summaryrefslogtreecommitdiff
path: root/sql/opt_subselect.cc
blob: 56815a624e291594813b870ba48a8789340f9a46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
/**
  @file

  @brief
    Semi-join subquery optimizations code

*/

#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation				// gcc: Class implementation
#endif

#include "mysql_priv.h"
#include "sql_select.h"
#include "opt_subselect.h"

#include <my_bit.h>

/*
  This file contains optimizations for semi-join subqueries.
  
  Contents
  --------
  1. What is a semi-join subquery
  2. General idea about semi-join execution
  2.1 Correlated vs uncorrelated semi-joins
  2.2 Mergeable vs non-mergeable semi-joins
  3. Code-level view of semi-join processing
  3.1 Conversion
  3.1.1 Merged semi-join TABLE_LIST object
  3.1.2 Non-merged semi-join data structure
  3.2 Semi-joins and query optimization
  3.2.1 Non-merged semi-joins and join optimization
  3.2.2 Merged semi-joins and join optimization
  3.3 Semi-joins and query execution

  1. What is a semi-join subquery
  -------------------------------
  We use this definition of semi-join:

    outer_tbl SEMI JOIN inner_tbl ON cond = {set of outer_tbl.row such that
                                             exist inner_tbl.row, for which 
                                             cond(outer_tbl.row,inner_tbl.row)
                                             is satisfied}
  
  That is, semi-join operation is similar to inner join operation, with
  exception that we don't care how many matches a row from outer_tbl has in
  inner_tbl.

  In SQL terms: a semi-join subquery is an IN subquery that is an AND-part of
  the WHERE/ON clause.

  2. General idea about semi-join execution
  -----------------------------------------
  We can execute semi-join in a way similar to inner join, with exception that
  we need to somehow ensure that we do not generate record combinations that
  differ only in rows of inner tables.
  There is a number of different ways to achieve this property, implemented by
  a number of semi-join execution strategies.
  Some strategies can handle any semi-joins, other can be applied only to
  semi-joins that have certain properties that are described below:

  2.1 Correlated vs uncorrelated semi-joins
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  Uncorrelated semi-joins are special in the respect that they allow to
   - execute the subquery (possible as it's uncorrelated)
   - somehow make sure that generated set does not have duplicates
   - perform an inner join with outer tables.
  
  or, rephrasing in SQL form:

  SELECT ... FROM ot WHERE ot.col IN (SELECT it.col FROM it WHERE uncorr_cond)
    ->
  SELECT ... FROM ot JOIN (SELECT DISTINCT it.col FROM it WHERE uncorr_cond)

  2.2 Mergeable vs non-mergeable semi-joins
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  Semi-join operation has some degree of commutability with inner join
  operation: we can join subquery's tables with ouside table(s) and eliminate
  duplicate record combination after that:

    ot1 JOIN ot2 SEMI_JOIN{it1,it2} (it1 JOIN it2) ON sjcond(ot2,it*) ->
              |
              +-------------------------------+
                                              v
    ot1 SEMI_JOIN{it1,it2} (it1 JOIN it2 JOIN ot2) ON sjcond(ot2,it*)
 
  In order for this to work, subquery's top-level operation must be join, and
  grouping or ordering with limit (grouping or ordering with limit are not
  commutative with duplicate removal). In other words, the conversion is
  possible when the subquery doesn't have GROUP BY clause, any aggregate
  functions*, or ORDER BY ... LIMIT clause.

  Definitions:
  - Subquery whose top-level operation is a join is called *mergeable semi-join*
  - All other kinds of semi-join subqueries are considered non-mergeable.

  *- this requirement is actually too strong, but its exceptions are too
  complicated to be considered here.

  3. Code-level view of semi-join processing
  ------------------------------------------
  
  3.1 Conversion and pre-optimization data structures
  ---------------------------------------------------
  * When doing JOIN::prepare for the subquery, we detect that it can be
    converted into a semi-join and register it in parent_join->sj_subselects

  * At the start of parent_join->optimize(), the predicate is converted into 
    a semi-join node. A semi-join node is a TABLE_LIST object that is linked
    somewhere in parent_join->join_list (either it is just present there, or
    it is a descendant of some of its members).
  
  There are two kinds of semi-joins:
  - Merged semi-joins
  - Non-merged semi-joins
   
  3.1.1 Merged semi-join TABLE_LIST object
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  Merged semi-join object is a TABLE_LIST that contains a sub-join of 
  subquery tables and the semi-join ON expression (in this respect it is 
  very similar to nested outer join representation)
  Merged semi-join represents this SQL:

    ... SEMI JOIN (inner_tbl1 JOIN ... JOIN inner_tbl_n) ON sj_on_expr
  
  Semi-join objects of this kind have TABLE_LIST::sj_subq_pred set.
 
  3.1.2 Non-merged semi-join data structure
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  Non-merged semi-join object is a leaf TABLE_LIST object that has a subquery
  that produces rows. It is similar to a base table and represents this SQL:
    
    ... SEMI_JOIN (SELECT non_mergeable_select) ON sj_on_expr
  
  Subquery items that were converted into semi-joins are removed from the WHERE
  clause. (They do remain in PS-saved WHERE clause, and they replace themselves
  with Item_int(1) on subsequent re-executions).

  3.2 Semi-joins and join optimization
  ------------------------------------
  
  3.2.1 Non-merged semi-joins and join optimization
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
  For join optimization purposes, non-merged semi-join nests are similar to
  base tables - they've got one JOIN_TAB, which can be accessed with one of
  two methods:
   - full table scan (representing SJ-Materialization-Scan strategy)
   - eq_ref-like table lookup (representing SJ-Materialization-Lookup)

  Unlike regular base tables, non-merged semi-joins have:
   - non-zero JOIN_TAB::startup_cost, and
   - join_tab->table->is_filled_at_execution()==TRUE, which means one
     cannot do const table detection or range analysis or other table data-
     dependent inferences
  // instead, get_delayed_table_estimates() runs optimization on the nest so that 
  // we get an idea about temptable size
  
  3.2.2 Merged semi-joins and join optimization
  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   - optimize_semijoin_nests() does pre-optimization 
   - during join optimization, the join has one JOIN_TAB (or is it POSITION?) 
     array, and suffix-based detection is used, see advance_sj_state()
   - after join optimization is done, get_best_combination() switches 
     the data-structure to prefix-based, multiple JOIN_TAB ranges format.

  3.3 Semi-joins and query execution
  ----------------------------------
  * Join executor has hooks for all semi-join strategies.
    TODO elaborate.

*/


static
bool subquery_types_allow_materialization(Item_in_subselect *in_subs);
static bool replace_where_subcondition(JOIN *join, Item **expr, 
                                       Item *old_cond, Item *new_cond,
                                       bool do_fix_fields);
static int subq_sj_candidate_cmp(Item_in_subselect* el1, Item_in_subselect* el2,
                                 void *arg);
static bool convert_subq_to_sj(JOIN *parent_join, Item_in_subselect *subq_pred);
static bool convert_subq_to_jtbm(JOIN *parent_join, 
                                 Item_in_subselect *subq_pred, bool *remove);
static TABLE_LIST *alloc_join_nest(THD *thd);
static uint get_tmp_table_rec_length(Item **p_list, uint elements);
static double get_tmp_table_lookup_cost(THD *thd, double row_count,
                                        uint row_size);
static double get_tmp_table_write_cost(THD *thd, double row_count,
                                       uint row_size);
bool find_eq_ref_candidate(TABLE *table, table_map sj_inner_tables);
static SJ_MATERIALIZATION_INFO *
at_sjmat_pos(const JOIN *join, table_map remaining_tables, const JOIN_TAB *tab,
             uint idx, bool *loose_scan);
void best_access_path(JOIN *join, JOIN_TAB *s, 
                             table_map remaining_tables, uint idx, 
                             bool disable_jbuf, double record_count,
                             POSITION *pos, POSITION *loose_scan_pos);

static Item *create_subq_in_equalities(THD *thd, SJ_MATERIALIZATION_INFO *sjm, 
                                Item_in_subselect *subq_pred);
static void remove_sj_conds(Item **tree);
static bool is_cond_sj_in_equality(Item *item);
static bool sj_table_is_included(JOIN *join, JOIN_TAB *join_tab);
static Item *remove_additional_cond(Item* conds);
static void remove_subq_pushed_predicates(JOIN *join, Item **where);

enum_nested_loop_state 
end_sj_materialize(JOIN *join, JOIN_TAB *join_tab, bool end_of_records);


/*
  Check if Materialization strategy is allowed for given subquery predicate.

  @param thd           Thread handle
  @param in_subs       The subquery predicate
  @param child_select  The select inside predicate (the function will
                       check it is the only one)

  @return TRUE  - Materialization is applicable 
          FALSE - Otherwise
*/

bool is_materialization_applicable(THD *thd, Item_in_subselect *in_subs,
                                   st_select_lex *child_select)
{
  st_select_lex_unit* parent_unit= child_select->master_unit();
  /*
    Check if the subquery predicate can be executed via materialization.
    The required conditions are:
    0. The materialization optimizer switch was set.
    1. Subquery is a single SELECT (not a UNION).
       TODO: this is a limitation that can be fixed
    2. Subquery is not a table-less query. In this case there is no
       point in materializing.
    2A The upper query is not a table-less SELECT ... FROM DUAL. We
       can't do materialization for SELECT .. FROM DUAL because it
       does not call setup_subquery_materialization(). We could make 
       SELECT ... FROM DUAL call that function but that doesn't seem
       to be the case that is worth handling.
    3. Either the subquery predicate is a top-level predicate, or at
       least one partial match strategy is enabled. If no partial match
       strategy is enabled, then materialization cannot be used for
       non-top-level queries because it cannot handle NULLs correctly.
    4. Subquery is non-correlated
       TODO:
       This condition is too restrictive (limitation). It can be extended to:
       (Subquery is non-correlated ||
        Subquery is correlated to any query outer to IN predicate ||
        (Subquery is correlated to the immediate outer query &&
         Subquery !contains {GROUP BY, ORDER BY [LIMIT],
         aggregate functions}) && subquery predicate is not under "NOT IN"))

    (*) The subquery must be part of a SELECT statement. The current
         condition also excludes multi-table update statements.
  A note about prepared statements: we want the if-branch to be taken on
  PREPARE and each EXECUTE. The rewrites are only done once, but we need 
  select_lex->sj_subselects list to be populated for every EXECUTE. 

  */
  if (optimizer_flag(thd, OPTIMIZER_SWITCH_MATERIALIZATION) &&      // 0
        !child_select->is_part_of_union() &&                          // 1
        parent_unit->first_select()->leaf_tables.elements &&          // 2
        thd->lex->sql_command == SQLCOM_SELECT &&                     // *
        child_select->outer_select()->leaf_tables.elements &&           // 2A
        subquery_types_allow_materialization(in_subs) &&
        (in_subs->is_top_level_item() ||                               //3
         optimizer_flag(thd,
                        OPTIMIZER_SWITCH_PARTIAL_MATCH_ROWID_MERGE) || //3
         optimizer_flag(thd,
                        OPTIMIZER_SWITCH_PARTIAL_MATCH_TABLE_SCAN)) && //3
        !in_subs->is_correlated)                                       //4
   {
     return TRUE;
   }
  return FALSE;
}


/*
  Check if we need JOIN::prepare()-phase subquery rewrites and if yes, do them

  SYNOPSIS
     check_and_do_in_subquery_rewrites()
       join  Subquery's join

  DESCRIPTION
    Check if we need to do
     - subquery -> mergeable semi-join rewrite
     - if the subquery can be handled with materialization
     - 'substitution' rewrite for table-less subqueries like "(select 1)"
     - IN->EXISTS rewrite
    and, depending on the rewrite, either do it, or record it to be done at a
    later phase.

  RETURN
    0      - OK
    Other  - Some sort of query error
*/

int check_and_do_in_subquery_rewrites(JOIN *join)
{
  THD *thd=join->thd;
  st_select_lex *select_lex= join->select_lex;
  st_select_lex_unit* parent_unit= select_lex->master_unit();
  DBUG_ENTER("check_and_do_in_subquery_rewrites");
  /*
    If 
      1) this join is inside a subquery (of any type except FROM-clause 
         subquery) and
      2) we aren't just normalizing a VIEW

    Then perform early unconditional subquery transformations:
     - Convert subquery predicate into semi-join, or
     - Mark the subquery for execution using materialization, or
     - Perform IN->EXISTS transformation, or
     - Perform more/less ALL/ANY -> MIN/MAX rewrite
     - Substitute trivial scalar-context subquery with its value

    TODO: for PS, make the whole block execute only on the first execution
  */
  Item_subselect *subselect;
  if (!(thd->lex->context_analysis_only & CONTEXT_ANALYSIS_ONLY_VIEW) && // (1)
      (subselect= parent_unit->item))                                    // (2)
  {
    Item_in_subselect *in_subs= NULL;
    Item_allany_subselect *allany_subs= NULL;
    switch (subselect->substype()) {
    case Item_subselect::IN_SUBS:
      in_subs= (Item_in_subselect *)subselect;
      break;
    case Item_subselect::ALL_SUBS:
    case Item_subselect::ANY_SUBS:
      allany_subs= (Item_allany_subselect *)subselect;
      break;
    default:
      break;
    }


    /* Resolve expressions and perform semantic analysis for IN query */
    if (in_subs != NULL)
      /*
        TODO: Add the condition below to this if statement when we have proper
        support for is_correlated handling for materialized semijoins.
        If we were to add this condition now, the fix_fields() call in
        convert_subq_to_sj() would force the flag is_correlated to be set
        erroneously for prepared queries.

        thd->stmt_arena->state != Query_arena::PREPARED)
      */
    {
      /*
        Check if the left and right expressions have the same # of
        columns, i.e. we don't have a case like 
          (oe1, oe2) IN (SELECT ie1, ie2, ie3 ...)

        TODO why do we have this duplicated in IN->EXISTS transformers?
        psergey-todo: fix these: grep for duplicated_subselect_card_check
      */
      if (select_lex->item_list.elements != in_subs->left_expr->cols())
      {
        my_error(ER_OPERAND_COLUMNS, MYF(0), in_subs->left_expr->cols());
        DBUG_RETURN(-1);
      }

      SELECT_LEX *current= thd->lex->current_select;
      thd->lex->current_select= current->return_after_parsing();
      char const *save_where= thd->where;
      thd->where= "IN/ALL/ANY subquery";
        
      bool failure= !in_subs->left_expr->fixed &&
                     in_subs->left_expr->fix_fields(thd, &in_subs->left_expr);
      thd->lex->current_select= current;
      thd->where= save_where;
      if (failure)
        DBUG_RETURN(-1); /* purecov: deadcode */
    }
    if (select_lex == parent_unit->fake_select_lex)
    {
      /*
        The join and its select_lex object represent the 'fake' select used
        to compute the result of a UNION.
      */
      DBUG_RETURN(0);
    }

    DBUG_PRINT("info", ("Checking if subq can be converted to semi-join"));
    /*
      Check if we're in subquery that is a candidate for flattening into a
      semi-join (which is done in flatten_subqueries()). The
      requirements are:
        1. Subquery predicate is an IN/=ANY subq predicate
        2. Subquery is a single SELECT (not a UNION)
        3. Subquery does not have GROUP BY or ORDER BY
        4. Subquery does not use aggregate functions or HAVING
        5. Subquery predicate is at the AND-top-level of ON/WHERE clause
        6. We are not in a subquery of a single table UPDATE/DELETE that 
             doesn't have a JOIN (TODO: We should handle this at some
             point by switching to multi-table UPDATE/DELETE)
        7. We're not in a table-less subquery like "SELECT 1"
        8. No execution method was already chosen (by a prepared statement)
        9. Parent select is not a table-less select
        10. Neither parent nor child select have STRAIGHT_JOIN option.
    */
    if (optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN) &&
        in_subs &&                                                    // 1
        !select_lex->is_part_of_union() &&                            // 2
        !select_lex->group_list.elements && !join->order &&           // 3
        !join->having && !select_lex->with_sum_func &&                // 4
        in_subs->emb_on_expr_nest &&                                  // 5
        select_lex->outer_select()->join &&                           // 6
        parent_unit->first_select()->leaf_tables.elements &&          // 7
        !in_subs->has_strategy() &&                                   // 8
        select_lex->outer_select()->leaf_tables.elements &&           // 9
        !((join->select_options |                                     // 10
           select_lex->outer_select()->join->select_options)          // 10
          & SELECT_STRAIGHT_JOIN))                                    // 10
    {
      DBUG_PRINT("info", ("Subquery is semi-join conversion candidate"));

      (void)subquery_types_allow_materialization(in_subs);

      in_subs->is_flattenable_semijoin= TRUE;

      /* Register the subquery for further processing in flatten_subqueries() */
      if (!in_subs->is_registered_semijoin)
      {
        Query_arena *arena, backup;
        arena= thd->activate_stmt_arena_if_needed(&backup);
        select_lex->outer_select()->sj_subselects.push_back(in_subs);
        if (arena)
          thd->restore_active_arena(arena, &backup);
        in_subs->is_registered_semijoin= TRUE;
      }
    }
    else
    {
      DBUG_PRINT("info", ("Subquery can't be converted to merged semi-join"));
      /* Test if the user has set a legal combination of optimizer switches. */
      if (!optimizer_flag(thd, OPTIMIZER_SWITCH_IN_TO_EXISTS) &&
          !optimizer_flag(thd, OPTIMIZER_SWITCH_MATERIALIZATION))
        my_error(ER_ILLEGAL_SUBQUERY_OPTIMIZER_SWITCHES, MYF(0));

      /*
        If the subquery predicate is IN/=ANY, analyse and set all possible
        subquery execution strategies based on optimizer switches and syntactic
        properties.
      */
      if (in_subs)
      {
        if (is_materialization_applicable(thd, in_subs, select_lex))
        {
          in_subs->add_strategy(SUBS_MATERIALIZATION);

          /*
            If the subquery is an AND-part of WHERE register for being processed
            with jtbm strategy
          */
          if (in_subs->emb_on_expr_nest == NO_JOIN_NEST &&
              optimizer_flag(thd, OPTIMIZER_SWITCH_SEMIJOIN))
          {
            in_subs->is_flattenable_semijoin= FALSE;
            if (!in_subs->is_registered_semijoin)
	    {
              Query_arena *arena, backup;
              arena= thd->activate_stmt_arena_if_needed(&backup);
              select_lex->outer_select()->sj_subselects.push_back(in_subs);
              if (arena)
                thd->restore_active_arena(arena, &backup);
              in_subs->is_registered_semijoin= TRUE;
            }
          }
        }

        /*
          IN-TO-EXISTS is the only universal strategy. Choose it if the user
          allowed it via an optimizer switch, or if materialization is not
          possible.
        */
        if (optimizer_flag(thd, OPTIMIZER_SWITCH_IN_TO_EXISTS) ||
            !in_subs->has_strategy())
          in_subs->add_strategy(SUBS_IN_TO_EXISTS);
      }

      /* Check if max/min optimization applicable */
      if (allany_subs && !allany_subs->is_set_strategy())
      {
        uchar strategy= (allany_subs->is_maxmin_applicable(join) ?
                         (SUBS_MAXMIN_INJECTED | SUBS_MAXMIN_ENGINE) :
                         SUBS_IN_TO_EXISTS);
        allany_subs->add_strategy(strategy);
      }

      /*
        Transform each subquery predicate according to its overloaded
        transformer.
      */
      if (subselect->select_transformer(join))
        DBUG_RETURN(-1);
    }
  }
  DBUG_RETURN(0);
}


/**
  @brief Check if subquery's compared types allow materialization.

  @param in_subs Subquery predicate, updated as follows:
    types_allow_materialization TRUE if subquery materialization is allowed.
    sjm_scan_allowed            If types_allow_materialization is TRUE,
                                indicates whether it is possible to use subquery
                                materialization and scan the materialized table.

  @retval TRUE   If subquery types allow materialization.
  @retval FALSE  Otherwise.

  @details
    This is a temporary fix for BUG#36752.
    
    There are two subquery materialization strategies:

    1. Materialize and do index lookups in the materialized table. See 
       BUG#36752 for description of restrictions we need to put on the
       compared expressions.

    2. Materialize and then do a full scan of the materialized table. At the
       moment, this strategy's applicability criteria are even stricter than
       in #1.

