1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
|
/**
@file
@brief
Table Elimination Module
@defgroup Table_Elimination Table Elimination Module
@{
*/
#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation // gcc: Class implementation
#endif
#include "mysql_priv.h"
#include "my_bit.h"
#include "sql_select.h"
/*
OVERVIEW
This file contains table elimination module. The idea behind table
elimination is as follows: suppose we have a left join
SELECT * FROM t1 LEFT JOIN
(t2 JOIN t3) ON t3.primary_key=t1.col AND
t4.primary_key=t2.col
such that
* columns of the inner tables are not used anywhere ouside the outer join
(not in WHERE, not in GROUP/ORDER BY clause, not in select list etc etc),
* inner side of the outer join is guaranteed to produce at most one matching
record combination for each record combination of outer tables.
then the inner side of the outer join can be removed from the query, as it
will always produce only one record combination (either real or
null-complemented one) and we don't care about what that record combination
is.
MODULE INTERFACE
The module has one entry point - eliminate_tables() function, which one
needs to call (once) at some point before the join optimization.
eliminate_tables() operates over the JOIN structures. Logically, it
removes the right sides of outer join nests. Physically, it changes the
following members:
* Eliminated tables are marked as constant and moved to the front of the
join order.
* In addition to this, they are recorded in JOIN::eliminated_tables bitmap.
* Items that became disused because they were in the ON expression of an
eliminated outer join are notified by means of the Item tree walk which
calls Item::mark_as_eliminated_processor for every item
- At the moment the only Item that cares whether it was eliminated is
Item_subselect with its Item_subselect::eliminated flag which is used
by EXPLAIN code to check if the subquery should be shown in EXPLAIN.
Table elimination is redone on every PS re-execution.
TABLE ELIMINATION ALGORITHM
As said above, we can remove inner side of an outer join if it is
1. not referred to from any other parts of the query
2. always produces one matching record combination.
We check #1 by doing a recursive descent down the join->join_list while
maintaining a union of used_tables() attribute of all expressions we've seen
"elsewhere". When we encounter an outer join, we check if the bitmap of
tables on its inner side has an intersection with tables that are used
elsewhere. No intersection means that inner side of the outer join could
potentially be eliminated.
In order to check #2, one needs to prove that inner side of an outer join
is functionally dependent on the outside. We prove dependency by proving
functional dependency of intermediate objects:
- Inner side of outer join is functionally dependent when each of its tables
are functionally dependent. (We assume a table is functionally dependent
when its dependencies allow to uniquely identify one table record, or no
records).
- Table is functionally dependent when it has got a unique key whose columns
are functionally dependent.
- A column is functionally dependent when we could locate an AND-part of a
certain ON clause in form
tblX.columnY= expr
where expr is functionally-depdendent.
Apparently the above rules can be applied recursively. Also, certain entities
depend on multiple other entities. We model this by a bipartite graph which
has two kinds of nodes:
Value nodes:
- Table column values (each is a value of tblX.columnY)
- Table nodes (each node represents a table inside an eliminable join nest).
each value is either bound (i.e. functionally dependent) or not.
Module nodes:
- Nodes representing tblX.colY=expr equalities. Equality node has
= incoming edges from columns used in expr
= outgoing edge to tblX.colY column.
- Nodes representing unique keys. Unique key has
= incoming edges from key component value nodes
= outgoing edge to key's table node
- Inner side of outer join node. Outer join node has
= incoming edges from table value nodes
= No outgoing edges. Once we reach it, we know we can eliminate the
outer join.
A module may depend on multiple values, and hence its primary attribute is
the number of its depedencies that are not bound.
The algorithm starts with equality nodes that don't have any incoming edges
(their expressions are either constant or depend only on tables that are
outside of any outer joins) and proceeds to traverse dependency->dependant
edges until we've other traversed everything (TODO rephrase elaborate), or
we've reached the point where all outer join modules have zero unsatisfied
dependencies.
*/
class Value_dep;
class Field_value;
class Table_value;
class Module_dep;
class Equality_module;
class Outer_join_module;
class Key_module;
class Table_elimination;
/*
A value, something that can be bound or not bound. Also, values can be linked
in a list.
*/
class Value_dep : public Sql_alloc
{
public:
enum {
VALUE_FIELD,
VALUE_TABLE,
} type; /* Type of the object */
Value_dep(): bound(FALSE), next(NULL)
{}
bool bound;
Value_dep *next;
};
/*
A table field value. There is exactly only one such object for any tblX.fieldY
- the field epends on its table and equalities
- expressions that use the field are its dependencies
*/
class Field_value : public Value_dep
{
public:
Field_value(Table_value *table_arg, Field *field_arg) :
table(table_arg), field(field_arg)
{
type= Value_dep::VALUE_FIELD;
}
Table_value *table; /* Table this field is from */
Field *field;
/*
Field_deps that belong to one table form a linked list. list members are
ordered by field_index
*/
Field_value *next_table_field;
uint bitmap_offset; /* Offset of our part of the bitmap */
};
/*
A table value. There is one Table_value object for every table that can
potentially be eliminated.
- table depends on any of its unique keys
- has its fields and embedding outer join as dependency.
