summaryrefslogtreecommitdiff
path: root/sql/opt_table_elimination.cc
blob: 5b58a0fd6f756240f468487f548e38f01c926ae6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
/**
  @file

  @brief
    Table Elimination Module

  @defgroup Table_Elimination Table Elimination Module
  @{
*/

#ifdef USE_PRAGMA_IMPLEMENTATION
#pragma implementation				// gcc: Class implementation
#endif

#include "mysql_priv.h"
#include "my_bit.h"
#include "sql_select.h"

/*
  OVERVIEW

  This file contains table elimination module. The idea behind table
  elimination is as follows: suppose we have a left join
 
    SELECT * FROM t1 LEFT JOIN 
      (t2 JOIN t3) ON t3.primary_key=t1.col AND 
                      t4.primary_key=t2.col
  such that
  * columns of the inner tables are not used anywhere ouside the outer join
    (not in WHERE, not in GROUP/ORDER BY clause, not in select list etc etc),
  * inner side of the outer join is guaranteed to produce at most one matching
    record combination for each record combination of outer tables.
  
  then the inner side of the outer join can be removed from the query, as it 
  will always produce only one record combination (either real or 
  null-complemented one) and we don't care about what that record combination 
  is.

  MODULE INTERFACE

  The module has one entry point - eliminate_tables() function, which one 
  needs to call (once) at some point before the join optimization.
  eliminate_tables() operates over the JOIN structures. Logically, it
  removes the right sides of outer join nests. Physically, it changes the
  following members:

  * Eliminated tables are marked as constant and moved to the front of the
    join order.

  * In addition to this, they are recorded in JOIN::eliminated_tables bitmap.

  * Items that became disused because they were in the ON expression of an 
    eliminated outer join are notified by means of the Item tree walk which 
    calls Item::mark_as_eliminated_processor for every item
    - At the moment the only Item that cares whether it was eliminated is 
      Item_subselect with its Item_subselect::eliminated flag which is used
      by EXPLAIN code to check if the subquery should be shown in EXPLAIN.

  Table elimination is redone on every PS re-execution.

  TABLE ELIMINATION ALGORITHM FOR ONE OUTER JOIN

  As said above, we can remove inner side of an outer join if it is 

    1. not referred to from any other parts of the query
    2. always produces one matching record combination.

  We check #1 by doing a recursive descent down the join->join_list while 
  maintaining a union of used_tables() attribute of all expressions we've seen
  "elsewhere". When we encounter an outer join, we check if the bitmap of 
  tables on its inner side has an intersection with tables that are used 
  elsewhere. No intersection means that inner side of the outer join could 
  potentially be eliminated.

  In order to check #2, one needs to prove that inner side of an outer join 
  is functionally dependent on the outside. We prove dependency by proving
  functional dependency of intermediate objects:

  - Inner side of outer join is functionally dependent when each of its tables
    are functionally dependent. (We assume a table is functionally dependent 
    when its dependencies allow to uniquely identify one table record, or no
    records).

  - Table is functionally dependent when it has got a unique key whose columns
    are functionally dependent.

  - A column is functionally dependent when we could locate an AND-part of a
    certain ON clause in form 
      
      tblX.columnY= expr 
    
    where expr is functionally-depdendent.

  Apparently the above rules can be applied recursively. Also, certain entities
  depend on multiple other entities. We model this by a bipartite graph which
  has two kinds of nodes:

  Value nodes:
   - Table column values (each is a value of tblX.columnY)
   - Table nodes (each node represents a table inside an eliminable join nest).
  each value is either bound (i.e. functionally dependent) or not.

  Module nodes:
   - Modules representing tblX.colY=expr equalities. Equality module has 
      = incoming edges from columns used in expr 
      = outgoing edge to tblX.colY column.
   - Nodes representing unique keys. Unique key has
      = incoming edges from key component value modules
      = outgoing edge to key's table module
   - Inner side of outer join module. Outer join module has
      = incoming edges from table value modules
      = No outgoing edges. Once we reach it, we know we can eliminate the 
        outer join.
  A module may depend on multiple values, and hence its primary attribute is
  the number of its depedencies that are not bound. 

  The algorithm starts with equality nodes that don't have any incoming edges
  (their expressions are either constant or depend only on tables that are
  outside of the outer join in question) and performns a breadth-first
  traversal. If we reach the outer join nest node, it means outer join is
  functionally-dependant and can be eliminated. Otherwise it cannot.
 
