1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
|
/*
Copyright (c) 2009, 2011, Monty Program Ab
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; version 2 of the License.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */
/**
@file
@brief
Table Elimination Module
@defgroup Table_Elimination Table Elimination Module
@{
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "my_bit.h"
#include "sql_select.h"
/*
OVERVIEW
========
This file contains table elimination module. The idea behind table
elimination is as follows: suppose we have a left join
SELECT * FROM t1 LEFT JOIN
(t2 JOIN t3) ON t2.primary_key=t1.col AND
t2.primary_key=t2.col
WHERE ...
such that
* columns of the inner tables are not used anywhere ouside the outer join
(not in WHERE, not in GROUP/ORDER BY clause, not in select list etc etc),
* inner side of the outer join is guaranteed to produce at most one matching
record combination for each record combination of outer tables.
then the inner side of the outer join can be removed from the query, as it
will always produce only one record combination (either real or
null-complemented one) and we don't care about what that record combination
is.
MODULE INTERFACE
================
The module has one entry point - the eliminate_tables() function, which one
needs to call (once) at some point before join optimization.
eliminate_tables() operates over the JOIN structures. Logically, it
removes the inner tables of an outer join operation together with the
operation itself. Physically, it changes the following members:
* Eliminated tables are marked as constant and moved to the front of the
join order.
* In addition to this, they are recorded in JOIN::eliminated_tables bitmap.
* Items that became disused because they were in the ON expression of an
eliminated outer join are notified by means of the Item tree walk which
calls Item::mark_as_eliminated_processor for every item
- At the moment the only Item that cares whether it was eliminated is
Item_subselect with its Item_subselect::eliminated flag which is used
by EXPLAIN code to check if the subquery should be shown in EXPLAIN.
Table elimination is redone on every PS re-execution.
TABLE ELIMINATION ALGORITHM FOR ONE OUTER JOIN
==============================================
As described above, we can remove inner side of an outer join if it is
1. not referred to from any other parts of the query
2. always produces one matching record combination.
We check #1 by doing a recursive descent down the join->join_list while
maintaining a union of used_tables() attribute of all Item expressions in
other parts of the query. When we encounter an outer join, we check if the
bitmap of tables on its inner side has intersection with tables that are used
elsewhere. No intersection means that inner side of the outer join could
potentially be eliminated.
In order to check #2, one needs to prove that inner side of an outer join
is functionally dependent on the outside. The proof is constructed from
functional dependencies of intermediate objects:
- Inner side of outer join is functionally dependent when each of its tables
are functionally dependent. (We assume a table is functionally dependent
when its dependencies allow to uniquely identify one table record, or no
records).
- Table is functionally dependent when it has got a unique key whose columns
are functionally dependent.
- A column is functionally dependent when we could locate an AND-part of a
certain ON clause in form
tblX.columnY= expr
where expr is functionally depdendent. expr is functionally dependent when
all columns that it refers to are functionally dependent.
These relationships are modeled as a bipartite directed graph that has
dependencies as edges and two kinds of nodes:
Value nodes:
- Table column values (each is a value of tblX.columnY)
- Table values (each node represents a table inside the join nest we're
trying to eliminate).
A value has one attribute, it is either bound (i.e. functionally dependent)
or not.
Module nodes:
- Modules representing tblX.colY=expr equalities. Equality module has
= incoming edges from columns used in expr
= outgoing edge to tblX.colY column.
- Nodes representing unique keys. Unique key has
= incoming edges from key component value modules
= outgoing edge to key's table module
- Inner side of outer join module. Outer join module has
= incoming edges from table value modules
= No outgoing edges. Once we reach it, we know we can eliminate the
outer join.
A module may depend on multiple values, and hence its primary attribute is
the number of its arguments that are not bound.
The algorithm starts with equality nodes that don't have any incoming edges
(their expressions are either constant or depend only on tables that are
outside of the outer join in question) and performns a breadth-first
traversal. If we reach the outer join nest node, it means outer join is
functionally dependent and can be eliminated. Otherwise it cannot be
eliminated.
HANDLING MULTIPLE NESTED OUTER JOINS
====================================
Outer joins that are not nested one within another are eliminated
independently. For nested outer joins we have the following considerations:
1. ON expressions from children outer joins must be taken into account
Consider this example:
SELECT t0.*
FROM
t0
LEFT JOIN
(t1 LEFT JOIN t2 ON t2.primary_key=t1.col1)
ON
t1.primary_key=t0.col AND t2.col1=t1.col2
Here we cannot eliminate the "... LEFT JOIN t2 ON ..." part alone because the
ON clause of top level outer join has references to table t2.
We can eliminate the entire "... LEFT JOIN (t1 LEFT JOIN t2) ON .." part,
but in order to do that, we must look at both ON expressions.
2. ON expressions of parent outer joins are useless.
Consider an example:
SELECT t0.*
FROM
t0
LEFT JOIN
(t1 LEFT JOIN t2 ON some_expr)
ON
t2.primary_key=t1.col -- (*)
Here the uppermost ON expression has a clause that gives us functional
dependency of table t2 on t1 and hence could be used to eliminate the
"... LEFT JOIN t2 ON..." part.
However, we would not actually encounter this situation, because before the
table elimination we run simplify_joins(), which, among other things, upon
seeing a functional dependency condition like (*) will convert the outer join
of
"... LEFT JOIN t2 ON ..."
into inner join and thus make table elimination not to consider eliminating
table t2.
*/
class Dep_value;
class Dep_value_field;
class Dep_value_table;
class Dep_module;
class Dep_module_expr;
class Dep_module_goal;
class Dep_module_key;
class Dep_analysis_context;
/*
A value, something that can be bound or not bound. One can also iterate over
unbound modules that depend on this value
*/
class Dep_value : public Sql_alloc
{
public:
Dep_value(): bound(FALSE) {}
virtual ~Dep_value(){} /* purecov: inspected */ /* stop compiler warnings */
bool is_bound() { return bound; }
void make_bound() { bound= TRUE; }
/* Iteration over unbound modules that depend on this value */
typedef char *Iterator;
virtual Iterator init_unbound_modules_iter(char *buf)=0;
virtual Dep_module* get_next_unbound_module(Dep_analysis_context *dac,
Iterator iter) = 0;
static const size_t iterator_size;
protected:
bool bound;
};
/*
A table field value. There is exactly only one such object for any tblX.fieldY
- the field depends on its table and equalities
- expressions that use the field are its dependencies
*/
class Dep_value_field : public Dep_value
{
public:
Dep_value_field(Dep_value_table *table_arg, Field *field_arg) :
table(table_arg), field(field_arg)
{}
Dep_value_table *table; /* Table this field is from */
Field *field; /* Field this object is representing */
/* Iteration over unbound modules that are our dependencies */
Iterator init_unbound_modules_iter(char *buf);
Dep_module* get_next_unbound_module(Dep_analysis_context *dac,
Iterator iter);
void make_unbound_modules_iter_skip_keys(Iterator iter);
static const size_t iterator_size;
private:
/*
Field_deps that belong to one table form a linked list, ordered by
field_index
*/
Dep_value_field *next_table_field;
/*
Offset to bits in Dep_analysis_context::expr_deps (see comment to that
member for semantics of the bits).
