summaryrefslogtreecommitdiff
path: root/sql/opt_sum.cc
blob: e0ae8643a1c9c82369f039ae25125d979b3bd4c0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
/* Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.

   This program is free software; you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation; version 2 of the License.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program; if not, write to the Free Software
   Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301  USA
*/


/**
  @file

  Optimising of MIN(), MAX() and COUNT(*) queries without 'group by' clause
  by replacing the aggregate expression with a constant.  

  Given a table with a compound key on columns (a,b,c), the following
  types of queries are optimised (assuming the table handler supports
  the required methods)

  @verbatim
  SELECT COUNT(*) FROM t1[,t2,t3,...]
  SELECT MIN(b) FROM t1 WHERE a=const
  SELECT MAX(c) FROM t1 WHERE a=const AND b=const
  SELECT MAX(b) FROM t1 WHERE a=const AND b<const
  SELECT MIN(b) FROM t1 WHERE a=const AND b>const
  SELECT MIN(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
  SELECT MAX(b) FROM t1 WHERE a=const AND b BETWEEN const AND const
  @endverbatim

  Instead of '<' one can use '<=', '>', '>=' and '=' as well.
  Instead of 'a=const' the condition 'a IS NULL' can be used.

  If all selected fields are replaced then we will also remove all
  involved tables and return the answer without any join. Thus, the
  following query will be replaced with a row of two constants:
  @verbatim
  SELECT MAX(b), MIN(d) FROM t1,t2 
    WHERE a=const AND b<const AND d>const
  @endverbatim
  (assuming a index for column d of table t2 is defined)
*/

#include "mysql_priv.h"
#include "sql_select.h"

static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref, Field* field,
                                COND *cond, uint *range_fl,
                                uint *key_prefix_length);
static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field,
                            COND *cond, uint range_fl, uint prefix_len);
static int maxmin_in_range(bool max_fl, Field* field, COND *cond);


/*
  Get exact count of rows in all tables

  SYNOPSIS
    get_exact_records()
    tables		List of tables

  NOTES
    When this is called, we know all table handlers supports HA_HAS_RECORDS
    or HA_STATS_RECORDS_IS_EXACT

  RETURN
    ULONGLONG_MAX	Error: Could not calculate number of rows
    #			Multiplication of number of rows in all tables
*/

static ulonglong get_exact_record_count(TABLE_LIST *tables)
{
  ulonglong count= 1;
  for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf)
  {
    ha_rows tmp= tl->table->file->records();
    if ((tmp == HA_POS_ERROR))
      return ULONGLONG_MAX;
    count*= tmp;
  }
  return count;
}


/**
  Use index to read MIN(field) value.
  
  @param table      Table object
  @param ref        Reference to the structure where we store the key value
  @item_field       Field used in MIN()
  @range_fl         Whether range endpoint is strict less than
  @prefix_len       Length of common key part for the range
  
  @retval
    0               No errors
    HA_ERR_...      Otherwise
*/

static int get_index_min_value(TABLE *table, TABLE_REF *ref,
                               Item_field *item_field, uint range_fl,
                               uint prefix_len)
{
  int error;
  
  if (!ref->key_length)
    error= table->file->index_first(table->record[0]);
  else 
  {
    /*
      Use index to replace MIN/MAX functions with their values
      according to the following rules:

      1) Insert the minimum non-null values where the WHERE clause still
         matches, or
      2) a NULL value if there are only NULL values for key_part_k.
      3) Fail, producing a row of nulls