       This is so because of the following: consider an uncorrelated subquery
       
       ...WHERE (ot1.col1, ot2.col2 ...) IN (SELECT ie1,ie2,... FROM it1 ...)

       and a join order that could be used to do sjm-materialization: 
          
          SJM-Scan(it1, it1), ot1, ot2
       
       IN-equalities will be parts of conditions attached to the outer tables:

         ot1:  ot1.col1 = ie1 AND ... (C1)
         ot2:  ot1.col2 = ie2 AND ... (C2)
       
       besides those there may be additional references to ie1 and ie2
       generated by equality propagation. The problem with evaluating C1 and
       C2 is that ie{1,2} refer to subquery tables' columns, while we only have 
       current value of materialization temptable. Our solution is to 
        * require that all ie{N} are table column references. This allows 
          to copy the values of materialization temptable columns to the
          original table's columns (see setup_sj_materialization for more
          details)
        * require that compared columns have exactly the same type. This is
          a temporary measure to avoid BUG#36752-type problems.
*/

static 
bool subquery_types_allow_materialization(Item_in_subselect *in_subs)
{
  DBUG_ENTER("subquery_types_allow_materialization");

  DBUG_ASSERT(in_subs->left_expr->fixed);

  List_iterator<Item> it(in_subs->unit->first_select()->item_list);
  uint elements= in_subs->unit->first_select()->item_list.elements;

  in_subs->types_allow_materialization= FALSE;  // Assign default values
  in_subs->sjm_scan_allowed= FALSE;
  
  bool all_are_fields= TRUE;
  for (uint i= 0; i < elements; i++)
  {
    Item *outer= in_subs->left_expr->element_index(i);
    Item *inner= it++;
    all_are_fields &= (outer->real_item()->type() == Item::FIELD_ITEM && 
                       inner->real_item()->type() == Item::FIELD_ITEM);
    if (outer->cmp_type() != inner->cmp_type())
      DBUG_RETURN(FALSE);
    switch (outer->cmp_type()) {
    case STRING_RESULT:
      if (!(outer->collation.collation == inner->collation.collation))
        DBUG_RETURN(FALSE);
      // Materialization does not work with BLOB columns
      if (inner->field_type() == MYSQL_TYPE_BLOB || 
          inner->field_type() == MYSQL_TYPE_GEOMETRY)
        DBUG_RETURN(FALSE);
      /* 
        Materialization also is unable to work when create_tmp_table() will
        create a blob column because item->max_length is too big.
        The following check is copied from Item::make_string_field():
      */ 
      if (inner->max_length / inner->collation.collation->mbmaxlen > 
          CONVERT_IF_BIGGER_TO_BLOB)
      {
        DBUG_RETURN(FALSE);
      }
      break;
    case TIME_RESULT:
      if (mysql_type_to_time_type(outer->field_type()) !=
          mysql_type_to_time_type(outer->field_type()))
        DBUG_RETURN(FALSE);
    default:
      /* suitable for materialization */
      break;
    }
  }

  in_subs->types_allow_materialization= TRUE;
  in_subs->sjm_scan_allowed= all_are_fields;
  DBUG_PRINT("info",("subquery_types_allow_materialization: ok, allowed"));
  DBUG_RETURN(TRUE);
}


/**
  Apply max min optimization of all/any subselect
*/

bool JOIN::transform_max_min_subquery()
{
  DBUG_ENTER("JOIN::transform_max_min_subquery");
  Item_subselect *subselect= unit->item;
  if (!subselect || (subselect->substype() != Item_subselect::ALL_SUBS &&
                     subselect->substype() != Item_subselect::ANY_SUBS))
    DBUG_RETURN(0);
  DBUG_RETURN(((Item_allany_subselect *) subselect)->
              transform_into_max_min(this));
}


/*
  Finalize IN->EXISTS conversion in case we couldn't use materialization.

  DESCRIPTION  Invoke the IN->EXISTS converter
    Replace the Item_in_subselect with its wrapper Item_in_optimizer in WHERE.

  RETURN 
    FALSE - Ok
    TRUE  - Fatal error
*/

bool make_in_exists_conversion(THD *thd, JOIN *join, Item_in_subselect *item)
{
  DBUG_ENTER("make_in_exists_conversion");
  JOIN *child_join= item->unit->first_select()->join;
  bool res;

  /* 
    We're going to finalize IN->EXISTS conversion. 
    Normally, IN->EXISTS conversion takes place inside the 
    Item_subselect::fix_fields() call, where item_subselect->fixed==FALSE (as
    fix_fields() haven't finished yet) and item_subselect->changed==FALSE (as 
    the conversion haven't been finalized)

    At the end of Item_subselect::fix_fields() we had to set fixed=TRUE,
    changed=TRUE (the only other option would have been to return error).

    So, now we have to set these back for the duration of select_transformer()
    call.
  */
  item->changed= 0;
  item->fixed= 0;

  SELECT_LEX *save_select_lex= thd->lex->current_select;
  thd->lex->current_select= item->unit->first_select();

  res= item->select_transformer(child_join);

  thd->lex->current_select= save_select_lex;

  if (res)
    DBUG_RETURN(TRUE);

  item->changed= 1;
  item->fixed= 1;

  Item *substitute= item->substitution;
  bool do_fix_fields= !item->substitution->fixed;
  /*
    The Item_subselect has already been wrapped with Item_in_optimizer, so we
    should search for item->optimizer, not 'item'.
  */
  Item *replace_me= item->optimizer;
  DBUG_ASSERT(replace_me==substitute);

  Item **tree= (item->emb_on_expr_nest == NO_JOIN_NEST)?
                 &join->conds : &(item->emb_on_expr_nest->on_expr);
  if (replace_where_subcondition(join, tree, replace_me, substitute, 
                                 do_fix_fields))
    DBUG_RETURN(TRUE);
  item->substitution= NULL;
   
    /*
      If this is a prepared statement, repeat the above operation for
      prep_where (or prep_on_expr). 
    */
  if (!thd->stmt_arena->is_conventional())
  {
    tree= (item->emb_on_expr_nest == (TABLE_LIST*)NO_JOIN_NEST)?
           &join->select_lex->prep_where : 
           &(item->emb_on_expr_nest->prep_on_expr);

    if (replace_where_subcondition(join, tree, replace_me, substitute, 
                                   FALSE))
      DBUG_RETURN(TRUE);
  }
  DBUG_RETURN(FALSE);
}


bool check_for_outer_joins(List<TABLE_LIST> *join_list)
{
  TABLE_LIST *table;
  NESTED_JOIN *nested_join;
  List_iterator<TABLE_LIST> li(*join_list);
  while ((table= li++))
  {
    if ((nested_join= table->nested_join))
    {
      if (check_for_outer_joins(&nested_join->join_list))
        return TRUE;
    }
    
    if (table->outer_join)
      return TRUE;
  }
  return FALSE;
}


/*
  Convert semi-join subquery predicates into semi-join join nests

  SYNOPSIS
    convert_join_subqueries_to_semijoins()
 
  DESCRIPTION

    Convert candidate subquery predicates into semi-join join nests. This 
    transformation is performed once in query lifetime and is irreversible.
    
    Conversion of one subquery predicate
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    We start with a join that has a semi-join subquery:

      SELECT ...
      FROM ot, ...
      WHERE oe IN (SELECT ie FROM it1 ... itN WHERE subq_where) AND outer_where

    and convert it into a semi-join nest:

      SELECT ...
      FROM ot SEMI JOIN (it1 ... itN), ...
      WHERE outer_where AND subq_where AND oe=ie

    that is, in order to do the conversion, we need to 

     * Create the "SEMI JOIN (it1 .. itN)" part and add it into the parent
       query's FROM structure.
     * Add "AND subq_where AND oe=ie" into parent query's WHERE (or ON if
       the subquery predicate was in an ON expression)
     * Remove the subquery predicate from the parent query's WHERE

    Considerations when converting many predicates
    ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
    A join may have at most MAX_TABLES tables. This may prevent us from
    flattening all subqueries when the total number of tables in parent and
    child selects exceeds MAX_TABLES.
    We deal with this problem by flattening children's subqueries first and
    then using a heuristic rule to determine each subquery predicate's
    "priority".

  RETURN 
    FALSE  OK
    TRUE   Error
*/

bool convert_join_subqueries_to_semijoins(JOIN *join)
{
  Query_arena *arena, backup;
  Item_in_subselect *in_subq;
  THD *thd= join->thd;
  List_iterator<TABLE_LIST> ti(join->select_lex->leaf_tables);
  DBUG_ENTER("convert_join_subqueries_to_semijoins");

  if (join->select_lex->sj_subselects.is_empty())
    DBUG_RETURN(FALSE);

  List_iterator_fast<Item_in_subselect> li(join->select_lex->sj_subselects);

  while ((in_subq= li++))
  {
    SELECT_LEX *subq_sel= in_subq->get_select_lex();
    if (subq_sel->handle_derived(thd->lex, DT_OPTIMIZE))
      DBUG_RETURN(1);
    if (subq_sel->handle_derived(thd->lex, DT_MERGE))
      DBUG_RETURN(TRUE);
    subq_sel->update_used_tables();
  }

  li.rewind();
  /* First, convert child join's subqueries. We proceed bottom-up here */
  while ((in_subq= li++)) 
  {
    st_select_lex *child_select= in_subq->get_select_lex();
    JOIN *child_join= child_select->join;
    child_join->outer_tables = child_join->table_count;

    /*
      child_select->where contains only the WHERE predicate of the
      subquery itself here. We may be selecting from a VIEW, which has its
      own predicate. The combined predicates are available in child_join->conds,
      which was built by setup_conds() doing prepare_where() for all views.
    */
    child_select->where= child_join->conds;

    if (convert_join_subqueries_to_semijoins(child_join))
      DBUG_RETURN(TRUE);
    in_subq->sj_convert_priority= 
      test(in_subq->emb_on_expr_nest != NO_JOIN_NEST) * MAX_TABLES * 2 +
      in_subq->is_correlated * MAX_TABLES + child_join->outer_tables;
  }
  
  // Temporary measure: disable semi-joins when they are together with outer
  // joins.
#if 0  
  if (check_for_outer_joins(join->join_list))
  {
    in_subq= join->select_lex->sj_subselects.head();
    arena= thd->activate_stmt_arena_if_needed(&backup);
    goto skip_conversion;
  }
#endif
  //dump_TABLE_LIST_struct(select_lex, select_lex->leaf_tables);
  /* 
    2. Pick which subqueries to convert:
      sort the subquery array
      - prefer correlated subqueries over uncorrelated;
      - prefer subqueries that have greater number of outer tables;
  */
  bubble_sort<Item_in_subselect>(&join->select_lex->sj_subselects,
				 subq_sj_candidate_cmp, NULL);
  // #tables-in-parent-query + #tables-in-subquery < MAX_TABLES
  /* Replace all subqueries to be flattened with Item_int(1) */
  arena= thd->activate_stmt_arena_if_needed(&backup);
 
  li.rewind();
  while ((in_subq= li++))
  {
    bool remove_item= TRUE;

    /* Stop processing if we've reached a subquery that's attached to the ON clause */
    if (in_subq->emb_on_expr_nest != NO_JOIN_NEST)
      break;

    if (in_subq->is_flattenable_semijoin) 
    {
      if (join->table_count + 
          in_subq->unit->first_select()->join->table_count >= MAX_TABLES)
        break;
      if (convert_subq_to_sj(join, in_subq))
        goto restore_arena_and_fail;
    }
    else
    {
      if (join->table_count + 1 >= MAX_TABLES)
        break;
      if (convert_subq_to_jtbm(join, in_subq, &remove_item))
        goto restore_arena_and_fail;
    }
    if (remove_item)
    {
      Item **tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
                     &join->conds : &(in_subq->emb_on_expr_nest->on_expr);
      Item *replace_me= in_subq->original_item();
      if (replace_where_subcondition(join, tree, replace_me, new Item_int(1),
                                     FALSE))
        goto restore_arena_and_fail;
    }
  }
//skip_conversion:
  /* 
    3. Finalize (perform IN->EXISTS rewrite) the subqueries that we didn't
    convert:
  */
  while (in_subq)
  {
    JOIN *child_join= in_subq->unit->first_select()->join;
    in_subq->changed= 0;
    in_subq->fixed= 0;

    SELECT_LEX *save_select_lex= thd->lex->current_select;
    thd->lex->current_select= in_subq->unit->first_select();

    bool res= in_subq->select_transformer(child_join);

    thd->lex->current_select= save_select_lex;

    if (res)
      DBUG_RETURN(TRUE);

    in_subq->changed= 1;
    in_subq->fixed= 1;

    Item *substitute= in_subq->substitution;
    bool do_fix_fields= !in_subq->substitution->fixed;
    Item **tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
                   &join->conds : &(in_subq->emb_on_expr_nest->on_expr);
    Item *replace_me= in_subq->original_item();
    if (replace_where_subcondition(join, tree, replace_me, substitute, 
                                   do_fix_fields))
      DBUG_RETURN(TRUE);
    in_subq->substitution= NULL;
    /*
      If this is a prepared statement, repeat the above operation for
      prep_where (or prep_on_expr). Subquery-to-semijoin conversion is 
      done once for prepared statement.
    */
    if (!thd->stmt_arena->is_conventional())
    {
      tree= (in_subq->emb_on_expr_nest == NO_JOIN_NEST)?
             &join->select_lex->prep_where : 
             &(in_subq->emb_on_expr_nest->prep_on_expr);
      /* 
        prep_on_expr/ prep_where may be NULL in some cases. 
        If that is the case, do nothing - simplify_joins() will copy 
        ON/WHERE expression into prep_on_expr/prep_where.
      */
      if (*tree && replace_where_subcondition(join, tree, replace_me, substitute, 
                                     FALSE))
        DBUG_RETURN(TRUE);
    }
    /*
      Revert to the IN->EXISTS strategy in the rare case when the subquery could
      not be flattened.
    */
    in_subq->reset_strategy(SUBS_IN_TO_EXISTS);
    if (is_materialization_applicable(thd, in_subq, 
                                      in_subq->unit->first_select()))
    {
      in_subq->add_strategy(SUBS_MATERIALIZATION);
    }

    in_subq= li++;
  }

  if (arena)
    thd->restore_active_arena(arena, &backup);
  join->select_lex->sj_subselects.empty();
  DBUG_RETURN(FALSE);

restore_arena_and_fail:
  if (arena)
    thd->restore_active_arena(arena, &backup);
  DBUG_RETURN(TRUE);
}


/*
  Get #output_rows and scan_time estimates for a "delayed" table.

  SYNOPSIS
    get_delayed_table_estimates()
      table         IN    Table to get estimates for
      out_rows      OUT   E(#rows in the table)
      scan_time     OUT   E(scan_time).
      startup_cost  OUT   cost to populate the table.

  DESCRIPTION
    Get #output_rows and scan_time estimates for a "delayed" table. By
    "delayed" here we mean that the table is filled at the start of query
    execution. This means that the optimizer can't use table statistics to 
    get #rows estimate for it, it has to call this function instead.

    This function is expected to make different actions depending on the nature
    of the table. At the moment there is only one kind of delayed tables,
    non-flattenable semi-joins.
*/

void get_delayed_table_estimates(TABLE *table,
                                 ha_rows *out_rows, 
                                 double *scan_time,
                                 double *startup_cost)
{
  Item_in_subselect *item= table->pos_in_table_list->jtbm_subselect;

  DBUG_ASSERT(item->engine->engine_type() ==
              subselect_engine::HASH_SJ_ENGINE);

  subselect_hash_sj_engine *hash_sj_engine=
    ((subselect_hash_sj_engine*)item->engine);

  *out_rows= (ha_rows)item->jtbm_record_count;
  *startup_cost= item->jtbm_read_time;

  /* Calculate cost of scanning the temptable */
  double data_size= item->jtbm_record_count * 
                    hash_sj_engine->tmp_table->s->reclength;
  /* Do like in handler::read_time */
  *scan_time= data_size/IO_SIZE + 2;
} 


/**
   @brief Replaces an expression destructively inside the expression tree of
   the WHERE clase.

   @note Because of current requirements for semijoin flattening, we do not
   need to recurse here, hence this function will only examine the top-level
   AND conditions. (see JOIN::prepare, comment starting with "Check if the 
   subquery predicate can be executed via materialization".
   
   @param join The top-level query.
   @param old_cond The expression to be replaced.
   @param new_cond The expression to be substituted.
   @param do_fix_fields If true, Item::fix_fields(THD*, Item**) is called for
   the new expression.
   @return <code>true</code> if there was an error, <code>false</code> if
   successful.
*/

static bool replace_where_subcondition(JOIN *join, Item **expr, 
                                       Item *old_cond, Item *new_cond,
                                       bool do_fix_fields)
{
  if (*expr == old_cond)
  {
    *expr= new_cond;
    if (do_fix_fields)
      new_cond->fix_fields(join->thd, expr);
    return FALSE;
  }
  
  if ((*expr)->type() == Item::COND_ITEM) 
  {
    List_iterator<Item> li(*((Item_cond*)(*expr))->argument_list());
    Item *item;
    while ((item= li++))
    {
      if (item == old_cond) 
      {
        li.replace(new_cond);
        if (do_fix_fields)
          new_cond->fix_fields(join->thd, li.ref());
        return FALSE;
      }
    }
  }
  /* 
    We can come to here when 
     - we're doing replace operations on both on_expr and prep_on_expr
     - on_expr is the same as prep_on_expr, or they share a sub-tree 
       (so, when we do replace in on_expr, we replace in prep_on_expr, too,
        and when we try doing a replace in prep_on_expr, the item we wanted 
        to replace there has already been replaced)
  */
  return FALSE;
}

static int subq_sj_candidate_cmp(Item_in_subselect* el1, Item_in_subselect* el2,
                                 void *arg)
{
  return (el1->sj_convert_priority > el2->sj_convert_priority) ? 1 : 
         ( (el1->sj_convert_priority == el2->sj_convert_priority)? 0 : -1);
}


/*
  Convert a subquery predicate into a TABLE_LIST semi-join nest

  SYNOPSIS
    convert_subq_to_sj()
       parent_join  Parent join, the one that has subq_pred in its WHERE/ON 
                    clause
       subq_pred    Subquery predicate to be converted
  
  DESCRIPTION
    Convert a subquery predicate into a TABLE_LIST semi-join nest. All the 
    prerequisites are already checked, so the conversion is always successfull.

    Prepared Statements: the transformation is permanent:
     - Changes in TABLE_LIST structures are naturally permanent
     - Item tree changes are performed on statement MEM_ROOT:
        = we activate statement MEM_ROOT 
        = this function is called before the first fix_prepare_information
          call.

    This is intended because the criteria for subquery-to-sj conversion remain
    constant for the lifetime of the Prepared Statement.

  RETURN
    FALSE  OK
    TRUE   Out of memory error
*/

static bool convert_subq_to_sj(JOIN *parent_join, Item_in_subselect *subq_pred)
{
  SELECT_LEX *parent_lex= parent_join->select_lex;
  TABLE_LIST *emb_tbl_nest= NULL;
  List<TABLE_LIST> *emb_join_list= &parent_lex->top_join_list;
  THD *thd= parent_join->thd;
  DBUG_ENTER("convert_subq_to_sj");

  /*
    1. Find out where to put the predicate into.
     Note: for "t1 LEFT JOIN t2" this will be t2, a leaf.
  */
  if ((void*)subq_pred->emb_on_expr_nest != (void*)NO_JOIN_NEST)
  {
    if (subq_pred->emb_on_expr_nest->nested_join)
    {
      /*
        We're dealing with

          ... [LEFT] JOIN  ( ... ) ON (subquery AND whatever) ...

        The sj-nest will be inserted into the brackets nest.
      */
      emb_tbl_nest=  subq_pred->emb_on_expr_nest;
      emb_join_list= &emb_tbl_nest->nested_join->join_list;
    }
    else if (!subq_pred->emb_on_expr_nest->outer_join)
    {
      /*
        We're dealing with

          ... INNER JOIN tblX ON (subquery AND whatever) ...

