ~(ha_rows) 0;
else
share->max_rows= (ha_rows) (((share->db_type() == heap_hton) ?
MY_MIN(thd->variables.tmp_table_size,
thd->variables.max_heap_table_size) :
thd->variables.tmp_table_size) /
share->reclength);
set_if_bigger(share->max_rows,1); // For dummy start options
//// keyinfo= param->keyinfo;
if (TRUE)
{
DBUG_PRINT("info",("Creating group key in temporary table"));
share->keys=1;
share->uniques= MY_TEST(using_unique_constraint);
table->key_info=keyinfo;
keyinfo->key_part=key_part_info;
keyinfo->flags=HA_NOSAME;
keyinfo->usable_key_parts= keyinfo->user_defined_key_parts= 1;
keyinfo->key_length=0;
keyinfo->rec_per_key=0;
keyinfo->algorithm= HA_KEY_ALG_UNDEF;
keyinfo->name= (char*) "weedout_key";
{
key_part_info->null_bit=0;
key_part_info->field= field;
key_part_info->offset= field->offset(table->record[0]);
key_part_info->length= (uint16) field->key_length();
key_part_info->type= (uint8) field->key_type();
key_part_info->key_type = FIELDFLAG_BINARY;
if (!using_unique_constraint)
{
if (!(key_field= field->new_key_field(thd->mem_root, table,
group_buff,
key_part_info->length,
field->null_ptr,
field->null_bit)))
goto err;
}
keyinfo->key_length+= key_part_info->length;
}
}
if (thd->is_fatal_error) // If end of memory
goto err;
share->db_record_offset= 1;
table->no_rows= 1; // We don't need the data
// recinfo must point after last field
recinfo++;
if (share->db_type() == TMP_ENGINE_HTON)
{
if (create_internal_tmp_table(table, keyinfo, start_recinfo, &recinfo, 0))
goto err;
}
if (open_tmp_table(table))
goto err;
thd->mem_root= mem_root_save;
tmp_table= table;
DBUG_RETURN(FALSE);
err:
thd->mem_root= mem_root_save;
free_tmp_table(thd,table); /* purecov: inspected */
if (temp_pool_slot != MY_BIT_NONE)
bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
DBUG_RETURN(TRUE); /* purecov: inspected */
}
/*
SemiJoinDuplicateElimination: Reset the temporary table
*/
int SJ_TMP_TABLE::sj_weedout_delete_rows()
{
DBUG_ENTER("SJ_TMP_TABLE::sj_weedout_delete_rows");
if (tmp_table)
{
int rc= tmp_table->file->ha_delete_all_rows();
DBUG_RETURN(rc);
}
have_degenerate_row= FALSE;
DBUG_RETURN(0);
}
/*
SemiJoinDuplicateElimination: Weed out duplicate row combinations
SYNPOSIS
sj_weedout_check_row()
thd Thread handle
DESCRIPTION
Try storing current record combination of outer tables (i.e. their
rowids) in the temporary table. This records the fact that we've seen
this record combination and also tells us if we've seen it before.
RETURN
-1 Error
1 The row combination is a duplicate (discard it)
0 The row combination is not a duplicate (continue)
*/
int SJ_TMP_TABLE::sj_weedout_check_row(THD *thd)
{
int error;
SJ_TMP_TABLE::TAB *tab= tabs;
SJ_TMP_TABLE::TAB *tab_end= tabs_end;
uchar *ptr;
uchar *nulls_ptr;
DBUG_ENTER("SJ_TMP_TABLE::sj_weedout_check_row");
if (is_degenerate)
{
if (have_degenerate_row)
DBUG_RETURN(1);
have_degenerate_row= TRUE;
DBUG_RETURN(0);
}
ptr= tmp_table->record[0] + 1;
/* Put the the rowids tuple into table->record[0]: */
// 1. Store the length
if (((Field_varstring*)(tmp_table->field[0]))->length_bytes == 1)
{
*ptr= (uchar)(rowid_len + null_bytes);
ptr++;
}
else
{
int2store(ptr, rowid_len + null_bytes);
ptr += 2;
}
nulls_ptr= ptr;
// 2. Zero the null bytes
if (null_bytes)
{
bzero(ptr, null_bytes);
ptr += null_bytes;
}
// 3. Put the rowids
for (uint i=0; tab != tab_end; tab++, i++)
{
handler *h= tab->join_tab->table->file;
if (tab->join_tab->table->maybe_null && tab->join_tab->table->null_row)
{
/* It's a NULL-complemented row */
*(nulls_ptr + tab->null_byte) |= tab->null_bit;
bzero(ptr + tab->rowid_offset, h->ref_length);
}
else
{
/* Copy the rowid value */
memcpy(ptr + tab->rowid_offset, h->ref, h->ref_length);
}
}
error= tmp_table->file->ha_write_tmp_row(tmp_table->record[0]);
if (error)
{
/* create_internal_tmp_table_from_heap will generate error if needed */
if (!tmp_table->file->is_fatal_error(error, HA_CHECK_DUP))
DBUG_RETURN(1); /* Duplicate */
bool is_duplicate;
if (create_internal_tmp_table_from_heap(thd, tmp_table, start_recinfo,
&recinfo, error, 1, &is_duplicate))
DBUG_RETURN(-1);
if (is_duplicate)
DBUG_RETURN(1);
}
DBUG_RETURN(0);
}
int init_dups_weedout(JOIN *join, uint first_table, int first_fanout_table, uint n_tables)
{
THD *thd= join->thd;
DBUG_ENTER("init_dups_weedout");
SJ_TMP_TABLE::TAB sjtabs[MAX_TABLES];
SJ_TMP_TABLE::TAB *last_tab= sjtabs;
uint jt_rowid_offset= 0; // # tuple bytes are already occupied (w/o NULL bytes)
uint jt_null_bits= 0; // # null bits in tuple bytes
/*
Walk through the range and remember
- tables that need their rowids to be put into temptable
- the last outer table
*/
for (JOIN_TAB *j=join->join_tab + first_table;
j < join->join_tab + first_table + n_tables; j++)
{
if (sj_table_is_included(join, j))
{
last_tab->join_tab= j;
last_tab->rowid_offset= jt_rowid_offset;
jt_rowid_offset += j->table->file->ref_length;
if (j->table->maybe_null)
{
last_tab->null_byte= jt_null_bits / 8;
last_tab->null_bit= jt_null_bits++;
}
last_tab++;
j->table->prepare_for_position();
j->keep_current_rowid= TRUE;
}
}
SJ_TMP_TABLE *sjtbl;
if (jt_rowid_offset) /* Temptable has at least one rowid */
{
size_t tabs_size= (last_tab - sjtabs) * sizeof(SJ_TMP_TABLE::TAB);