*/
class Table_value : public Value_dep
{
public:
Table_value(TABLE *table_arg) :
table(table_arg), fields(NULL), keys(NULL), outer_join_dep(NULL)
{
type= Value_dep::VALUE_TABLE;
}
TABLE *table;
Field_value *fields; /* Ordered list of fields that belong to this table */
Key_module *keys; /* Ordered list of Unique keys in this table */
Outer_join_module *outer_join_dep; /* Innermost eliminable outer join we're in */
};
/*
A 'module'. Module has dependencies
*/
class Module_dep : public Sql_alloc
{
public:
enum {
MODULE_EXPRESSION,
MODULE_MULTI_EQUALITY,
MODULE_UNIQUE_KEY,
MODULE_OUTER_JOIN
} type; /* Type of the object */
/*
Used to make a linked list of elements that became bound and thus can
make elements that depend on them bound, too.
*/
Module_dep *next;
uint unknown_args;
Module_dep() : next(NULL), unknown_args(0) {}
};
/*
A "tbl.column= expr" equality dependency. tbl.column depends on fields
used in expr.
*/
class Equality_module : public Module_dep
{
public:
Field_value *field;
Item *expression;
/* Used during condition analysis only, similar to KEYUSE::level */
uint level;
};
/*
A Unique key.
- Unique key depends on all of its components
- Key's table is its dependency
*/
class Key_module: public Module_dep
{
public:
Key_module(Table_value *table_arg, uint keyno_arg, uint n_parts_arg) :
table(table_arg), keyno(keyno_arg), next_table_key(NULL)
{
type= Module_dep::MODULE_UNIQUE_KEY;
unknown_args= n_parts_arg;
}
Table_value *table; /* Table this key is from */
uint keyno;
/* Unique keys form a linked list, ordered by keyno */
Key_module *next_table_key;
};
/*
An outer join nest that is subject to elimination
- it depends on all tables inside it
- has its parent outer join as dependency
*/
class Outer_join_module: public Module_dep
{
public:
Outer_join_module(//TABLE_LIST *table_list_arg,
uint n_children)
// table_list(table_list_arg), parent(NULL)
{
type= Module_dep::MODULE_OUTER_JOIN;
unknown_args= n_children;
}
/*
Outer join we're representing. This can be a join nest or one table that
is outer join'ed.
*/
// TABLE_LIST *table_list;
/* Parent eliminable outer join, if any */
// Outer_join_module *parent;
};
/*
Table elimination context
*/
class Table_elimination
{
public:
Table_elimination(JOIN *join_arg) : join(join_arg), n_outer_joins(0)
{
bzero(table_deps, sizeof(table_deps));
}
JOIN *join;
/* Array of equality dependencies */
Equality_module *equality_deps;
uint n_equality_deps; /* Number of elements in the array */
/* tablenr -> Table_value* mapping. */
Table_value *table_deps[MAX_KEY];
/* Outer joins that are candidates for elimination */
List<Outer_join_module> oj_deps;
uint n_outer_joins;
/* Bitmap of how expressions depend on bits */
MY_BITMAP expr_deps;
};
static
bool build_eq_deps_for_cond(Table_elimination *te, Equality_module **fdeps,
uint *and_level, Item *cond,
table_map usable_tables);
static
bool add_eq_dep(Table_elimination *te, Equality_module **eq_dep,
uint and_level,
Item_func *cond, Item *left, Item *right,
table_map usable_tables);
static
Equality_module *merge_func_deps(Equality_module *start, Equality_module *new_fields,
Equality_module *end, uint and_level);
static Table_value *get_table_value(Table_elimination *te, TABLE *table);
static Field_value *get_field_value(Table_elimination *te, Field *field);
static Outer_join_module *get_outer_join_dep(Table_elimination *te,
//TABLE_LIST *outer_join,
table_map deps_map);
static
bool run_elimination_wave(Table_elimination *te, Module_dep *bound_modules);
void eliminate_tables(JOIN *join);
static void mark_as_eliminated(JOIN *join, TABLE_LIST *tbl);
#ifndef DBUG_OFF
static void dbug_print_deps(Table_elimination *te);
#endif
/*******************************************************************************************/
/*
Produce Eq_dep elements for given condition.
SYNOPSIS
build_eq_deps_for_cond()
te Table elimination context
fdeps INOUT Put produced equality conditions here
and_level INOUT AND-level (like in add_key_fields)
cond Condition to process
usable_tables Tables which fields we're interested in. That is,
Equality_module represent "tbl.col=expr" and we'll
produce them only if tbl is in usable_tables.
DESCRIPTION
This function is modeled after add_key_fields()
*/
static
bool build_eq_deps_for_cond(Table_elimination *te, Equality_module **fdeps,
uint *and_level, Item *cond,
table_map usable_tables)
{
if (cond->type() == Item_func::COND_ITEM)
{
List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
Equality_module *org_key_fields= *fdeps;
/* AND/OR */
if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
{
Item *item;
while ((item=li++))
{
if (build_eq_deps_for_cond(te, fdeps, and_level, item, usable_tables))
return TRUE;
}
/*
TODO: inject here a "if we have {t.col=const AND t.col=smth_else}, then
remove the second part" logic.