        The sj-nest will be tblX's "sibling", i.e. another child of its
        parent. This is ok because tblX is joined as an inner join.
      */
      emb_tbl_nest= subq_pred->emb_on_expr_nest->embedding;
      if (emb_tbl_nest)
        emb_join_list= &emb_tbl_nest->nested_join->join_list;
    }
    else if (!subq_pred->emb_on_expr_nest->nested_join)
    {
      TABLE_LIST *outer_tbl= subq_pred->emb_on_expr_nest;
      TABLE_LIST *wrap_nest;
      /*
        We're dealing with

          ... LEFT JOIN tbl ON (on_expr AND subq_pred) ...

        we'll need to convert it into:

          ... LEFT JOIN ( tbl SJ (subq_tables) ) ON (on_expr AND subq_pred) ...
                        |                      |
                        |<----- wrap_nest ---->|
        
        Q:  other subqueries may be pointing to this element. What to do?
        A1: simple solution: copy *subq_pred->expr_join_nest= *parent_nest.
            But we'll need to fix other pointers.
        A2: Another way: have TABLE_LIST::next_ptr so the following
            subqueries know the table has been nested.
        A3: changes in the TABLE_LIST::outer_join will make everything work
            automatically.
      */
      if (!(wrap_nest= alloc_join_nest(parent_join->thd)))
      {
        DBUG_RETURN(TRUE);
      }
      wrap_nest->embedding= outer_tbl->embedding;
      wrap_nest->join_list= outer_tbl->join_list;
      wrap_nest->alias= (char*) "(sj-wrap)";

      wrap_nest->nested_join->join_list.empty();
      wrap_nest->nested_join->join_list.push_back(outer_tbl);

      outer_tbl->embedding= wrap_nest;
      outer_tbl->join_list= &wrap_nest->nested_join->join_list;

      /*
        wrap_nest will take place of outer_tbl, so move the outer join flag
        and on_expr
      */
      wrap_nest->outer_join= outer_tbl->outer_join;
      outer_tbl->outer_join= 0;

      wrap_nest->on_expr= outer_tbl->on_expr;
      outer_tbl->on_expr= NULL;

      List_iterator<TABLE_LIST> li(*wrap_nest->join_list);
      TABLE_LIST *tbl;
      while ((tbl= li++))
      {
        if (tbl == outer_tbl)
        {
          li.replace(wrap_nest);
          break;
        }
      }
      /*
        Ok now wrap_nest 'contains' outer_tbl and we're ready to add the 
        semi-join nest into it
      */
      emb_join_list= &wrap_nest->nested_join->join_list;
      emb_tbl_nest=  wrap_nest;
    }
  }

  TABLE_LIST *sj_nest;
  NESTED_JOIN *nested_join;
  if (!(sj_nest= alloc_join_nest(parent_join->thd)))
  {
    DBUG_RETURN(TRUE);
  }
  nested_join= sj_nest->nested_join;

  sj_nest->join_list= emb_join_list;
  sj_nest->embedding= emb_tbl_nest;
  sj_nest->alias= (char*) "(sj-nest)";
  sj_nest->sj_subq_pred= subq_pred;
  /* Nests do not participate in those 'chains', so: */
  /* sj_nest->next_leaf= sj_nest->next_local= sj_nest->next_global == NULL*/
  emb_join_list->push_back(sj_nest);

  /* 
    nested_join->used_tables and nested_join->not_null_tables are
    initialized in simplify_joins().
  */
  
  /* 
    2. Walk through subquery's top list and set 'embedding' to point to the
       sj-nest.
  */
  st_select_lex *subq_lex= subq_pred->unit->first_select();
  nested_join->join_list.empty();
  List_iterator_fast<TABLE_LIST> li(subq_lex->top_join_list);
  TABLE_LIST *tl;
  while ((tl= li++))
  {
    tl->embedding= sj_nest;
    tl->join_list= &nested_join->join_list;
    nested_join->join_list.push_back(tl);
  }
  
  /*
    Reconnect the next_leaf chain.
    TODO: Do we have to put subquery's tables at the end of the chain?
          Inserting them at the beginning would be a bit faster.
    NOTE: We actually insert them at the front! That's because the order is
          reversed in this list.
  */
  parent_lex->leaf_tables.concat(&subq_lex->leaf_tables);

  /*
    Same as above for next_local chain
    (a theory: a next_local chain always starts with ::leaf_tables
     because view's tables are inserted after the view)
  */
  for (tl= parent_lex->leaf_tables.head(); tl->next_local; tl= tl->next_local) ;
  tl->next_local= subq_lex->leaf_tables.head();

  /* A theory: no need to re-connect the next_global chain */

  /* 3. Remove the original subquery predicate from the WHERE/ON */

  // The subqueries were replaced for Item_int(1) earlier
  subq_pred->reset_strategy(SUBS_SEMI_JOIN);       // for subsequent executions
  /*TODO: also reset the 'with_subselect' there. */

  /* n. Adjust the parent_join->table_count counter */
  uint table_no= parent_join->table_count;
  /* n. Walk through child's tables and adjust table->map */
  List_iterator_fast<TABLE_LIST> si(subq_lex->leaf_tables);
  while ((tl= si++))
  {
    tl->table->tablenr= table_no;
    tl->table->map= ((table_map)1) << table_no;
    if (tl->is_jtbm())
      tl->jtbm_table_no= tl->table->tablenr;
    SELECT_LEX *old_sl= tl->select_lex;
    tl->select_lex= parent_join->select_lex; 
    for (TABLE_LIST *emb= tl->embedding;
         emb && emb->select_lex == old_sl;
         emb= emb->embedding)
      emb->select_lex= parent_join->select_lex;
    table_no++;
  }
  parent_join->table_count += subq_lex->join->table_count;
  //parent_join->table_count += subq_lex->leaf_tables.elements;

  /* 
    Put the subquery's WHERE into semi-join's sj_on_expr
    Add the subquery-induced equalities too.
  */
  SELECT_LEX *save_lex= thd->lex->current_select;
  thd->lex->current_select=subq_lex;
  if (!subq_pred->left_expr->fixed &&
       subq_pred->left_expr->fix_fields(thd, &subq_pred->left_expr))
    DBUG_RETURN(TRUE);
  thd->lex->current_select=save_lex;

  sj_nest->nested_join->sj_corr_tables= subq_pred->used_tables();
  sj_nest->nested_join->sj_depends_on=  subq_pred->used_tables() |
                                        subq_pred->left_expr->used_tables();
  sj_nest->sj_on_expr= subq_lex->join->conds;

  /*
    Create the IN-equalities and inject them into semi-join's ON expression.
    Additionally, for LooseScan strategy
     - Record the number of IN-equalities.
     - Create list of pointers to (oe1, ..., ieN). We'll need the list to
       see which of the expressions are bound and which are not (for those
       we'll produce a distinct stream of (ie_i1,...ie_ik).

       (TODO: can we just create a list of pointers and hope the expressions
       will not substitute themselves on fix_fields()? or we need to wrap
       them into Item_direct_view_refs and store pointers to those. The
       pointers to Item_direct_view_refs are guaranteed to be stable as 
       Item_direct_view_refs doesn't substitute itself with anything in 
       Item_direct_view_ref::fix_fields.
  */
  sj_nest->sj_in_exprs= subq_pred->left_expr->cols();
  sj_nest->nested_join->sj_outer_expr_list.empty();

  if (subq_pred->left_expr->cols() == 1)
  {
    nested_join->sj_outer_expr_list.push_back(subq_pred->left_expr);
    Item_func_eq *item_eq=
      new Item_func_eq(subq_pred->left_expr, subq_lex->ref_pointer_array[0]);
    item_eq->in_equality_no= 0;
    sj_nest->sj_on_expr= and_items(sj_nest->sj_on_expr, item_eq);
  }
  else
  {
    for (uint i= 0; i < subq_pred->left_expr->cols(); i++)
    {
      nested_join->sj_outer_expr_list.push_back(subq_pred->left_expr->
                                                element_index(i));
      Item_func_eq *item_eq= 
        new Item_func_eq(subq_pred->left_expr->element_index(i), 
                         subq_lex->ref_pointer_array[i]);
      item_eq->in_equality_no= i;
      sj_nest->sj_on_expr= and_items(sj_nest->sj_on_expr, item_eq);
    }
  }
  /* Fix the created equality and AND */
  if (!sj_nest->sj_on_expr->fixed)
    sj_nest->sj_on_expr->fix_fields(parent_join->thd, &sj_nest->sj_on_expr);

  /*
    Walk through sj nest's WHERE and ON expressions and call
    item->fix_table_changes() for all items.
  */
  sj_nest->sj_on_expr->fix_after_pullout(parent_lex, &sj_nest->sj_on_expr);
  fix_list_after_tbl_changes(parent_lex, &sj_nest->nested_join->join_list);


  /* Unlink the child select_lex so it doesn't show up in EXPLAIN: */
  subq_lex->master_unit()->exclude_level();

  DBUG_EXECUTE("where",
               print_where(sj_nest->sj_on_expr,"SJ-EXPR", QT_ORDINARY););

  /* Inject sj_on_expr into the parent's WHERE or ON */
  if (emb_tbl_nest)
  {
    emb_tbl_nest->on_expr= and_items(emb_tbl_nest->on_expr, 
                                     sj_nest->sj_on_expr);
    emb_tbl_nest->on_expr->top_level_item();
    if (!emb_tbl_nest->on_expr->fixed)
      emb_tbl_nest->on_expr->fix_fields(parent_join->thd,
                                        &emb_tbl_nest->on_expr);
  }
  else
  {
    /* Inject into the WHERE */
    parent_join->conds= and_items(parent_join->conds, sj_nest->sj_on_expr);
    parent_join->conds->top_level_item();
    /*
      fix_fields must update the properties (e.g. st_select_lex::cond_count of
      the correct select_lex.
    */
    save_lex= thd->lex->current_select;
    thd->lex->current_select=parent_join->select_lex;
    if (!parent_join->conds->fixed)
      parent_join->conds->fix_fields(parent_join->thd, &parent_join->conds);
    thd->lex->current_select=save_lex;
    parent_join->select_lex->where= parent_join->conds;
  }

  if (subq_lex->ftfunc_list->elements)
  {
    Item_func_match *ifm;
    List_iterator_fast<Item_func_match> li(*(subq_lex->ftfunc_list));
    while ((ifm= li++))
      parent_lex->ftfunc_list->push_front(ifm);
  }

  DBUG_RETURN(FALSE);
}


const int SUBQERY_TEMPTABLE_NAME_MAX_LEN= 20;

static void create_subquery_temptable_name(char *to, uint number)
{
  DBUG_ASSERT(number < 10000);       
  to= strmov(to, "<subquery");
  to= int10_to_str((int) number, to, 10);
  to[0]= '>';
  to[1]= 0;
}


/*
  Convert subquery predicate into non-mergeable semi-join nest.

  TODO: 
    why does this do IN-EXISTS conversion? Can't we unify it with mergeable
    semi-joins? currently, convert_subq_to_sj() cannot fail to convert (unless
    fatal errors)

    
  RETURN 
    FALSE - Ok
    TRUE  - Fatal error
*/

static bool convert_subq_to_jtbm(JOIN *parent_join, 
                                 Item_in_subselect *subq_pred, 
                                 bool *remove_item)
{
  SELECT_LEX *parent_lex= parent_join->select_lex;
  List<TABLE_LIST> *emb_join_list= &parent_lex->top_join_list;
  TABLE_LIST *emb_tbl_nest= NULL; // will change when we learn to handle outer joins
  TABLE_LIST *tl;
  double rows;
  double read_time;
  DBUG_ENTER("convert_subq_to_jtbm");

  subq_pred->set_strategy(SUBS_MATERIALIZATION);
  if (subq_pred->optimize(&rows, &read_time))
    DBUG_RETURN(TRUE);

  subq_pred->jtbm_read_time= read_time;
  subq_pred->jtbm_record_count=rows;
  subq_pred->is_jtbm_merged= TRUE;

  if (subq_pred->engine->engine_type() != subselect_engine::HASH_SJ_ENGINE)
  {
    *remove_item= FALSE;
    DBUG_RETURN(FALSE);
  }


  *remove_item= TRUE;

  TABLE_LIST *jtbm;
  char *tbl_alias;
  if (!(tbl_alias= (char*)parent_join->thd->calloc(SUBQERY_TEMPTABLE_NAME_MAX_LEN)) ||
      !(jtbm= alloc_join_nest(parent_join->thd))) //todo: this is not a join nest!
  {
    DBUG_RETURN(TRUE);
  }

  jtbm->join_list= emb_join_list;
  jtbm->embedding= emb_tbl_nest;
  jtbm->jtbm_subselect= subq_pred;
  jtbm->nested_join= NULL;

  /* Nests do not participate in those 'chains', so: */
  /* jtbm->next_leaf= jtbm->next_local= jtbm->next_global == NULL*/
  emb_join_list->push_back(jtbm);
  
  /* 
    Inject the jtbm table into TABLE_LIST::next_leaf list, so that 
    make_join_statistics() and co. can find it.
  */
  parent_lex->leaf_tables.push_back(jtbm);

  /*
    Same as above for TABLE_LIST::next_local chain
    (a theory: a next_local chain always starts with ::leaf_tables
     because view's tables are inserted after the view)
  */
  for (tl= parent_lex->leaf_tables.head(); tl->next_local; tl= tl->next_local)
  {}
  tl->next_local= jtbm;

  /* A theory: no need to re-connect the next_global chain */

  subselect_hash_sj_engine *hash_sj_engine=
    ((subselect_hash_sj_engine*)subq_pred->engine);
  jtbm->table= hash_sj_engine->tmp_table;

  jtbm->table->tablenr= parent_join->table_count;
  jtbm->table->map= table_map(1) << (parent_join->table_count);
  jtbm->jtbm_table_no= jtbm->table->tablenr;

  parent_join->table_count++;
  DBUG_ASSERT(parent_join->table_count < MAX_TABLES);

  Item *conds= hash_sj_engine->semi_join_conds;
  conds->fix_after_pullout(parent_lex, &conds);

  DBUG_EXECUTE("where", print_where(conds,"SJ-EXPR", QT_ORDINARY););
  
  create_subquery_temptable_name(tbl_alias, hash_sj_engine->materialize_join->
                                              select_lex->select_number);
  jtbm->alias= tbl_alias;
#if 0
  /* Inject sj_on_expr into the parent's WHERE or ON */
  if (emb_tbl_nest)
  {
    DBUG_ASSERT(0);
    /*emb_tbl_nest->on_expr= and_items(emb_tbl_nest->on_expr, 
                                     sj_nest->sj_on_expr);
    emb_tbl_nest->on_expr->fix_fields(parent_join->thd, &emb_tbl_nest->on_expr);
    */
  }
  else
  {
    /* Inject into the WHERE */
    parent_join->conds= and_items(parent_join->conds, conds);
    parent_join->conds->fix_fields(parent_join->thd, &parent_join->conds);
    parent_join->select_lex->where= parent_join->conds;
  }
#endif
  /* Don't unlink the child subselect, as the subquery will be used. */

  DBUG_RETURN(FALSE);
}


static TABLE_LIST *alloc_join_nest(THD *thd)
{
  TABLE_LIST *tbl;
  if (!(tbl= (TABLE_LIST*) thd->calloc(ALIGN_SIZE(sizeof(TABLE_LIST))+
                                       sizeof(NESTED_JOIN))))
    return NULL;
  tbl->nested_join= (NESTED_JOIN*) ((uchar*)tbl + 
                                    ALIGN_SIZE(sizeof(TABLE_LIST)));
  return tbl;
}


void fix_list_after_tbl_changes(SELECT_LEX *new_parent, List<TABLE_LIST> *tlist)
{
  List_iterator<TABLE_LIST> it(*tlist);
  TABLE_LIST *table;
  while ((table= it++))
  {
    if (table->on_expr)
      table->on_expr->fix_after_pullout(new_parent, &table->on_expr);
    if (table->nested_join)
      fix_list_after_tbl_changes(new_parent, &table->nested_join->join_list);
  }
}


static void set_emb_join_nest(List<TABLE_LIST> *tables, TABLE_LIST *emb_sj_nest)
{
  List_iterator<TABLE_LIST> it(*tables);
  TABLE_LIST *tbl;
  while ((tbl= it++))
  {
    /*
      Note: check for nested_join first. 
       derived-merged tables have tbl->table!=NULL &&
       tbl->table->reginfo==NULL.
    */
    if (tbl->nested_join)
      set_emb_join_nest(&tbl->nested_join->join_list, emb_sj_nest);
    else if (tbl->table)
      tbl->table->reginfo.join_tab->emb_sj_nest= emb_sj_nest;

  }
}

/*
  Pull tables out of semi-join nests, if possible

  SYNOPSIS
    pull_out_semijoin_tables()
      join  The join where to do the semi-join flattening

  DESCRIPTION
    Try to pull tables out of semi-join nests.
     
    PRECONDITIONS
    When this function is called, the join may have several semi-join nests
    but it is guaranteed that one semi-join nest does not contain another.
   
    ACTION
    A table can be pulled out of the semi-join nest if
     - It is a constant table, or
     - It is accessed via eq_ref(outer_tables)

    POSTCONDITIONS
     * Tables that were pulled out have JOIN_TAB::emb_sj_nest == NULL
     * Tables that were not pulled out have JOIN_TAB::emb_sj_nest pointing 
       to semi-join nest they are in.
     * Semi-join nests' TABLE_LIST::sj_inner_tables is updated accordingly

    This operation is (and should be) performed at each PS execution since
    tables may become/cease to be constant across PS reexecutions.
    
  NOTE
    Table pullout may make uncorrelated subquery correlated. Consider this
    example:
    
     ... WHERE oe IN (SELECT it1.primary_key WHERE p(it1, it2) ... ) 
    
    here table it1 can be pulled out (we have it1.primary_key=oe which gives
    us functional dependency). Once it1 is pulled out, all references to it1
    from p(it1, it2) become references to outside of the subquery and thus
    make the subquery (i.e. its semi-join nest) correlated.
    Making the subquery (i.e. its semi-join nest) correlated prevents us from
    using Materialization or LooseScan to execute it. 

  RETURN 
    0 - OK
    1 - Out of memory error
*/

int pull_out_semijoin_tables(JOIN *join)
{
  TABLE_LIST *sj_nest;
  DBUG_ENTER("pull_out_semijoin_tables");
  List_iterator<TABLE_LIST> sj_list_it(join->select_lex->sj_nests);
   
  /* Try pulling out of the each of the semi-joins */
  while ((sj_nest= sj_list_it++))
  {
    List_iterator<TABLE_LIST> child_li(sj_nest->nested_join->join_list);
    TABLE_LIST *tbl;

    /*
      Don't do table pull-out for nested joins (if we get nested joins here, it
      means these are outer joins. It is theoretically possible to do pull-out
      for some of the outer tables but we dont support this currently.
    */
    bool have_join_nest_children= FALSE;

    set_emb_join_nest(&sj_nest->nested_join->join_list, sj_nest);

    while ((tbl= child_li++))
    {
      if (tbl->nested_join)
      {
        have_join_nest_children= TRUE;
        break;
      }
    }
    
    
    table_map pulled_tables= 0;
    if (have_join_nest_children)
      goto skip;

    /* Action #1: Mark the constant tables to be pulled out */
    child_li.rewind();
    while ((tbl= child_li++))
    {
      if (tbl->table)
      {
        tbl->table->reginfo.join_tab->emb_sj_nest= sj_nest;
#if 0 
        /* 
          Do not pull out tables because they are constant. This operation has
          a problem:
          - Some constant tables may become/cease to be constant across PS
            re-executions
          - Contrary to our initial assumption, it turned out that table pullout 
            operation is not easily undoable.

          The solution is to leave constant tables where they are. This will
          affect only constant tables that are 1-row or empty, tables that are
          constant because they are accessed via eq_ref(const) access will
          still be pulled out as functionally-dependent.

          This will cause us to miss the chance to flatten some of the 
          subqueries, but since const tables do not generate many duplicates,
          it really doesn't matter that much whether they were pulled out or
          not.

          All of this was done as fix for BUG#43768.
        */
        if (tbl->table->map & join->const_table_map)
        {
          pulled_tables |= tbl->table->map;
          DBUG_PRINT("info", ("Table %s pulled out (reason: constant)",
                              tbl->table->alias));
        }
#endif
      }
    }
    
    /*
      Action #2: Find which tables we can pull out based on
      update_ref_and_keys() data. Note that pulling one table out can allow
      us to pull out some other tables too.
    */
    bool pulled_a_table;
    do 
    {
      pulled_a_table= FALSE;
      child_li.rewind();
      while ((tbl= child_li++))
      {
        if (tbl->table && !(pulled_tables & tbl->table->map))
        {
          if (find_eq_ref_candidate(tbl->table, 
                                    sj_nest->nested_join->used_tables & 
                                    ~pulled_tables))
          {
            pulled_a_table= TRUE;
            pulled_tables |= tbl->table->map;
            DBUG_PRINT("info", ("Table %s pulled out (reason: func dep)",
                                tbl->table->alias.c_ptr()));
            /*
              Pulling a table out of uncorrelated subquery in general makes
              makes it correlated. See the NOTE to this funtion. 
            */
            sj_nest->sj_subq_pred->is_correlated= TRUE;
            sj_nest->nested_join->sj_corr_tables|= tbl->table->map;
            sj_nest->nested_join->sj_depends_on|= tbl->table->map;
          }
        }
      }
    } while (pulled_a_table);
 
    child_li.rewind();
  skip:
    /*
      Action #3: Move the pulled out TABLE_LIST elements to the parents.
    */
    table_map inner_tables= sj_nest->nested_join->used_tables & 
                            ~pulled_tables;
    /* Record the bitmap of inner tables */
    sj_nest->sj_inner_tables= inner_tables;
    if (pulled_tables)
    {
      List<TABLE_LIST> *upper_join_list= (sj_nest->embedding != NULL)?
                                           (&sj_nest->embedding->nested_join->join_list): 
                                           (&join->select_lex->top_join_list);
      Query_arena *arena, backup;
      arena= join->thd->activate_stmt_arena_if_needed(&backup);
      while ((tbl= child_li++))
      {
        if (tbl->table)
        {
          if (inner_tables & tbl->table->map)
          {
            /* This table is not pulled out */
            tbl->table->reginfo.join_tab->emb_sj_nest= sj_nest;
          }
          else
          {
            /* This table has been pulled out of the semi-join nest */
            tbl->table->reginfo.join_tab->emb_sj_nest= NULL;
            /*
              Pull the table up in the same way as simplify_joins() does:
              update join_list and embedding pointers but keep next[_local]
              pointers.
            */
            child_li.remove();
            sj_nest->nested_join->used_tables &= ~tbl->table->map;
            upper_join_list->push_back(tbl);
            tbl->join_list= upper_join_list;
            tbl->embedding= sj_nest->embedding;
          }
        }
      }

      /* Remove the sj-nest itself if we've removed everything from it */
      if (!inner_tables)
      {
        List_iterator<TABLE_LIST> li(*upper_join_list);
        /* Find the sj_nest in the list. */
        while (sj_nest != li++) ;
        li.remove();
        /* Also remove it from the list of SJ-nests: */
        sj_list_it.remove();
      }

      if (arena)
        join->thd->restore_active_arena(arena, &backup);
    }
  }
  DBUG_RETURN(0);
}


/* 
  Optimize semi-join nests that could be run with sj-materialization

  SYNOPSIS
    optimize_semijoin_nests()
      join           The join to optimize semi-join nests for
      all_table_map  Bitmap of all tables in the join

  DESCRIPTION
    Optimize each of the semi-join nests that can be run with
    materialization. For each of the nests, we
     - Generate the best join order for this "sub-join" and remember it;
     - Remember the sub-join execution cost (it's part of materialization
       cost);
     - Calculate other costs that will be incurred if we decide 
       to use materialization strategy for this semi-join nest.