      Implementation: Read the smallest value using the search key. If
      the interval is open, read the next value after the search
      key. If read fails, and we're looking for a MIN() value for a
      nullable column, test if there is an exact match for the key.
    */
    if (!(range_fl & NEAR_MIN))
      /* 
         Closed interval: Either The MIN argument is non-nullable, or
         we have a >= predicate for the MIN argument.
      */
      error= table->file->index_read_map(table->record[0],
                                         ref->key_buff,
                                         make_prev_keypart_map(ref->key_parts),
                                         HA_READ_KEY_OR_NEXT);
    else
    {
      /*
        Open interval: There are two cases:
        1) We have only MIN() and the argument column is nullable, or
        2) there is a > predicate on it, nullability is irrelevant.
        We need to scan the next bigger record first.
        Open interval is not used if the search key involves the last keypart,
        and it would not work.
      */
      DBUG_ASSERT(prefix_len < ref->key_length);
      error= table->file->index_read_map(table->record[0],
                                         ref->key_buff,
                                         make_prev_keypart_map(ref->key_parts),
                                         HA_READ_AFTER_KEY);
      /* 
         If the found record is outside the group formed by the search
         prefix, or there is no such record at all, check if all
         records in that group have NULL in the MIN argument
         column. If that is the case return that NULL.

         Check if case 1 from above holds. If it does, we should read
         the skipped tuple.
      */
      if (item_field->field->real_maybe_null() &&
          ref->key_buff[prefix_len] == 1 &&
          /*
            Last keypart (i.e. the argument to MIN) is set to NULL by
            find_key_for_maxmin only if all other keyparts are bound
            to constants in a conjunction of equalities. Hence, we
            can detect this by checking only if the last keypart is
            NULL.
          */
          (error == HA_ERR_KEY_NOT_FOUND ||
           key_cmp_if_same(table, ref->key_buff, ref->key, prefix_len)))
      {
        DBUG_ASSERT(item_field->field->real_maybe_null());
        error= table->file->index_read_map(table->record[0],
                                           ref->key_buff,
                                           make_prev_keypart_map(ref->key_parts),
                                           HA_READ_KEY_EXACT);
      }
    }
  }
  return error;
}


/**
  Use index to read MAX(field) value.
  
  @param table      Table object
  @param ref        Reference to the structure where we store the key value
  @range_fl         Whether range endpoint is strict greater than
  
  @retval
    0               No errors
    HA_ERR_...      Otherwise
*/

static int get_index_max_value(TABLE *table, TABLE_REF *ref, uint range_fl)
{
  return (ref->key_length ?
          table->file->index_read_map(table->record[0], ref->key_buff,
                                      make_prev_keypart_map(ref->key_parts),
                                      range_fl & NEAR_MAX ?
                                      HA_READ_BEFORE_KEY : 
                                      HA_READ_PREFIX_LAST_OR_PREV) :
          table->file->index_last(table->record[0]));
}



/**
  Substitutes constants for some COUNT(), MIN() and MAX() functions.

  @param tables                list of leaves of join table tree
  @param all_fields            All fields to be returned
  @param conds                 WHERE clause

  @note
    This function is only called for queries with aggregate functions and no
    GROUP BY part. This means that the result set shall contain a single
    row only

  @retval
    0                    no errors
  @retval
    1                    if all items were resolved
  @retval
    HA_ERR_KEY_NOT_FOUND on impossible conditions
  @retval
    HA_ERR_... if a deadlock or a lock wait timeout happens, for example
*/

int opt_sum_query(TABLE_LIST *tables, List<Item> &all_fields,COND *conds)
{
  List_iterator_fast<Item> it(all_fields);
  int const_result= 1;
  bool recalc_const_item= 0;
  ulonglong count= 1;
  bool is_exact_count= TRUE, maybe_exact_count= TRUE;
  table_map removed_tables= 0, outer_tables= 0, used_tables= 0;
  table_map where_tables= 0;
  Item *item;
  int error;

  if (conds)
    where_tables= conds->used_tables();

  /*
    Analyze outer join dependencies, and, if possible, compute the number
    of returned rows.
  */
  for (TABLE_LIST *tl= tables; tl; tl= tl->next_leaf)
  {
    TABLE_LIST *embedded;
    for (embedded= tl ; embedded; embedded= embedded->embedding)
    {
      if (embedded->on_expr)
        break;
    }
    if (embedded)
    /* Don't replace expression on a table that is part of an outer join */
    {
      outer_tables|= tl->table->map;