*/
uint bitmap_offset;
class Module_iter
{
public:
/* if not null, return this and advance */
Dep_module_key *key_dep;
/* Otherwise, this and advance */
uint equality_no;
};
friend class Dep_analysis_context;
friend class Field_dependency_recorder;
friend class Dep_value_table;
};
const size_t Dep_value_field::iterator_size=
ALIGN_SIZE(sizeof(Dep_value_field::Module_iter));
/*
A table value. There is one Dep_value_table object for every table that can
potentially be eliminated.
Table becomes bound as soon as some of its unique keys becomes bound
Once the table is bound:
- all of its fields are bound
- its embedding outer join has one less unknown argument
*/
class Dep_value_table : public Dep_value
{
public:
Dep_value_table(TABLE *table_arg) :
table(table_arg), fields(NULL), keys(NULL)
{}
TABLE *table; /* Table this object is representing */
/* Ordered list of fields that belong to this table */
Dep_value_field *fields;
Dep_module_key *keys; /* Ordered list of Unique keys in this table */
/* Iteration over unbound modules that are our dependencies */
Iterator init_unbound_modules_iter(char *buf);
Dep_module* get_next_unbound_module(Dep_analysis_context *dac,
Iterator iter);
static const size_t iterator_size;
private:
class Module_iter
{
public:
/* Space for field iterator */
char buf[Dep_value_field::iterator_size];
/* !NULL <=> iterating over depdenent modules of this field */
Dep_value_field *field_dep;
bool returned_goal;
};
};
const size_t Dep_value_table::iterator_size=
ALIGN_SIZE(sizeof(Dep_value_table::Module_iter));
const size_t Dep_value::iterator_size=
max(Dep_value_table::iterator_size, Dep_value_field::iterator_size);
/*
A 'module'. Module has unsatisfied dependencies, number of whose is stored in
unbound_args. Modules also can be linked together in a list.
*/
class Dep_module : public Sql_alloc
{
public:
virtual ~Dep_module(){} /* purecov: inspected */ /* stop compiler warnings */
/* Mark as bound. Currently is non-virtual and does nothing */
void make_bound() {};
/*
The final module will return TRUE here. When we see that TRUE was returned,
that will mean that functional dependency check succeeded.
*/
virtual bool is_final () { return FALSE; }
/*
Increment number of bound arguments. this is expected to change
is_applicable() from false to true after sufficient set of arguments is
bound.
*/
void touch() { unbound_args--; }
bool is_applicable() { return !test(unbound_args); }
/* Iteration over values that */
typedef char *Iterator;
virtual Iterator init_unbound_values_iter(char *buf)=0;
virtual Dep_value* get_next_unbound_value(Dep_analysis_context *dac,
Iterator iter)=0;
static const size_t iterator_size;
protected:
uint unbound_args;
Dep_module() : unbound_args(0) {}
/* to bump unbound_args when constructing depedendencies */
friend class Field_dependency_recorder;
friend class Dep_analysis_context;
};
/*
This represents either
- "tbl.column= expr" equality dependency, i.e. tbl.column depends on fields
used in the expression, or
- tbl1.col1=tbl2.col2=... multi-equality.
*/
class Dep_module_expr : public Dep_module
{
public:
Dep_value_field *field;
Item *expr;
List<Dep_value_field> *mult_equal_fields;
/* Used during condition analysis only, similar to KEYUSE::level */
uint level;
Iterator init_unbound_values_iter(char *buf);
Dep_value* get_next_unbound_value(Dep_analysis_context *dac, Iterator iter);
static const size_t iterator_size;
private:
class Value_iter
{
public:
Dep_value_field *field;
List_iterator<Dep_value_field> it;
};
};
const size_t Dep_module_expr::iterator_size=
ALIGN_SIZE(sizeof(Dep_module_expr::Value_iter));
/*
A Unique key module
- Unique key has all of its components as arguments
- Once unique key is bound, its table value is known
*/
class Dep_module_key: public Dep_module
{
public:
Dep_module_key(Dep_value_table *table_arg, uint keyno_arg, uint n_parts_arg) :
table(table_arg), keyno(keyno_arg), next_table_key(NULL)
{
unbound_args= n_parts_arg;
}
Dep_value_table *table; /* Table this key is from */
uint keyno; /* The index we're representing */
/* Unique keys form a linked list, ordered by keyno */
Dep_module_key *next_table_key;
Iterator init_unbound_values_iter(char *buf);
Dep_value* get_next_unbound_value(Dep_analysis_context *dac, Iterator iter);
static const size_t iterator_size;
private:
class Value_iter
{
public:
Dep_value_table *table;
};
};
const size_t Dep_module_key::iterator_size=
ALIGN_SIZE(sizeof(Dep_module_key::Value_iter));
const size_t Dep_module::iterator_size=
max(Dep_module_expr::iterator_size, Dep_module_key::iterator_size);
/*
A module that represents outer join that we're trying to eliminate. If we
manage to declare this module to be bound, then outer join can be eliminated.
*/
class Dep_module_goal: public Dep_module
{
public:
Dep_module_goal(uint n_children)
{
unbound_args= n_children;
}
bool is_final() { return TRUE; }
/*
This is the goal module, so the running wave algorithm should terminate
once it sees that this module is applicable and should never try to apply
it, hence no use for unbound value iterator implementation.
*/
Iterator init_unbound_values_iter(char *buf)
{
DBUG_ASSERT(0);
return NULL;
}
Dep_value* get_next_unbound_value(Dep_analysis_context *dac, Iterator iter)
{
DBUG_ASSERT(0);
return NULL;
}
};
/*
Functional dependency analyzer context
*/
class Dep_analysis_context
{
public:
bool setup_equality_modules_deps(List<Dep_module> *bound_modules);
bool run_wave(List<Dep_module> *new_bound_modules);
/* Tables that we're looking at eliminating */
table_map usable_tables;
/* Array of equality dependencies */
Dep_module_expr *equality_mods;
uint n_equality_mods; /* Number of elements in the array */
uint n_equality_mods_alloced;
/* tablenr -> Dep_value_table* mapping. */
Dep_value_table *table_deps[MAX_KEY];
/* Element for the outer join we're attempting to eliminate */
Dep_module_goal *outer_join_dep;
/*
Bitmap of how expressions depend on bits. Given a Dep_value_field object,
one can check bitmap_is_set(expr_deps, field_val->bitmap_offset + expr_no)
to see if expression equality_mods[expr_no] depends on the given field.