if (!(sjtbl= (SJ_TMP_TABLE*)thd->alloc(sizeof(SJ_TMP_TABLE))) ||
!(sjtbl->tabs= (SJ_TMP_TABLE::TAB*) thd->alloc(tabs_size)))
DBUG_RETURN(TRUE); /* purecov: inspected */
memcpy(sjtbl->tabs, sjtabs, tabs_size);
sjtbl->is_degenerate= FALSE;
sjtbl->tabs_end= sjtbl->tabs + (last_tab - sjtabs);
sjtbl->rowid_len= jt_rowid_offset;
sjtbl->null_bits= jt_null_bits;
sjtbl->null_bytes= (jt_null_bits + 7)/8;
if (sjtbl->create_sj_weedout_tmp_table(thd))
DBUG_RETURN(TRUE);
join->sj_tmp_tables.push_back(sjtbl->tmp_table, thd->mem_root);
}
else
{
/*
This is a special case where the entire subquery predicate does
not depend on anything at all, ie this is
WHERE const IN (uncorrelated select)
*/
if (!(sjtbl= (SJ_TMP_TABLE*)thd->alloc(sizeof(SJ_TMP_TABLE))))
DBUG_RETURN(TRUE); /* purecov: inspected */
sjtbl->tmp_table= NULL;
sjtbl->is_degenerate= TRUE;
sjtbl->have_degenerate_row= FALSE;
}
sjtbl->next_flush_table= join->join_tab[first_table].flush_weedout_table;
join->join_tab[first_table].flush_weedout_table= sjtbl;
join->join_tab[first_fanout_table].first_weedout_table= sjtbl;
join->join_tab[first_table + n_tables - 1].check_weed_out_table= sjtbl;
DBUG_RETURN(0);
}
/*
@brief
Set up semi-join Loose Scan strategy for execution
@detail
Other strategies are done in setup_semijoin_dups_elimination(),
however, we need to set up Loose Scan earlier, before make_join_select is
called. This is to prevent make_join_select() from switching full index
scans into quick selects (which will break Loose Scan access).
@return
0 OK
1 Error
*/
int setup_semijoin_loosescan(JOIN *join)
{
uint i;
DBUG_ENTER("setup_semijoin_loosescan");
POSITION *pos= join->best_positions + join->const_tables;
for (i= join->const_tables ; i < join->top_join_tab_count; )
{
JOIN_TAB *tab=join->join_tab + i;
switch (pos->sj_strategy) {
case SJ_OPT_MATERIALIZE:
case SJ_OPT_MATERIALIZE_SCAN:
i+= 1; /* join tabs are embedded in the nest */
pos += pos->n_sj_tables;
break;
case SJ_OPT_LOOSE_SCAN:
{
/* We jump from the last table to the first one */
tab->loosescan_match_tab= tab + pos->n_sj_tables - 1;
/* LooseScan requires records to be produced in order */
if (tab->select && tab->select->quick)
tab->select->quick->need_sorted_output();
for (uint j= i; j < i + pos->n_sj_tables; j++)
join->join_tab[j].inside_loosescan_range= TRUE;
/* Calculate key length */
uint keylen= 0;
uint keyno= pos->loosescan_picker.loosescan_key;
for (uint kp=0; kp < pos->loosescan_picker.loosescan_parts; kp++)
keylen += tab->table->key_info[keyno].key_part[kp].store_length;
tab->loosescan_key= keyno;
tab->loosescan_key_len= keylen;
if (pos->n_sj_tables > 1)
tab[pos->n_sj_tables - 1].do_firstmatch= tab;
i+= pos->n_sj_tables;
pos+= pos->n_sj_tables;
break;
}
default:
{
i++;
pos++;
break;
}
}
}
DBUG_RETURN(FALSE);
}
/*
Setup the strategies to eliminate semi-join duplicates.
SYNOPSIS
setup_semijoin_dups_elimination()
join Join to process
options Join options (needed to see if join buffering will be
used or not)
no_jbuf_after Another bit of information re where join buffering will
be used.
DESCRIPTION
Setup the strategies to eliminate semi-join duplicates. ATM there are 4
strategies:
1. DuplicateWeedout (use of temptable to remove duplicates based on rowids
of row combinations)
2. FirstMatch (pick only the 1st matching row combination of inner tables)
3. LooseScan (scanning the sj-inner table in a way that groups duplicates
together and picking the 1st one)
4. SJ-Materialization.
The join order has "duplicate-generating ranges", and every range is
served by one strategy or a combination of FirstMatch with with some
other strategy.
"Duplicate-generating range" is defined as a range within the join order
that contains all of the inner tables of a semi-join. All ranges must be
disjoint, if tables of several semi-joins are interleaved, then the ranges
are joined together, which is equivalent to converting
SELECT ... WHERE oe1 IN (SELECT ie1 ...) AND oe2 IN (SELECT ie2 )
to
SELECT ... WHERE (oe1, oe2) IN (SELECT ie1, ie2 ... ...)
.
Applicability conditions are as follows:
DuplicateWeedout strategy
~~~~~~~~~~~~~~~~~~~~~~~~~
(ot|nt)* [ it ((it|ot|nt)* (it|ot))] (nt)*
+------+ +=========================+ +---+
(1) (2) (3)
(1) - Prefix of OuterTables (those that participate in
IN-equality and/or are correlated with subquery) and outer
Non-correlated tables.
(2) - The handled range. The range starts with the first sj-inner
table, and covers all sj-inner and outer tables
Within the range, Inner, Outer, outer non-correlated tables
may follow in any order.
(3) - The suffix of outer non-correlated tables.
FirstMatch strategy
~~~~~~~~~~~~~~~~~~~
(ot|nt)* [ it ((it|nt)* it) ] (nt)*
+------+ +==================+ +---+
(1) (2) (3)
(1) - Prefix of outer and non-correlated tables
(2) - The handled range, which may contain only inner and
non-correlated tables.
(3) - The suffix of outer non-correlated tables.
LooseScan strategy
~~~~~~~~~~~~~~~~~~
(ot|ct|nt) [ loosescan_tbl (ot|nt|it)* it ] (ot|nt)*
+--------+ +===========+ +=============+ +------+
(1) (2) (3) (4)
(1) - Prefix that may contain any outer tables. The prefix must contain
all the non-trivially correlated outer tables. (non-trivially means
that the correlation is not just through the IN-equality).