    All obtained information is saved and will be used by the main join
    optimization pass.
  
  NOTES 
    Because of Join::reoptimize(), this function may be called multiple times.

  RETURN
    FALSE  Ok 
    TRUE   Out of memory error
*/

bool optimize_semijoin_nests(JOIN *join, table_map all_table_map)
{
  DBUG_ENTER("optimize_semijoin_nests");
  List_iterator<TABLE_LIST> sj_list_it(join->select_lex->sj_nests);
  TABLE_LIST *sj_nest;
  while ((sj_nest= sj_list_it++))
  {
    /* semi-join nests with only constant tables are not valid */
   /// DBUG_ASSERT(sj_nest->sj_inner_tables & ~join->const_table_map);

    sj_nest->sj_mat_info= NULL;
    /*
      The statement may have been executed with 'semijoin=on' earlier.
      We need to verify that 'semijoin=on' still holds.
     */
    if (optimizer_flag(join->thd, OPTIMIZER_SWITCH_SEMIJOIN) &&
        optimizer_flag(join->thd, OPTIMIZER_SWITCH_MATERIALIZATION))
    {
      if ((sj_nest->sj_inner_tables  & ~join->const_table_map) && /* not everything was pulled out */
          !sj_nest->sj_subq_pred->is_correlated && 
           sj_nest->sj_subq_pred->types_allow_materialization)
      {
        join->emb_sjm_nest= sj_nest;
        if (choose_plan(join, all_table_map &~join->const_table_map))
          DBUG_RETURN(TRUE); /* purecov: inspected */
        /*
          The best plan to run the subquery is now in join->best_positions,
          save it.
        */
        uint n_tables= my_count_bits(sj_nest->sj_inner_tables & ~join->const_table_map);
        SJ_MATERIALIZATION_INFO* sjm;
        if (!(sjm= new SJ_MATERIALIZATION_INFO) ||
            !(sjm->positions= (POSITION*)join->thd->alloc(sizeof(POSITION)*
                                                          n_tables)))
          DBUG_RETURN(TRUE); /* purecov: inspected */
        sjm->tables= n_tables;
        sjm->is_used= FALSE;
        double subjoin_out_rows, subjoin_read_time;

        /*
        join->get_partial_cost_and_fanout(n_tables + join->const_tables,
                                          table_map(-1),
                                          &subjoin_read_time, 
                                          &subjoin_out_rows);
        */
        join->get_prefix_cost_and_fanout(n_tables, 
                                         &subjoin_read_time,
                                         &subjoin_out_rows);

        sjm->materialization_cost.convert_from_cost(subjoin_read_time);
        sjm->rows= subjoin_out_rows;
        
        // Don't use the following list because it has "stale" items. use
        // ref_pointer_array instead:
        //
        //List<Item> &right_expr_list= 
        //  sj_nest->sj_subq_pred->unit->first_select()->item_list;
        /*
          Adjust output cardinality estimates. If the subquery has form

           ... oe IN (SELECT t1.colX, t2.colY, func(X,Y,Z) )

           then the number of distinct output record combinations has an
           upper bound of product of number of records matching the tables 
           that are used by the SELECT clause.
           TODO:
             We can get a more precise estimate if we
              - use rec_per_key cardinality estimates. For simple cases like 
                "oe IN (SELECT t.key ...)" it is trivial. 
              - Functional dependencies between the tables in the semi-join
                nest (the payoff is probably less here?)
          
          See also get_post_group_estimate().
        */
        SELECT_LEX *subq_select= sj_nest->sj_subq_pred->unit->first_select();
        {
          for (uint i=0 ; i < join->const_tables + sjm->tables ; i++)
          {
            JOIN_TAB *tab= join->best_positions[i].table;
            join->map2table[tab->table->tablenr]= tab;
          }
          //List_iterator<Item> it(right_expr_list);
          Item **ref_array= subq_select->ref_pointer_array;
          Item **ref_array_end= ref_array + subq_select->item_list.elements; 
          table_map map= 0;
          //while ((item= it++))
          for (;ref_array < ref_array_end; ref_array++)
            map |= (*ref_array)->used_tables();
          map= map & ~PSEUDO_TABLE_BITS;
          Table_map_iterator tm_it(map);
          int tableno;
          double rows= 1.0;
          while ((tableno = tm_it.next_bit()) != Table_map_iterator::BITMAP_END)
            rows *= join->map2table[tableno]->table->quick_condition_rows;
          sjm->rows= min(sjm->rows, rows);
        }
        memcpy(sjm->positions, join->best_positions + join->const_tables, 
               sizeof(POSITION) * n_tables);

        /*
          Calculate temporary table parameters and usage costs
        */
        uint rowlen= get_tmp_table_rec_length(subq_select->ref_pointer_array,
                                              subq_select->item_list.elements);
        double lookup_cost= get_tmp_table_lookup_cost(join->thd,
                                                      subjoin_out_rows, rowlen);
        double write_cost= get_tmp_table_write_cost(join->thd,
                                                    subjoin_out_rows, rowlen);

        /*
          Let materialization cost include the cost to write the data into the
          temporary table:
        */ 
        sjm->materialization_cost.add_io(subjoin_out_rows, write_cost);
        
        /*
          Set the cost to do a full scan of the temptable (will need this to 
          consider doing sjm-scan):
        */ 
        sjm->scan_cost.zero();
        sjm->scan_cost.add_io(sjm->rows, lookup_cost);

        sjm->lookup_cost.convert_from_cost(lookup_cost);
        sj_nest->sj_mat_info= sjm;
        DBUG_EXECUTE("opt", print_sjm(sjm););
      }
    }
  }
  join->emb_sjm_nest= NULL;
  DBUG_RETURN(FALSE);
}


/*
  Get estimated record length for semi-join materialization temptable
  
  SYNOPSIS
    get_tmp_table_rec_length()
      items  IN subquery's select list.

  DESCRIPTION
    Calculate estimated record length for semi-join materialization
    temptable. It's an estimate because we don't follow every bit of
    create_tmp_table()'s logic. This isn't necessary as the return value of
    this function is used only for cost calculations.

  RETURN
    Length of the temptable record, in bytes
*/

static uint get_tmp_table_rec_length(Item **p_items, uint elements)
{
  uint len= 0;
  Item *item;
  //List_iterator<Item> it(items);
  Item **p_item;
  for (p_item= p_items; p_item < p_items + elements ; p_item++)
  {
    item = *p_item;
    switch (item->result_type()) {
    case REAL_RESULT:
      len += sizeof(double);
      break;
    case INT_RESULT:
      if (item->max_length >= (MY_INT32_NUM_DECIMAL_DIGITS - 1))
        len += 8;
      else
        len += 4;
      break;
    case STRING_RESULT:
      enum enum_field_types type;
      /* DATE/TIME and GEOMETRY fields have STRING_RESULT result type.  */
      if ((type= item->field_type()) == MYSQL_TYPE_DATETIME ||
          type == MYSQL_TYPE_TIME || type == MYSQL_TYPE_DATE ||
          type == MYSQL_TYPE_TIMESTAMP || type == MYSQL_TYPE_GEOMETRY)
        len += 8;
      else
        len += item->max_length;
      break;
    case DECIMAL_RESULT:
      len += 10;
      break;
    case ROW_RESULT:
    default:
      DBUG_ASSERT(0); /* purecov: deadcode */
      break;
    }
  }
  return len;
}


/**
  The cost of a lookup into a unique hash/btree index on a temporary table
  with 'row_count' rows each of size 'row_size'.

  @param thd  current query context
  @param row_count  number of rows in the temp table
  @param row_size   average size in bytes of the rows

  @return  the cost of one lookup
*/

static double
get_tmp_table_lookup_cost(THD *thd, double row_count, uint row_size)
{
  if (row_count * row_size > thd->variables.max_heap_table_size)
    return (double) DISK_TEMPTABLE_LOOKUP_COST;
  else
    return (double) HEAP_TEMPTABLE_LOOKUP_COST;
}

/**
  The cost of writing a row into a temporary table with 'row_count' unique
  rows each of size 'row_size'.

  @param thd  current query context
  @param row_count  number of rows in the temp table
  @param row_size   average size in bytes of the rows

  @return  the cost of writing one row
*/

static double
get_tmp_table_write_cost(THD *thd, double row_count, uint row_size)
{
  double lookup_cost= get_tmp_table_lookup_cost(thd, row_count, row_size);
  /*
    TODO:
    This is an optimistic estimate. Add additional costs resulting from
    actually writing the row to memory/disk and possible index reorganization.
  */
  return lookup_cost;
}


/*
  Check if table's KEYUSE elements have an eq_ref(outer_tables) candidate

  SYNOPSIS
    find_eq_ref_candidate()
      table             Table to be checked
      sj_inner_tables   Bitmap of inner tables. eq_ref(inner_table) doesn't
                        count.

  DESCRIPTION
    Check if table's KEYUSE elements have an eq_ref(outer_tables) candidate

  TODO
    Check again if it is feasible to factor common parts with constant table
    search

    Also check if it's feasible to factor common parts with table elimination

  RETURN
    TRUE  - There exists an eq_ref(outer-tables) candidate
    FALSE - Otherwise
*/

bool find_eq_ref_candidate(TABLE *table, table_map sj_inner_tables)
{
  KEYUSE *keyuse= table->reginfo.join_tab->keyuse;

  if (keyuse)
  {
    do
    {
      uint key= keyuse->key;
      KEY *keyinfo;
      key_part_map bound_parts= 0;
      bool is_excluded_key= keyuse->is_for_hash_join(); 
      if (!is_excluded_key)
      {
        keyinfo= table->key_info + key;
        is_excluded_key= !test(keyinfo->flags & HA_NOSAME);
      }
      if (!is_excluded_key)
      {
        do  /* For all equalities on all key parts */
        {
          /* Check if this is "t.keypart = expr(outer_tables) */
          if (!(keyuse->used_tables & sj_inner_tables) &&
              !(keyuse->optimize & KEY_OPTIMIZE_REF_OR_NULL))
          {
            bound_parts |= 1 << keyuse->keypart;
          }
          keyuse++;
        } while (keyuse->key == key && keyuse->table == table);

        if (bound_parts == PREV_BITS(uint, keyinfo->key_parts))
          return TRUE;
      }
      else
      {
        do
        {
          keyuse++;
        } while (keyuse->key == key && keyuse->table == table);
      }
    } while (keyuse->table == table);
  }
  return FALSE;
}


/*
  Do semi-join optimization step after we've added a new tab to join prefix

  SYNOPSIS
    advance_sj_state()
      join                        The join we're optimizing
      remaining_tables            Tables not in the join prefix
      new_join_tab                Join tab we've just added to the join prefix
      idx                         Index of this join tab (i.e. number of tables
                                  in the prefix minus one)
      current_record_count INOUT  Estimate of #records in join prefix's output
      current_read_time    INOUT  Cost to execute the join prefix
      loose_scan_pos       IN     A POSITION with LooseScan plan to access 
                                  table new_join_tab
                                  (produced by the last best_access_path call)

  DESCRIPTION
    Update semi-join optimization state after we've added another tab (table 
    and access method) to the join prefix.
    
    The state is maintained in join->positions[#prefix_size]. Each of the
    available strategies has its own state variables.
    
    for each semi-join strategy
    {
      update strategy's state variables;

      if (join prefix has all the tables that are needed to consider
          using this strategy for the semi-join(s))
      {
        calculate cost of using the strategy
        if ((this is the first strategy to handle the semi-join nest(s)  ||
            the cost is less than other strategies))
        {
          // Pick this strategy
          pos->sj_strategy= ..
          ..
        }
      }

    Most of the new state is saved join->positions[idx] (and hence no undo
    is necessary). Several members of class JOIN are updated also, these
    changes can be rolled back with restore_prev_sj_state().

    See setup_semijoin_dups_elimination() for a description of what kinds of
    join prefixes each strategy can handle.
*/

void advance_sj_state(JOIN *join, table_map remaining_tables, 
                      const JOIN_TAB *new_join_tab, uint idx, 
                      double *current_record_count, double *current_read_time, 
                      POSITION *loose_scan_pos)
{
  TABLE_LIST *emb_sj_nest;
  POSITION *pos= join->positions + idx;
  remaining_tables &= ~new_join_tab->table->map;
  bool disable_jbuf= join->thd->variables.join_cache_level == 0;

  pos->prefix_cost.convert_from_cost(*current_read_time);
  pos->prefix_record_count= *current_record_count;
  pos->sj_strategy= SJ_OPT_NONE;
  
  pos->prefix_dups_producing_tables= join->cur_dups_producing_tables;

  /* We're performing optimization inside SJ-Materialization nest */
  if (join->emb_sjm_nest)
  {
    pos->invalidate_firstmatch_prefix();
    pos->first_loosescan_table= MAX_TABLES; 
    pos->dupsweedout_tables= 0;
    pos->sjm_scan_need_tables= 0;
    return;
  }

  /* Initialize the state or copy it from prev. tables */
  if (idx == join->const_tables)
  {
    pos->invalidate_firstmatch_prefix();
    pos->first_loosescan_table= MAX_TABLES; 
    pos->dupsweedout_tables= 0;
    pos->sjm_scan_need_tables= 0;
    LINT_INIT(pos->sjm_scan_last_inner);
  }
  else
  {
    // FirstMatch
    pos->first_firstmatch_table=
      (pos[-1].sj_strategy == SJ_OPT_FIRST_MATCH) ?
      MAX_TABLES : pos[-1].first_firstmatch_table;
    pos->first_firstmatch_rtbl= pos[-1].first_firstmatch_rtbl;
    pos->firstmatch_need_tables= pos[-1].firstmatch_need_tables;

    // LooseScan
    pos->first_loosescan_table=
      (pos[-1].sj_strategy == SJ_OPT_LOOSE_SCAN) ?
      MAX_TABLES : pos[-1].first_loosescan_table;
    pos->loosescan_need_tables= pos[-1].loosescan_need_tables;

    // SJ-Materialization Scan
    pos->sjm_scan_need_tables=
      (pos[-1].sj_strategy == SJ_OPT_MATERIALIZE_SCAN) ?
      0 : pos[-1].sjm_scan_need_tables;
    pos->sjm_scan_last_inner= pos[-1].sjm_scan_last_inner;

    // Duplicate Weedout
    pos->dupsweedout_tables=      pos[-1].dupsweedout_tables;
    pos->first_dupsweedout_table= pos[-1].first_dupsweedout_table;
  }
  
  table_map handled_by_fm_or_ls= 0;
  /* FirstMatch Strategy */
  if (new_join_tab->emb_sj_nest &&
      optimizer_flag(join->thd, OPTIMIZER_SWITCH_FIRSTMATCH) &&
      !join->outer_join)
  {
    const table_map outer_corr_tables=
      new_join_tab->emb_sj_nest->nested_join->sj_corr_tables |
      new_join_tab->emb_sj_nest->nested_join->sj_depends_on;
    const table_map sj_inner_tables=
      new_join_tab->emb_sj_nest->sj_inner_tables & ~join->const_table_map;

    /* 
      Enter condition:
       1. The next join tab belongs to semi-join nest
          (verified for the encompassing code block above).
       2. We're not in a duplicate producer range yet
       3. All outer tables that
           - the subquery is correlated with, or
           - referred to from the outer_expr 
          are in the join prefix
       4. All inner tables are still part of remaining_tables.
    */
    if (!join->cur_sj_inner_tables &&              // (2)
        !(remaining_tables & outer_corr_tables) && // (3)
        (sj_inner_tables ==                        // (4)
         ((remaining_tables | new_join_tab->table->map) & sj_inner_tables)))
    {
      /* Start tracking potential FirstMatch range */
      pos->first_firstmatch_table= idx;
      pos->firstmatch_need_tables= sj_inner_tables;
      pos->first_firstmatch_rtbl= remaining_tables;
    }

    if (pos->in_firstmatch_prefix())
    {
      if (outer_corr_tables & pos->first_firstmatch_rtbl)
      {
        /*
          Trying to add an sj-inner table whose sj-nest has an outer correlated 
          table that was not in the prefix. This means FirstMatch can't be used.
        */
        pos->invalidate_firstmatch_prefix();
      }
      else
      {
        /* Record that we need all of this semi-join's inner tables, too */
        pos->firstmatch_need_tables|= sj_inner_tables;
      }
    
      if (pos->in_firstmatch_prefix() && 
          !(pos->firstmatch_need_tables & remaining_tables))
      {
        /*
          Got a complete FirstMatch range.
            Calculate correct costs and fanout
        */
        optimize_wo_join_buffering(join, pos->first_firstmatch_table, idx,
                                   remaining_tables, FALSE, idx,
                                   current_record_count, 
                                   current_read_time);
        /*
          We don't yet know what are the other strategies, so pick the
          FirstMatch.

          We ought to save the alternate POSITIONs produced by
          optimize_wo_join_buffering but the problem is that providing save
          space uses too much space. Instead, we will re-calculate the
          alternate POSITIONs after we've picked the best QEP.
        */
        pos->sj_strategy= SJ_OPT_FIRST_MATCH;
        handled_by_fm_or_ls=  pos->firstmatch_need_tables;
      }
    }
  }

  /* LooseScan Strategy */
  {
    POSITION *first=join->positions+pos->first_loosescan_table; 
    /* 
      LooseScan strategy can't handle interleaving between tables from the 
      semi-join that LooseScan is handling and any other tables.

      If we were considering LooseScan for the join prefix (1)
         and the table we're adding creates an interleaving (2)
      then 
         stop considering loose scan
    */
    if ((pos->first_loosescan_table != MAX_TABLES) &&   // (1)
        (first->table->emb_sj_nest->sj_inner_tables & remaining_tables) && //(2)
        new_join_tab->emb_sj_nest != first->table->emb_sj_nest) //(2)
    {
      pos->first_loosescan_table= MAX_TABLES;
    }

    /*
      If we got an option to use LooseScan for the current table, start
      considering using LooseScan strategy
    */
    if (loose_scan_pos->read_time != DBL_MAX && !join->outer_join)
    {
      pos->first_loosescan_table= idx;
      pos->loosescan_need_tables=
        new_join_tab->emb_sj_nest->sj_inner_tables | 
        new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
        new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
    }
    
    if ((pos->first_loosescan_table != MAX_TABLES) && 
        !(remaining_tables & pos->loosescan_need_tables))
    {
      /* 
        Ok we have LooseScan plan and also have all LooseScan sj-nest's
        inner tables and outer correlated tables into the prefix.
      */

      first=join->positions + pos->first_loosescan_table; 
      uint n_tables= my_count_bits(first->table->emb_sj_nest->sj_inner_tables);
      /* Got a complete LooseScan range. Calculate its cost */
      /*
        The same problem as with FirstMatch - we need to save POSITIONs
        somewhere but reserving space for all cases would require too
        much space. We will re-calculate POSITION structures later on. 
      */
      optimize_wo_join_buffering(join, pos->first_loosescan_table, idx,
                                 remaining_tables, 
                                 TRUE,  //first_alt
                                 disable_jbuf ? join->table_count :
                                   pos->first_loosescan_table + n_tables,
                                 current_record_count,
                                 current_read_time);
      /*
        We don't yet have any other strategies that could handle this
        semi-join nest (the other options are Duplicate Elimination or
        Materialization, which need at least the same set of tables in 
        the join prefix to be considered) so unconditionally pick the 
        LooseScan.
      */
      pos->sj_strategy= SJ_OPT_LOOSE_SCAN;
      handled_by_fm_or_ls= first->table->emb_sj_nest->sj_inner_tables;
    }
  }

  /* 
    Update join->cur_sj_inner_tables (Used by FirstMatch in this function and
    LooseScan detector in best_access_path)
  */
  if ((emb_sj_nest= new_join_tab->emb_sj_nest))
  {
    join->cur_sj_inner_tables |= emb_sj_nest->sj_inner_tables;
    join->cur_dups_producing_tables |= emb_sj_nest->sj_inner_tables;

    /* Remove the sj_nest if all of its SJ-inner tables are in cur_table_map */
    if (!(remaining_tables &
          emb_sj_nest->sj_inner_tables & ~new_join_tab->table->map))
      join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
  }
  join->cur_dups_producing_tables &= ~handled_by_fm_or_ls;

  /* 4. SJ-Materialization and SJ-Materialization-scan strategy handler */
  bool sjm_scan;
  SJ_MATERIALIZATION_INFO *mat_info;
  if ((mat_info= at_sjmat_pos(join, remaining_tables,
                              new_join_tab, idx, &sjm_scan)))
  {
    if (sjm_scan)
    {
      /*
        We can't yet evaluate this option yet. This is because we can't
        accout for fanout of sj-inner tables yet:

          ntX  SJM-SCAN(it1 ... itN) | ot1 ... otN  |
                                     ^(1)           ^(2)

        we're now at position (1). SJM temptable in general has multiple
        records, so at point (1) we'll get the fanout from sj-inner tables (ie
        there will be multiple record combinations).