*/
MY_BITMAP expr_deps;
Dep_value_table *create_table_value(TABLE *table);
Dep_value_field *get_field_value(Field *field);
#ifndef DBUG_OFF
void dbug_print_deps();
#endif
};
void eliminate_tables(JOIN *join);
static bool
eliminate_tables_for_list(JOIN *join,
List<TABLE_LIST> *join_list,
table_map tables_in_list,
Item *on_expr,
table_map tables_used_elsewhere);
static
bool check_func_dependency(JOIN *join,
table_map dep_tables,
List_iterator<TABLE_LIST> *it,
TABLE_LIST *oj_tbl,
Item* cond);
static
void build_eq_mods_for_cond(Dep_analysis_context *dac,
Dep_module_expr **eq_mod, uint *and_level,
Item *cond);
static
void check_equality(Dep_analysis_context *dac, Dep_module_expr **eq_mod,
uint and_level, Item_func *cond, Item *left, Item *right);
static
Dep_module_expr *merge_eq_mods(Dep_module_expr *start,
Dep_module_expr *new_fields,
Dep_module_expr *end, uint and_level);
static void mark_as_eliminated(JOIN *join, TABLE_LIST *tbl);
static
void add_module_expr(Dep_analysis_context *dac, Dep_module_expr **eq_mod,
uint and_level, Dep_value_field *field_val, Item *right,
List<Dep_value_field>* mult_equal_fields);
/*****************************************************************************/
/*
Perform table elimination
SYNOPSIS
eliminate_tables()
join Join to work on
DESCRIPTION
This is the entry point for table elimination. Grep for MODULE INTERFACE
section in this file for calling convention.
The idea behind table elimination is that if we have an outer join:
SELECT * FROM t1 LEFT JOIN
(t2 JOIN t3) ON t2.primary_key=t1.col AND
t3.primary_key=t2.col
such that
1. columns of the inner tables are not used anywhere ouside the outer
join (not in WHERE, not in GROUP/ORDER BY clause, not in select list
etc etc), and
2. inner side of the outer join is guaranteed to produce at most one
record combination for each record combination of outer tables.
then the inner side of the outer join can be removed from the query.
This is because it will always produce one matching record (either a
real match or a NULL-complemented record combination), and since there
are no references to columns of the inner tables anywhere, it doesn't
matter which record combination it was.
This function primary handles checking #1. It collects a bitmap of
tables that are not used in select list/GROUP BY/ORDER BY/HAVING/etc and
thus can possibly be eliminated.
After this, if #1 is met, the function calls eliminate_tables_for_list()
that checks #2.
SIDE EFFECTS
See the OVERVIEW section at the top of this file.
*/
void eliminate_tables(JOIN *join)
{
THD* thd= join->thd;
Item *item;
table_map used_tables;
DBUG_ENTER("eliminate_tables");
DBUG_ASSERT(join->eliminated_tables == 0);
/* If there are no outer joins, we have nothing to eliminate: */
if (!join->outer_join)
DBUG_VOID_RETURN;
if (!optimizer_flag(thd, OPTIMIZER_SWITCH_TABLE_ELIMINATION))
DBUG_VOID_RETURN; /* purecov: inspected */
/* Find the tables that are referred to from WHERE/HAVING */
used_tables= (join->conds? join->conds->used_tables() : 0) |
(join->having? join->having->used_tables() : 0);
/* Add tables referred to from the select list */
List_iterator<Item> it(join->fields_list);
while ((item= it++))
used_tables |= item->used_tables();
/* Add tables referred to from ORDER BY and GROUP BY lists */
ORDER *all_lists[]= { join->order, join->group_list};
for (int i=0; i < 2; i++)
{
for (ORDER *cur_list= all_lists[i]; cur_list; cur_list= cur_list->next)
used_tables |= (*(cur_list->item))->used_tables();
}
if (join->select_lex == &thd->lex->select_lex)
{
/* Multi-table UPDATE: don't eliminate tables referred from SET statement */
if (thd->lex->sql_command == SQLCOM_UPDATE_MULTI)
{
/* Multi-table UPDATE and DELETE: don't eliminate the tables we modify: */
used_tables |= thd->table_map_for_update;
List_iterator<Item> it2(thd->lex->value_list);
while ((item= it2++))
used_tables |= item->used_tables();
}
if (thd->lex->sql_command == SQLCOM_DELETE_MULTI)
{
TABLE_LIST *tbl;
for (tbl= (TABLE_LIST*)thd->lex->auxiliary_table_list.first;
tbl; tbl= tbl->next_local)
{
used_tables |= tbl->table->map;
}
}
}
table_map all_tables= join->all_tables_map();
if (all_tables & ~used_tables)
{
/* There are some tables that we probably could eliminate. Try it. */
eliminate_tables_for_list(join, join->join_list, all_tables, NULL,
used_tables);
}
DBUG_VOID_RETURN;
}
/*
Perform table elimination in a given join list
SYNOPSIS
eliminate_tables_for_list()
join The join we're working on
join_list Join list to eliminate tables from (and if
on_expr !=NULL, then try eliminating join_list
itself)
list_tables Bitmap of tables embedded in the join_list.
on_expr ON expression, if the join list is the inner side
of an outer join.
NULL means it's not an outer join but rather a
top-level join list.
tables_used_elsewhere Bitmap of tables that are referred to from
somewhere outside of the join list (e.g.
select list, HAVING, other ON expressions, etc).
DESCRIPTION
Perform table elimination in a given join list:
- First, walk through join list members and try doing table elimination for
them.
- Then, if the join list itself is an inner side of outer join
(on_expr!=NULL), then try to eliminate the entire join list.
See "HANDLING MULTIPLE NESTED OUTER JOINS" section at the top of this file
for more detailed description and justification.