*/
for (; org_key_fields != *fdeps ; org_key_fields++)
org_key_fields->level= *and_level;
}
else
{
(*and_level)++;
if (build_eq_deps_for_cond(te, fdeps, and_level, li++, usable_tables))
return TRUE;
Item *item;
while ((item=li++))
{
Equality_module *start_key_fields= *fdeps;
(*and_level)++;
if (build_eq_deps_for_cond(te, fdeps, and_level, item, usable_tables))
return TRUE;
*fdeps= merge_func_deps(org_key_fields, start_key_fields, *fdeps,
++(*and_level));
}
}
return FALSE;
}
if (cond->type() != Item::FUNC_ITEM)
return FALSE;
Item_func *cond_func= (Item_func*) cond;
Item **args= cond_func->arguments();
switch (cond_func->functype()) {
case Item_func::IN_FUNC:
{
if (cond_func->argument_count() == 2)
{
if (add_eq_dep(te, fdeps, *and_level, cond_func, args[0], args[1],
usable_tables) ||
add_eq_dep(te, fdeps, *and_level, cond_func, args[1], args[0],
usable_tables))
return TRUE;
}
}
case Item_func::BETWEEN:
{
Item *fld;
if (!((Item_func_between*)cond)->negated &&
(fld= args[0]->real_item())->type() == Item::FIELD_ITEM &&
args[1]->eq(args[2], ((Item_field*)fld)->field->binary()))
{
if (add_eq_dep(te, fdeps, *and_level, cond_func, args[0], args[1],
usable_tables) ||
add_eq_dep(te, fdeps, *and_level, cond_func, args[1], args[0],
usable_tables))
return TRUE;
}
break;
}
case Item_func::EQ_FUNC:
case Item_func::EQUAL_FUNC:
{
add_eq_dep(te, fdeps, *and_level, cond_func, args[0], args[1],
usable_tables);
add_eq_dep(te, fdeps, *and_level, cond_func, args[1], args[0],
usable_tables);
break;
}
case Item_func::ISNULL_FUNC:
{
Item *tmp=new Item_null;
if (!tmp || add_eq_dep(te, fdeps, *and_level, cond_func, args[0], args[1],
usable_tables))
return TRUE;
break;
}
case Item_func::MULT_EQUAL_FUNC:
{
Item_equal *item_equal= (Item_equal *) cond;
Item *const_item= item_equal->get_const();
Item_equal_iterator it(*item_equal);
Item_field *item;
if (const_item)
{
/*
For each field field1 from item_equal consider the equality
field1=const_item as a condition allowing an index access of the table
with field1 by the keys value of field1.
*/
while ((item= it++))
{
if (add_eq_dep(te, fdeps, *and_level, cond_func, item, const_item,
usable_tables))
return TRUE;
}
}
else
{
/*
Consider all pairs of different fields included into item_equal.
For each of them (field1, field1) consider the equality
field1=field2 as a condition allowing an index access of the table
with field1 by the keys value of field2.
*/
Item_equal_iterator fi(*item_equal);
while ((item= fi++))
{
Field *field= item->field;
Item_field *item2;
while ((item2= it++))
{
if (!field->eq(item2->field))
{
if (add_eq_dep(te, fdeps, *and_level, cond_func, item, item2,
usable_tables))
return TRUE;
}
}
it.rewind();
}
}
break;
}
default:
break;
}
return FALSE;
}
/*
Perform an OR operation on two (adjacent) Equality_module arrays.
SYNOPSIS
merge_func_deps()
start Start of left OR-part
new_fields Start of right OR-part
end End of right OR-part
and_level AND-level.
DESCRIPTION
This function is invoked for two adjacent arrays of Equality_module elements:
$LEFT_PART $RIGHT_PART
+-----------------------+-----------------------+
start new_fields end
The goal is to produce an array which would correspnd to the combined
$LEFT_PART OR $RIGHT_PART
condition. This is achieved as follows: First, we apply distrubutive law:
(fdep_A_1 AND fdep_A_2 AND ...) OR (fdep_B_1 AND fdep_B_2 AND ...) =
= AND_ij (fdep_A_[i] OR fdep_B_[j])
Then we walk over the obtained "fdep_A_[i] OR fdep_B_[j]" pairs, and
- Discard those that that have left and right part referring to different
columns. We can't infer anything useful from "col1=expr1 OR col2=expr2".
- When left and right parts refer to the same column, we check if they are
essentially the same.
= If they are the same, we keep one copy
"t.col=expr OR t.col=expr" -> "t.col=expr
= if they are different , then we discard both
"t.col=expr1 OR t.col=expr2" -> (nothing useful)
(no per-table or for-index FUNC_DEPS exist yet at this phase).
See also merge_key_fields().
RETURN
End of the result array
*/
static
Equality_module *merge_func_deps(Equality_module *start, Equality_module *new_fields,
Equality_module *end, uint and_level)
{
if (start == new_fields)
return start; // Impossible or
if (new_fields == end)
return start; // No new fields, skip all
Equality_module *first_free=new_fields;
for (; new_fields != end ; new_fields++)
{
for (Equality_module *old=start ; old != first_free ; old++)
{
/*
TODO: does it make sense to attempt to merging multiple-equalities?
A: YES.
(a=b=c) OR (a=b=d) produce "a=b".