        The final join result will not contain any semi-join produced
        fanout, i.e. tables within SJM-SCAN(...) will not contribute to
        the cardinality of the join output.  Extra fanout produced by 
        SJM-SCAN(...) will be 'absorbed' into fanout produced by ot1 ...  otN.

        The simple way to model this is to remove SJM-SCAN(...) fanout once
        we reach the point #2.
      */
      pos->sjm_scan_need_tables=
        new_join_tab->emb_sj_nest->sj_inner_tables | 
        new_join_tab->emb_sj_nest->nested_join->sj_depends_on |
        new_join_tab->emb_sj_nest->nested_join->sj_corr_tables;
      pos->sjm_scan_last_inner= idx;
    }
    else
    {
      /* This is SJ-Materialization with lookups */
      COST_VECT prefix_cost; 
      signed int first_tab= (int)idx - mat_info->tables;
      double prefix_rec_count;
      if (first_tab < (int)join->const_tables)
      {
        prefix_cost.zero();
        prefix_rec_count= 1.0;
      }
      else
      {
        prefix_cost= join->positions[first_tab].prefix_cost;
        prefix_rec_count= join->positions[first_tab].prefix_record_count;
      }

      double mat_read_time= prefix_cost.total_cost();
      mat_read_time += mat_info->materialization_cost.total_cost() +
                       prefix_rec_count * mat_info->lookup_cost.total_cost();

      if (mat_read_time < *current_read_time || join->cur_dups_producing_tables)
      {
        /*
          NOTE: When we pick to use SJM[-Scan] we don't memcpy its POSITION
          elements to join->positions as that makes it hard to return things
          back when making one step back in join optimization. That's done 
          after the QEP has been chosen.
        */
        pos->sj_strategy= SJ_OPT_MATERIALIZE;
        *current_read_time=    mat_read_time;
        *current_record_count= prefix_rec_count;
        join->cur_dups_producing_tables&=
          ~new_join_tab->emb_sj_nest->sj_inner_tables;
      }
    }
  }
  
  /* 4.A SJM-Scan second phase check */
  if (pos->sjm_scan_need_tables && /* Have SJM-Scan prefix */
      !(pos->sjm_scan_need_tables & remaining_tables))
  {
    TABLE_LIST *mat_nest= 
      join->positions[pos->sjm_scan_last_inner].table->emb_sj_nest;
    SJ_MATERIALIZATION_INFO *mat_info= mat_nest->sj_mat_info;

    double prefix_cost;
    double prefix_rec_count;
    int first_tab= pos->sjm_scan_last_inner + 1 - mat_info->tables;
    /* Get the prefix cost */
    if (first_tab == (int)join->const_tables)
    {
      prefix_rec_count= 1.0;
      prefix_cost= 0.0;
    }
    else
    {
      prefix_cost= join->positions[first_tab - 1].prefix_cost.total_cost();
      prefix_rec_count= join->positions[first_tab - 1].prefix_record_count;
    }

    /* Add materialization cost */
    prefix_cost += mat_info->materialization_cost.total_cost() +
                   prefix_rec_count * mat_info->scan_cost.total_cost();
    prefix_rec_count *= mat_info->rows;
    
    uint i;
    table_map rem_tables= remaining_tables;
    for (i= idx; i != (first_tab + mat_info->tables - 1); i--)
      rem_tables |= join->positions[i].table->table->map;

    POSITION curpos, dummy;
    /* Need to re-run best-access-path as we prefix_rec_count has changed */
    for (i= first_tab + mat_info->tables; i <= idx; i++)
    {
      best_access_path(join, join->positions[i].table, rem_tables, i,
                       disable_jbuf, prefix_rec_count, &curpos, &dummy);
      prefix_rec_count *= curpos.records_read;
      prefix_cost += curpos.read_time;
    }

    /*
      Use the strategy if 
       * it is cheaper then what we've had, or
       * we haven't picked any other semi-join strategy yet
      In the second case, we pick this strategy unconditionally because
      comparing cost without semi-join duplicate removal with cost with
      duplicate removal is not an apples-to-apples comparison.
    */
    if (prefix_cost < *current_read_time || join->cur_dups_producing_tables)
    {
      pos->sj_strategy= SJ_OPT_MATERIALIZE_SCAN;
      *current_read_time=    prefix_cost;
      *current_record_count= prefix_rec_count;
      join->cur_dups_producing_tables&= ~mat_nest->sj_inner_tables;

    }
  }

  /* 5. Duplicate Weedout strategy handler */
  {
    /* 
       Duplicate weedout can be applied after all ON-correlated and 
       correlated 
    */
    TABLE_LIST *nest;
    if ((nest= new_join_tab->emb_sj_nest))
    {
      if (!pos->dupsweedout_tables)
        pos->first_dupsweedout_table= idx;

      pos->dupsweedout_tables |= nest->sj_inner_tables |
                                 nest->nested_join->sj_depends_on |
                                 nest->nested_join->sj_corr_tables;
    }
    
    if (pos->dupsweedout_tables)
    {
      /* we're in the process of constructing a DuplicateWeedout range */
      TABLE_LIST *emb= new_join_tab->table->pos_in_table_list->embedding;
      /* and we've entered an inner side of an outer join*/
      if (emb && emb->on_expr)
        pos->dupsweedout_tables |= emb->nested_join->used_tables;
    }

    if (pos->dupsweedout_tables && 
        !(remaining_tables &
          ~new_join_tab->table->map & pos->dupsweedout_tables))
    {
      /*
        Ok, reached a state where we could put a dups weedout point.
        Walk back and calculate
          - the join cost (this is needed as the accumulated cost may assume 
            some other duplicate elimination method)
          - extra fanout that will be removed by duplicate elimination
          - duplicate elimination cost
        There are two cases:
          1. We have other strategy/ies to remove all of the duplicates.
          2. We don't.
        
        We need to calculate the cost in case #2 also because we need to make
        choice between this join order and others.
      */
      uint first_tab= pos->first_dupsweedout_table;
      double dups_cost;
      double prefix_rec_count;
      double sj_inner_fanout= 1.0;
      double sj_outer_fanout= 1.0;
      uint temptable_rec_size;
      if (first_tab == join->const_tables)
      {
        prefix_rec_count= 1.0;
        temptable_rec_size= 0;
        dups_cost= 0.0;
      }
      else
      {
        dups_cost= join->positions[first_tab - 1].prefix_cost.total_cost();
        prefix_rec_count= join->positions[first_tab - 1].prefix_record_count;
        temptable_rec_size= 8; /* This is not true but we'll make it so */
      }
      
      table_map dups_removed_fanout= 0;
      for (uint j= pos->first_dupsweedout_table; j <= idx; j++)
      {
        POSITION *p= join->positions + j;
        dups_cost += p->read_time;
        if (p->table->emb_sj_nest)
        {
          sj_inner_fanout *= p->records_read;
          dups_removed_fanout |= p->table->table->map;
        }
        else
        {
          sj_outer_fanout *= p->records_read;
          temptable_rec_size += p->table->table->file->ref_length;
        }
      }

      /*
        Add the cost of temptable use. The table will have sj_outer_fanout
        records, and we will make 
        - sj_outer_fanout table writes
        - sj_inner_fanout*sj_outer_fanout  lookups.

      */
      double one_lookup_cost= get_tmp_table_lookup_cost(join->thd,
                                                        sj_outer_fanout,
                                                        temptable_rec_size);
      double one_write_cost= get_tmp_table_write_cost(join->thd,
                                                      sj_outer_fanout,
                                                      temptable_rec_size);

      double write_cost= join->positions[first_tab].prefix_record_count* 
                         sj_outer_fanout * one_write_cost;
      double full_lookup_cost= join->positions[first_tab].prefix_record_count* 
                               sj_outer_fanout* sj_inner_fanout * 
                               one_lookup_cost;
      dups_cost += write_cost + full_lookup_cost;
      
      /*
        Use the strategy if 
         * it is cheaper then what we've had, or
         * we haven't picked any other semi-join strategy yet
        The second part is necessary because this strategy is the last one
        to consider (it needs "the most" tables in the prefix) and we can't
        leave duplicate-producing tables not handled by any strategy.
      */
      if (dups_cost < *current_read_time || join->cur_dups_producing_tables)
      {
        pos->sj_strategy= SJ_OPT_DUPS_WEEDOUT;
        *current_read_time= dups_cost;
        *current_record_count= prefix_rec_count * sj_outer_fanout;
        join->cur_dups_producing_tables &= ~dups_removed_fanout;
      }
    }
  }
}


/*
  Remove the last join tab from from join->cur_sj_inner_tables bitmap
  we assume remaining_tables doesnt contain @tab.
*/

void restore_prev_sj_state(const table_map remaining_tables, 
                                  const JOIN_TAB *tab, uint idx)
{
  TABLE_LIST *emb_sj_nest;
  if ((emb_sj_nest= tab->emb_sj_nest))
  {
    /* If we're removing the last SJ-inner table, remove the sj-nest */
    if ((remaining_tables & emb_sj_nest->sj_inner_tables) == 
        (emb_sj_nest->sj_inner_tables & ~tab->table->map))
    {
      tab->join->cur_sj_inner_tables &= ~emb_sj_nest->sj_inner_tables;
    }
  }
  POSITION *pos= tab->join->positions + idx;
  tab->join->cur_dups_producing_tables= pos->prefix_dups_producing_tables;
}


/*
  Given a semi-join nest, find out which of the IN-equalities are bound

  SYNOPSIS
    get_bound_sj_equalities()
      sj_nest           Semi-join nest
      remaining_tables  Tables that are not yet bound

  DESCRIPTION
    Given a semi-join nest, find out which of the IN-equalities have their
    left part expression bound (i.e. the said expression doesn't refer to
    any of remaining_tables and can be evaluated).

  RETURN
    Bitmap of bound IN-equalities.
*/

ulonglong get_bound_sj_equalities(TABLE_LIST *sj_nest, 
                                  table_map remaining_tables)
{
  List_iterator<Item> li(sj_nest->nested_join->sj_outer_expr_list);
  Item *item;
  uint i= 0;
  ulonglong res= 0;
  while ((item= li++))
  {
    /*
      Q: should this take into account equality propagation and how?
      A: If e->outer_side is an Item_field, walk over the equality
         class and see if there is an element that is bound?
      (this is an optional feature)
    */
    if (!(item->used_tables() & remaining_tables))
    {
      res |= 1ULL << i;
    }
    i++;
  }
  return res;
}


/*
  Check if the last tables of the partial join order allow to use
  sj-materialization strategy for them

  SYNOPSIS
    at_sjmat_pos()
      join              
      remaining_tables
      tab                the last table's join tab
      idx                last table's index
      loose_scan    OUT  TRUE <=> use LooseScan

  RETURN
    TRUE   Yes, can apply sj-materialization
    FALSE  No, some of the requirements are not met
*/

static SJ_MATERIALIZATION_INFO *
at_sjmat_pos(const JOIN *join, table_map remaining_tables, const JOIN_TAB *tab,
             uint idx, bool *loose_scan)
{
  /*
   Check if 
    1. We're in a semi-join nest that can be run with SJ-materialization
    2. All the tables correlated through the IN subquery are in the prefix
  */
  TABLE_LIST *emb_sj_nest= tab->emb_sj_nest;
  table_map suffix= remaining_tables & ~tab->table->map;
  if (emb_sj_nest && emb_sj_nest->sj_mat_info &&
      !(suffix & emb_sj_nest->sj_inner_tables))
  {
    /* 
      Walk back and check if all immediately preceding tables are from
      this semi-join.
    */
    uint n_tables= my_count_bits(tab->emb_sj_nest->sj_inner_tables);
    for (uint i= 1; i < n_tables ; i++)
    {
      if (join->positions[idx - i].table->emb_sj_nest != tab->emb_sj_nest)
        return NULL;
    }
    *loose_scan= test(remaining_tables & ~tab->table->map &
                             (emb_sj_nest->sj_inner_tables |
                              emb_sj_nest->nested_join->sj_depends_on));
    if (*loose_scan && !emb_sj_nest->sj_subq_pred->sjm_scan_allowed)
      return NULL;
    else
      return emb_sj_nest->sj_mat_info;
  }
  return NULL;
}



/*
  Fix semi-join strategies for the picked join order

  SYNOPSIS
    fix_semijoin_strategies_for_picked_join_order()
      join  The join with the picked join order

  DESCRIPTION
    Fix semi-join strategies for the picked join order. This is a step that
    needs to be done right after we have fixed the join order. What we do
    here is switch join's semi-join strategy description from backward-based
    to forwards based.
    
    When join optimization is in progress, we re-consider semi-join
    strategies after we've added another table. Here's an illustration.
    Suppose the join optimization is underway:

    1) ot1  it1  it2 
                 sjX  -- looking at (ot1, it1, it2) join prefix, we decide
                         to use semi-join strategy sjX.

    2) ot1  it1  it2  ot2 
                 sjX  sjY -- Having added table ot2, we now may consider
                             another semi-join strategy and decide to use a 
                             different strategy sjY. Note that the record
                             of sjX has remained under it2. That is
                             necessary because we need to be able to get
                             back to (ot1, it1, it2) join prefix.
      what makes things even worse is that there are cases where the choice
      of sjY changes the way we should access it2. 

    3) [ot1  it1  it2  ot2  ot3]
                  sjX  sjY  -- This means that after join optimization is
                               finished, semi-join info should be read
                               right-to-left (while nearly all plan refinement
                               functions, EXPLAIN, etc proceed from left to 
                               right)

    This function does the needed reversal, making it possible to read the
    join and semi-join order from left to right.
*/    

void fix_semijoin_strategies_for_picked_join_order(JOIN *join)
{
  uint table_count=join->table_count;
  uint tablenr;
  table_map remaining_tables= 0;
  table_map handled_tabs= 0;
  for (tablenr= table_count - 1 ; tablenr != join->const_tables - 1; tablenr--)
  {
    POSITION *pos= join->best_positions + tablenr;
    JOIN_TAB *s= pos->table;
    uint first;
    LINT_INIT(first); // Set by every branch except SJ_OPT_NONE which doesn't use it

    if ((handled_tabs & s->table->map) || pos->sj_strategy == SJ_OPT_NONE)
    {
      remaining_tables |= s->table->map;
      continue;
    }
    
    if (pos->sj_strategy == SJ_OPT_MATERIALIZE)
    {
      SJ_MATERIALIZATION_INFO *sjm= s->emb_sj_nest->sj_mat_info;
      sjm->is_used= TRUE;
      sjm->is_sj_scan= FALSE;
      memcpy(pos - sjm->tables + 1, sjm->positions, 
             sizeof(POSITION) * sjm->tables);
      first= tablenr - sjm->tables + 1;
      join->best_positions[first].n_sj_tables= sjm->tables;
      join->best_positions[first].sj_strategy= SJ_OPT_MATERIALIZE;
    }
    else if (pos->sj_strategy == SJ_OPT_MATERIALIZE_SCAN)
    {
      POSITION *first_inner= join->best_positions + pos->sjm_scan_last_inner;
      SJ_MATERIALIZATION_INFO *sjm= first_inner->table->emb_sj_nest->sj_mat_info;
      sjm->is_used= TRUE;
      sjm->is_sj_scan= TRUE;
      first= pos->sjm_scan_last_inner - sjm->tables + 1;
      memcpy(join->best_positions + first, 
             sjm->positions, sizeof(POSITION) * sjm->tables);
      join->best_positions[first].sj_strategy= SJ_OPT_MATERIALIZE_SCAN;
      join->best_positions[first].n_sj_tables= sjm->tables;
      /* 
        Do what advance_sj_state did: re-run best_access_path for every table
        in the [last_inner_table + 1; pos..) range
      */
      double prefix_rec_count;
      /* Get the prefix record count */
      if (first == join->const_tables)
        prefix_rec_count= 1.0;
      else
        prefix_rec_count= join->best_positions[first-1].prefix_record_count;
      
      /* Add materialization record count*/
      prefix_rec_count *= sjm->rows;
      
      uint i;
      table_map rem_tables= remaining_tables;
      for (i= tablenr; i != (first + sjm->tables - 1); i--)
        rem_tables |= join->best_positions[i].table->table->map;

      POSITION dummy;
      join->cur_sj_inner_tables= 0;
      for (i= first + sjm->tables; i <= tablenr; i++)
      {
        best_access_path(join, join->best_positions[i].table, rem_tables, i, 
                         FALSE, prefix_rec_count,
                         join->best_positions + i, &dummy);
        prefix_rec_count *= join->best_positions[i].records_read;
        rem_tables &= ~join->best_positions[i].table->table->map;
      }
    }
 
    if (pos->sj_strategy == SJ_OPT_FIRST_MATCH)
    {
      first= pos->first_firstmatch_table;
      join->best_positions[first].sj_strategy= SJ_OPT_FIRST_MATCH;
      join->best_positions[first].n_sj_tables= tablenr - first + 1;
      POSITION dummy; // For loose scan paths
      double record_count= (first== join->const_tables)? 1.0: 
                           join->best_positions[tablenr - 1].prefix_record_count;
      
      table_map rem_tables= remaining_tables;
      uint idx;
      for (idx= first; idx <= tablenr; idx++)
      {
        rem_tables |= join->best_positions[idx].table->table->map;
      }
      /*
        Re-run best_access_path to produce best access methods that do not use
        join buffering
      */ 
      join->cur_sj_inner_tables= 0;
      for (idx= first; idx <= tablenr; idx++)
      {
        if (join->best_positions[idx].use_join_buffer)
        {
           best_access_path(join, join->best_positions[idx].table, 
                            rem_tables, idx, TRUE /* no jbuf */,
                            record_count, join->best_positions + idx, &dummy);
        }
        record_count *= join->best_positions[idx].records_read;
        rem_tables &= ~join->best_positions[idx].table->table->map;
      }
    }

    if (pos->sj_strategy == SJ_OPT_LOOSE_SCAN) 
    {
      first= pos->first_loosescan_table;
      POSITION *first_pos= join->best_positions + first;
      POSITION loose_scan_pos; // For loose scan paths
      double record_count= (first== join->const_tables)? 1.0: 
                           join->best_positions[tablenr - 1].prefix_record_count;
      
      table_map rem_tables= remaining_tables;
      uint idx;
      for (idx= first; idx <= tablenr; idx++)
        rem_tables |= join->best_positions[idx].table->table->map;
      /*
        Re-run best_access_path to produce best access methods that do not use
        join buffering
      */ 
      join->cur_sj_inner_tables= 0;
      for (idx= first; idx <= tablenr; idx++)
      {
        if (join->best_positions[idx].use_join_buffer || (idx == first))
        {
           best_access_path(join, join->best_positions[idx].table,
                            rem_tables, idx, TRUE /* no jbuf */,
                            record_count, join->best_positions + idx,
                            &loose_scan_pos);
           if (idx==first)
             join->best_positions[idx]= loose_scan_pos;
        }
        rem_tables &= ~join->best_positions[idx].table->table->map;
        record_count *= join->best_positions[idx].records_read;
      }
      first_pos->sj_strategy= SJ_OPT_LOOSE_SCAN;
      first_pos->n_sj_tables= my_count_bits(first_pos->table->emb_sj_nest->sj_inner_tables);
    }

    if (pos->sj_strategy == SJ_OPT_DUPS_WEEDOUT)
    {
      /* 
        Duplicate Weedout starting at pos->first_dupsweedout_table, ending at
        this table.
      */
      first= pos->first_dupsweedout_table;
      join->best_positions[first].sj_strategy= SJ_OPT_DUPS_WEEDOUT;
      join->best_positions[first].n_sj_tables= tablenr - first + 1;
    }
    
    uint i_end= first + join->best_positions[first].n_sj_tables;
    for (uint i= first; i < i_end; i++)
    {
      if (i != first)
        join->best_positions[i].sj_strategy= SJ_OPT_NONE;
      handled_tabs |= join->best_positions[i].table->table->map;
    }

    if (tablenr != first)
      pos->sj_strategy= SJ_OPT_NONE;
    remaining_tables |= s->table->map;
    //s->sj_strategy= pos->sj_strategy;
    join->join_tab[first].sj_strategy= join->best_positions[first].sj_strategy;
    join->join_tab[first].n_sj_tables= join->best_positions[first].n_sj_tables;
  }
}


/*
  Setup semi-join materialization strategy for one semi-join nest
  
  SYNOPSIS

  setup_sj_materialization()
    tab  The first tab in the semi-join

  DESCRIPTION
    Setup execution structures for one semi-join materialization nest:
    - Create the materialization temporary table
    - If we're going to do index lookups
        create TABLE_REF structure to make the lookus
    - else (if we're going to do a full scan of the temptable)
        create Copy_field structures to do copying.