(2) - Inner table for which the LooseScan scan is performed.
(3) - The remainder of the duplicate-generating range. It is served by
application of FirstMatch strategy, with the exception that
outer IN-correlated tables are considered to be non-correlated.
(4) - THe suffix of outer and outer non-correlated tables.
The choice between the strategies is made by the join optimizer (see
advance_sj_state() and fix_semijoin_strategies_for_picked_join_order()).
This function sets up all fields/structures/etc needed for execution except
for setup/initialization of semi-join materialization which is done in
setup_sj_materialization() (todo: can't we move that to here also?)
RETURN
FALSE OK
TRUE Out of memory error
*/
int setup_semijoin_dups_elimination(JOIN *join, ulonglong options,
uint no_jbuf_after)
{
uint i;
DBUG_ENTER("setup_semijoin_dups_elimination");
join->complex_firstmatch_tables= table_map(0);
POSITION *pos= join->best_positions + join->const_tables;
for (i= join->const_tables ; i < join->top_join_tab_count; )
{
JOIN_TAB *tab=join->join_tab + i;
switch (pos->sj_strategy) {
case SJ_OPT_MATERIALIZE:
case SJ_OPT_MATERIALIZE_SCAN:
/* Do nothing */
i+= 1;// It used to be pos->n_sj_tables, but now they are embedded in a nest
pos += pos->n_sj_tables;
break;
case SJ_OPT_LOOSE_SCAN:
{
/* Setup already handled by setup_semijoin_loosescan */
i+= pos->n_sj_tables;
pos+= pos->n_sj_tables;
break;
}
case SJ_OPT_DUPS_WEEDOUT:
{
/*
Check for join buffering. If there is one, move the first table
forwards, but do not destroy other duplicate elimination methods.
*/
uint first_table= i;
uint join_cache_level= join->thd->variables.join_cache_level;
for (uint j= i; j < i + pos->n_sj_tables; j++)
{
/*
When we'll properly take join buffering into account during
join optimization, the below check should be changed to
"if (join->best_positions[j].use_join_buffer &&
j <= no_jbuf_after)".
For now, use a rough criteria:
*/
JOIN_TAB *js_tab=join->join_tab + j;
if (j != join->const_tables && js_tab->use_quick != 2 &&
j <= no_jbuf_after &&
((js_tab->type == JT_ALL && join_cache_level != 0) ||
(join_cache_level > 2 && (js_tab->type == JT_REF ||
js_tab->type == JT_EQ_REF))))
{
/* Looks like we'll be using join buffer */
first_table= join->const_tables;
/*
Make sure that possible sorting of rows from the head table
is not to be employed.
*/
if (join->get_sort_by_join_tab())
{
join->simple_order= 0;
join->simple_group= 0;
join->need_tmp= join->test_if_need_tmp_table();
}
break;
}
}
init_dups_weedout(join, first_table, i, i + pos->n_sj_tables - first_table);
i+= pos->n_sj_tables;
pos+= pos->n_sj_tables;
break;
}
case SJ_OPT_FIRST_MATCH:
{
JOIN_TAB *j;
JOIN_TAB *jump_to= tab-1;
bool complex_range= FALSE;
table_map tables_in_range= table_map(0);
for (j= tab; j != tab + pos->n_sj_tables; j++)
{
tables_in_range |= j->table->map;
if (!j->emb_sj_nest)
{
/*
Got a table that's not within any semi-join nest. This is a case
like this:
SELECT * FROM ot1, nt1 WHERE ot1.col IN (SELECT expr FROM it1, it2)
with a join order of
+----- FirstMatch range ----+
| |
ot1 it1 nt1 nt2 it2 it3 ...
| ^
| +-------- 'j' points here
+------------- SJ_OPT_FIRST_MATCH was set for this table as
it's the first one that produces duplicates
*/
DBUG_ASSERT(j != tab); /* table ntX must have an itX before it */
/*
If the table right before us is an inner table (like it1 in the
picture), it should be set to jump back to previous outer-table
*/
if (j[-1].emb_sj_nest)
j[-1].do_firstmatch= jump_to;
jump_to= j; /* Jump back to us */
complex_range= TRUE;
}
else
{
j->first_sj_inner_tab= tab;
j->last_sj_inner_tab= tab + pos->n_sj_tables - 1;
}
}
j[-1].do_firstmatch= jump_to;
i+= pos->n_sj_tables;
pos+= pos->n_sj_tables;
if (complex_range)
join->complex_firstmatch_tables|= tables_in_range;
break;
}
case SJ_OPT_NONE:
i++;
pos++;
break;
}
}
DBUG_RETURN(FALSE);
}
/*
Destroy all temporary tables created by NL-semijoin runtime
*/
void destroy_sj_tmp_tables(JOIN *join)
{
List_iterator<TABLE> it(join->sj_tmp_tables);
TABLE *table;
while ((table= it++))
{
/*
SJ-Materialization tables are initialized for either sequential reading
or index lookup, DuplicateWeedout tables are not initialized for read
(we only write to them), so need to call ha_index_or_rnd_end.
*/
table->file->ha_index_or_rnd_end();
free_tmp_table(join->thd, table);
}
join->sj_tmp_tables.empty();
join->sjm_info_list.empty();
}
/*
Remove all records from all temp tables used by NL-semijoin runtime
SYNOPSIS
clear_sj_tmp_tables()
join The join to remove tables for
DESCRIPTION
Remove all records from all temp tables used by NL-semijoin runtime. This
must be done before every join re-execution.