QQ:
What to use for merging? Trivial N*M algorithm or pre-sort and then
merge ordered sequences?
*/
if (old->field == new_fields->field)
{
if (!new_fields->expression->const_item())
{
/*
If the value matches, we can use the key reference.
If not, we keep it until we have examined all new values
*/
if (old->expression->eq(new_fields->expression, old->field->field->binary()))
{
old->level= and_level;
}
}
else if (old->expression->eq_by_collation(new_fields->expression,
old->field->field->binary(),
old->field->field->charset()))
{
old->level= and_level;
}
else
{
/* The expressions are different. */
if (old == --first_free) // If last item
break;
*old= *first_free; // Remove old value
old--; // Retry this value
}
}
}
}
/*
Ok, the results are within the [start, first_free) range, and the useful
elements have level==and_level. Now, lets remove all unusable elements:
*/
for (Equality_module *old=start ; old != first_free ;)
{
if (old->level != and_level)
{ // Not used in all levels
if (old == --first_free)
break;
*old= *first_free; // Remove old value
continue;
}
old++;
}
return first_free;
}
/*
Add an Equality_module element for a given predicate, if applicable
DESCRIPTION
This function is modeled after add_key_field().
*/
static
bool add_eq_dep(Table_elimination *te, Equality_module **eq_dep,
uint and_level, Item_func *cond, Item *left, Item *right,
table_map usable_tables)
{
if ((left->used_tables() & usable_tables) &&
!(right->used_tables() & RAND_TABLE_BIT) &&
left->real_item()->type() == Item::FIELD_ITEM)
{
Field *field= ((Item_field*)left->real_item())->field;
if (field->result_type() == STRING_RESULT)
{
if (right->result_type() != STRING_RESULT)
{
if (field->cmp_type() != right->result_type())
return FALSE;
}
else
{
/*
We can't use indexes if the effective collation
of the operation differ from the field collation.
*/
if (field->cmp_type() == STRING_RESULT &&
((Field_str*)field)->charset() != cond->compare_collation())
return FALSE;
}
}
(*eq_dep)->type= Module_dep::MODULE_EXPRESSION; //psergey-todo;
if (!((*eq_dep)->field= get_field_value(te, field)))
return TRUE;
(*eq_dep)->expression= right;
(*eq_dep)->level= and_level;
(*eq_dep)++;
}
return FALSE;
}
/*
Get a Table_value object for the given table, creating it if necessary.
*/
static Table_value *get_table_value(Table_elimination *te, TABLE *table)
{
Table_value *tbl_dep;
if (!(tbl_dep= new Table_value(table)))
return NULL;
Key_module **key_list= &(tbl_dep->keys);
/* Add dependencies for unique keys */
for (uint i=0; i < table->s->keys; i++)
{
KEY *key= table->key_info + i;
if ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME)
{
Key_module *key_dep= new Key_module(tbl_dep, i, key->key_parts);
*key_list= key_dep;
key_list= &(key_dep->next_table_key);
}
}
return te->table_deps[table->tablenr]= tbl_dep;
}
/*
Get a Field_value object for the given field, creating it if necessary
*/
static Field_value *get_field_value(Table_elimination *te, Field *field)
{
TABLE *table= field->table;
Table_value *tbl_dep;
/* First, get the table*/
if (!(tbl_dep= te->table_deps[table->tablenr]))
{
if (!(tbl_dep= get_table_value(te, table)))
return NULL;
}
/* Try finding the field in field list */
Field_value **pfield= &(tbl_dep->fields);
while (*pfield && (*pfield)->field->field_index < field->field_index)
{
pfield= &((*pfield)->next_table_field);
}
if (*pfield && (*pfield)->field->field_index == field->field_index)
return *pfield;
/* Create the field and insert it in the list */
Field_value *new_field= new Field_value(tbl_dep, field);
new_field->next_table_field= *pfield;
*pfield= new_field;
return new_field;
}
/*
Create an Outer_join_module object for the given outer join
DESCRIPTION
Outer_join_module objects for children (or further descendants) are always
created before the parents.
*/
static
Outer_join_module *get_outer_join_dep(Table_elimination *te,
// TABLE_LIST *outer_join,
table_map deps_map)
{
Outer_join_module *oj_dep;
if (!(oj_dep= new Outer_join_module(/*outer_join, */my_count_bits(deps_map))))
return NULL;
te->n_outer_joins++;
/*
Collect a bitmap fo tables that we depend on, and also set parent pointer
for descendant outer join elements.
*/
Table_map_iterator it(deps_map);
int idx;
while ((idx= it.next_bit()) != Table_map_iterator::BITMAP_END)
{
Table_value *table_dep;
if (!(table_dep= te->table_deps[idx]))
{
/*
We get here only when ON expression had no references to inner tables
and Table_map objects weren't created for them. This is a rare/
unimportant case so it's ok to do not too efficient searches.