  RETURN
    FALSE  Ok
    TRUE   Error
*/

bool setup_sj_materialization_part1(JOIN_TAB *sjm_tab)
{
  DBUG_ENTER("setup_sj_materialization");
  JOIN_TAB *tab= sjm_tab->bush_children->start;
  TABLE_LIST *emb_sj_nest= tab->table->pos_in_table_list->embedding;
  
  /* Walk out of outer join nests until we reach the semi-join nest we're in */
  while (!emb_sj_nest->sj_mat_info)
    emb_sj_nest= emb_sj_nest->embedding;

  SJ_MATERIALIZATION_INFO *sjm= emb_sj_nest->sj_mat_info;
  THD *thd= tab->join->thd;
  /* First the calls come to the materialization function */
  //List<Item> &item_list= emb_sj_nest->sj_subq_pred->unit->first_select()->item_list;
  
  DBUG_ASSERT(sjm->is_used);
  /* 
    Set up the table to write to, do as select_union::create_result_table does
  */
  sjm->sjm_table_param.init();
  sjm->sjm_table_param.bit_fields_as_long= TRUE;
  //List_iterator<Item> it(item_list);
  SELECT_LEX *subq_select= emb_sj_nest->sj_subq_pred->unit->first_select();
  Item **p_item= subq_select->ref_pointer_array;
  Item **p_end= p_item + subq_select->item_list.elements;
  //while((right_expr= it++))
  for(;p_item != p_end; p_item++)
    sjm->sjm_table_cols.push_back(*p_item);

  sjm->sjm_table_param.field_count= subq_select->item_list.elements;

  if (!(sjm->table= create_tmp_table(thd, &sjm->sjm_table_param, 
                                     sjm->sjm_table_cols, (ORDER*) 0, 
                                     TRUE /* distinct */, 
                                     1, /*save_sum_fields*/
                                     thd->options | TMP_TABLE_ALL_COLUMNS, 
                                     HA_POS_ERROR /*rows_limit */, 
                                     (char*)"sj-materialize")))
    DBUG_RETURN(TRUE); /* purecov: inspected */
  sjm->table->file->extra(HA_EXTRA_WRITE_CACHE);
  sjm->table->file->extra(HA_EXTRA_IGNORE_DUP_KEY);

  tab->join->sj_tmp_tables.push_back(sjm->table);
  tab->join->sjm_info_list.push_back(sjm);
  
  sjm->materialized= FALSE;
  sjm_tab->table= sjm->table;
  sjm->table->pos_in_table_list= emb_sj_nest;
 
  DBUG_RETURN(FALSE);
}


bool setup_sj_materialization_part2(JOIN_TAB *sjm_tab)
{
  DBUG_ENTER("setup_sj_materialization_part2");
  JOIN_TAB *tab= sjm_tab->bush_children->start;
  TABLE_LIST *emb_sj_nest= tab->table->pos_in_table_list->embedding;
  /* Walk out of outer join nests until we reach the semi-join nest we're in */
  while (!emb_sj_nest->sj_mat_info)
    emb_sj_nest= emb_sj_nest->embedding;
  SJ_MATERIALIZATION_INFO *sjm= emb_sj_nest->sj_mat_info;
  THD *thd= tab->join->thd;
  uint i;
  //List<Item> &item_list= emb_sj_nest->sj_subq_pred->unit->first_select()->item_list;
  //List_iterator<Item> it(item_list);

  if (!sjm->is_sj_scan)
  {
    KEY           *tmp_key; /* The only index on the temporary table. */
    uint          tmp_key_parts; /* Number of keyparts in tmp_key. */
    tmp_key= sjm->table->key_info;
    tmp_key_parts= tmp_key->key_parts;
    
    /*
      Create/initialize everything we will need to index lookups into the
      temptable.
    */
    TABLE_REF *tab_ref;
    tab_ref= &sjm_tab->ref;
    tab_ref->key= 0; /* The only temp table index. */
    tab_ref->key_length= tmp_key->key_length;
    if (!(tab_ref->key_buff=
          (uchar*) thd->calloc(ALIGN_SIZE(tmp_key->key_length) * 2)) ||
        !(tab_ref->key_copy=
          (store_key**) thd->alloc((sizeof(store_key*) *
                                    (tmp_key_parts + 1)))) ||
        !(tab_ref->items=
          (Item**) thd->alloc(sizeof(Item*) * tmp_key_parts)))
      DBUG_RETURN(TRUE); /* purecov: inspected */

    tab_ref->key_buff2=tab_ref->key_buff+ALIGN_SIZE(tmp_key->key_length);
    tab_ref->key_err=1;
    tab_ref->null_rejecting= 1;
    tab_ref->disable_cache= FALSE;

    KEY_PART_INFO *cur_key_part= tmp_key->key_part;
    store_key **ref_key= tab_ref->key_copy;
    uchar *cur_ref_buff= tab_ref->key_buff;
    
    for (i= 0; i < tmp_key_parts; i++, cur_key_part++, ref_key++)
    {
      tab_ref->items[i]= emb_sj_nest->sj_subq_pred->left_expr->element_index(i);
      int null_count= test(cur_key_part->field->real_maybe_null());
      *ref_key= new store_key_item(thd, cur_key_part->field,
                                   /* TODO:
                                      the NULL byte is taken into account in
                                      cur_key_part->store_length, so instead of
                                      cur_ref_buff + test(maybe_null), we could
                                      use that information instead.
                                   */
                                   cur_ref_buff + null_count,
                                   null_count ? cur_ref_buff : 0,
                                   cur_key_part->length, tab_ref->items[i],
                                   FALSE);
      cur_ref_buff+= cur_key_part->store_length;
    }
    *ref_key= NULL; /* End marker. */
      
    /*
      We don't ever have guarded conditions for SJM tables, but code at SQL
      layer depends on cond_guards array being alloced.
    */
    if (!(tab_ref->cond_guards= (bool**) thd->calloc(sizeof(uint*)*tmp_key_parts)))
    {
      DBUG_RETURN(TRUE);
    }

    tab_ref->key_err= 1;
    tab_ref->key_parts= tmp_key_parts;
    sjm->tab_ref= tab_ref;

    /*
      Remove the injected semi-join IN-equalities from join_tab conds. This
      needs to be done because the IN-equalities refer to columns of
      sj-inner tables which are not available after the materialization
      has been finished.
    */
    for (i= 0; i < sjm->tables; i++)
    {
      remove_sj_conds(&tab[i].select_cond);
      if (tab[i].select)
        remove_sj_conds(&tab[i].select->cond);
    }
    if (!(sjm->in_equality= create_subq_in_equalities(thd, sjm,
                                                      emb_sj_nest->sj_subq_pred)))
      DBUG_RETURN(TRUE); /* purecov: inspected */
    sjm_tab->type= JT_EQ_REF;
    sjm_tab->select_cond= sjm->in_equality;
  }
  else
  {
    /*
      We'll be doing full scan of the temptable.  
      Setup copying of temptable columns back to the record buffers
      for their source tables. We need this because IN-equalities
      refer to the original tables.

      EXAMPLE

      Consider the query:
        SELECT * FROM ot WHERE ot.col1 IN (SELECT it.col2 FROM it)
      
      Suppose it's executed with SJ-Materialization-scan. We choose to do scan
      if we can't do the lookup, i.e. the join order is (it, ot). The plan
      would look as follows:

        table    access method      condition
         it      materialize+scan    -
         ot      (whatever)          ot1.col1=it.col2 (C2)

      The condition C2 refers to current row of table it. The problem is
      that by the time we evaluate C2, we would have finished with scanning
      it itself and will be scanning the temptable. 

      At the moment, our solution is to copy back: when we get the next
      temptable record, we copy its columns to their corresponding columns
      in the record buffers for the source tables. 
    */
    sjm->copy_field= new Copy_field[sjm->sjm_table_cols.elements];
    //it.rewind();
    Item **p_item= emb_sj_nest->sj_subq_pred->unit->first_select()->ref_pointer_array;
    for (uint i=0; i < sjm->sjm_table_cols.elements; i++)
    {
      bool dummy;
      Item_equal *item_eq;
      //Item *item= (it++)->real_item();
      Item *item= (*(p_item++))->real_item();
      DBUG_ASSERT(item->type() == Item::FIELD_ITEM);
      Field *copy_to= ((Item_field*)item)->field;
      /*
        Tricks with Item_equal are due to the following: suppose we have a
        query:
        
        ... WHERE cond(ot.col) AND ot.col IN (SELECT it2.col FROM it1,it2
                                               WHERE it1.col= it2.col)
         then equality propagation will create an 
         
           Item_equal(it1.col, it2.col, ot.col) 
         
         then substitute_for_best_equal_field() will change the conditions
         according to the join order:

         table | attached condition
         ------+--------------------
          it1  |
          it2  | it1.col=it2.col
          ot   | cond(it1.col)

         although we've originally had "SELECT it2.col", conditions attached 
         to subsequent outer tables will refer to it1.col, so SJM-Scan will
         need to unpack data to there. 
         That is, if an element from subquery's select list participates in 
         equality propagation, then we need to unpack it to the first
         element equality propagation member that refers to table that is
         within the subquery.
      */
      item_eq= find_item_equal(tab->join->cond_equal, copy_to, &dummy);

      if (item_eq)
      {
        List_iterator<Item> it(item_eq->equal_items);
        /* We're interested in field items only */
        if (item_eq->get_const())
          it++;
        Item *item;
        while ((item= it++))
        {
          if (!(item->used_tables() & ~emb_sj_nest->sj_inner_tables))
          {
            DBUG_ASSERT(item->real_item()->type() == Item::FIELD_ITEM);
            copy_to= ((Item_field *) (item->real_item()))->field;
            break;
          }
        }
      }
      sjm->copy_field[i].set(copy_to, sjm->table->field[i], FALSE);
      /* The write_set for source tables must be set up to allow the copying */
      bitmap_set_bit(copy_to->table->write_set, copy_to->field_index);
    }
    sjm_tab->type= JT_ALL;

    /* Initialize full scan */
    sjm_tab->read_first_record= join_read_record_no_init;
    sjm_tab->read_record.copy_field= sjm->copy_field;
    sjm_tab->read_record.copy_field_end= sjm->copy_field +
                                         sjm->sjm_table_cols.elements;
    sjm_tab->read_record.read_record= rr_sequential_and_unpack;
  }

  sjm_tab->bush_children->end[-1].next_select= end_sj_materialize;

  DBUG_RETURN(FALSE);
}



/*
  Create subquery IN-equalities assuming use of materialization strategy
  
  SYNOPSIS
    create_subq_in_equalities()
      thd        Thread handle
      sjm        Semi-join materialization structure
      subq_pred  The subquery predicate

  DESCRIPTION
    Create subquery IN-equality predicates. That is, for a subquery
    
      (oe1, oe2, ...) IN (SELECT ie1, ie2, ... FROM ...)
    
    create "oe1=ie1 AND ie1=ie2 AND ..." expression, such that ie1, ie2, ..
    refer to the columns of the table that's used to materialize the
    subquery.

  RETURN 
    Created condition
*/

static Item *create_subq_in_equalities(THD *thd, SJ_MATERIALIZATION_INFO *sjm, 
                                Item_in_subselect *subq_pred)
{
  Item *res= NULL;
  if (subq_pred->left_expr->cols() == 1)
  {
    if (!(res= new Item_func_eq(subq_pred->left_expr,
                                new Item_field(sjm->table->field[0]))))
      return NULL; /* purecov: inspected */
  }
  else
  {
    Item *conj;
    for (uint i= 0; i < subq_pred->left_expr->cols(); i++)
    {
      if (!(conj= new Item_func_eq(subq_pred->left_expr->element_index(i), 
                                   new Item_field(sjm->table->field[i]))) ||
          !(res= and_items(res, conj)))
        return NULL; /* purecov: inspected */
    }
  }
  if (res->fix_fields(thd, &res))
    return NULL; /* purecov: inspected */
  return res;
}




static void remove_sj_conds(Item **tree)
{
  if (*tree)
  {
    if (is_cond_sj_in_equality(*tree))
    {
      *tree= NULL;
      return;
    }
    else if ((*tree)->type() == Item::COND_ITEM) 
    {
      Item *item;
      List_iterator<Item> li(*(((Item_cond*)*tree)->argument_list()));
      while ((item= li++))
      {
        if (is_cond_sj_in_equality(item))
          li.replace(new Item_int(1));
      }
    }
  }
}

/* Check if given Item was injected by semi-join equality */
static bool is_cond_sj_in_equality(Item *item)
{
  if (item->type() == Item::FUNC_ITEM &&
      ((Item_func*)item)->functype()== Item_func::EQ_FUNC)
  {
    Item_func_eq *item_eq= (Item_func_eq*)item;
    return test(item_eq->in_equality_no != UINT_MAX);
  }
  return FALSE;
}


/*
  Create a temporary table to weed out duplicate rowid combinations

  SYNOPSIS

    create_duplicate_weedout_tmp_table()
      thd                    Thread handle
      uniq_tuple_length_arg  Length of the table's column
      sjtbl                  Update sjtbl->[start_]recinfo values which 
                             will be needed if we'll need to convert the 
                             created temptable from HEAP to MyISAM/Maria.

  DESCRIPTION
    Create a temporary table to weed out duplicate rowid combinations. The
    table has a single column that is a concatenation of all rowids in the
    combination. 

    Depending on the needed length, there are two cases:

    1. When the length of the column < max_key_length:

      CREATE TABLE tmp (col VARBINARY(n) NOT NULL, UNIQUE KEY(col));

    2. Otherwise (not a valid SQL syntax but internally supported):

      CREATE TABLE tmp (col VARBINARY NOT NULL, UNIQUE CONSTRAINT(col));

    The code in this function was produced by extraction of relevant parts
    from create_tmp_table().

  RETURN
    created table
    NULL on error
*/

TABLE *create_duplicate_weedout_tmp_table(THD *thd, 
                                          uint uniq_tuple_length_arg,
                                          SJ_TMP_TABLE *sjtbl)
{
  MEM_ROOT *mem_root_save, own_root;
  TABLE *table;
  TABLE_SHARE *share;
  uint  temp_pool_slot=MY_BIT_NONE;
  char	*tmpname,path[FN_REFLEN];
  Field **reg_field;
  KEY_PART_INFO *key_part_info;
  KEY *keyinfo;
  uchar *group_buff;
  uchar *bitmaps;
  uint *blob_field;
  ENGINE_COLUMNDEF *recinfo, *start_recinfo;
  bool using_unique_constraint=FALSE;
  bool use_packed_rows= FALSE;
  Field *field, *key_field;
  uint null_pack_length, null_count;
  uchar *null_flags;
  uchar *pos;
  DBUG_ENTER("create_duplicate_weedout_tmp_table");
  DBUG_ASSERT(!sjtbl->is_degenerate);
  /*
    STEP 1: Get temporary table name
  */
  statistic_increment(thd->status_var.created_tmp_tables, &LOCK_status);
  if (use_temp_pool && !(test_flags & TEST_KEEP_TMP_TABLES))
    temp_pool_slot = bitmap_lock_set_next(&temp_pool);

  if (temp_pool_slot != MY_BIT_NONE) // we got a slot
    sprintf(path, "%s_%lx_%i", tmp_file_prefix,
	    current_pid, temp_pool_slot);
  else
  {
    /* if we run out of slots or we are not using tempool */
    sprintf(path,"%s%lx_%lx_%x", tmp_file_prefix,current_pid,
            thd->thread_id, thd->tmp_table++);
  }
  fn_format(path, path, mysql_tmpdir, "", MY_REPLACE_EXT|MY_UNPACK_FILENAME);

  /* STEP 2: Figure if we'll be using a key or blob+constraint */
  if (uniq_tuple_length_arg >= CONVERT_IF_BIGGER_TO_BLOB)
    using_unique_constraint= TRUE;

  /* STEP 3: Allocate memory for temptable description */
  init_sql_alloc(&own_root, TABLE_ALLOC_BLOCK_SIZE, 0);
  if (!multi_alloc_root(&own_root,
                        &table, sizeof(*table),
                        &share, sizeof(*share),
                        &reg_field, sizeof(Field*) * (1+1),
                        &blob_field, sizeof(uint)*2,
                        &keyinfo, sizeof(*keyinfo),
                        &key_part_info, sizeof(*key_part_info) * 2,
                        &start_recinfo,
                        sizeof(*recinfo)*(1*2+4),
                        &tmpname, (uint) strlen(path)+1,
                        &group_buff, (!using_unique_constraint ?
                                      uniq_tuple_length_arg : 0),
                        &bitmaps, bitmap_buffer_size(1)*3,
                        NullS))
  {
    if (temp_pool_slot != MY_BIT_NONE)
      bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
    DBUG_RETURN(NULL);
  }
  strmov(tmpname,path);
  

  /* STEP 4: Create TABLE description */
  bzero((char*) table,sizeof(*table));
  bzero((char*) reg_field,sizeof(Field*)*2);

  table->mem_root= own_root;
  mem_root_save= thd->mem_root;
  thd->mem_root= &table->mem_root;

  table->field=reg_field;
  table->alias.set("weedout-tmp", sizeof("weedout-tmp")-1,
                   table_alias_charset);
  table->reginfo.lock_type=TL_WRITE;	/* Will be updated */
  table->db_stat=HA_OPEN_KEYFILE+HA_OPEN_RNDFILE;
  table->map=1;
  table->temp_pool_slot = temp_pool_slot;
  table->copy_blobs= 1;
  table->in_use= thd;
  table->quick_keys.init();
  table->covering_keys.init();
  table->keys_in_use_for_query.init();

  table->s= share;
  init_tmp_table_share(thd, share, "", 0, tmpname, tmpname);
  share->blob_field= blob_field;
  share->blob_ptr_size= portable_sizeof_char_ptr;
  share->table_charset= NULL;
  share->primary_key= MAX_KEY;               // Indicate no primary key
  share->keys_for_keyread.init();
  share->keys_in_use.init();

  /* Create the field */
  {
    /*
      For the sake of uniformity, always use Field_varstring (altough we could
      use Field_string for shorter keys)
    */
    field= new Field_varstring(uniq_tuple_length_arg, FALSE, "rowids", share,
                               &my_charset_bin);
    if (!field)
      DBUG_RETURN(0);
    field->table= table;
    field->key_start.init(0);
    field->part_of_key.init(0);
    field->part_of_sortkey.init(0);
    field->unireg_check= Field::NONE;
    field->flags= (NOT_NULL_FLAG | BINARY_FLAG | NO_DEFAULT_VALUE_FLAG);
    field->reset_fields();
    field->init(table);
    field->orig_table= NULL;
     
    field->field_index= 0;
    
    *(reg_field++)= field;
    *blob_field= 0;
    *reg_field= 0;

    share->fields= 1;
    share->blob_fields= 0;
  }

  uint reclength= field->pack_length();
  if (using_unique_constraint)
  { 
    share->db_plugin= ha_lock_engine(0, TMP_ENGINE_HTON);
    table->file= get_new_handler(share, &table->mem_root,
                                 share->db_type());
    DBUG_ASSERT(uniq_tuple_length_arg <= table->file->max_key_length());
  }
  else
  {
    share->db_plugin= ha_lock_engine(0, heap_hton);
    table->file= get_new_handler(share, &table->mem_root,
                                 share->db_type());
  }
  if (!table->file)
    goto err;

  null_count=1;
  
  null_pack_length= 1;
  reclength += null_pack_length;

  share->reclength= reclength;
  {
    uint alloc_length=ALIGN_SIZE(share->reclength + MI_UNIQUE_HASH_LENGTH+1);
    share->rec_buff_length= alloc_length;
    if (!(table->record[0]= (uchar*)
                            alloc_root(&table->mem_root, alloc_length*3)))
      goto err;
    table->record[1]= table->record[0]+alloc_length;
    share->default_values= table->record[1]+alloc_length;
  }
  setup_tmp_table_column_bitmaps(table, bitmaps);

  recinfo= start_recinfo;
  null_flags=(uchar*) table->record[0];
  pos=table->record[0]+ null_pack_length;
  if (null_pack_length)
  {
    bzero((uchar*) recinfo,sizeof(*recinfo));
    recinfo->type=FIELD_NORMAL;
    recinfo->length=null_pack_length;
    recinfo++;
    bfill(null_flags,null_pack_length,255);	// Set null fields

    table->null_flags= (uchar*) table->record[0];
    share->null_fields= null_count;
    share->null_bytes= null_pack_length;
  }
  null_count=1;