*/
int clear_sj_tmp_tables(JOIN *join)
{
int res;
List_iterator<TABLE> it(join->sj_tmp_tables);
TABLE *table;
while ((table= it++))
{
if ((res= table->file->ha_delete_all_rows()))
return res; /* purecov: inspected */
}
SJ_MATERIALIZATION_INFO *sjm;
List_iterator<SJ_MATERIALIZATION_INFO> it2(join->sjm_info_list);
while ((sjm= it2++))
{
sjm->materialized= FALSE;
}
return 0;
}
/*
Check if the table's rowid is included in the temptable
SYNOPSIS
sj_table_is_included()
join The join
join_tab The table to be checked
DESCRIPTION
SemiJoinDuplicateElimination: check the table's rowid should be included
in the temptable. This is so if
1. The table is not embedded within some semi-join nest
2. The has been pulled out of a semi-join nest, or
3. The table is functionally dependent on some previous table
[4. This is also true for constant tables that can't be
NULL-complemented but this function is not called for such tables]
RETURN
TRUE - Include table's rowid
FALSE - Don't
*/
static bool sj_table_is_included(JOIN *join, JOIN_TAB *join_tab)
{
if (join_tab->emb_sj_nest)
return FALSE;
/* Check if this table is functionally dependent on the tables that
are within the same outer join nest
*/
TABLE_LIST *embedding= join_tab->table->pos_in_table_list->embedding;
if (join_tab->type == JT_EQ_REF)
{
table_map depends_on= 0;
uint idx;
for (uint kp= 0; kp < join_tab->ref.key_parts; kp++)
depends_on |= join_tab->ref.items[kp]->used_tables();
Table_map_iterator it(depends_on & ~PSEUDO_TABLE_BITS);
while ((idx= it.next_bit())!=Table_map_iterator::BITMAP_END)
{
JOIN_TAB *ref_tab= join->map2table[idx];
if (embedding != ref_tab->table->pos_in_table_list->embedding)
return TRUE;
}
/* Ok, functionally dependent */
return FALSE;
}
/* Not functionally dependent => need to include*/
return TRUE;
}
/*
Index lookup-based subquery: save some flags for EXPLAIN output
SYNOPSIS
save_index_subquery_explain_info()
join_tab Subquery's join tab (there is only one as index lookup is
only used for subqueries that are single-table SELECTs)
where Subquery's WHERE clause
DESCRIPTION
For index lookup-based subquery (i.e. one executed with
subselect_uniquesubquery_engine or subselect_indexsubquery_engine),
check its EXPLAIN output row should contain
"Using index" (TAB_INFO_FULL_SCAN_ON_NULL)
"Using Where" (TAB_INFO_USING_WHERE)
"Full scan on NULL key" (TAB_INFO_FULL_SCAN_ON_NULL)
and set appropriate flags in join_tab->packed_info.
*/
static void save_index_subquery_explain_info(JOIN_TAB *join_tab, Item* where)
{
join_tab->packed_info= TAB_INFO_HAVE_VALUE;
if (join_tab->table->covering_keys.is_set(join_tab->ref.key))
join_tab->packed_info |= TAB_INFO_USING_INDEX;
if (where)
join_tab->packed_info |= TAB_INFO_USING_WHERE;
for (uint i = 0; i < join_tab->ref.key_parts; i++)
{
if (join_tab->ref.cond_guards[i])
{
join_tab->packed_info |= TAB_INFO_FULL_SCAN_ON_NULL;
break;
}
}
}
/*
Check if the join can be rewritten to [unique_]indexsubquery_engine
DESCRIPTION
Check if the join can be changed into [unique_]indexsubquery_engine.
The check is done after join optimization, the idea is that if the join
has only one table and uses a [eq_]ref access generated from subselect's
IN-equality then we replace it with a subselect_indexsubquery_engine or a
subselect_uniquesubquery_engine.
RETURN
0 - Ok, rewrite done (stop join optimization and return)
1 - Fatal error (stop join optimization and return)
-1 - No rewrite performed, continue with join optimization
*/
int rewrite_to_index_subquery_engine(JOIN *join)
{
THD *thd= join->thd;
JOIN_TAB* join_tab=join->join_tab;
SELECT_LEX_UNIT *unit= join->unit;
DBUG_ENTER("rewrite_to_index_subquery_engine");
/*
is this simple IN subquery?
*/
/* TODO: In order to use these more efficient subquery engines in more cases,
the following problems need to be solved:
- the code that removes GROUP BY (group_list), also adds an ORDER BY
(order), thus GROUP BY queries (almost?) never pass through this branch.
Solution: remove the test below '!join->order', because we remove the
ORDER clase for subqueries anyway.
- in order to set a more efficient engine, the optimizer needs to both
decide to remove GROUP BY, *and* select one of the JT_[EQ_]REF[_OR_NULL]
access methods, *and* loose scan should be more expensive or
inapliccable. When is that possible?
- Consider expanding the applicability of this rewrite for loose scan
for group by queries.
*/
if (!join->group_list && !join->order &&
join->unit->item &&
join->unit->item->substype() == Item_subselect::IN_SUBS &&
join->table_count == 1 && join->conds &&
!join->unit->is_union())
{
if (!join->having)
{
Item *where= join->conds;
if (join_tab[0].type == JT_EQ_REF &&
join_tab[0].ref.items[0]->name == in_left_expr_name)
{
remove_subq_pushed_predicates(join, &where);
save_index_subquery_explain_info(join_tab, where);
join_tab[0].type= JT_UNIQUE_SUBQUERY;
join->error= 0;
DBUG_RETURN(unit->item->
change_engine(new
subselect_uniquesubquery_engine(thd,
join_tab,
unit->item,
where)));
}
else if (join_tab[0].type == JT_REF &&
join_tab[0].ref.items[0]->name == in_left_expr_name)
{
remove_subq_pushed_predicates(join, &where);
save_index_subquery_explain_info(join_tab, where);
join_tab[0].type= JT_INDEX_SUBQUERY;
join->error= 0;
DBUG_RETURN(unit->item->
change_engine(new
subselect_indexsubquery_engine(thd,
join_tab,
unit->item,
where,
NULL,
0)));
}
} else if (join_tab[0].type == JT_REF_OR_NULL &&
join_tab[0].ref.items[0]->name == in_left_expr_name &&
join->having->name == in_having_cond)
{
join_tab[0].type= JT_INDEX_SUBQUERY;
join->error= 0;
join->conds= remove_additional_cond(join->conds);
save_index_subquery_explain_info(join_tab, join->conds);
DBUG_RETURN(unit->item->
change_engine(new subselect_indexsubquery_engine(thd,
join_tab,
unit->item,
join->conds,
join->having,
1)));
}
}
DBUG_RETURN(-1); /* Haven't done the rewrite */
}
/**
Remove additional condition inserted by IN/ALL/ANY transformation.
@param conds condition for processing
@return
new conditions
*/
static Item *remove_additional_cond(Item* conds)
{
if (conds->name == in_additional_cond)
return 0;
if (conds->type() == Item::COND_ITEM)
{
Item_cond *cnd= (Item_cond*) conds;
List_iterator<Item> li(*(cnd->argument_list()));
Item *item;
while ((item= li++))
{
if (item->name == in_additional_cond)
{
li.remove();
if (cnd->argument_list()->elements == 1)
return cnd->argument_list()->head();
return conds;
}
}
}
return conds;
}
/*
Remove the predicates pushed down into the subquery
SYNOPSIS
remove_subq_pushed_predicates()
where IN Must be NULL
OUT The remaining WHERE condition, or NULL
DESCRIPTION
Given that this join will be executed using (unique|index)_subquery,
without "checking NULL", remove the predicates that were pushed down
into the subquery.