*/
TABLE *table= NULL;
for (TABLE_LIST *tlist= te->join->select_lex->leaf_tables; tlist;
tlist=tlist->next_leaf)
{
if (tlist->table->tablenr == (uint)idx)
{
table=tlist->table;
break;
}
}
DBUG_ASSERT(table);
if (!(table_dep= get_table_value(te, table)))
return NULL;
}
/*
Walk from the table up to its embedding outer joins. The goal is to
find the least embedded outer join nest and set its parent pointer to
point to the newly created Outer_join_module.
to set the pointer of its near
*/
//if (!table_dep->outer_join_dep)
table_dep->outer_join_dep= oj_dep;
/*
else
{
Outer_join_module *oj= table_dep->outer_join_dep;
while (oj->parent)
oj= oj->parent;
if (oj != oj_dep)
oj->parent=oj_dep;
}
*/
}
return oj_dep;
}
/*
This is used to analyze expressions in "tbl.col=expr" dependencies so
that we can figure out which fields the expression depends on.
*/
class Field_dependency_setter : public Field_enumerator
{
public:
Field_dependency_setter(Table_elimination *te_arg): te(te_arg)
{}
void see_field(Field *field)
{
Table_value *tbl_dep;
if ((tbl_dep= te->table_deps[field->table->tablenr]))
{
for (Field_value *field_dep= tbl_dep->fields; field_dep;
field_dep= field_dep->next_table_field)
{
if (field->field_index == field_dep->field->field_index)
{
uint offs= field_dep->bitmap_offset + expr_offset;
if (!bitmap_is_set(&te->expr_deps, offs))
te->equality_deps[expr_offset].unknown_args++;
bitmap_set_bit(&te->expr_deps, offs);
return;
}
}
/*
We got here if didn't find this field. It's not a part of
a unique key, and/or there is no field=expr element for it.
Bump the dependency anyway, this will signal that this dependency
cannot be satisfied.
*/
te->equality_deps[expr_offset].unknown_args++;
}
}
Table_elimination *te;
/* Offset of the expression we're processing in the dependency bitmap */
uint expr_offset;
};
/*
Setup equality dependencies
SYNOPSIS
setup_equality_deps()
te Table elimination context
bound_deps_list OUT Start of linked list of elements that were found to
be bound (caller will use this to see if that
allows to declare further elements bound)
*/
static
bool setup_equality_deps(Table_elimination *te, Module_dep **bound_deps_list)
{
DBUG_ENTER("setup_equality_deps");
if (!te->n_equality_deps)
DBUG_RETURN(TRUE);
/*
Count Field_value objects and assign each of them a unique bitmap_offset.
*/
uint offset= 0;
for (Table_value **tbl_dep=te->table_deps;
tbl_dep < te->table_deps + MAX_TABLES;
tbl_dep++) // psergey-todo: TODO change to Table_map_iterator
{
if (*tbl_dep)
{
for (Field_value *field_dep= (*tbl_dep)->fields;
field_dep;
field_dep= field_dep->next_table_field)
{
field_dep->bitmap_offset= offset;
offset += te->n_equality_deps;
}
}
}
void *buf;
if (!(buf= current_thd->alloc(bitmap_buffer_size(offset))) ||
bitmap_init(&te->expr_deps, (my_bitmap_map*)buf, offset, FALSE))
{
DBUG_RETURN(TRUE);
}
bitmap_clear_all(&te->expr_deps);
/*
Analyze all "field=expr" dependencies, and have te->expr_deps encode
dependencies of expressions from fields.
Also collect a linked list of equalities that are bound.
*/
Module_dep *bound_dep= NULL;
Field_dependency_setter deps_setter(te);
for (Equality_module *eq_dep= te->equality_deps;
eq_dep < te->equality_deps + te->n_equality_deps;
eq_dep++)
{
deps_setter.expr_offset= eq_dep - te->equality_deps;
eq_dep->unknown_args= 0;
eq_dep->expression->walk(&Item::check_column_usage_processor, FALSE,
(uchar*)&deps_setter);
if (!eq_dep->unknown_args)
{
eq_dep->next= bound_dep;
bound_dep= eq_dep;
}
}
*bound_deps_list= bound_dep;
DBUG_EXECUTE("test", dbug_print_deps(te); );
DBUG_RETURN(FALSE);
}
/*
Perform table elimination
SYNOPSIS
eliminate_tables()
join Join to work on
const_tbl_count INOUT Number of constant tables (this includes
eliminated tables)
const_tables INOUT Bitmap of constant tables
DESCRIPTION
This function is the entry point for table elimination.
The idea behind table elimination is that if we have an outer join:
SELECT * FROM t1 LEFT JOIN
(t2 JOIN t3) ON t3.primary_key=t1.col AND
t4.primary_key=t2.col
such that
1. columns of the inner tables are not used anywhere ouside the outer
join (not in WHERE, not in GROUP/ORDER BY clause, not in select list
etc etc), and
2. inner side of the outer join is guaranteed to produce at most one
record combination for each record combination of outer tables.
then the inner side of the outer join can be removed from the query.
This is because it will always produce one matching record (either a
real match or a NULL-complemented record combination), and since there
are no references to columns of the inner tables anywhere, it doesn't
matter which record combination it was.
This function primary handles checking #1. It collects a bitmap of
tables that are not used in select list/GROUP BY/ORDER BY/HAVING/etc and
thus can possibly be eliminated.
SIDE EFFECTS
See the OVERVIEW section at the top of this file.