RETURN
TRUE The entire join list eliminated
FALSE Join list wasn't eliminated (but some of its child outer joins
possibly were)
*/
static bool
eliminate_tables_for_list(JOIN *join, List<TABLE_LIST> *join_list,
table_map list_tables, Item *on_expr,
table_map tables_used_elsewhere)
{
TABLE_LIST *tbl;
List_iterator<TABLE_LIST> it(*join_list);
table_map tables_used_on_left= 0;
bool all_eliminated= TRUE;
while ((tbl= it++))
{
if (tbl->on_expr)
{
table_map outside_used_tables= tables_used_elsewhere |
tables_used_on_left;
if (on_expr)
outside_used_tables |= on_expr->used_tables();
if (tbl->nested_join)
{
/* This is "... LEFT JOIN (join_nest) ON cond" */
if (eliminate_tables_for_list(join,
&tbl->nested_join->join_list,
tbl->nested_join->used_tables,
tbl->on_expr,
outside_used_tables))
{
mark_as_eliminated(join, tbl);
}
else
all_eliminated= FALSE;
}
else
{
/* This is "... LEFT JOIN tbl ON cond" */
if (!(tbl->table->map & outside_used_tables) &&
check_func_dependency(join, tbl->table->map, NULL, tbl,
tbl->on_expr))
{
mark_as_eliminated(join, tbl);
}
else
all_eliminated= FALSE;
}
tables_used_on_left |= tbl->on_expr->used_tables();
}
else
{
DBUG_ASSERT(!tbl->nested_join || tbl->sj_on_expr);
//psergey-todo: is the following really correct or we'll need to descend
//down all ON clauses: ?
if (tbl->sj_on_expr)
tables_used_on_left |= tbl->sj_on_expr->used_tables();
}
}
/* Try eliminating the nest we're called for */
if (all_eliminated && on_expr && !(list_tables & tables_used_elsewhere))
{
it.rewind();
return check_func_dependency(join, list_tables & ~join->eliminated_tables,
&it, NULL, on_expr);
}
return FALSE; /* not eliminated */
}
/*
Check if given condition makes given set of tables functionally dependent
SYNOPSIS
check_func_dependency()
join Join we're procesing
dep_tables Tables that we check to be functionally dependent (on
everything else)
it Iterator that enumerates these tables, or NULL if we're
checking one single table and it is specified in oj_tbl
parameter.
oj_tbl NULL, or one single table that we're checking
cond Condition to use to prove functional dependency
DESCRIPTION
Check if we can use given condition to infer that the set of given tables
is functionally dependent on everything else.
RETURN
TRUE - Yes, functionally dependent
FALSE - No, or error
*/
static
bool check_func_dependency(JOIN *join,
table_map dep_tables,
List_iterator<TABLE_LIST> *it,
TABLE_LIST *oj_tbl,
Item* cond)
{
Dep_analysis_context dac;
/*
Pre-alloc some Dep_module_expr structures. We don't need this to be
guaranteed upper bound.
*/
dac.n_equality_mods_alloced=
join->thd->lex->current_select->max_equal_elems +
(join->thd->lex->current_select->cond_count+1)*2 +
join->thd->lex->current_select->between_count;
bzero(dac.table_deps, sizeof(dac.table_deps));
if (!(dac.equality_mods= new Dep_module_expr[dac.n_equality_mods_alloced]))
return FALSE; /* purecov: inspected */
Dep_module_expr* last_eq_mod= dac.equality_mods;
/* Create Dep_value_table objects for all tables we're trying to eliminate */
if (oj_tbl)
{
if (!dac.create_table_value(oj_tbl->table))
return FALSE; /* purecov: inspected */
}
else
{
TABLE_LIST *tbl;
while ((tbl= (*it)++))
{
if (tbl->table && (tbl->table->map & dep_tables))
{
if (!dac.create_table_value(tbl->table))
return FALSE; /* purecov: inspected */
}
}
}
dac.usable_tables= dep_tables;
/*
Analyze the the ON expression and create Dep_module_expr objects and
Dep_value_field objects for the used fields.
*/
uint and_level=0;
build_eq_mods_for_cond(&dac, &last_eq_mod, &and_level, cond);
if (!(dac.n_equality_mods= last_eq_mod - dac.equality_mods))
return FALSE; /* No useful conditions */
List<Dep_module> bound_modules;
if (!(dac.outer_join_dep= new Dep_module_goal(my_count_bits(dep_tables))) ||
dac.setup_equality_modules_deps(&bound_modules))
{
return FALSE; /* OOM, default to non-dependent */ /* purecov: inspected */
}
DBUG_EXECUTE("test", dac.dbug_print_deps(); );
return dac.run_wave(&bound_modules);
}
/*
Running wave functional dependency check algorithm
SYNOPSIS
Dep_analysis_context::run_wave()
new_bound_modules List of bound modules to start the running wave from.
The list is destroyed during execution
DESCRIPTION
This function uses running wave algorithm to check if the join nest is
functionally-dependent.
We start from provided list of bound modules, and then run the wave across
dependency edges, trying the reach the Dep_module_goal module. If we manage
to reach it, then the join nest is functionally-dependent, otherwise it is
not.
RETURN
TRUE Yes, functionally dependent
FALSE No.
*/
bool Dep_analysis_context::run_wave(List<Dep_module> *new_bound_modules)
{
List<Dep_value> new_bound_values;
Dep_value *value;
Dep_module *module;
while (!new_bound_modules->is_empty())
{
/*
The "wave" is in new_bound_modules list. Iterate over values that can be
reached from these modules but are not yet bound, and collect the next
wave generation in new_bound_values list.
*/
List_iterator<Dep_module> modules_it(*new_bound_modules);
while ((module= modules_it++))
{
char iter_buf[Dep_module::iterator_size + ALIGN_MAX_UNIT];
Dep_module::Iterator iter;
iter= module->init_unbound_values_iter(iter_buf);
while ((value= module->get_next_unbound_value(this, iter)))
{
if (!value->is_bound())
{
value->make_bound();
new_bound_values.push_back(value);
}
}
}
new_bound_modules->empty();
/*
Now walk over list of values we've just found to be bound and check which
unbound modules can be reached from them. If there are some modules that
became bound, collect them in new_bound_modules list.
*/
List_iterator<Dep_value> value_it(new_bound_values);
while ((value= value_it++))
{
char iter_buf[Dep_value::iterator_size + ALIGN_MAX_UNIT];
Dep_value::Iterator iter;
iter= value->init_unbound_modules_iter(iter_buf);
while ((module= value->get_next_unbound_module(this, iter)))
{
module->touch();
if (!module->is_applicable())
continue;
if (module->is_final())
return TRUE; /* Functionally dependent */
module->make_bound();
new_bound_modules->push_back(module);
}
}
new_bound_values.empty();
}
return FALSE;
}
/*
This is used to analyze expressions in "tbl.col=expr" dependencies so
that we can figure out which fields the expression depends on.