If the subquery compares scalar values, we can remove the condition that
was wrapped into trig_cond (it will be checked when needed by the subquery
engine)
If the subquery compares row values, we need to keep the wrapped
equalities in the WHERE clause: when the left (outer) tuple has both NULL
and non-NULL values, we'll do a full table scan and will rely on the
equalities corresponding to non-NULL parts of left tuple to filter out
non-matching records.
TODO: We can remove the equalities that will be guaranteed to be true by the
fact that subquery engine will be using index lookup. This must be done only
for cases where there are no conversion errors of significance, e.g. 257
that is searched in a byte. But this requires homogenization of the return
codes of all Field*::store() methods.
*/
static void remove_subq_pushed_predicates(JOIN *join, Item **where)
{
if (join->conds->type() == Item::FUNC_ITEM &&
((Item_func *)join->conds)->functype() == Item_func::EQ_FUNC &&
((Item_func *)join->conds)->arguments()[0]->type() == Item::REF_ITEM &&
((Item_func *)join->conds)->arguments()[1]->type() == Item::FIELD_ITEM &&
test_if_ref (join->conds,
(Item_field *)((Item_func *)join->conds)->arguments()[1],
((Item_func *)join->conds)->arguments()[0]))
{
*where= 0;
return;
}
}
/**
Optimize all subqueries of a query that were not flattened into a semijoin.
@details
Optimize all immediate children subqueries of a query.
This phase must be called after substitute_for_best_equal_field() because
that function may replace items with other items from a multiple equality,
and we need to reference the correct items in the index access method of the
IN predicate.
@return Operation status
@retval FALSE success.
@retval TRUE error occurred.
*/
bool JOIN::optimize_unflattened_subqueries()
{
return select_lex->optimize_unflattened_subqueries(false);
}
/**
Optimize all constant subqueries of a query that were not flattened into
a semijoin.
@details
Similar to other constant conditions, constant subqueries can be used in
various constant optimizations. Having optimized constant subqueries before
these constant optimizations, makes it possible to estimate if a subquery
is "cheap" enough to be executed during the optimization phase.
Constant subqueries can be optimized and evaluated independent of the outer
query, therefore if const_only = true, this method can be called early in
the optimization phase of the outer query.
@return Operation status
@retval FALSE success.
@retval TRUE error occurred.
*/
bool JOIN::optimize_constant_subqueries()
{
ulonglong save_options= select_lex->options;
bool res;
/*
Constant subqueries may be executed during the optimization phase.
In EXPLAIN mode the optimizer doesn't initialize many of the data structures
needed for execution. In order to make it possible to execute subqueries
during optimization, constant subqueries must be optimized for execution,
not for EXPLAIN.
*/
select_lex->options&= ~SELECT_DESCRIBE;
res= select_lex->optimize_unflattened_subqueries(true);
select_lex->options= save_options;
return res;
}
/*
Join tab execution startup function.
SYNOPSIS
join_tab_execution_startup()
tab Join tab to perform startup actions for
DESCRIPTION
Join tab execution startup function. This is different from
tab->read_first_record in the regard that this has actions that are to be
done once per join execution.
Currently there are only two possible startup functions, so we have them
both here inside if (...) branches. In future we could switch to function
pointers.
TODO: consider moving this together with JOIN_TAB::preread_init
RETURN
NESTED_LOOP_OK - OK
NESTED_LOOP_ERROR| NESTED_LOOP_KILLED - Error, abort the join execution
*/
enum_nested_loop_state join_tab_execution_startup(JOIN_TAB *tab)
{
Item_in_subselect *in_subs;
DBUG_ENTER("join_tab_execution_startup");
if (tab->table->pos_in_table_list &&
(in_subs= tab->table->pos_in_table_list->jtbm_subselect))
{
/* It's a non-merged SJM nest */
DBUG_ASSERT(in_subs->engine->engine_type() ==
subselect_engine::HASH_SJ_ENGINE);
subselect_hash_sj_engine *hash_sj_engine=
((subselect_hash_sj_engine*)in_subs->engine);
if (!hash_sj_engine->is_materialized)
{
hash_sj_engine->materialize_join->exec();
hash_sj_engine->is_materialized= TRUE;
if (hash_sj_engine->materialize_join->error || tab->join->thd->is_fatal_error)
DBUG_RETURN(NESTED_LOOP_ERROR);
}
}
else if (tab->bush_children)
{
/* It's a merged SJM nest */
enum_nested_loop_state rc;
SJ_MATERIALIZATION_INFO *sjm= tab->bush_children->start->emb_sj_nest->sj_mat_info;
if (!sjm->materialized)
{
JOIN *join= tab->join;
JOIN_TAB *join_tab= tab->bush_children->start;
JOIN_TAB *save_return_tab= join->return_tab;
/*
Now run the join for the inner tables. The first call is to run the
join, the second one is to signal EOF (this is essential for some
join strategies, e.g. it will make join buffering flush the records)
*/
if ((rc= sub_select(join, join_tab, FALSE/* no EOF */)) < 0 ||
(rc= sub_select(join, join_tab, TRUE/* now EOF */)) < 0)
{
join->return_tab= save_return_tab;
DBUG_RETURN(rc); /* it's NESTED_LOOP_(ERROR|KILLED)*/
}
join->return_tab= save_return_tab;
sjm->materialized= TRUE;
}
}
DBUG_RETURN(NESTED_LOOP_OK);
}
/*
Create a dummy temporary table, useful only for the sake of having a
TABLE* object with map,tablenr and maybe_null properties.
This is used by non-mergeable semi-join materilization code to handle
degenerate cases where materialized subquery produced "Impossible WHERE"
and thus wasn't materialized.
*/
TABLE *create_dummy_tmp_table(THD *thd)
{
DBUG_ENTER("create_dummy_tmp_table");
TABLE *table;
TMP_TABLE_PARAM sjm_table_param;
sjm_table_param.init();
sjm_table_param.field_count= 1;
List<Item> sjm_table_cols;
Item *column_item= new (thd->mem_root) Item_int(thd, 1);
sjm_table_cols.push_back(column_item, thd->mem_root);
if (!(table= create_tmp_table(thd, &sjm_table_param,
sjm_table_cols, (ORDER*) 0,
TRUE /* distinct */,
1, /*save_sum_fields*/
thd->variables.option_bits |
TMP_TABLE_ALL_COLUMNS,
HA_POS_ERROR /*rows_limit */,
(char*)"dummy", TRUE /* Do not open */)))
{
DBUG_RETURN(NULL);
}
DBUG_RETURN(table);
}
/*
A class that is used to catch one single tuple that is sent to the join
output, and save it in Item_cache element(s).