      /*
        We can't optimise LEFT JOIN in cases where the WHERE condition
        restricts the table that is used, like in:
          SELECT MAX(t1.a) FROM t1 LEFT JOIN t2 join-condition
          WHERE t2.field IS NULL;
      */
      if (tl->table->map & where_tables)
        return 0;
    }
    else
      used_tables|= tl->table->map;

    /*
      If the storage manager of 'tl' gives exact row count as part of
      statistics (cheap), compute the total number of rows. If there are
      no outer table dependencies, this count may be used as the real count.
      Schema tables are filled after this function is invoked, so we can't
      get row count 
    */
    if (!(tl->table->file->ha_table_flags() & HA_STATS_RECORDS_IS_EXACT) ||
        tl->schema_table)
    {
      maybe_exact_count&= test(!tl->schema_table &&
                               (tl->table->file->ha_table_flags() &
                                HA_HAS_RECORDS));
      is_exact_count= FALSE;
      count= 1;                                 // ensure count != 0
    }
    else
    {
      error= tl->table->file->info(HA_STATUS_VARIABLE | HA_STATUS_NO_LOCK);
      if(error)
      {
        tl->table->file->print_error(error, MYF(0));
        tl->table->in_use->fatal_error();
        return error;
      }
      count*= tl->table->file->stats.records;
    }
  }

  /*
    Iterate through all items in the SELECT clause and replace
    COUNT(), MIN() and MAX() with constants (if possible).
  */

  while ((item= it++))
  {
    if (item->type() == Item::SUM_FUNC_ITEM)
    {
      Item_sum *item_sum= (((Item_sum*) item));
      switch (item_sum->sum_func()) {
      case Item_sum::COUNT_FUNC:
        /*
          If the expr in COUNT(expr) can never be null we can change this
          to the number of rows in the tables if this number is exact and
          there are no outer joins.
        */
        if (!conds && !((Item_sum_count*) item)->get_arg(0)->maybe_null &&
            !outer_tables && maybe_exact_count)
        {
          if (!is_exact_count)
          {
            if ((count= get_exact_record_count(tables)) == ULONGLONG_MAX)
            {
              /* Error from handler in counting rows. Don't optimize count() */
              const_result= 0;
              continue;
            }
            is_exact_count= 1;                  // count is now exact
          }
          ((Item_sum_count*) item)->make_const((longlong) count);
          recalc_const_item= 1;
        }
        else
          const_result= 0;
        break;
      case Item_sum::MIN_FUNC:
      case Item_sum::MAX_FUNC:
      {
        int is_max= test(item_sum->sum_func() == Item_sum::MAX_FUNC);
        /*
          If MIN/MAX(expr) is the first part of a key or if all previous
          parts of the key is found in the COND, then we can use
          indexes to find the key.
        */
        Item *expr=item_sum->get_arg(0);
        if (expr->real_item()->type() == Item::FIELD_ITEM)
        {
          uchar key_buff[MAX_KEY_LENGTH];
          TABLE_REF ref;
          uint range_fl, prefix_len;

          ref.key_buff= key_buff;
          Item_field *item_field= (Item_field*) (expr->real_item());
          TABLE *table= item_field->field->table;

          /* 
            Look for a partial key that can be used for optimization.
            If we succeed, ref.key_length will contain the length of
            this key, while prefix_len will contain the length of 
            the beginning of this key without field used in MIN/MAX(). 
            Type of range for the key part for this field will be
            returned in range_fl.
          */
          if (table->file->inited || (outer_tables & table->map) ||
              !find_key_for_maxmin(is_max, &ref, item_field->field, conds,
                                   &range_fl, &prefix_len))
          {
            const_result= 0;
            break;
          }
          table->file->ha_index_init((uint) ref.key, 1);

          error= is_max ? 
                 get_index_max_value(table, &ref, range_fl) :
                 get_index_min_value(table, &ref, item_field, range_fl,
                                     prefix_len);