*/
class Field_dependency_recorder : public Field_enumerator
{
public:
Field_dependency_recorder(Dep_analysis_context *ctx_arg): ctx(ctx_arg)
{}
void visit_field(Item_field *item)
{
Field *field= item->field;
Dep_value_table *tbl_dep;
if ((tbl_dep= ctx->table_deps[field->table->tablenr]))
{
for (Dep_value_field *field_dep= tbl_dep->fields; field_dep;
field_dep= field_dep->next_table_field)
{
if (field->field_index == field_dep->field->field_index)
{
uint offs= field_dep->bitmap_offset + expr_offset;
if (!bitmap_is_set(&ctx->expr_deps, offs))
ctx->equality_mods[expr_offset].unbound_args++;
bitmap_set_bit(&ctx->expr_deps, offs);
return;
}
}
/*
We got here if didn't find this field. It's not a part of
a unique key, and/or there is no field=expr element for it.
Bump the dependency anyway, this will signal that this dependency
cannot be satisfied.
*/
ctx->equality_mods[expr_offset].unbound_args++;
}
else
visited_other_tables= TRUE;
}
Dep_analysis_context *ctx;
/* Offset of the expression we're processing in the dependency bitmap */
uint expr_offset;
bool visited_other_tables;
};
/*
Setup inbound dependency relationships for tbl.col=expr equalities
SYNOPSIS
setup_equality_modules_deps()
bound_deps_list Put here modules that were found not to depend on
any non-bound columns.
DESCRIPTION
Setup inbound dependency relationships for tbl.col=expr equalities:
- allocate a bitmap where we store such dependencies
- for each "tbl.col=expr" equality, analyze the expr part and find out
which fields it refers to and set appropriate dependencies.
RETURN
FALSE OK
TRUE Out of memory
*/
bool Dep_analysis_context::setup_equality_modules_deps(List<Dep_module>
*bound_modules)
{
DBUG_ENTER("setup_equality_modules_deps");
/*
Count Dep_value_field objects and assign each of them a unique
bitmap_offset value.
*/
uint offset= 0;
for (Dep_value_table **tbl_dep= table_deps;
tbl_dep < table_deps + MAX_TABLES;
tbl_dep++)
{
if (*tbl_dep)
{
for (Dep_value_field *field_dep= (*tbl_dep)->fields;
field_dep;
field_dep= field_dep->next_table_field)
{
field_dep->bitmap_offset= offset;
offset += n_equality_mods;
}
}
}
void *buf;
if (!(buf= current_thd->alloc(bitmap_buffer_size(offset))) ||
bitmap_init(&expr_deps, (my_bitmap_map*)buf, offset, FALSE))
{
DBUG_RETURN(TRUE); /* purecov: inspected */
}
bitmap_clear_all(&expr_deps);
/*
Analyze all "field=expr" dependencies, and have expr_deps encode
dependencies of expressions from fields.
Also collect a linked list of equalities that are bound.
*/
Field_dependency_recorder deps_recorder(this);
for (Dep_module_expr *eq_mod= equality_mods;
eq_mod < equality_mods + n_equality_mods;
eq_mod++)
{
deps_recorder.expr_offset= eq_mod - equality_mods;
deps_recorder.visited_other_tables= FALSE;
eq_mod->unbound_args= 0;
if (eq_mod->field)
{
/* Regular tbl.col=expr(tblX1.col1, tblY1.col2, ...) */
eq_mod->expr->walk(&Item::enumerate_field_refs_processor, FALSE,
(uchar*)&deps_recorder);
}
else
{
/* It's a multi-equality */
eq_mod->unbound_args= !test(eq_mod->expr);
List_iterator<Dep_value_field> it(*eq_mod->mult_equal_fields);
Dep_value_field* field_val;
while ((field_val= it++))
{
uint offs= field_val->bitmap_offset + eq_mod - equality_mods;
bitmap_set_bit(&expr_deps, offs);
}
}
if (!eq_mod->unbound_args)
bound_modules->push_back(eq_mod);
}
DBUG_RETURN(FALSE);
}
/*
Ordering that we're using whenever we need to maintain a no-duplicates list
of field value objects.
*/
static
int compare_field_values(Dep_value_field *a, Dep_value_field *b, void *unused)
{
uint a_ratio= a->field->table->tablenr*MAX_FIELDS +
a->field->field_index;
uint b_ratio= b->field->table->tablenr*MAX_FIELDS +
b->field->field_index;
return (a_ratio < b_ratio)? -1 : ((a_ratio == b_ratio)? 0 : 1);
}
/*
Produce Dep_module_expr elements for given condition.
SYNOPSIS
build_eq_mods_for_cond()
ctx Table elimination context
eq_mod INOUT Put produced equality conditions here
and_level INOUT AND-level (like in add_key_fields)
cond Condition to process
DESCRIPTION
Analyze the given condition and produce an array of Dep_module_expr
dependencies from it. The idea of analysis is as follows:
There are useful equalities that have form
eliminable_tbl.field = expr (denote as useful_equality)
The condition is composed of useful equalities and other conditions that
are combined together with AND and OR operators. We process the condition
in recursive fashion according to these basic rules:
useful_equality1 AND useful_equality2 -> make array of two
Dep_module_expr objects
useful_equality AND other_cond -> discard other_cond
useful_equality OR other_cond -> discard everything
useful_equality1 OR useful_equality2 -> check if both sides of OR are the
same equality. If yes, that's the
result, otherwise discard
everything.
The rules are used to map the condition into an array Dep_module_expr
elements. The array will specify functional dependencies that logically
follow from the condition.