It is very similar to select_singlerow_subselect but doesn't require a
Item_singlerow_subselect item.
*/
class select_value_catcher :public select_subselect
{
public:
select_value_catcher(THD *thd_arg, Item_subselect *item_arg):
select_subselect(thd_arg, item_arg)
{}
int send_data(List<Item> &items);
int setup(List<Item> *items);
bool assigned; /* TRUE <=> we've caught a value */
uint n_elements; /* How many elements we get */
Item_cache **row; /* Array of cache elements */
};
int select_value_catcher::setup(List<Item> *items)
{
assigned= FALSE;
n_elements= items->elements;
if (!(row= (Item_cache**) thd->alloc(sizeof(Item_cache*) * n_elements)))
return TRUE;
Item *sel_item;
List_iterator<Item> li(*items);
for (uint i= 0; (sel_item= li++); i++)
{
if (!(row[i]= Item_cache::get_cache(thd, sel_item)))
return TRUE;
row[i]->setup(thd, sel_item);
}
return FALSE;
}
int select_value_catcher::send_data(List<Item> &items)
{
DBUG_ENTER("select_value_catcher::send_data");
DBUG_ASSERT(!assigned);
DBUG_ASSERT(items.elements == n_elements);
if (unit->offset_limit_cnt)
{ // Using limit offset,count
unit->offset_limit_cnt--;
DBUG_RETURN(0);
}
Item *val_item;
List_iterator_fast<Item> li(items);
for (uint i= 0; (val_item= li++); i++)
{
row[i]->store(val_item);
row[i]->cache_value();
}
assigned= TRUE;
DBUG_RETURN(0);
}
/*
Setup JTBM join tabs for execution
*/
bool setup_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list,
Item **join_where)
{
TABLE_LIST *table;
NESTED_JOIN *nested_join;
List_iterator<TABLE_LIST> li(*join_list);
THD *thd= join->thd;
DBUG_ENTER("setup_jtbm_semi_joins");
while ((table= li++))
{
Item_in_subselect *item;
if ((item= table->jtbm_subselect))
{
Item_in_subselect *subq_pred= item;
double rows;
double read_time;
/*
Perform optimization of the subquery, so that we know estmated
- cost of materialization process
- how many records will be in the materialized temp.table
*/
if (subq_pred->optimize(&rows, &read_time))
DBUG_RETURN(TRUE);
subq_pred->jtbm_read_time= read_time;
subq_pred->jtbm_record_count=rows;
JOIN *subq_join= subq_pred->unit->first_select()->join;
if (!subq_join->tables_list || !subq_join->table_count)
{
/*
A special case; subquery's join is degenerate, and it either produces
0 or 1 record. Examples of both cases:
select * from ot where col in (select ... from it where 2>3)
select * from ot where col in (select MY_MIN(it.key) from it)
in this case, the subquery predicate has not been setup for
materialization. In particular, there is no materialized temp.table.
We'll now need to
1. Check whether 1 or 0 records are produced, setup this as a
constant join tab.
2. Create a dummy temporary table, because all of the join
optimization code relies on TABLE object being present (here we
follow a bad tradition started by derived tables)
*/
DBUG_ASSERT(subq_pred->engine->engine_type() ==
subselect_engine::SINGLE_SELECT_ENGINE);
subselect_single_select_engine *engine=
(subselect_single_select_engine*)subq_pred->engine;
select_value_catcher *new_sink;
if (!(new_sink=
new (thd->mem_root) select_value_catcher(thd, subq_pred)))
DBUG_RETURN(TRUE);
if (new_sink->setup(&engine->select_lex->join->fields_list) ||
engine->select_lex->join->change_result(new_sink, NULL) ||
engine->exec())
{
DBUG_RETURN(TRUE);
}
subq_pred->is_jtbm_const_tab= TRUE;
if (new_sink->assigned)
{
subq_pred->jtbm_const_row_found= TRUE;
/*
Subselect produced one row, which is saved in new_sink->row.
Inject "left_expr[i] == row[i] equalities into parent's WHERE.
*/
Item *eq_cond;
for (uint i= 0; i < subq_pred->left_expr->cols(); i++)
{
eq_cond= new (thd->mem_root)
Item_func_eq(thd, subq_pred->left_expr->element_index(i),
new_sink->row[i]);
if (!eq_cond)
DBUG_RETURN(1);
if (!((*join_where)= and_items(thd, *join_where, eq_cond)) ||
(*join_where)->fix_fields(thd, join_where))
DBUG_RETURN(1);
}
}
else
{
/* Subselect produced no rows. Just set the flag, */
subq_pred->jtbm_const_row_found= FALSE;
}
/* Set up a dummy TABLE*, optimizer code needs JOIN_TABs to have TABLE */
TABLE *dummy_table;
if (!(dummy_table= create_dummy_tmp_table(thd)))
DBUG_RETURN(1);
table->table= dummy_table;
table->table->pos_in_table_list= table;
/*
Note: the table created above may be freed by:
1. JOIN_TAB::cleanup(), when the parent join is a regular join.
2. cleanup_empty_jtbm_semi_joins(), when the parent join is a
degenerate join (e.g. one with "Impossible where").
*/
setup_table_map(table->table, table, table->jtbm_table_no);
}
else
{
DBUG_ASSERT(subq_pred->test_set_strategy(SUBS_MATERIALIZATION));
subq_pred->is_jtbm_const_tab= FALSE;
subselect_hash_sj_engine *hash_sj_engine=
((subselect_hash_sj_engine*)item->engine);
table->table= hash_sj_engine->tmp_table;
table->table->pos_in_table_list= table;
setup_table_map(table->table, table, table->jtbm_table_no);
Item *sj_conds= hash_sj_engine->semi_join_conds;
(*join_where)= and_items(thd, *join_where, sj_conds);
if (!(*join_where)->fixed)
(*join_where)->fix_fields(thd, join_where);
}
table->table->maybe_null= MY_TEST(join->mixed_implicit_grouping);
}
if ((nested_join= table->nested_join))
{
if (setup_jtbm_semi_joins(join, &nested_join->join_list, join_where))
DBUG_RETURN(TRUE);
}
}
DBUG_RETURN(FALSE);
}
/*
Cleanup non-merged semi-joins (JBMs) that have empty.