  {
    //Field *field= *reg_field;
    uint length;
    bzero((uchar*) recinfo,sizeof(*recinfo));
    field->move_field(pos,(uchar*) 0,0);

    field->reset();
    /*
      Test if there is a default field value. The test for ->ptr is to skip
      'offset' fields generated by initalize_tables
    */
    // Initialize the table field:
    bzero(field->ptr, field->pack_length());

    length=field->pack_length();
    pos+= length;

    /* Make entry for create table */
    recinfo->length=length;
    if (field->flags & BLOB_FLAG)
      recinfo->type= FIELD_BLOB;
    else if (use_packed_rows &&
             field->real_type() == MYSQL_TYPE_STRING &&
	     length >= MIN_STRING_LENGTH_TO_PACK_ROWS)
      recinfo->type=FIELD_SKIP_ENDSPACE;
    else
      recinfo->type=FIELD_NORMAL;

    field->set_table_name(&table->alias);
  }

  if (thd->variables.tmp_table_size == ~ (ulonglong) 0)		// No limit
    share->max_rows= ~(ha_rows) 0;
  else
    share->max_rows= (ha_rows) (((share->db_type() == heap_hton) ?
                                 min(thd->variables.tmp_table_size,
                                     thd->variables.max_heap_table_size) :
                                 thd->variables.tmp_table_size) /
			         share->reclength);
  set_if_bigger(share->max_rows,1);		// For dummy start options


  //// keyinfo= param->keyinfo;
  if (TRUE)
  {
    DBUG_PRINT("info",("Creating group key in temporary table"));
    share->keys=1;
    share->uniques= test(using_unique_constraint);
    table->key_info=keyinfo;
    keyinfo->key_part=key_part_info;
    keyinfo->flags=HA_NOSAME;
    keyinfo->usable_key_parts= keyinfo->key_parts= 1;
    keyinfo->key_length=0;
    keyinfo->rec_per_key=0;
    keyinfo->algorithm= HA_KEY_ALG_UNDEF;
    keyinfo->name= (char*) "weedout_key";
    {
      key_part_info->null_bit=0;
      key_part_info->field=  field;
      key_part_info->offset= field->offset(table->record[0]);
      key_part_info->length= (uint16) field->key_length();
      key_part_info->type=   (uint8) field->key_type();
      key_part_info->key_type = FIELDFLAG_BINARY;
      if (!using_unique_constraint)
      {
	if (!(key_field= field->new_key_field(thd->mem_root, table,
                                              group_buff,
                                              field->null_ptr,
                                              field->null_bit)))
	  goto err;
        key_part_info->key_part_flag|= HA_END_SPACE_ARE_EQUAL; //todo need this?
      }
      keyinfo->key_length+=  key_part_info->length;
    }
  }

  if (thd->is_fatal_error)			// If end of memory
    goto err;
  share->db_record_offset= 1;
  table->no_rows= 1;              		// We don't need the data

  // recinfo must point after last field
  recinfo++;
  if (share->db_type() == TMP_ENGINE_HTON)
  {
    if (create_internal_tmp_table(table, keyinfo, start_recinfo, &recinfo, 0))
      goto err;
  }
  sjtbl->start_recinfo= start_recinfo;
  sjtbl->recinfo=       recinfo;
  if (open_tmp_table(table))
    goto err;

  thd->mem_root= mem_root_save;
  DBUG_RETURN(table);

err:
  thd->mem_root= mem_root_save;
  free_tmp_table(thd,table);                    /* purecov: inspected */
  if (temp_pool_slot != MY_BIT_NONE)
    bitmap_lock_clear_bit(&temp_pool, temp_pool_slot);
  DBUG_RETURN(NULL);				/* purecov: inspected */
}


/*
  SemiJoinDuplicateElimination: Reset the temporary table
*/

int do_sj_reset(SJ_TMP_TABLE *sj_tbl)
{
  DBUG_ENTER("do_sj_reset");
  if (sj_tbl->tmp_table)
  {
    int rc= sj_tbl->tmp_table->file->ha_delete_all_rows();
    DBUG_RETURN(rc);
  }
  sj_tbl->have_degenerate_row= FALSE;
  DBUG_RETURN(0);
}

/*
  SemiJoinDuplicateElimination: Weed out duplicate row combinations

  SYNPOSIS
    do_sj_dups_weedout()
      thd    Thread handle
      sjtbl  Duplicate weedout table

  DESCRIPTION
    Try storing current record combination of outer tables (i.e. their
    rowids) in the temporary table. This records the fact that we've seen 
    this record combination and also tells us if we've seen it before.

  RETURN
    -1  Error
    1   The row combination is a duplicate (discard it)
    0   The row combination is not a duplicate (continue)
*/

int do_sj_dups_weedout(THD *thd, SJ_TMP_TABLE *sjtbl) 
{
  int error;
  SJ_TMP_TABLE::TAB *tab= sjtbl->tabs;
  SJ_TMP_TABLE::TAB *tab_end= sjtbl->tabs_end;
  uchar *ptr;
  uchar *nulls_ptr;

  DBUG_ENTER("do_sj_dups_weedout");

  if (sjtbl->is_degenerate)
  {
    if (sjtbl->have_degenerate_row) 
      DBUG_RETURN(1);

    sjtbl->have_degenerate_row= TRUE;
    DBUG_RETURN(0);
  }

  ptr= sjtbl->tmp_table->record[0] + 1;

  /* Put the the rowids tuple into table->record[0]: */

  // 1. Store the length 
  if (((Field_varstring*)(sjtbl->tmp_table->field[0]))->length_bytes == 1)
  {
    *ptr= (uchar)(sjtbl->rowid_len + sjtbl->null_bytes);
    ptr++;
  }
  else
  {
    int2store(ptr, sjtbl->rowid_len + sjtbl->null_bytes);
    ptr += 2;
  }

  nulls_ptr= ptr;
  // 2. Zero the null bytes 
  if (sjtbl->null_bytes)
  {
    bzero(ptr, sjtbl->null_bytes);
    ptr += sjtbl->null_bytes; 
  }

  // 3. Put the rowids
  for (uint i=0; tab != tab_end; tab++, i++)
  {
    handler *h= tab->join_tab->table->file;
    if (tab->join_tab->table->maybe_null && tab->join_tab->table->null_row)
    {
      /* It's a NULL-complemented row */
      *(nulls_ptr + tab->null_byte) |= tab->null_bit;
      bzero(ptr + tab->rowid_offset, h->ref_length);
    }
    else
    {
      /* Copy the rowid value */
      memcpy(ptr + tab->rowid_offset, h->ref, h->ref_length);
    }
  }

  error= sjtbl->tmp_table->file->ha_write_tmp_row(sjtbl->tmp_table->record[0]);
  if (error)
  {
    /* create_internal_tmp_table_from_heap will generate error if needed */
    if (!sjtbl->tmp_table->file->is_fatal_error(error, HA_CHECK_DUP))
      DBUG_RETURN(1); /* Duplicate */
    if (create_internal_tmp_table_from_heap(thd, sjtbl->tmp_table,
                                            sjtbl->start_recinfo,
                                            &sjtbl->recinfo, error, 1))
      DBUG_RETURN(-1);
  }
  DBUG_RETURN(0);
}


/*
  Setup the strategies to eliminate semi-join duplicates.
  
  SYNOPSIS
    setup_semijoin_dups_elimination()
      join           Join to process
      options        Join options (needed to see if join buffering will be 
                     used or not)
      no_jbuf_after  Another bit of information re where join buffering will
                     be used.

  DESCRIPTION
    Setup the strategies to eliminate semi-join duplicates. ATM there are 4
    strategies:

    1. DuplicateWeedout (use of temptable to remove duplicates based on rowids
                         of row combinations)
    2. FirstMatch (pick only the 1st matching row combination of inner tables)
    3. LooseScan (scanning the sj-inner table in a way that groups duplicates
                  together and picking the 1st one)
    4. SJ-Materialization.
    
    The join order has "duplicate-generating ranges", and every range is
    served by one strategy or a combination of FirstMatch with with some
    other strategy.
    
    "Duplicate-generating range" is defined as a range within the join order
    that contains all of the inner tables of a semi-join. All ranges must be
    disjoint, if tables of several semi-joins are interleaved, then the ranges
    are joined together, which is equivalent to converting
      SELECT ... WHERE oe1 IN (SELECT ie1 ...) AND oe2 IN (SELECT ie2 )
    to
      SELECT ... WHERE (oe1, oe2) IN (SELECT ie1, ie2 ... ...)
    .

    Applicability conditions are as follows:

    DuplicateWeedout strategy
    ~~~~~~~~~~~~~~~~~~~~~~~~~

      (ot|nt)*  [ it ((it|ot|nt)* (it|ot))]  (nt)*
      +------+  +=========================+  +---+
        (1)                 (2)               (3)

       (1) - Prefix of OuterTables (those that participate in 
             IN-equality and/or are correlated with subquery) and outer 
             Non-correlated tables.
       (2) - The handled range. The range starts with the first sj-inner
             table, and covers all sj-inner and outer tables 
             Within the range,  Inner, Outer, outer non-correlated tables
             may follow in any order.
       (3) - The suffix of outer non-correlated tables.
    
    FirstMatch strategy
    ~~~~~~~~~~~~~~~~~~~

      (ot|nt)*  [ it ((it|nt)* it) ]  (nt)*
      +------+  +==================+  +---+
        (1)             (2)          (3)

      (1) - Prefix of outer and non-correlated tables
      (2) - The handled range, which may contain only inner and
            non-correlated tables.
      (3) - The suffix of outer non-correlated tables.

    LooseScan strategy 
    ~~~~~~~~~~~~~~~~~~

     (ot|ct|nt) [ loosescan_tbl (ot|nt|it)* it ]  (ot|nt)*
     +--------+   +===========+ +=============+   +------+
        (1)           (2)          (3)              (4)
     
      (1) - Prefix that may contain any outer tables. The prefix must contain
            all the non-trivially correlated outer tables. (non-trivially means
            that the correlation is not just through the IN-equality).
      
      (2) - Inner table for which the LooseScan scan is performed.

      (3) - The remainder of the duplicate-generating range. It is served by 
            application of FirstMatch strategy, with the exception that
            outer IN-correlated tables are considered to be non-correlated.

      (4) - THe suffix of outer and outer non-correlated tables.

  
  The choice between the strategies is made by the join optimizer (see
  advance_sj_state() and fix_semijoin_strategies_for_picked_join_order()).
  This function sets up all fields/structures/etc needed for execution except
  for setup/initialization of semi-join materialization which is done in 
  setup_sj_materialization() (todo: can't we move that to here also?)

  RETURN
    FALSE  OK 
    TRUE   Out of memory error
*/

int setup_semijoin_dups_elimination(JOIN *join, ulonglong options, 
                                    uint no_jbuf_after)
{
  uint i;
  THD *thd= join->thd;
  DBUG_ENTER("setup_semijoin_dups_elimination");
  
  POSITION *pos= join->best_positions + join->const_tables;
  for (i= join->const_tables ; i < join->top_join_tab_count; )
  {
    JOIN_TAB *tab=join->join_tab + i;
    //POSITION *pos= join->best_positions + i;
    uint keylen, keyno;
    switch (pos->sj_strategy) {
      case SJ_OPT_MATERIALIZE:
      case SJ_OPT_MATERIALIZE_SCAN:
        /* Do nothing */
        i+= 1;// It used to be pos->n_sj_tables, but now they are embedded in a nest
        pos += pos->n_sj_tables;
        break;
      case SJ_OPT_LOOSE_SCAN:
      {
        /* We jump from the last table to the first one */
        tab->loosescan_match_tab= tab + pos->n_sj_tables - 1;
        for (uint j= i; j < i + pos->n_sj_tables; j++)
          join->join_tab[j].inside_loosescan_range= TRUE;

        /* Calculate key length */
        keylen= 0;
        keyno= pos->loosescan_key;
        for (uint kp=0; kp < pos->loosescan_parts; kp++)
          keylen += tab->table->key_info[keyno].key_part[kp].store_length;

        tab->loosescan_key_len= keylen;
        if (pos->n_sj_tables > 1) 
          tab[pos->n_sj_tables - 1].do_firstmatch= tab;
        i+= pos->n_sj_tables;
        pos+= pos->n_sj_tables;
        break;
      }
      case SJ_OPT_DUPS_WEEDOUT:
      {
        /*
          Check for join buffering. If there is one, move the first table
          forwards, but do not destroy other duplicate elimination methods.
        */
        uint first_table= i;
        uint join_cache_level= join->thd->variables.join_cache_level;
        for (uint j= i; j < i + pos->n_sj_tables; j++)
        {
          /*
            When we'll properly take join buffering into account during
            join optimization, the below check should be changed to 
            "if (join->best_positions[j].use_join_buffer && 
                 j <= no_jbuf_after)".
            For now, use a rough criteria:
          */
          JOIN_TAB *js_tab=join->join_tab + j; 
          if (j != join->const_tables && js_tab->use_quick != 2 &&
              j <= no_jbuf_after &&
              ((js_tab->type == JT_ALL && join_cache_level != 0) ||
               (join_cache_level > 4 && (tab->type == JT_REF || 
                                         tab->type == JT_EQ_REF))))
          {
            /* Looks like we'll be using join buffer */
            first_table= join->const_tables;
            break;
          }
        }

        SJ_TMP_TABLE::TAB sjtabs[MAX_TABLES];
        SJ_TMP_TABLE::TAB *last_tab= sjtabs;
        uint jt_rowid_offset= 0; // # tuple bytes are already occupied (w/o NULL bytes)
        uint jt_null_bits= 0;    // # null bits in tuple bytes
        /*
          Walk through the range and remember
           - tables that need their rowids to be put into temptable
           - the last outer table
        */
        for (JOIN_TAB *j=join->join_tab + first_table; 
             j < join->join_tab + i + pos->n_sj_tables; j++)
        {
          if (sj_table_is_included(join, j))
          {
            last_tab->join_tab= j;
            last_tab->rowid_offset= jt_rowid_offset;
            jt_rowid_offset += j->table->file->ref_length;
            if (j->table->maybe_null)
            {
              last_tab->null_byte= jt_null_bits / 8;
              last_tab->null_bit= jt_null_bits++;
            }
            last_tab++;
            j->table->prepare_for_position();
            j->keep_current_rowid= TRUE;
          }
        }

        SJ_TMP_TABLE *sjtbl;
        if (jt_rowid_offset) /* Temptable has at least one rowid */
        {
          size_t tabs_size= (last_tab - sjtabs) * sizeof(SJ_TMP_TABLE::TAB);
          if (!(sjtbl= (SJ_TMP_TABLE*)thd->alloc(sizeof(SJ_TMP_TABLE))) ||
              !(sjtbl->tabs= (SJ_TMP_TABLE::TAB*) thd->alloc(tabs_size)))
            DBUG_RETURN(TRUE); /* purecov: inspected */
          memcpy(sjtbl->tabs, sjtabs, tabs_size);
          sjtbl->is_degenerate= FALSE;
          sjtbl->tabs_end= sjtbl->tabs + (last_tab - sjtabs);
          sjtbl->rowid_len= jt_rowid_offset;
          sjtbl->null_bits= jt_null_bits;
          sjtbl->null_bytes= (jt_null_bits + 7)/8;
          sjtbl->tmp_table= 
            create_duplicate_weedout_tmp_table(thd, 
                                               sjtbl->rowid_len + 
                                               sjtbl->null_bytes,
                                               sjtbl);
          join->sj_tmp_tables.push_back(sjtbl->tmp_table);
        }
        else
        {
          /* 
            This is a special case where the entire subquery predicate does 
            not depend on anything at all, ie this is 
              WHERE const IN (uncorrelated select)
          */
          if (!(sjtbl= (SJ_TMP_TABLE*)thd->alloc(sizeof(SJ_TMP_TABLE))))
            DBUG_RETURN(TRUE); /* purecov: inspected */
          sjtbl->tmp_table= NULL;
          sjtbl->is_degenerate= TRUE;
          sjtbl->have_degenerate_row= FALSE;
        }
        join->join_tab[first_table].flush_weedout_table= sjtbl;
        join->join_tab[i + pos->n_sj_tables - 1].check_weed_out_table= sjtbl;

        i+= pos->n_sj_tables;
        pos+= pos->n_sj_tables;
        break;
      }
      case SJ_OPT_FIRST_MATCH:
      {
        JOIN_TAB *j, *jump_to= tab-1;
        for (j= tab; j != tab + pos->n_sj_tables; j++)
        {
          /*
            NOTE: this loop probably doesn't do the right thing for the case 
            where FirstMatch's duplicate-generating range is interleaved with
            "unrelated" tables (as specified in WL#3750, section 2.2).
          */
          if (!j->emb_sj_nest)
            jump_to= tab;
          else
          {
            j->first_sj_inner_tab= tab;
            j->last_sj_inner_tab= tab + pos->n_sj_tables - 1;
          }
        }
        j[-1].do_firstmatch= jump_to;
        i+= pos->n_sj_tables;
        pos+= pos->n_sj_tables;
        break;
      }
      case SJ_OPT_NONE:
        i++;
        pos++;
        break;
    }
  }
  DBUG_RETURN(FALSE);
}


/*
  Destroy all temporary tables created by NL-semijoin runtime
*/

void destroy_sj_tmp_tables(JOIN *join)
{
  List_iterator<TABLE> it(join->sj_tmp_tables);
  TABLE *table;
  while ((table= it++))
  {
    /* 
      SJ-Materialization tables are initialized for either sequential reading 
      or index lookup, DuplicateWeedout tables are not initialized for read 
      (we only write to them), so need to call ha_index_or_rnd_end.
    */
    table->file->ha_index_or_rnd_end();
    free_tmp_table(join->thd, table);
  }
  join->sj_tmp_tables.empty();
  join->sjm_info_list.empty();
}


/*
  Remove all records from all temp tables used by NL-semijoin runtime

  SYNOPSIS
    clear_sj_tmp_tables()
      join  The join to remove tables for

  DESCRIPTION
    Remove all records from all temp tables used by NL-semijoin runtime. This 
    must be done before every join re-execution.
*/

int clear_sj_tmp_tables(JOIN *join)
{
  int res;
  List_iterator<TABLE> it(join->sj_tmp_tables);
  TABLE *table;
  while ((table= it++))
  {
    if ((res= table->file->ha_delete_all_rows()))
      return res; /* purecov: inspected */
  }

  SJ_MATERIALIZATION_INFO *sjm;
  List_iterator<SJ_MATERIALIZATION_INFO> it2(join->sjm_info_list);
  while ((sjm= it2++))
  {
    sjm->materialized= FALSE;
  }
  return 0;
}


/*
  Check if the table's rowid is included in the temptable

  SYNOPSIS
    sj_table_is_included()
      join      The join
      join_tab  The table to be checked

  DESCRIPTION
    SemiJoinDuplicateElimination: check the table's rowid should be included
    in the temptable. This is so if

    1. The table is not embedded within some semi-join nest
    2. The has been pulled out of a semi-join nest, or

    3. The table is functionally dependent on some previous table

    [4. This is also true for constant tables that can't be
        NULL-complemented but this function is not called for such tables]

  RETURN
    TRUE  - Include table's rowid
    FALSE - Don't
*/

static bool sj_table_is_included(JOIN *join, JOIN_TAB *join_tab)
{
  if (join_tab->emb_sj_nest)
    return FALSE;
  
  /* Check if this table is functionally dependent on the tables that
     are within the same outer join nest
  */
  TABLE_LIST *embedding= join_tab->table->pos_in_table_list->embedding;
  if (join_tab->type == JT_EQ_REF)
  {
    table_map depends_on= 0;
    uint idx;

    for (uint kp= 0; kp < join_tab->ref.key_parts; kp++)
      depends_on |= join_tab->ref.items[kp]->used_tables();

    Table_map_iterator it(depends_on & ~PSEUDO_TABLE_BITS);
    while ((idx= it.next_bit())!=Table_map_iterator::BITMAP_END)
    {
      JOIN_TAB *ref_tab= join->map2table[idx];
      if (embedding != ref_tab->table->pos_in_table_list->embedding)
        return TRUE;
    }
    /* Ok, functionally dependent */
    return FALSE;
  }
  /* Not functionally dependent => need to include*/
  return TRUE;
}


/*
  Index lookup-based subquery: save some flags for EXPLAIN output

  SYNOPSIS
    save_index_subquery_explain_info()
      join_tab  Subquery's join tab (there is only one as index lookup is
                only used for subqueries that are single-table SELECTs)
      where     Subquery's WHERE clause

  DESCRIPTION
    For index lookup-based subquery (i.e. one executed with
    subselect_uniquesubquery_engine or subselect_indexsubquery_engine),
    check its EXPLAIN output row should contain 
      "Using index" (TAB_INFO_FULL_SCAN_ON_NULL) 
      "Using Where" (TAB_INFO_USING_WHERE)
      "Full scan on NULL key" (TAB_INFO_FULL_SCAN_ON_NULL)
    and set appropriate flags in join_tab->packed_info.
*/

static void save_index_subquery_explain_info(JOIN_TAB *join_tab, Item* where)
{
  join_tab->packed_info= TAB_INFO_HAVE_VALUE;
  if (join_tab->table->covering_keys.is_set(join_tab->ref.key))
    join_tab->packed_info |= TAB_INFO_USING_INDEX;
  if (where)
    join_tab->packed_info |= TAB_INFO_USING_WHERE;
  for (uint i = 0; i < join_tab->ref.key_parts; i++)
  {
    if (join_tab->ref.cond_guards[i])
    {
      join_tab->packed_info |= TAB_INFO_FULL_SCAN_ON_NULL;
      break;
    }
  }
}


/*
  Check if the join can be rewritten to [unique_]indexsubquery_engine

  DESCRIPTION
    Check if the join can be changed into [unique_]indexsubquery_engine.