*/
static uint
eliminate_tables_for_list(Table_elimination *te,
List<TABLE_LIST> *join_list,
Item *on_expr,
table_map tables_in_list,
table_map tables_used_elsewhere);
void eliminate_tables(JOIN *join)
{
THD* thd= join->thd;
Item *item;
table_map used_tables;
DBUG_ENTER("eliminate_tables");
DBUG_ASSERT(join->eliminated_tables == 0);
/* If there are no outer joins, we have nothing to eliminate: */
if (!join->outer_join)
DBUG_VOID_RETURN;
/* Find the tables that are referred to from WHERE/HAVING */
used_tables= (join->conds? join->conds->used_tables() : 0) |
(join->having? join->having->used_tables() : 0);
/* Add tables referred to from the select list */
List_iterator<Item> it(join->fields_list);
while ((item= it++))
used_tables |= item->used_tables();
/* Add tables referred to from ORDER BY and GROUP BY lists */
ORDER *all_lists[]= { join->order, join->group_list};
for (int i=0; i < 2; i++)
{
for (ORDER *cur_list= all_lists[i]; cur_list; cur_list= cur_list->next)
used_tables |= (*(cur_list->item))->used_tables();
}
if (join->select_lex == &thd->lex->select_lex)
{
/* Multi-table UPDATE and DELETE: don't eliminate the tables we modify: */
used_tables |= thd->table_map_for_update;
/* Multi-table UPDATE: don't eliminate tables referred from SET statement */
if (thd->lex->sql_command == SQLCOM_UPDATE_MULTI)
{
List_iterator<Item> it2(thd->lex->value_list);
while ((item= it2++))
used_tables |= item->used_tables();
}
}
table_map all_tables= join->all_tables_map();
if (all_tables & ~used_tables)
{
/* There are some tables that we probably could eliminate. Try it. */
Table_elimination te(join);
uint m= max(thd->lex->current_select->max_equal_elems,1);
uint max_elems= ((thd->lex->current_select->cond_count+1)*2 +
thd->lex->current_select->between_count)*m + 1 + 10;
if (!(te.equality_deps= new Equality_module[max_elems]))
DBUG_VOID_RETURN;
//Equality_module *eq_deps_end= te.equality_deps;
//table_map eliminable_tables= 0;
/*
if (collect_funcdeps_for_join_list(&te, join->join_list,
FALSE,
used_tables,
&eliminable_tables,
&eq_deps))
DBUG_VOID_RETURN;
*/
eliminate_tables_for_list(&te, join->join_list,
NULL,
(table_map(1) << join->tables) - 1,
used_tables);
/*te.n_equality_deps= eq_deps_end - te.equality_deps;
Module_dep *bound_modules;
//Value_dep *bound_values;
if (setup_equality_deps(&te, &bound_modules))
DBUG_VOID_RETURN;
run_elimination_wave(&te, bound_modules);
*/
}
DBUG_VOID_RETURN;
}
////////////////////////////
/*
Perform table elimination in a given join list
SYNOPSIS
eliminate_tables_for_list()
join The join
leaves_arr OUT Store here an array of leaf (base) tables that
are descendants of the join_list, and increment
the pointer to point right above the array.
join_list Join list to work on
its_outer_join TRUE <=> join_list is an inner side of an outer
join
FALSE <=> otherwise (this is top-level join list)
tables_in_list Bitmap of tables embedded in the join_list.
tables_used_elsewhere Bitmap of tables that are referred to from
somewhere outside of the join list (e.g.
select list, HAVING, etc).
DESCRIPTION
Perform table elimination for a join list.
Try eliminating children nests first.
The "all tables in join nest can produce only one matching record
combination" property checking is modeled after constant table detection,
plus we reuse info attempts to eliminate child join nests.
RETURN
Number of children left after elimination. 0 means everything was
eliminated.
*/
bool try_eliminating(Table_elimination *te, table_map tables_in_list,
Item* on_expr)
{
uint and_level=0;
Equality_module* eq_dep= te->equality_deps;
build_eq_deps_for_cond(te, &eq_dep, &and_level, on_expr,
tables_in_list);
te->n_equality_deps= eq_dep - te->equality_deps;
Module_dep *bound_modules;
get_outer_join_dep(te, tables_in_list);
if (!setup_equality_deps(te, &bound_modules) &&
run_elimination_wave(te, bound_modules))
return TRUE; // eliminated
return FALSE;
}
static uint
eliminate_tables_for_list(Table_elimination *te, List<TABLE_LIST> *join_list,
Item *on_expr,
table_map tables_in_list,
table_map tables_used_elsewhere)
{
TABLE_LIST *tbl;
List_iterator<TABLE_LIST> it(*join_list);
table_map tables_used_on_left= 0;
bool not_eliminated= FALSE;
while ((tbl= it++))
{
if (tbl->on_expr)
{
table_map outside_used_tables= tables_used_elsewhere |
tables_used_on_left;
if (tbl->nested_join)
{
/* This is "... LEFT JOIN (join_nest) ON cond" */
if (eliminate_tables_for_list(te,
&tbl->nested_join->join_list,
tbl->on_expr,
tbl->nested_join->used_tables,
outside_used_tables))
{
mark_as_eliminated(te->join, tbl);
}
else
not_eliminated= TRUE;
}
else
{
/* This is "... LEFT JOIN tbl ON cond" */
if (!(tbl->table->map & outside_used_tables) &&
try_eliminating(te, tbl->table->map, tbl->on_expr))
{
mark_as_eliminated(te->join, tbl);
}
else
not_eliminated= TRUE;
}
tables_used_on_left |= tbl->on_expr->used_tables();
}
else
{
DBUG_ASSERT(!tbl->nested_join);
}
}
/* Try eliminating the nest we're called for */
if (!not_eliminated && on_expr && !(tables_in_list & tables_used_elsewhere))
return try_eliminating(te, tables_in_list & ~te->join->eliminated_tables,
on_expr);
return FALSE; /* not eliminated */
}
#if 0
/*
Build functional dependency graph for elements of given join list
SYNOPSIS
collect_funcdeps_for_join_list()
te Table elimination context.