SEE ALSO
This function is modeled after add_key_fields()
*/
static
void build_eq_mods_for_cond(Dep_analysis_context *ctx,
Dep_module_expr **eq_mod,
uint *and_level, Item *cond)
{
if (cond->type() == Item_func::COND_ITEM)
{
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
uint orig_offset= *eq_mod - ctx->equality_mods;
/* AND/OR */
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
Item *item;
while ((item=li++))
build_eq_mods_for_cond(ctx, eq_mod, and_level, item);
for (Dep_module_expr *mod_exp= ctx->equality_mods + orig_offset;
mod_exp != *eq_mod ; mod_exp++)
{
mod_exp->level= *and_level;
}
}
else
{
Item *item;
(*and_level)++;
build_eq_mods_for_cond(ctx, eq_mod, and_level, li++);
while ((item=li++))
{
Dep_module_expr *start_key_fields= *eq_mod;
(*and_level)++;
build_eq_mods_for_cond(ctx, eq_mod, and_level, item);
*eq_mod= merge_eq_mods(ctx->equality_mods + orig_offset,
start_key_fields, *eq_mod,
++(*and_level));
}
}
return;
}
if (cond->type() != Item::FUNC_ITEM)
return;
Item_func *cond_func= (Item_func*) cond;
Item **args= cond_func->arguments();
switch (cond_func->functype()) {
case Item_func::BETWEEN:
{
Item *fld;
if (!((Item_func_between*)cond)->negated &&
(fld= args[0]->real_item())->type() == Item::FIELD_ITEM &&
args[1]->eq(args[2], ((Item_field*)fld)->field->binary()))
{
check_equality(ctx, eq_mod, *and_level, cond_func, args[0], args[1]);
check_equality(ctx, eq_mod, *and_level, cond_func, args[1], args[0]);
}
break;
}
case Item_func::EQ_FUNC:
case Item_func::EQUAL_FUNC:
{
check_equality(ctx, eq_mod, *and_level, cond_func, args[0], args[1]);
check_equality(ctx, eq_mod, *and_level, cond_func, args[1], args[0]);
break;
}
case Item_func::ISNULL_FUNC:
{
Item *tmp=new Item_null;
if (tmp)
check_equality(ctx, eq_mod, *and_level, cond_func, args[0], tmp);
break;
}
case Item_func::MULT_EQUAL_FUNC:
{
/*
The condition is a
tbl1.field1 = tbl2.field2 = tbl3.field3 [= const_expr]
multiple-equality. Do two things:
- Collect List<Dep_value_field> of tblX.colY where tblX is one of the
tables we're trying to eliminate.
- rembember if there was a bound value, either const_expr or tblY.colZ
swher tblY is not a table that we're trying to eliminate.
Store all collected information in a Dep_module_expr object.
*/
Item_equal *item_equal= (Item_equal*)cond;
List<Dep_value_field> *fvl;
if (!(fvl= new List<Dep_value_field>))
break; /* purecov: inspected */
Item_equal_fields_iterator it(*item_equal);
Item *item;
Item *bound_item= item_equal->get_const();
while ((item= it++))
{
Field *equal_field= it.get_curr_field();
if ((item->used_tables() & ctx->usable_tables))
{
Dep_value_field *field_val;
if ((field_val= ctx->get_field_value(equal_field)))
fvl->push_back(field_val);
}
else
{
if (!bound_item)
bound_item= item;
}
}
/*
Multiple equality is only useful if it includes at least one field from
the table that we could potentially eliminate:
*/
if (fvl->elements)
{
bubble_sort<Dep_value_field>(fvl, compare_field_values, NULL);
add_module_expr(ctx, eq_mod, *and_level, NULL, bound_item, fvl);
}
break;
}
default:
break;
}
}
/*
Perform an OR operation on two (adjacent) Dep_module_expr arrays.
SYNOPSIS
merge_eq_mods()
start Start of left OR-part
new_fields Start of right OR-part
end End of right OR-part
and_level AND-level (like in add_key_fields)
DESCRIPTION
This function is invoked for two adjacent arrays of Dep_module_expr elements:
$LEFT_PART $RIGHT_PART
+-----------------------+-----------------------+
start new_fields end
The goal is to produce an array which would correspond to the combined
$LEFT_PART OR $RIGHT_PART
condition. This is achieved as follows: First, we apply distrubutive law:
(fdep_A_1 AND fdep_A_2 AND ...) OR (fdep_B_1 AND fdep_B_2 AND ...) =
= AND_ij (fdep_A_[i] OR fdep_B_[j])
Then we walk over the obtained "fdep_A_[i] OR fdep_B_[j]" pairs, and
- Discard those that that have left and right part referring to different
columns. We can't infer anything useful from "col1=expr1 OR col2=expr2".
- When left and right parts refer to the same column, we check if they are
essentially the same.
= If they are the same, we keep one copy
"t.col=expr OR t.col=expr" -> "t.col=expr
= if they are different , then we discard both
"t.col=expr1 OR t.col=expr2" -> (nothing useful)
(no per-table or for-index FUNC_DEPS exist yet at this phase).
See also merge_key_fields().
RETURN
End of the result array
*/
static
Dep_module_expr *merge_eq_mods(Dep_module_expr *start,
Dep_module_expr *new_fields,
Dep_module_expr *end, uint and_level)
{
if (start == new_fields)
return start; /* (nothing) OR (...) -> (nothing) */
if (new_fields == end)
return start; /* (...) OR (nothing) -> (nothing) */
Dep_module_expr *first_free= new_fields;
for (; new_fields != end ; new_fields++)
{
for (Dep_module_expr *old=start ; old != first_free ; old++)
{
if (old->field == new_fields->field)
{
if (!old->field)
{
/*
OR-ing two multiple equalities. We must compute an intersection of
used fields, and check the constants according to these rules:
a=b=c=d OR a=c=e=f -> a=c (compute intersection)
a=const1 OR a=b -> (nothing)
a=const1 OR a=const1 -> a=const1
a=const1 OR a=const2 -> (nothing)
If we're performing an OR operation over multiple equalities, e.g.
(a=b=c AND p=q) OR (a=b AND v=z)
then we'll need to try combining each equality with each. ANDed
equalities are guaranteed to be disjoint, so we'll only get one
hit.
*/
Field *eq_field= old->mult_equal_fields->head()->field;
if (old->expr && new_fields->expr &&
old->expr->eq_by_collation(new_fields->expr, eq_field->binary(),
eq_field->charset()))
{
/* Ok, keep */
}
else
{
/* no single constant/bound item. */
old->expr= NULL;
}
List <Dep_value_field> *fv;
if (!(fv= new List<Dep_value_field>))
break; /* purecov: inspected */
List_iterator<Dep_value_field> it1(*old->mult_equal_fields);
List_iterator<Dep_value_field> it2(*new_fields->mult_equal_fields);
Dep_value_field *lfield= it1++;
Dep_value_field *rfield= it2++;
/* Intersect two ordered lists */
while (lfield && rfield)
{
if (lfield == rfield)
{
fv->push_back(lfield);
lfield=it1++;
rfield=it2++;
}
else
{
if (compare_field_values(lfield, rfield, NULL) < 0)
lfield= it1++;
else
rfield= it2++;
}
}
if (fv->elements + test(old->expr) > 1)
{
old->mult_equal_fields= fv;
old->level= and_level;
}
}
else if (!new_fields->expr->const_item())
{
/*
If the value matches, we can use the key reference.