          /* Verify that the read tuple indeed matches the search key */
	  if (!error && reckey_in_range(is_max, &ref, item_field->field, 
			                conds, range_fl, prefix_len))
	    error= HA_ERR_KEY_NOT_FOUND;
          table->set_keyread(FALSE);
          table->file->ha_index_end();
          if (error)
	  {
	    if (error == HA_ERR_KEY_NOT_FOUND || error == HA_ERR_END_OF_FILE)
	      return HA_ERR_KEY_NOT_FOUND;	      // No rows matching WHERE
	    /* HA_ERR_LOCK_DEADLOCK or some other error */
 	    table->file->print_error(error, MYF(0));
            return(error);
	  }
          removed_tables|= table->map;
        }
        else if (!expr->const_item() || !is_exact_count)
        {
          /*
            The optimization is not applicable in both cases:
            (a) 'expr' is a non-constant expression. Then we can't
            replace 'expr' by a constant.
            (b) 'expr' is a costant. According to ANSI, MIN/MAX must return
            NULL if the query does not return any rows. Thus, if we are not
            able to determine if the query returns any rows, we can't apply
            the optimization and replace MIN/MAX with a constant.
          */
          const_result= 0;
          break;
        }
        /*
          If count == 0 (so is_exact_count == TRUE) and
          there're no outer joins, set to NULL,
          otherwise set to the constant value.
        */
        if (!count && !outer_tables)
          item_sum->clear();
        else
          item_sum->reset();
        item_sum->make_const();
        recalc_const_item= 1;
        break;
      }
      default:
        const_result= 0;
        break;
      }
    }
    else if (const_result)
    {
      if (recalc_const_item)
        item->update_used_tables();
      if (!item->const_item())
        const_result= 0;
    }
  }
  /*
    If we have a where clause, we can only ignore searching in the
    tables if MIN/MAX optimisation replaced all used tables
    We do not use replaced values in case of:
    SELECT MIN(key) FROM table_1, empty_table
    removed_tables is != 0 if we have used MIN() or MAX().
  */
  if (removed_tables && used_tables != removed_tables)
    const_result= 0;                            // We didn't remove all tables
  return const_result;
}


/**
  Test if the predicate compares a field with constants.

  @param func_item        Predicate item
  @param[out] args        Here we store the field followed by constants
  @param[out] inv_order   Is set to 1 if the predicate is of the form
                          'const op field'

  @retval
    0        func_item is a simple predicate: a field is compared with
    constants
  @retval
    1        Otherwise
*/

bool simple_pred(Item_func *func_item, Item **args, bool *inv_order)
{
  Item *item;
  *inv_order= 0;
  switch (func_item->argument_count()) {
  case 0:
    /* MULT_EQUAL_FUNC */
    {
      Item_equal *item_equal= (Item_equal *) func_item;
      Item_equal_iterator it(*item_equal);
      args[0]= it++;
      if (it++)
        return 0;
      if (!(args[1]= item_equal->get_const()))
        return 0;
    }
    break;
  case 1:
    /* field IS NULL */
    item= func_item->arguments()[0];
    if (item->type() != Item::FIELD_ITEM)
      return 0;
    args[0]= item;
    break;
  case 2:
    /* 'field op const' or 'const op field' */
    item= func_item->arguments()[0];
    if (item->type() == Item::FIELD_ITEM)
    {
      args[0]= item;
      item= func_item->arguments()[1];
      if (!item->const_item())
        return 0;
      args[1]= item;
    }
    else if (item->const_item())
    {
      args[1]= item;
      item= func_item->arguments()[1];
      if (item->type() != Item::FIELD_ITEM)
        return 0;
      args[0]= item;
      *inv_order= 1;
    }
    else
      return 0;
    break;
  case 3:
    /* field BETWEEN const AND const */
    item= func_item->arguments()[0];
    if (item->type() == Item::FIELD_ITEM)
    {
      args[0]= item;
      for (int i= 1 ; i <= 2; i++)
      {
        item= func_item->arguments()[i];
        if (!item->const_item())
          return 0;
        args[i]= item;
      }
    }
    else
      return 0;
  }
  return 1;
}


/**
  Check whether a condition matches a key to get {MAX|MIN}(field):.