join_list Join list to work on
build_eq_deps TRUE <=> build Equality_module elements for all
members of the join list, even if they cannot
be individually eliminated
tables_used_elsewhere Bitmap of tables that are referred to from
somewhere outside of this join list (e.g.
select list, HAVING, ON expressions of parent
joins, etc).
eliminable_tables INOUT Tables that can potentially be eliminated
(needed so we know for which tables to build
dependencies for)
eq_dep INOUT End of array of equality dependencies.
DESCRIPTION
.
*/
static bool
collect_funcdeps_for_join_list(Table_elimination *te,
List<TABLE_LIST> *join_list,
bool build_eq_deps,
table_map tables_used_elsewhere,
table_map *eliminable_tables,
Equality_module **eq_dep)
{
TABLE_LIST *tbl;
List_iterator<TABLE_LIST> it(*join_list);
table_map tables_used_on_left= 0;
while ((tbl= it++))
{
if (tbl->on_expr)
{
table_map outside_used_tables= tables_used_elsewhere |
tables_used_on_left;
bool eliminable;
table_map cur_map;
if (tbl->nested_join)
{
/* This is "... LEFT JOIN (join_nest) ON cond" */
cur_map= tbl->nested_join->used_tables;
eliminable= !(cur_map & outside_used_tables);
if (eliminable)
*eliminable_tables |= cur_map;
if (collect_funcdeps_for_join_list(te, &tbl->nested_join->join_list,
eliminable || build_eq_deps,
outside_used_tables,
eliminable_tables,
eq_dep))
return TRUE;
}
else
{
/* This is "... LEFT JOIN tbl ON cond" */
cur_map= tbl->table->map;
eliminable= !(tbl->table->map & outside_used_tables);
*eliminable_tables |= cur_map;
}
if (eliminable || build_eq_deps)
{
// build comp_cond from ON expression
uint and_level=0;
build_eq_deps_for_cond(te, eq_dep, &and_level, tbl->on_expr,
*eliminable_tables);
}
if (eliminable && !get_outer_join_dep(te, tbl, cur_map))
return TRUE;
tables_used_on_left |= tbl->on_expr->used_tables();
}
}
return FALSE;
}
#endif
////////////////////////////
static
void signal_from_field_to_exprs(Table_elimination* te, Field_value *field_dep,
Module_dep **bound_modules)
{
for (uint i=0; i < te->n_equality_deps; i++)
{
if (bitmap_is_set(&te->expr_deps, field_dep->bitmap_offset + i) &&
te->equality_deps[i].unknown_args &&
!--te->equality_deps[i].unknown_args)
{
/* Mark as bound and add to the list */
Equality_module* eq_dep= &te->equality_deps[i];
eq_dep->next= *bound_modules;
*bound_modules= eq_dep;
}
}
}
static
bool run_elimination_wave(Table_elimination *te, Module_dep *bound_modules)
{
Value_dep *bound_values= NULL;
/*
Run the wave.
All Func_dep-derived objects are divided into three classes:
- Those that have bound=FALSE
- Those that have bound=TRUE
- Those that have bound=TRUE and are in the list..
*/
while (bound_modules)
{
for (;bound_modules; bound_modules= bound_modules->next)
{
switch (bound_modules->type)
{
case Module_dep::MODULE_EXPRESSION:
{
/* It's a field=expr and we got to know the expr, so we know the field */
Equality_module *eq_dep= (Equality_module*)bound_modules;
if (!eq_dep->field->bound)
{
/* Mark as bound and add to the list */
eq_dep->field->bound= TRUE;
eq_dep->field->next= bound_values;
bound_values= eq_dep->field;
}
break;
}
case Module_dep::MODULE_UNIQUE_KEY:
{
/* Unique key is known means the table is known */
Table_value *table_dep=((Key_module*)bound_modules)->table;
if (!table_dep->bound)
{
/* Mark as bound and add to the list */
table_dep->bound= TRUE;
table_dep->next= bound_values;
bound_values= table_dep;
}
break;
}
case Module_dep::MODULE_OUTER_JOIN:
{
//Outer_join_module *outer_join_dep= (Outer_join_module*)bound_modules;
//mark_as_eliminated(te->join, outer_join_dep->table_list);
//if (!--te->n_outer_joins)
{
DBUG_PRINT("info", ("Table elimination eliminated everything"
" it theoretically could"));
return TRUE;
}
break;
}
case Module_dep::MODULE_MULTI_EQUALITY:
default:
DBUG_ASSERT(0);
}
}
for (;bound_values; bound_values=bound_values->next)
{
switch (bound_values->type)
{
case Value_dep::VALUE_FIELD:
{
/*
Field became known. Check out
- unique keys we belong to
- expressions that depend on us.