If not, we keep it until we have examined all new values
*/
if (old->expr->eq(new_fields->expr,
old->field->field->binary()))
{
old->level= and_level;
}
}
else if (old->expr->eq_by_collation(new_fields->expr,
old->field->field->binary(),
old->field->field->charset()))
{
old->level= and_level;
}
else
{
/* The expressions are different. */
if (old == --first_free) // If last item
break;
*old= *first_free; // Remove old value
old--; // Retry this value
}
}
}
}
/*
Ok, the results are within the [start, first_free) range, and the useful
elements have level==and_level. Now, remove all unusable elements:
*/
for (Dep_module_expr *old=start ; old != first_free ;)
{
if (old->level != and_level)
{ // Not used in all levels
if (old == --first_free)
break;
*old= *first_free; // Remove old value
continue;
}
old++;
}
return first_free;
}
/*
Add an Dep_module_expr element for left=right condition
SYNOPSIS
check_equality()
fda Table elimination context
eq_mod INOUT Store created Dep_module_expr here and increment ptr if
you do so
and_level AND-level (like in add_key_fields)
cond Condition we've inferred the left=right equality from.
left Left expression
right Right expression
usable_tables Create Dep_module_expr only if Left_expression's table
belongs to this set.
DESCRIPTION
Check if the passed left=right equality is such that
- 'left' is an Item_field referring to a field in a table we're checking
to be functionally depdendent,
- the equality allows to conclude that 'left' expression is functionally
dependent on the 'right',
and if so, create an Dep_module_expr object.
*/
static
void check_equality(Dep_analysis_context *ctx, Dep_module_expr **eq_mod,
uint and_level, Item_func *cond, Item *left, Item *right)
{
if ((left->used_tables() & ctx->usable_tables) &&
!(right->used_tables() & RAND_TABLE_BIT) &&
left->real_item()->type() == Item::FIELD_ITEM)
{
Field *field= ((Item_field*)left->real_item())->field;
if (field->result_type() == STRING_RESULT)
{
if (right->result_type() != STRING_RESULT)
{
if (field->cmp_type() != right->result_type())
return;
}
else
{
/*
We can't assume there's a functional dependency if the effective
collation of the operation differ from the field collation.
*/
if (field->cmp_type() == STRING_RESULT &&
((Field_str*)field)->charset() != cond->compare_collation())
return;
}
}
Dep_value_field *field_val;
if ((field_val= ctx->get_field_value(field)))
add_module_expr(ctx, eq_mod, and_level, field_val, right, NULL);
}
}
/*
Add a Dep_module_expr object with the specified parameters.
DESCRIPTION
Add a Dep_module_expr object with the specified parameters. Re-allocate
the ctx->equality_mods array if it has no space left.
*/
static
void add_module_expr(Dep_analysis_context *ctx, Dep_module_expr **eq_mod,
uint and_level, Dep_value_field *field_val,
Item *right, List<Dep_value_field>* mult_equal_fields)
{
if (*eq_mod == ctx->equality_mods + ctx->n_equality_mods_alloced)
{
/*
We've filled the entire equality_mods array. Replace it with a bigger
one. We do it somewhat inefficiently but it doesn't matter.
*/
/* purecov: begin inspected */
Dep_module_expr *new_arr;
if (!(new_arr= new Dep_module_expr[ctx->n_equality_mods_alloced *2]))
return;
ctx->n_equality_mods_alloced *= 2;
for (int i= 0; i < *eq_mod - ctx->equality_mods; i++)
new_arr[i]= ctx->equality_mods[i];
ctx->equality_mods= new_arr;
*eq_mod= new_arr + (*eq_mod - ctx->equality_mods);
/* purecov: end */
}
(*eq_mod)->field= field_val;
(*eq_mod)->expr= right;
(*eq_mod)->level= and_level;
(*eq_mod)->mult_equal_fields= mult_equal_fields;
(*eq_mod)++;
}
/*
Create a Dep_value_table object for the given table
SYNOPSIS
Dep_analysis_context::create_table_value()
table Table to create object for
DESCRIPTION
Create a Dep_value_table object for the given table. Also create
Dep_module_key objects for all unique keys in the table.
RETURN
Created table value object
NULL if out of memory
*/
Dep_value_table *Dep_analysis_context::create_table_value(TABLE *table)
{
Dep_value_table *tbl_dep;
if (!(tbl_dep= new Dep_value_table(table)))
return NULL; /* purecov: inspected */
Dep_module_key **key_list= &(tbl_dep->keys);
/* Add dependencies for unique keys */
for (uint i=0; i < table->s->keys; i++)
{
KEY *key= table->key_info + i;
if (key->flags & HA_NOSAME)
{
Dep_module_key *key_dep;
if (!(key_dep= new Dep_module_key(tbl_dep, i, key->key_parts)))
return NULL;
*key_list= key_dep;
key_list= &(key_dep->next_table_key);
}
}
return table_deps[table->tablenr]= tbl_dep;
}
/*
Get a Dep_value_field object for the given field, creating it if necessary
SYNOPSIS
Dep_analysis_context::get_field_value()
field Field to create object for
DESCRIPTION
Get a Dep_value_field object for the given field. First, we search for it
in the list of Dep_value_field objects we have already created. If we don't
find it, we create a new Dep_value_field and put it into the list of field
objects we have for the table.
RETURN
Created field value object
NULL if out of memory
*/
Dep_value_field *Dep_analysis_context::get_field_value(Field *field)
{
TABLE *table= field->table;
Dep_value_table *tbl_dep= table_deps[table->tablenr];
/* Try finding the field in field list */
Dep_value_field **pfield= &(tbl_dep->fields);
while (*pfield && (*pfield)->field->field_index < field->field_index)
{
pfield= &((*pfield)->next_table_field);
}
if (*pfield && (*pfield)->field->field_index == field->field_index)
return *pfield;
/* Create the field and insert it in the list */
Dep_value_field *new_field= new Dep_value_field(tbl_dep, field);
new_field->next_table_field= *pfield;
*pfield= new_field;
return new_field;
}
/*
Iteration over unbound modules that are our dependencies.