   For the index specified by the keyinfo parameter and an index that
   contains the field as its component (field_part), the function
   checks whether 

   - the condition cond is a conjunction, 
   - all of its conjuncts refer to columns of the same table, and
   - each conjunct is on one of the following forms:
     - f_i = const_i or const_i = f_i or f_i IS NULL,
       where f_i is part of the index
     - field {<|<=|>=|>|=} const
     - const {<|<=|>=|>|=} field
     - field BETWEEN const_1 AND const_2

   As a side-effect, the key value to be used for looking up the MIN/MAX value
   is actually stored inside the Field object. An interesting feature is that
   the function will find the most restrictive endpoint by over-eager
   evaluation of the @c WHERE condition. It continually stores the current
   endpoint inside the Field object. For a query such as

   @code
   SELECT MIN(a) FROM t1 WHERE a > 3 AND a > 5;
   @endcode

   the algorithm will recurse over the conjuction, storing first a 3 in the
   field. In the next recursive invocation the expression a > 5 is evaluated
   as 3 > 5 (Due to the dual nature of Field objects as value carriers and
   field identifiers), which will obviously fail, leading to 5 being stored in
   the Field object.
   
   @param[in]     max_fl         Set to true if we are optimizing MAX(),
                                 false means we are optimizing %MIN()
   @param[in, out] ref           Reference to the structure where the function 
                                 stores the key value
   @param[in]     keyinfo        Reference to the key info
   @param[in]     field_part     Pointer to the key part for the field
   @param[in]     cond           WHERE condition
   @param[in,out] key_part_used  Map of matchings parts. The function will output
                                 the set of key parts actually being matched in 
                                 this set, yet it relies on the caller to 
                                 initialize the value to zero. This is due 
                                 to the fact that this value is passed 
                                 recursively.
   @param[in,out] range_fl       Says whether endpoints use strict greater/less 
                                 than.
   @param[out]    prefix_len     Length of common key part for the range
                                 where MAX/MIN is searched for

  @retval
    false    Index can't be used.
  @retval
    true     We can use the index to get MIN/MAX value
*/

static bool matching_cond(bool max_fl, TABLE_REF *ref, KEY *keyinfo, 
                          KEY_PART_INFO *field_part, COND *cond,
                          key_part_map *key_part_used, uint *range_fl,
                          uint *prefix_len)
{
  DBUG_ENTER("matching_cond");
  if (!cond)
    DBUG_RETURN(TRUE);
  Field *field= field_part->field;
  if (!(cond->used_tables() & field->table->map))
  {
    /* Condition doesn't restrict the used table */
    DBUG_RETURN(TRUE);
  }
  if (cond->type() == Item::COND_ITEM)
  {
    if (((Item_cond*) cond)->functype() == Item_func::COND_OR_FUNC)
      DBUG_RETURN(FALSE);

    /* AND */
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Item *item;
    while ((item= li++))
    {
      if (!matching_cond(max_fl, ref, keyinfo, field_part, item,
                         key_part_used, range_fl, prefix_len))
        DBUG_RETURN(FALSE);
    }
    DBUG_RETURN(TRUE);
  }

  if (cond->type() != Item::FUNC_ITEM)
    DBUG_RETURN(FALSE);                                 // Not operator, can't optimize

  bool eq_type= 0;                            // =, <=> or IS NULL
  bool is_null_safe_eq= FALSE;                // The operator is NULL safe, e.g. <=> 
  bool noeq_type= 0;                          // < or >  
  bool less_fl= 0;                            // < or <= 
  bool is_null= 0;                            // IS NULL
  bool between= 0;                            // BETWEEN ... AND ... 