This function is to cleanups for a special case:
Consider a query like
select * from t1 where 1=2 AND t1.col IN (select max(..) ... having 1=2)
For this query, optimization of subquery will short-circuit, and
setup_jtbm_semi_joins() will call create_dummy_tmp_table() so that we have
empty, constant temp.table to stand in as materialized temp. table.
Now, suppose that the upper join is also found to be degenerate. In that
case, no JOIN_TAB array will be produced, and hence, JOIN::cleanup() will
have a problem with cleaning up empty JTBMs (non-empty ones are cleaned up
through Item::cleanup() calls).
*/
void cleanup_empty_jtbm_semi_joins(JOIN *join, List<TABLE_LIST> *join_list)
{
List_iterator<TABLE_LIST> li(*join_list);
TABLE_LIST *table;
while ((table= li++))
{
if ((table->jtbm_subselect && table->jtbm_subselect->is_jtbm_const_tab))
{
if (table->table)
{
free_tmp_table(join->thd, table->table);
table->table= NULL;
}
}
else if (table->nested_join && table->sj_subq_pred)
{
cleanup_empty_jtbm_semi_joins(join, &table->nested_join->join_list);
}
}
}
/**
Choose an optimal strategy to execute an IN/ALL/ANY subquery predicate
based on cost.
@param join_tables the set of tables joined in the subquery
@notes
The method chooses between the materialization and IN=>EXISTS rewrite
strategies for the execution of a non-flattened subquery IN predicate.
The cost-based decision is made as follows:
1. compute materialize_strategy_cost based on the unmodified subquery
2. reoptimize the subquery taking into account the IN-EXISTS predicates
3. compute in_exists_strategy_cost based on the reoptimized plan
4. compare and set the cheaper strategy
if (materialize_strategy_cost >= in_exists_strategy_cost)
in_strategy = MATERIALIZATION
else
in_strategy = IN_TO_EXISTS
5. if in_strategy = MATERIALIZATION and it is not possible to initialize it
revert to IN_TO_EXISTS
6. if (in_strategy == MATERIALIZATION)
revert the subquery plan to the original one before reoptimizing
else
inject the IN=>EXISTS predicates into the new EXISTS subquery plan
The implementation itself is a bit more complicated because it takes into
account two more factors:
- whether the user allowed both strategies through an optimizer_switch, and
- if materialization was the cheaper strategy, whether it can be executed
or not.
@retval FALSE success.
@retval TRUE error occurred.
*/
bool JOIN::choose_subquery_plan(table_map join_tables)
{
enum_reopt_result reopt_result= REOPT_NONE;
Item_in_subselect *in_subs;
/*
IN/ALL/ANY optimizations are not applicable for so called fake select
(this select exists only to filter results of union if it is needed).
*/
if (select_lex == select_lex->master_unit()->fake_select_lex)
return 0;
if (is_in_subquery())
{
in_subs= (Item_in_subselect*) unit->item;
if (in_subs->create_in_to_exists_cond(this))
return true;
}
else
return false;
/* A strategy must be chosen earlier. */
DBUG_ASSERT(in_subs->has_strategy());
DBUG_ASSERT(in_to_exists_where || in_to_exists_having);
DBUG_ASSERT(!in_to_exists_where || in_to_exists_where->fixed);
DBUG_ASSERT(!in_to_exists_having || in_to_exists_having->fixed);
/* The original QEP of the subquery. */
Join_plan_state save_qep(table_count);
/*
Compute and compare the costs of materialization and in-exists if both
strategies are possible and allowed by the user (checked during the prepare
phase.
*/
if (in_subs->test_strategy(SUBS_MATERIALIZATION) &&
in_subs->test_strategy(SUBS_IN_TO_EXISTS))
{
JOIN *outer_join;
JOIN *inner_join= this;
/* Number of unique value combinations filtered by the IN predicate. */
double outer_lookup_keys;
/* Cost and row count of the unmodified subquery. */
double inner_read_time_1, inner_record_count_1;
/* Cost of the subquery with injected IN-EXISTS predicates. */
double inner_read_time_2;
/* The cost to compute IN via materialization. */
double materialize_strategy_cost;
/* The cost of the IN->EXISTS strategy. */
double in_exists_strategy_cost;
double dummy;
/*
A. Estimate the number of rows of the outer table that will be filtered
by the IN predicate.
*/
outer_join= unit->outer_select() ? unit->outer_select()->join : NULL;
/*
Get the cost of the outer join if:
(1) It has at least one table, and
(2) It has been already optimized (if there is no join_tab, then the
outer join has not been optimized yet).
*/
if (outer_join && outer_join->table_count > 0 && // (1)
outer_join->join_tab && // (2)
!in_subs->const_item())
{
/*
TODO:
Currently outer_lookup_keys is computed as the number of rows in
the partial join including the JOIN_TAB where the IN predicate is
pushed to. In the general case this is a gross overestimate because
due to caching we are interested only in the number of unique keys.
The search key may be formed by columns from much fewer than all
tables in the partial join. Example:
select * from t1, t2 where t1.c1 = t2.key AND t2.c2 IN (select ...);
If the join order: t1, t2, the number of unique lookup keys is ~ to
the number of unique values t2.c2 in the partial join t1 join t2.
*/
outer_join->get_partial_cost_and_fanout(in_subs->get_join_tab_idx(),
table_map(-1),
&dummy,
&outer_lookup_keys);
}
else
{
/*
TODO: outer_join can be NULL for DELETE statements.
How to compute its cost?
*/
outer_lookup_keys= 1;
}
/*
B. Estimate the cost and number of records of the subquery both
unmodified, and with injected IN->EXISTS predicates.
*/
inner_read_time_1= inner_join->best_read;
inner_record_count_1= inner_join->join_record_count;
if (in_to_exists_where && const_tables != table_count)
{
/*
Re-optimize and cost the subquery taking into account the IN-EXISTS
conditions.