    The check is done after join optimization, the idea is that if the join
    has only one table and uses a [eq_]ref access generated from subselect's
    IN-equality then we replace it with a subselect_indexsubquery_engine or a
    subselect_uniquesubquery_engine.

  RETURN 
    0 - Ok, rewrite done (stop join optimization and return)
    1 - Fatal error (stop join optimization and return)
   -1 - No rewrite performed, continue with join optimization
*/

int rewrite_to_index_subquery_engine(JOIN *join)
{
  THD *thd= join->thd;
  JOIN_TAB* join_tab=join->join_tab;
  SELECT_LEX_UNIT *unit= join->unit;
  DBUG_ENTER("rewrite_to_index_subquery_engine");

  /*
    is this simple IN subquery?
  */
  /* TODO: In order to use these more efficient subquery engines in more cases,
     the following problems need to be solved:
     - the code that removes GROUP BY (group_list), also adds an ORDER BY
       (order), thus GROUP BY queries (almost?) never pass through this branch.
       Solution: remove the test below '!join->order', because we remove the
       ORDER clase for subqueries anyway.
     - in order to set a more efficient engine, the optimizer needs to both
       decide to remove GROUP BY, *and* select one of the JT_[EQ_]REF[_OR_NULL]
       access methods, *and* loose scan should be more expensive or
       inapliccable. When is that possible?
     - Consider expanding the applicability of this rewrite for loose scan
       for group by queries.
  */
  if (!join->group_list && !join->order &&
      join->unit->item && 
      join->unit->item->substype() == Item_subselect::IN_SUBS &&
      join->table_count == 1 && join->conds &&
      !join->unit->is_union())
  {
    if (!join->having)
    {
      Item *where= join->conds;
      if (join_tab[0].type == JT_EQ_REF &&
	  join_tab[0].ref.items[0]->name == in_left_expr_name)
      {
        remove_subq_pushed_predicates(join, &where);
        save_index_subquery_explain_info(join_tab, where);
        join_tab[0].type= JT_UNIQUE_SUBQUERY;
        join->error= 0;
        DBUG_RETURN(unit->item->
                    change_engine(new
                                  subselect_uniquesubquery_engine(thd,
                                                                  join_tab,
                                                                  unit->item,
                                                                  where)));
      }
      else if (join_tab[0].type == JT_REF &&
	       join_tab[0].ref.items[0]->name == in_left_expr_name)
      {
	remove_subq_pushed_predicates(join, &where);
        save_index_subquery_explain_info(join_tab, where);
        join_tab[0].type= JT_INDEX_SUBQUERY;
        join->error= 0;
        DBUG_RETURN(unit->item->
                    change_engine(new
                                  subselect_indexsubquery_engine(thd,
                                                                 join_tab,
                                                                 unit->item,
                                                                 where,
                                                                 NULL,
                                                                 0)));
      }
    } else if (join_tab[0].type == JT_REF_OR_NULL &&
	       join_tab[0].ref.items[0]->name == in_left_expr_name &&
               join->having->name == in_having_cond)
    {
      join_tab[0].type= JT_INDEX_SUBQUERY;
      join->error= 0;
      join->conds= remove_additional_cond(join->conds);
      save_index_subquery_explain_info(join_tab, join->conds);
      DBUG_RETURN(unit->item->
		  change_engine(new subselect_indexsubquery_engine(thd,
								   join_tab,
								   unit->item,
								   join->conds,
                                                                   join->having,
								   1)));
    }
  }

  DBUG_RETURN(-1); /* Haven't done the rewrite */
}


/**
  Remove additional condition inserted by IN/ALL/ANY transformation.

  @param conds   condition for processing

  @return
    new conditions
*/

static Item *remove_additional_cond(Item* conds)
{
  if (conds->name == in_additional_cond)
    return 0;
  if (conds->type() == Item::COND_ITEM)
  {
    Item_cond *cnd= (Item_cond*) conds;
    List_iterator<Item> li(*(cnd->argument_list()));
    Item *item;
    while ((item= li++))
    {
      if (item->name == in_additional_cond)
      {
	li.remove();
	if (cnd->argument_list()->elements == 1)
	  return cnd->argument_list()->head();
	return conds;
      }
    }
  }
  return conds;
}


/*
  Remove the predicates pushed down into the subquery

  SYNOPSIS
    remove_subq_pushed_predicates()
      where   IN  Must be NULL
              OUT The remaining WHERE condition, or NULL

  DESCRIPTION
    Given that this join will be executed using (unique|index)_subquery,
    without "checking NULL", remove the predicates that were pushed down
    into the subquery.

    If the subquery compares scalar values, we can remove the condition that
    was wrapped into trig_cond (it will be checked when needed by the subquery
    engine)

    If the subquery compares row values, we need to keep the wrapped
    equalities in the WHERE clause: when the left (outer) tuple has both NULL
    and non-NULL values, we'll do a full table scan and will rely on the
    equalities corresponding to non-NULL parts of left tuple to filter out
    non-matching records.

    TODO: We can remove the equalities that will be guaranteed to be true by the
    fact that subquery engine will be using index lookup. This must be done only
    for cases where there are no conversion errors of significance, e.g. 257
    that is searched in a byte. But this requires homogenization of the return 
    codes of all Field*::store() methods.
*/

static void remove_subq_pushed_predicates(JOIN *join, Item **where)
{
  if (join->conds->type() == Item::FUNC_ITEM &&
      ((Item_func *)join->conds)->functype() == Item_func::EQ_FUNC &&
      ((Item_func *)join->conds)->arguments()[0]->type() == Item::REF_ITEM &&
      ((Item_func *)join->conds)->arguments()[1]->type() == Item::FIELD_ITEM &&
      test_if_ref (join->conds,
                   (Item_field *)((Item_func *)join->conds)->arguments()[1],
                   ((Item_func *)join->conds)->arguments()[0]))
  {
    *where= 0;
    return;
  }
}




/**
  Optimize all subqueries of a query that were not flattened into a semijoin.

  @details
  Optimize all immediate children subqueries of a query.

  This phase must be called after substitute_for_best_equal_field() because
  that function may replace items with other items from a multiple equality,
  and we need to reference the correct items in the index access method of the
  IN predicate.

  @return Operation status
  @retval FALSE     success.
  @retval TRUE      error occurred.
*/

bool JOIN::optimize_unflattened_subqueries()
{
  return select_lex->optimize_unflattened_subqueries();
}


/*
  Join tab execution startup function.

  SYNOPSIS
    join_tab_execution_startup()
      tab  Join tab to perform startup actions for

  DESCRIPTION
    Join tab execution startup function. This is different from
    tab->read_first_record in the regard that this has actions that are to be
    done once per join execution.

    Currently there are only two possible startup functions, so we have them
    both here inside if (...) branches. In future we could switch to function
    pointers.

  TODO: consider moving this together with JOIN_TAB::preread_init
  
  RETURN 
    NESTED_LOOP_OK - OK
    NESTED_LOOP_ERROR| NESTED_LOOP_KILLED - Error, abort the join execution
*/

enum_nested_loop_state join_tab_execution_startup(JOIN_TAB *tab)
{
  Item_in_subselect *in_subs;
  DBUG_ENTER("join_tab_execution_startup");
  
  if (tab->table->pos_in_table_list && 
      (in_subs= tab->table->pos_in_table_list->jtbm_subselect))
  {
    /* It's a non-merged SJM nest */
    DBUG_ASSERT(in_subs->engine->engine_type() ==
                subselect_engine::HASH_SJ_ENGINE);
    subselect_hash_sj_engine *hash_sj_engine=
      ((subselect_hash_sj_engine*)in_subs->engine);
    if (!hash_sj_engine->is_materialized)
    {
      hash_sj_engine->materialize_join->exec();
      hash_sj_engine->is_materialized= TRUE; 

      if (hash_sj_engine->materialize_join->error || tab->join->thd->is_fatal_error)
        DBUG_RETURN(NESTED_LOOP_ERROR);
    }
  }
  else if (tab->bush_children)
  {
    /* It's a merged SJM nest */
    enum_nested_loop_state rc;
    SJ_MATERIALIZATION_INFO *sjm= tab->bush_children->start->emb_sj_nest->sj_mat_info;

    if (!sjm->materialized)
    {
      JOIN *join= tab->join;
      JOIN_TAB *join_tab= tab->bush_children->start;
      JOIN_TAB *save_return_tab= join->return_tab;
      /*
        Now run the join for the inner tables. The first call is to run the
        join, the second one is to signal EOF (this is essential for some
        join strategies, e.g. it will make join buffering flush the records)
      */
      if ((rc= sub_select(join, join_tab, FALSE/* no EOF */)) < 0 ||
          (rc= sub_select(join, join_tab, TRUE/* now EOF */)) < 0)
      {
        join->return_tab= save_return_tab;
        DBUG_RETURN(rc); /* it's NESTED_LOOP_(ERROR|KILLED)*/
      }
      join->return_tab= save_return_tab;
      sjm->materialized= TRUE;
    }
  }

  DBUG_RETURN(NESTED_LOOP_OK);
}


/**
  Choose an optimal strategy to execute an IN/ALL/ANY subquery predicate
  based on cost.

  @param join_tables  the set of tables joined in the subquery

  @notes
  The method chooses between the materialization and IN=>EXISTS rewrite
  strategies for the execution of a non-flattened subquery IN predicate.
  The cost-based decision is made as follows:

  1. compute materialize_strategy_cost based on the unmodified subquery
  2. reoptimize the subquery taking into account the IN-EXISTS predicates
  3. compute in_exists_strategy_cost based on the reoptimized plan
  4. compare and set the cheaper strategy
     if (materialize_strategy_cost >= in_exists_strategy_cost)
       in_strategy = MATERIALIZATION
     else
       in_strategy = IN_TO_EXISTS
  5. if in_strategy = MATERIALIZATION and it is not possible to initialize it
       revert to IN_TO_EXISTS
  6. if (in_strategy == MATERIALIZATION)
       revert the subquery plan to the original one before reoptimizing
     else
       inject the IN=>EXISTS predicates into the new EXISTS subquery plan

  The implementation itself is a bit more complicated because it takes into
  account two more factors:
  - whether the user allowed both strategies through an optimizer_switch, and
  - if materialization was the cheaper strategy, whether it can be executed
    or not.

  @retval FALSE     success.
  @retval TRUE      error occurred.
*/

bool JOIN::choose_subquery_plan(table_map join_tables)
{
  Join_plan_state save_qep; /* The original QEP of the subquery. */
  enum_reopt_result reopt_result= REOPT_NONE;
  Item_in_subselect *in_subs;

  if (is_in_subquery())
  {
    in_subs= (Item_in_subselect*) unit->item;
    if (in_subs->create_in_to_exists_cond(this))
      return true;
  }
  else
    return false;
  /* A strategy must be chosen earlier. */
  DBUG_ASSERT(in_subs->has_strategy());
  DBUG_ASSERT(in_to_exists_where || in_to_exists_having);
  DBUG_ASSERT(!in_to_exists_where || in_to_exists_where->fixed);
  DBUG_ASSERT(!in_to_exists_having || in_to_exists_having->fixed);

  /*
    Compute and compare the costs of materialization and in-exists if both
    strategies are possible and allowed by the user (checked during the prepare
    phase.
  */
  if (in_subs->test_strategy(SUBS_MATERIALIZATION) &&
      in_subs->test_strategy(SUBS_IN_TO_EXISTS))
  {
    JOIN *outer_join;
    JOIN *inner_join= this;
    /* Number of unique value combinations filtered by the IN predicate. */
    double outer_lookup_keys;
    /* Cost and row count of the unmodified subquery. */
    double inner_read_time_1, inner_record_count_1;
    /* Cost of the subquery with injected IN-EXISTS predicates. */
    double inner_read_time_2;
    /* The cost to compute IN via materialization. */
    double materialize_strategy_cost;
    /* The cost of the IN->EXISTS strategy. */
    double in_exists_strategy_cost;
    double dummy;

    /*
      A. Estimate the number of rows of the outer table that will be filtered
      by the IN predicate.
    */
    outer_join= unit->outer_select() ? unit->outer_select()->join : NULL;
    if (outer_join && outer_join->table_count > 0)
    {
      /*
        TODO:
        Currently outer_lookup_keys is computed as the number of rows in
        the partial join including the JOIN_TAB where the IN predicate is
        pushed to. In the general case this is a gross overestimate because
        due to caching we are interested only in the number of unique keys.
        The search key may be formed by columns from much fewer than all
        tables in the partial join. Example:
        select * from t1, t2 where t1.c1 = t2.key AND t2.c2 IN (select ...);
        If the join order: t1, t2, the number of unique lookup keys is ~ to
        the number of unique values t2.c2 in the partial join t1 join t2.
      */
      outer_join->get_partial_cost_and_fanout(in_subs->get_join_tab_idx(),
                                              table_map(-1),
                                              &dummy,
                                              &outer_lookup_keys);
    }
    else
    {
      /*
        TODO: outer_join can be NULL for DELETE statements.
        How to compute its cost?
      */
      outer_lookup_keys= 1;
    }

    /*
      B. Estimate the cost and number of records of the subquery both
      unmodified, and with injected IN->EXISTS predicates.
    */
    inner_read_time_1= inner_join->best_read;
    inner_record_count_1= inner_join->record_count;

    if (in_to_exists_where && const_tables != table_count)
    {
      /*
        Re-optimize and cost the subquery taking into account the IN-EXISTS
        conditions.
      */
      reopt_result= reoptimize(in_to_exists_where, join_tables, &save_qep);
      if (reopt_result == REOPT_ERROR)
        return TRUE;

      /* Get the cost of the modified IN-EXISTS plan. */
      inner_read_time_2= inner_join->best_read;

    }
    else
    {
      /* Reoptimization would not produce any better plan. */
      inner_read_time_2= inner_read_time_1;
    }

    /*
      C. Compute execution costs.
    */
    /* C.1 Compute the cost of the materialization strategy. */
    //uint rowlen= get_tmp_table_rec_length(unit->first_select()->item_list);
    uint rowlen= get_tmp_table_rec_length(ref_pointer_array, 
                                          select_lex->item_list.elements);
    /* The cost of writing one row into the temporary table. */
    double write_cost= get_tmp_table_write_cost(thd, inner_record_count_1,
                                                rowlen);
    /* The cost of a lookup into the unique index of the materialized table. */
    double lookup_cost= get_tmp_table_lookup_cost(thd, inner_record_count_1,
                                                  rowlen);
    /*
      The cost of executing the subquery and storing its result in an indexed
      temporary table.
    */
    double materialization_cost= inner_read_time_1 +
                                 write_cost * inner_record_count_1;

    materialize_strategy_cost= materialization_cost +
                               outer_lookup_keys * lookup_cost;

    /* C.2 Compute the cost of the IN=>EXISTS strategy. */
    in_exists_strategy_cost= outer_lookup_keys * inner_read_time_2;

    /* C.3 Compare the costs and choose the cheaper strategy. */
    if (materialize_strategy_cost >= in_exists_strategy_cost)
      in_subs->set_strategy(SUBS_IN_TO_EXISTS);
    else
      in_subs->set_strategy(SUBS_MATERIALIZATION);

    DBUG_PRINT("info",
               ("mat_strategy_cost: %.2f, mat_cost: %.2f, write_cost: %.2f, lookup_cost: %.2f",
                materialize_strategy_cost, materialization_cost, write_cost, lookup_cost));
    DBUG_PRINT("info",
               ("inx_strategy_cost: %.2f, inner_read_time_2: %.2f",
                in_exists_strategy_cost, inner_read_time_2));
    DBUG_PRINT("info",("outer_lookup_keys: %.2f", outer_lookup_keys));
  }

  /*
    If (1) materialization is a possible strategy based on semantic analysis
    during the prepare phase, then if
      (2) it is more expensive than the IN->EXISTS transformation, and
      (3) it is not possible to create usable indexes for the materialization
          strategy,
      fall back to IN->EXISTS.
    otherwise
      use materialization.
  */
  if (in_subs->test_strategy(SUBS_MATERIALIZATION) &&
      in_subs->setup_mat_engine())
  {
    /*
      If materialization was the cheaper or the only user-selected strategy,
      but it is not possible to execute it due to limitations in the
      implementation, fall back to IN-TO-EXISTS.
    */
    in_subs->set_strategy(SUBS_IN_TO_EXISTS);
  }

  if (in_subs->test_strategy(SUBS_MATERIALIZATION))
  {
    /* Restore the original query plan used for materialization. */
    if (reopt_result == REOPT_NEW_PLAN)
      restore_query_plan(&save_qep);

    in_subs->unit->uncacheable&= ~UNCACHEABLE_DEPENDENT_INJECTED;
    select_lex->uncacheable&= ~UNCACHEABLE_DEPENDENT_INJECTED;

    /*
      Reset the "LIMIT 1" set in Item_exists_subselect::fix_length_and_dec.
      TODO:
      Currently we set the subquery LIMIT to infinity, and this is correct
      because we forbid at parse time LIMIT inside IN subqueries (see
      Item_in_subselect::test_limit). However, once we allow this, here
      we should set the correct limit if given in the query.
    */
    in_subs->unit->global_parameters->select_limit= NULL;
    in_subs->unit->set_limit(unit->global_parameters);
    /*
      Set the limit of this JOIN object as well, because normally its being
      set in the beginning of JOIN::optimize, which was already done.
    */
    select_limit= in_subs->unit->select_limit_cnt;
  }
  else if (in_subs->test_strategy(SUBS_IN_TO_EXISTS))
  {
    if (reopt_result == REOPT_NONE && in_to_exists_where &&
        const_tables != table_count)
    {
      /*
        The subquery was not reoptimized with the newly injected IN-EXISTS
        conditions either because the user allowed only the IN-EXISTS strategy,
        or because materialization was not possible based on semantic analysis.
      */
      reopt_result= reoptimize(in_to_exists_where, join_tables, NULL);
      if (reopt_result == REOPT_ERROR)
        return TRUE;
    }

    if (in_subs->inject_in_to_exists_cond(this))
      return TRUE;
    /*
      It is IN->EXISTS transformation so we should mark subquery as
      dependent
    */
    in_subs->unit->uncacheable|= UNCACHEABLE_DEPENDENT_INJECTED;
    select_lex->uncacheable|= UNCACHEABLE_DEPENDENT_INJECTED;
    select_limit= 1;
  }
  else
    DBUG_ASSERT(FALSE);

  return FALSE;
}


/**
  Choose a query plan for a table-less subquery.

  @notes

  @retval FALSE     success.
  @retval TRUE      error occurred.
*/

bool JOIN::choose_tableless_subquery_plan()
{
  DBUG_ASSERT(!tables_list || !table_count);
  if (unit->item)
  {
    DBUG_ASSERT(unit->item->type() == Item::SUBSELECT_ITEM);
    Item_subselect *subs_predicate= unit->item;

    /*
      If the optimizer determined that his query has an empty result,
      in most cases the subquery predicate is a known constant value -
      either FALSE or NULL. The implementation of Item_subselect::reset()
      determines which one.
    */
    if (zero_result_cause)
    {
      if (!implicit_grouping)
      {
        /*
          Both group by queries and non-group by queries without aggregate
          functions produce empty subquery result.
        */
        subs_predicate->reset();
        subs_predicate->make_const();
        return FALSE;
      }

      /* TODO:
         A further optimization is possible when a non-group query with
         MIN/MAX/COUNT is optimized by opt_sum_query. Then, if there are
         only MIN/MAX functions over an empty result set, the subquery
         result is a NULL value/row, thus the value of subs_predicate is
         NULL.
      */
    }

    if (subs_predicate->is_in_predicate())
    {
      Item_in_subselect *in_subs;
      in_subs= (Item_in_subselect*) subs_predicate;
      in_subs->set_strategy(SUBS_IN_TO_EXISTS);
      if (in_subs->create_in_to_exists_cond(this) ||
          in_subs->inject_in_to_exists_cond(this))
        return TRUE;
      tmp_having= having;
    }
  }
  return FALSE;
}