  switch (((Item_func*) cond)->functype()) {
  case Item_func::ISNULL_FUNC:
    is_null= 1;     /* fall through */
  case Item_func::EQ_FUNC:
    eq_type= TRUE;
    break;
  case Item_func::EQUAL_FUNC:
    eq_type= is_null_safe_eq= TRUE;
    break;
  case Item_func::LT_FUNC:
    noeq_type= 1;   /* fall through */
  case Item_func::LE_FUNC:
    less_fl= 1;      
    break;
  case Item_func::GT_FUNC:
    noeq_type= 1;   /* fall through */
  case Item_func::GE_FUNC:
    break;
  case Item_func::BETWEEN:
    between= 1;
    break;
  case Item_func::MULT_EQUAL_FUNC:
    eq_type= 1;
    break;
  default:
    DBUG_RETURN(FALSE);                                        // Can't optimize function
  }
  
  Item *args[3];
  bool inv;

  /* Test if this is a comparison of a field and constant */
  if (!simple_pred((Item_func*) cond, args, &inv))
    DBUG_RETURN(FALSE);

  if (!is_null_safe_eq && !is_null &&
      (args[1]->is_null() || (between && args[2]->is_null())))
    DBUG_RETURN(FALSE);

  if (inv && !eq_type)
    less_fl= 1-less_fl;                         // Convert '<' -> '>' (etc)

  /* Check if field is part of the tested partial key */
  uchar *key_ptr= ref->key_buff;
  KEY_PART_INFO *part;
  for (part= keyinfo->key_part; ; key_ptr+= part++->store_length)

  {
    if (part > field_part)
      DBUG_RETURN(FALSE);                     // Field is beyond the tested parts
    if (part->field->eq(((Item_field*) args[0])->field))
      break;                        // Found a part of the key for the field
  }

  bool is_field_part= part == field_part;
  if (!(is_field_part || eq_type))
    DBUG_RETURN(FALSE);

  key_part_map org_key_part_used= *key_part_used;
  if (eq_type || between || max_fl == less_fl)
  {
    uint length= (key_ptr-ref->key_buff)+part->store_length;
    if (ref->key_length < length)
    {
    /* Ultimately ref->key_length will contain the length of the search key */
      ref->key_length= length;      
      ref->key_parts= (part - keyinfo->key_part) + 1;
    }
    if (!*prefix_len && part+1 == field_part)       
      *prefix_len= length;
    if (is_field_part && eq_type)
      *prefix_len= ref->key_length;
  
    *key_part_used|= (key_part_map) 1 << (part - keyinfo->key_part);
  }

  if (org_key_part_used == *key_part_used &&
    /*
      The current search key is not being extended with a new key part.  This
      means that the a condition is added a key part for which there was a
      previous condition. We can only overwrite such key parts in some special
      cases, e.g. a > 2 AND a > 1 (here range_fl must be set to something). In
      all other cases the WHERE condition is always false anyway.
    */
      (eq_type || *range_fl == 0))
      DBUG_RETURN(FALSE);

  if (org_key_part_used != *key_part_used ||
      (is_field_part && 
       (between || eq_type || max_fl == less_fl) && !cond->val_int()))
  {
    /*
      It's the first predicate for this part or a predicate of the
      following form  that moves upper/lower bounds for max/min values:
      - field BETWEEN const AND const
      - field = const 
      - field {<|<=} const, when searching for MAX
      - field {>|>=} const, when searching for MIN
    */

    if (is_null || (is_null_safe_eq && args[1]->is_null()))
    {
      part->field->set_null();
      *key_ptr= (uchar) 1;
    }
    else
    {
      /* Update endpoints for MAX/MIN, see function comment. */
      Item *value= args[between && max_fl ? 2 : 1];
      store_val_in_field(part->field, value, CHECK_FIELD_IGNORE);
      if (part->null_bit) 
        *key_ptr++= (uchar) test(part->field->is_null());
      part->field->get_key_image(key_ptr, part->length, Field::itRAW);
    }
    if (is_field_part)
    {
      if (between || eq_type)
        *range_fl&= ~(NO_MAX_RANGE | NO_MIN_RANGE);
      else
      {
        *range_fl&= ~(max_fl ? NO_MAX_RANGE : NO_MIN_RANGE);
        if (noeq_type)
          *range_fl|=  (max_fl ? NEAR_MAX : NEAR_MIN);
        else
          *range_fl&= ~(max_fl ? NEAR_MAX : NEAR_MIN);
      }
    }
  }
  else if (eq_type)
  {
    if ((!is_null && !cond->val_int()) ||
        (is_null && !test(part->field->is_null())))
     DBUG_RETURN(FALSE);                       // Impossible test
  }
  else if (is_field_part)
    *range_fl&= ~(max_fl ? NO_MIN_RANGE : NO_MAX_RANGE);
  DBUG_RETURN(TRUE);  
}