*/
reopt_result= reoptimize(in_to_exists_where, join_tables, &save_qep);
if (reopt_result == REOPT_ERROR)
return TRUE;
/* Get the cost of the modified IN-EXISTS plan. */
inner_read_time_2= inner_join->best_read;
}
else
{
/* Reoptimization would not produce any better plan. */
inner_read_time_2= inner_read_time_1;
}
/*
C. Compute execution costs.
*/
/* C.1 Compute the cost of the materialization strategy. */
//uint rowlen= get_tmp_table_rec_length(unit->first_select()->item_list);
uint rowlen= get_tmp_table_rec_length(ref_ptrs,
select_lex->item_list.elements);
/* The cost of writing one row into the temporary table. */
double write_cost= get_tmp_table_write_cost(thd, inner_record_count_1,
rowlen);
/* The cost of a lookup into the unique index of the materialized table. */
double lookup_cost= get_tmp_table_lookup_cost(thd, inner_record_count_1,
rowlen);
/*
The cost of executing the subquery and storing its result in an indexed
temporary table.
*/
double materialization_cost= inner_read_time_1 +
write_cost * inner_record_count_1;
materialize_strategy_cost= materialization_cost +
outer_lookup_keys * lookup_cost;
/* C.2 Compute the cost of the IN=>EXISTS strategy. */
in_exists_strategy_cost= outer_lookup_keys * inner_read_time_2;
/* C.3 Compare the costs and choose the cheaper strategy. */
if (materialize_strategy_cost >= in_exists_strategy_cost)
in_subs->set_strategy(SUBS_IN_TO_EXISTS);
else
in_subs->set_strategy(SUBS_MATERIALIZATION);
DBUG_PRINT("info",
("mat_strategy_cost: %.2f, mat_cost: %.2f, write_cost: %.2f, lookup_cost: %.2f",
materialize_strategy_cost, materialization_cost, write_cost, lookup_cost));
DBUG_PRINT("info",
("inx_strategy_cost: %.2f, inner_read_time_2: %.2f",
in_exists_strategy_cost, inner_read_time_2));
DBUG_PRINT("info",("outer_lookup_keys: %.2f", outer_lookup_keys));
}
/*
If (1) materialization is a possible strategy based on semantic analysis
during the prepare phase, then if
(2) it is more expensive than the IN->EXISTS transformation, and
(3) it is not possible to create usable indexes for the materialization
strategy,
fall back to IN->EXISTS.
otherwise
use materialization.
*/
if (in_subs->test_strategy(SUBS_MATERIALIZATION) &&
in_subs->setup_mat_engine())
{
/*
If materialization was the cheaper or the only user-selected strategy,
but it is not possible to execute it due to limitations in the
implementation, fall back to IN-TO-EXISTS.
*/
in_subs->set_strategy(SUBS_IN_TO_EXISTS);
}
if (in_subs->test_strategy(SUBS_MATERIALIZATION))
{
/* Restore the original query plan used for materialization. */
if (reopt_result == REOPT_NEW_PLAN)
restore_query_plan(&save_qep);
in_subs->unit->uncacheable&= ~UNCACHEABLE_DEPENDENT_INJECTED;
select_lex->uncacheable&= ~UNCACHEABLE_DEPENDENT_INJECTED;
/*
Reset the "LIMIT 1" set in Item_exists_subselect::fix_length_and_dec.
TODO:
Currently we set the subquery LIMIT to infinity, and this is correct
because we forbid at parse time LIMIT inside IN subqueries (see
Item_in_subselect::test_limit). However, once we allow this, here
we should set the correct limit if given in the query.
*/
in_subs->unit->global_parameters()->select_limit= NULL;
in_subs->unit->set_limit(unit->global_parameters());
/*
Set the limit of this JOIN object as well, because normally its being
set in the beginning of JOIN::optimize, which was already done.
*/
select_limit= in_subs->unit->select_limit_cnt;
}
else if (in_subs->test_strategy(SUBS_IN_TO_EXISTS))
{
if (reopt_result == REOPT_NONE && in_to_exists_where &&
const_tables != table_count)
{
/*
The subquery was not reoptimized with the newly injected IN-EXISTS
conditions either because the user allowed only the IN-EXISTS strategy,
or because materialization was not possible based on semantic analysis.
*/
reopt_result= reoptimize(in_to_exists_where, join_tables, NULL);
if (reopt_result == REOPT_ERROR)
return TRUE;
}
if (in_subs->inject_in_to_exists_cond(this))
return TRUE;
/*
If the injected predicate is correlated the IN->EXISTS transformation
make the subquery dependent.
*/
if ((in_to_exists_where &&
in_to_exists_where->used_tables() & OUTER_REF_TABLE_BIT) ||
(in_to_exists_having &&
in_to_exists_having->used_tables() & OUTER_REF_TABLE_BIT))
{
in_subs->unit->uncacheable|= UNCACHEABLE_DEPENDENT_INJECTED;
select_lex->uncacheable|= UNCACHEABLE_DEPENDENT_INJECTED;
}
select_limit= 1;
}
else
DBUG_ASSERT(FALSE);
return FALSE;
}
/**
Choose a query plan for a table-less subquery.
@notes
@retval FALSE success.
@retval TRUE error occurred.
*/
bool JOIN::choose_tableless_subquery_plan()
{
DBUG_ASSERT(!tables_list || !table_count);
if (unit->item)
{
DBUG_ASSERT(unit->item->type() == Item::SUBSELECT_ITEM);
Item_subselect *subs_predicate= unit->item;
/*
If the optimizer determined that his query has an empty result,
in most cases the subquery predicate is a known constant value -
either of TRUE, FALSE or NULL. The implementation of
Item_subselect::no_rows_in_result() determines which one.
*/
if (zero_result_cause)
{
if (!implicit_grouping)
{
/*
Both group by queries and non-group by queries without aggregate
functions produce empty subquery result. There is no need to further
rewrite the subquery because it will not be executed at all.
*/
return FALSE;
}
/* @todo
A further optimization is possible when a non-group query with
MIN/MAX/COUNT is optimized by opt_sum_query. Then, if there are
only MIN/MAX functions over an empty result set, the subquery
result is a NULL value/row, thus the value of subs_predicate is
NULL.
*/
}
/*
For IN subqueries, use IN->EXISTS transfomation, unless the subquery
has been converted to a JTBM semi-join. In that case, just leave
everything as-is, setup_jtbm_semi_joins() has special handling for cases
like this.
*/
if (subs_predicate->is_in_predicate() &&
!(subs_predicate->substype() == Item_subselect::IN_SUBS &&
((Item_in_subselect*)subs_predicate)->is_jtbm_merged))
{
Item_in_subselect *in_subs;
in_subs= (Item_in_subselect*) subs_predicate;
in_subs->set_strategy(SUBS_IN_TO_EXISTS);
if (in_subs->create_in_to_exists_cond(this) ||
in_subs->inject_in_to_exists_cond(this))
return TRUE;
tmp_having= having;
}
}
return FALSE;
}
|