for those we have:
- dependendencies of our fields
- outer join we're in
*/
char *Dep_value_table::init_unbound_modules_iter(char *buf)
{
Module_iter *iter= ALIGN_PTR(my_ptrdiff_t(buf), Module_iter);
iter->field_dep= fields;
if (fields)
{
fields->init_unbound_modules_iter(iter->buf);
fields->make_unbound_modules_iter_skip_keys(iter->buf);
}
iter->returned_goal= FALSE;
return (char*)iter;
}
Dep_module*
Dep_value_table::get_next_unbound_module(Dep_analysis_context *dac,
char *iter)
{
Module_iter *di= (Module_iter*)iter;
while (di->field_dep)
{
Dep_module *res;
if ((res= di->field_dep->get_next_unbound_module(dac, di->buf)))
return res;
if ((di->field_dep= di->field_dep->next_table_field))
{
char *field_iter= ((Module_iter*)iter)->buf;
di->field_dep->init_unbound_modules_iter(field_iter);
di->field_dep->make_unbound_modules_iter_skip_keys(field_iter);
}
}
if (!di->returned_goal)
{
di->returned_goal= TRUE;
return dac->outer_join_dep;
}
return NULL;
}
char *Dep_module_expr::init_unbound_values_iter(char *buf)
{
Value_iter *iter= ALIGN_PTR(my_ptrdiff_t(buf), Value_iter);
iter->field= field;
if (!field)
{
new (&iter->it) List_iterator<Dep_value_field>(*mult_equal_fields);
}
return (char*)iter;
}
Dep_value* Dep_module_expr::get_next_unbound_value(Dep_analysis_context *dac,
char *buf)
{
Dep_value *res;
if (field)
{
res= ((Value_iter*)buf)->field;
((Value_iter*)buf)->field= NULL;
return (!res || res->is_bound())? NULL : res;
}
else
{
while ((res= ((Value_iter*)buf)->it++))
{
if (!res->is_bound())
return res;
}
return NULL;
}
}
char *Dep_module_key::init_unbound_values_iter(char *buf)
{
Value_iter *iter= ALIGN_PTR(my_ptrdiff_t(buf), Value_iter);
iter->table= table;
return (char*)iter;
}
Dep_value* Dep_module_key::get_next_unbound_value(Dep_analysis_context *dac,
Dep_module::Iterator iter)
{
Dep_value* res= ((Value_iter*)iter)->table;
((Value_iter*)iter)->table= NULL;
return res;
}
Dep_value::Iterator Dep_value_field::init_unbound_modules_iter(char *buf)
{
Module_iter *iter= ALIGN_PTR(my_ptrdiff_t(buf), Module_iter);
iter->key_dep= table->keys;
iter->equality_no= 0;
return (char*)iter;
}
void
Dep_value_field::make_unbound_modules_iter_skip_keys(Dep_value::Iterator iter)
{
((Module_iter*)iter)->key_dep= NULL;
}
Dep_module* Dep_value_field::get_next_unbound_module(Dep_analysis_context *dac,
Dep_value::Iterator iter)
{
Module_iter *di= (Module_iter*)iter;
Dep_module_key *key_dep= di->key_dep;
/*
First, enumerate all unique keys that are
- not yet applicable
- have this field as a part of them
*/
while (key_dep && (key_dep->is_applicable() ||
!field->part_of_key_not_clustered.is_set(key_dep->keyno)))
{
key_dep= key_dep->next_table_key;
}
if (key_dep)
{
di->key_dep= key_dep->next_table_key;
return key_dep;
}
else
di->key_dep= NULL;
/*
Then walk through [multi]equalities and find those that
- depend on this field
- and are not bound yet.
*/
uint eq_no= di->equality_no;
while (eq_no < dac->n_equality_mods &&
(!bitmap_is_set(&dac->expr_deps, bitmap_offset + eq_no) ||
dac->equality_mods[eq_no].is_applicable()))
{
eq_no++;
}
if (eq_no < dac->n_equality_mods)
{
di->equality_no= eq_no+1;
return &dac->equality_mods[eq_no];
}
return NULL;
}
/*
Mark one table or the whole join nest as eliminated.
*/
static void mark_as_eliminated(JOIN *join, TABLE_LIST *tbl)
{
TABLE *table;
/*
NOTE: there are TABLE_LIST object that have
tbl->table!= NULL && tbl->nested_join!=NULL and
tbl->table == tbl->nested_join->join_list->element(..)->table
*/
if (tbl->nested_join)
{
TABLE_LIST *child;
List_iterator<TABLE_LIST> it(tbl->nested_join->join_list);
while ((child= it++))
mark_as_eliminated(join, child);
}
else if ((table= tbl->table))
{
JOIN_TAB *tab= tbl->table->reginfo.join_tab;
if (!(join->const_table_map & tab->table->map))
{
DBUG_PRINT("info", ("Eliminated table %s", table->alias.c_ptr()));
tab->type= JT_CONST;
join->eliminated_tables |= table->map;
join->const_table_map|= table->map;
set_position(join, join->const_tables++, tab, (KEYUSE*)0);
}
}
if (tbl->on_expr)
tbl->on_expr->walk(&Item::mark_as_eliminated_processor, FALSE, NULL);
}
#ifndef DBUG_OFF
/* purecov: begin inspected */
void Dep_analysis_context::dbug_print_deps()
{
DBUG_ENTER("dbug_print_deps");
DBUG_LOCK_FILE;
fprintf(DBUG_FILE,"deps {\n");
/* Start with printing equalities */
for (Dep_module_expr *eq_mod= equality_mods;
eq_mod != equality_mods + n_equality_mods; eq_mod++)
{
char buf[128];
String str(buf, sizeof(buf), &my_charset_bin);
str.length(0);
eq_mod->expr->print(&str, QT_ORDINARY);
if (eq_mod->field)
{
fprintf(DBUG_FILE, " equality%ld: %s -> %s.%s\n",
(long)(eq_mod - equality_mods),
str.c_ptr(),
eq_mod->field->table->table->alias.c_ptr(),
eq_mod->field->field->field_name);
}
else
{
fprintf(DBUG_FILE, " equality%ld: multi-equality",
(long)(eq_mod - equality_mods));
}
}
fprintf(DBUG_FILE,"\n");
/* Then tables and their fields */
for (uint i=0; i < MAX_TABLES; i++)
{
Dep_value_table *table_dep;
if ((table_dep= table_deps[i]))
{
/* Print table */
fprintf(DBUG_FILE, " table %s\n", table_dep->table->alias.c_ptr());
/* Print fields */
for (Dep_value_field *field_dep= table_dep->fields; field_dep;
field_dep= field_dep->next_table_field)
{
fprintf(DBUG_FILE, " field %s.%s ->",
table_dep->table->alias.c_ptr(),
field_dep->field->field_name);
uint ofs= field_dep->bitmap_offset;
for (uint bit= ofs; bit < ofs + n_equality_mods; bit++)
{
if (bitmap_is_set(&expr_deps, bit))
fprintf(DBUG_FILE, " equality%d ", bit - ofs);
}
fprintf(DBUG_FILE, "\n");
}
}
}
fprintf(DBUG_FILE,"\n}\n");
DBUG_UNLOCK_FILE;
DBUG_VOID_RETURN;
}
/* purecov: end */
#endif
/**
@} (end of group Table_Elimination)
*/
|