/**
  Check whether we can get value for {max|min}(field) by using a key.

     If where-condition is not a conjunction of 0 or more conjuct the
     function returns false, otherwise it checks whether there is an
     index including field as its k-th component/part such that:

     -# for each previous component f_i there is one and only one conjunct
        of the form: f_i= const_i or const_i= f_i or f_i is null
     -# references to field occur only in conjucts of the form:
        field {<|<=|>=|>|=} const or const {<|<=|>=|>|=} field or 
        field BETWEEN const1 AND const2
     -# all references to the columns from the same table as column field
        occur only in conjucts mentioned above.
     -# each of k first components the index is not partial, i.e. is not
        defined on a fixed length proper prefix of the field.

     If such an index exists the function through the ref parameter
     returns the key value to find max/min for the field using the index,
     the length of first (k-1) components of the key and flags saying
     how to apply the key for the search max/min value.
     (if we have a condition field = const, prefix_len contains the length
     of the whole search key)

  @param[in]     max_fl      0 for MIN(field) / 1 for MAX(field)
  @param[in,out] ref         Reference to the structure we store the key value
  @param[in]     field       Field used inside MIN() / MAX()
  @param[in]     cond        WHERE condition
  @param[out]    range_fl    Bit flags for how to search if key is ok
  @param[out]    prefix_len  Length of prefix for the search range

  @note
    This function may set table->key_read to 1, which must be reset after
    index is used! (This can only happen when function returns 1)

  @retval
    0   Index can not be used to optimize MIN(field)/MAX(field)
  @retval
    1   Can use key to optimize MIN()/MAX().
    In this case ref, range_fl and prefix_len are updated
*/

      
static bool find_key_for_maxmin(bool max_fl, TABLE_REF *ref,
                                Field* field, COND *cond,
                                uint *range_fl, uint *prefix_len)
{
  if (!(field->flags & PART_KEY_FLAG))
    return 0;                                        // Not key field

  TABLE *table= field->table;
  uint idx= 0;

  KEY *keyinfo,*keyinfo_end;
  for (keyinfo= table->key_info, keyinfo_end= keyinfo+table->s->keys ;
       keyinfo != keyinfo_end;
       keyinfo++,idx++)
  {
    KEY_PART_INFO *part,*part_end;
    key_part_map key_part_to_use= 0;
    /*
      Perform a check if index is not disabled by ALTER TABLE
      or IGNORE INDEX.
    */
    if (!table->keys_in_use_for_query.is_set(idx))
      continue;
    uint jdx= 0;
    *prefix_len= 0;
    for (part= keyinfo->key_part, part_end= part+keyinfo->key_parts ;
         part != part_end ;
         part++, jdx++, key_part_to_use= (key_part_to_use << 1) | 1)
    {
      if (!(table->file->index_flags(idx, jdx, 0) & HA_READ_ORDER))
        return 0;

      /* Check whether the index component is partial */
      Field *part_field= table->field[part->fieldnr-1];
      if ((part_field->flags & BLOB_FLAG) ||
          part->length < part_field->key_length())
        break;

      if (field->eq(part->field))
      {
        ref->key= idx;
        ref->key_length= 0;
        ref->key_parts= 0;
        key_part_map key_part_used= 0;
        *range_fl= NO_MIN_RANGE | NO_MAX_RANGE;
        if (matching_cond(max_fl, ref, keyinfo, part, cond,
                          &key_part_used, range_fl, prefix_len) &&
            !(key_part_to_use & ~key_part_used))
        {
          if (!max_fl && key_part_used == key_part_to_use && part->null_bit)
          {
            /*
              The query is on this form:

              SELECT MIN(key_part_k) 
              FROM t1 
              WHERE key_part_1 = const and ... and key_part_k-1 = const

              If key_part_k is nullable, we want to find the first matching row
              where key_part_k is not null. The key buffer is now {const, ...,
              NULL}. This will be passed to the handler along with a flag
              indicating open interval. If a tuple is read that does not match
              these search criteria, an attempt will be made to read an exact
              match for the key buffer.
            */
            /* Set the first byte of key_part_k to 1, that means NULL */
            ref->key_buff[ref->key_length]= 1;
            ref->key_length+= part->store_length;
            ref->key_parts++;
            DBUG_ASSERT(ref->key_parts == jdx+1);
            *range_fl&= ~NO_MIN_RANGE;
            *range_fl|= NEAR_MIN; // Open interval
          }
          /*
            The following test is false when the key in the key tree is
            converted (for example to upper case)
          */
          if (field->part_of_key.is_set(idx))
            table->set_keyread(TRUE);
          return 1;
        }
      }
    }
  }
  return 0;
}


/**
  Check whether found key is in range specified by conditions.

  @param[in] max_fl         0 for MIN(field) / 1 for MAX(field)
  @param[in] ref            Reference to the key value and info
  @param[in] field          Field used the MIN/MAX expression
  @param[in] cond           WHERE condition
  @param[in] range_fl       Says whether there is a condition to to be checked
  @param[in] prefix_len     Length of the constant part of the key

  @retval
    0        ok
  @retval
    1        WHERE was not true for the found row
*/

static int reckey_in_range(bool max_fl, TABLE_REF *ref, Field* field,
                            COND *cond, uint range_fl, uint prefix_len)
{
  if (key_cmp_if_same(field->table, ref->key_buff, ref->key, prefix_len))
    return 1;
  if (!cond || (range_fl & (max_fl ? NO_MIN_RANGE : NO_MAX_RANGE)))
    return 0;
  return maxmin_in_range(max_fl, field, cond);
}


/**
  Check whether {MAX|MIN}(field) is in range specified by conditions.

  @param[in] max_fl          0 for MIN(field) / 1 for MAX(field)
  @param[in] field           Field used the MIN/MAX expression
  @param[in] cond            WHERE condition

  @retval
    0        ok
  @retval
    1        WHERE was not true for the found row
*/

static int maxmin_in_range(bool max_fl, Field* field, COND *cond)
{
  /* If AND/OR condition */
  if (cond->type() == Item::COND_ITEM)
  {
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Item *item;
    while ((item= li++))
    {
      if (maxmin_in_range(max_fl, field, item))
        return 1;
    }
    return 0;
  }

  if (cond->used_tables() != field->table->map)
    return 0;
  bool less_fl= 0;
  switch (((Item_func*) cond)->functype()) {
  case Item_func::BETWEEN:
    return cond->val_int() == 0;                // Return 1 if WHERE is false
  case Item_func::LT_FUNC:
  case Item_func::LE_FUNC:
    less_fl= 1;
  case Item_func::GT_FUNC:
  case Item_func::GE_FUNC:
  {
    Item *item= ((Item_func*) cond)->arguments()[1];
    /* In case of 'const op item' we have to swap the operator */
    if (!item->const_item())
      less_fl= 1-less_fl;
    /*
      We only have to check the expression if we are using an expression like
      SELECT MAX(b) FROM t1 WHERE a=const AND b>const
      not for
      SELECT MAX(b) FROM t1 WHERE a=const AND b<const
    */
    if (max_fl != less_fl)
      return cond->val_int() == 0;                // Return 1 if WHERE is false
    return 0;
  }
  case Item_func::EQ_FUNC:
  case Item_func::EQUAL_FUNC:
    break;
  default:                                        // Keep compiler happy
    DBUG_ASSERT(1);                               // Impossible
    break;
  }
  return 0;
}