*/
Field_value *field_dep= (Field_value*)bound_values;
DBUG_PRINT("info", ("field %s.%s is now bound",
field_dep->field->table->alias,
field_dep->field->field_name));
for (Key_module *key_dep= field_dep->table->keys; key_dep;
key_dep= key_dep->next_table_key)
{
if (field_dep->field->part_of_key.is_set(key_dep->keyno) &&
key_dep->unknown_args && !--key_dep->unknown_args)
{
DBUG_PRINT("info", ("key %s.%s is now bound",
key_dep->table->table->alias,
key_dep->table->table->key_info[key_dep->keyno].name));
/* Mark as bound and add to the list */
key_dep->next= bound_modules;
bound_modules= key_dep;
}
}
signal_from_field_to_exprs(te, field_dep, &bound_modules);
break;
}
case Value_dep::VALUE_TABLE:
{
Table_value *table_dep=(Table_value*)bound_values;
DBUG_PRINT("info", ("table %s is now bound",
table_dep->table->alias));
/*
Table is known means
- all its fields are known
- one more element in outer join nest is known
*/
for (Field_value *field_dep= table_dep->fields; field_dep;
field_dep= field_dep->next_table_field)
{
if (!field_dep->bound)
{
/* Mark as bound and add to the list */
field_dep->bound= TRUE;
signal_from_field_to_exprs(te, field_dep, &bound_modules);
}
}
//for (
Outer_join_module *outer_join_dep= table_dep->outer_join_dep;
// outer_join_dep; outer_join_dep= outer_join_dep->parent)
{
if (outer_join_dep->unknown_args &&
!--outer_join_dep->unknown_args)
{
/* Mark as bound and add to the list */
outer_join_dep->next= bound_modules;
bound_modules= outer_join_dep;
}
}
break;
}
default:
DBUG_ASSERT(0);
}
}
}
return FALSE;
}
/*
Mark one table or the whole join nest as eliminated.
*/
static void mark_as_eliminated(JOIN *join, TABLE_LIST *tbl)
{
TABLE *table;
/*
NOTE: there are TABLE_LIST object that have
tbl->table!= NULL && tbl->nested_join!=NULL and
tbl->table == tbl->nested_join->join_list->element(..)->table
*/
if (tbl->nested_join)
{
TABLE_LIST *child;
List_iterator<TABLE_LIST> it(tbl->nested_join->join_list);
while ((child= it++))
mark_as_eliminated(join, child);
}
else if ((table= tbl->table))
{
JOIN_TAB *tab= tbl->table->reginfo.join_tab;
if (!(join->const_table_map & tab->table->map))
{
DBUG_PRINT("info", ("Eliminated table %s", table->alias));
tab->type= JT_CONST;
join->eliminated_tables |= table->map;
join->const_table_map|= table->map;
set_position(join, join->const_tables++, tab, (KEYUSE*)0);
}
}
if (tbl->on_expr)
tbl->on_expr->walk(&Item::mark_as_eliminated_processor, FALSE, NULL);
}
#ifndef DBUG_OFF
static
void dbug_print_deps(Table_elimination *te)
{
DBUG_ENTER("dbug_print_deps");
DBUG_LOCK_FILE;
fprintf(DBUG_FILE,"deps {\n");
/* Start with printing equalities */
for (Equality_module *eq_dep= te->equality_deps;
eq_dep != te->equality_deps + te->n_equality_deps; eq_dep++)
{
char buf[128];
String str(buf, sizeof(buf), &my_charset_bin);
str.length(0);
eq_dep->expression->print(&str, QT_ORDINARY);
fprintf(DBUG_FILE, " equality%d: %s -> %s.%s\n",
eq_dep - te->equality_deps,
str.c_ptr(),
eq_dep->field->table->table->alias,
eq_dep->field->field->field_name);
}
fprintf(DBUG_FILE,"\n");
/* Then tables and their fields */
for (uint i=0; i < MAX_TABLES; i++)
{
Table_value *table_dep;
if ((table_dep= te->table_deps[i]))
{
/* Print table */
fprintf(DBUG_FILE, " table %s\n", table_dep->table->alias);
/* Print fields */
for (Field_value *field_dep= table_dep->fields; field_dep;
field_dep= field_dep->next_table_field)
{
fprintf(DBUG_FILE, " field %s.%s ->", table_dep->table->alias,
field_dep->field->field_name);
uint ofs= field_dep->bitmap_offset;
for (uint bit= ofs; bit < ofs + te->n_equality_deps; bit++)
{
if (bitmap_is_set(&te->expr_deps, bit))
fprintf(DBUG_FILE, " equality%d ", bit - ofs);
}
fprintf(DBUG_FILE, "\n");
}
}
}
fprintf(DBUG_FILE,"\n}\n");
DBUG_UNLOCK_FILE;
DBUG_VOID_RETURN;
}
#endif
/**
@} (end of group Table_Elimination)
*/
|