  HANDLING MULTIPLE NESTED OUTER JOINS 
  (TODO : explanations why 'local bottom up is sufficient')

*/

class Value_dep;
  class Field_value;
  class Table_value;
 

class Module_dep;
  class Equality_module;
  class Outer_join_module;
  class Key_module;

class Func_dep_analyzer;


/*
  A value, something that can be bound or not bound. Also, values can be linked
  in a list.
*/

class Value_dep : public Sql_alloc
{
public:
  Value_dep(): bound(FALSE), next(NULL) {}
  virtual void now_bound(Func_dep_analyzer *te, Module_dep **bound_modules)=0;
  virtual ~Value_dep() {} /* only to shut up compiler warnings */

  bool bound;
  Value_dep *next;
};


/*
  A table field value. There is exactly only one such object for any tblX.fieldY
  - the field epends on its table and equalities
  - expressions that use the field are its dependencies
*/
class Field_value : public Value_dep
{
public:
  Field_value(Table_value *table_arg, Field *field_arg) :
    table(table_arg), field(field_arg)
  {}

  Table_value *table; /* Table this field is from */
  Field *field;
  
  /* 
    Field_deps that belong to one table form a linked list, ordered by
    field_index 
  */
  Field_value *next_table_field;
  uint bitmap_offset; /* Offset of our part of the bitmap */
  
  /*
    Field became known. Check out
    - unique keys we belong to
    - expressions that depend on us.
  */
  void now_bound(Func_dep_analyzer *te, Module_dep **bound_modules);
  void signal_from_field_to_exprs(Func_dep_analyzer* te, 
                                  Module_dep **bound_modules);
};

/*
  A table value. There is one Table_value object for every table that can
  potentially be eliminated.
  - table depends on any of its unique keys
  - has its fields and embedding outer join as dependency.
*/
class Table_value : public Value_dep
{
public:
  Table_value(TABLE *table_arg) : 
    table(table_arg), fields(NULL), keys(NULL)
  {}
  TABLE *table;
  Field_value *fields; /* Ordered list of fields that belong to this table */
  Key_module *keys; /* Ordered list of Unique keys in this table */
  //Outer_join_module *outer_join_dep;
  void now_bound(Func_dep_analyzer *te, Module_dep **bound_modules);
};


/*
  A 'module'. Module has dependencies
*/

class Module_dep : public Sql_alloc
{
public:
  enum {
    MODULE_OUTER_JOIN
  } type; /* Type of the object */
  
  virtual bool now_bound(Func_dep_analyzer *te, Value_dep **bound_modules)=0;
  virtual ~Module_dep(){}
  /* 
    Used to make a linked list of elements that became bound and thus can
    make elements that depend on them bound, too.
  */
  Module_dep *next; 
  uint unknown_args;

  Module_dep() : next(NULL), unknown_args(0) {}
};


/*
  A "tbl.column= expr" equality dependency.  tbl.column depends on fields 
  used in expr.
*/
class Equality_module : public Module_dep
{
public:
  Field_value *field;
  Item  *expression;
  
  /* Used during condition analysis only, similar to KEYUSE::level */
  uint level;
  bool now_bound(Func_dep_analyzer *te, Value_dep **bound_values);
};


/*
  A Unique key.
   - Unique key depends on all of its components
   - Key's table is its dependency
*/
class Key_module: public Module_dep
{
public:
  Key_module(Table_value *table_arg, uint keyno_arg, uint n_parts_arg) :
    table(table_arg), keyno(keyno_arg), next_table_key(NULL)
  {
    unknown_args= n_parts_arg;
  }
  Table_value *table; /* Table this key is from */
  uint keyno;
  /* Unique keys form a linked list, ordered by keyno */
  Key_module *next_table_key;
  bool now_bound(Func_dep_analyzer *te, Value_dep **bound_values);
};


/*
  An outer join nest that is subject to elimination
  - it depends on all tables inside it
  - has its parent outer join as dependency
*/
class Outer_join_module: public Module_dep
{
public:
  Outer_join_module(uint n_children)  
  {
    unknown_args= n_children;
  }
  bool now_bound(Func_dep_analyzer *te, Value_dep **bound_values);
};


/*
  Functional dependency analyzer context
*/
class Func_dep_analyzer
{
public:
  Func_dep_analyzer(JOIN *join_arg) : join(join_arg)
  {
    bzero(table_deps, sizeof(table_deps));
  }

  JOIN *join; /* Join we're working on */

  /* Tables that we're looking at eliminating */
  table_map usable_tables;
  
  /* Array of equality dependencies */
  Equality_module *equality_deps;
  uint n_equality_deps; /* Number of elements in the array */
  uint n_equality_deps_alloced;

  /* tablenr -> Table_value* mapping. */
  Table_value *table_deps[MAX_KEY];
  
  /* Element for the outer join we're attempting to eliminate */
  Outer_join_module *outer_join_dep;

  /* Bitmap of how expressions depend on bits */
  MY_BITMAP expr_deps;
};

void eliminate_tables(JOIN *join);

static bool
eliminate_tables_for_list(JOIN *join, 
                          List<TABLE_LIST> *join_list,
                          table_map tables_in_list,
                          Item *on_expr,
                          table_map tables_used_elsewhere);
static
bool check_func_dependency(JOIN *join, 
                           table_map dep_tables,
                           List_iterator<TABLE_LIST> *it, 
                           TABLE_LIST *oj_tbl,
                           Item* cond);

static 
bool build_eq_deps_for_cond(Func_dep_analyzer *te, Equality_module **fdeps, 
                            uint *and_level, Item *cond);
static 
bool add_eq_dep(Func_dep_analyzer *te, Equality_module **eq_dep, 
                uint and_level,
                Item_func *cond, Item *left, Item *right);
static 
Equality_module *merge_func_deps(Equality_module *start, 
                                 Equality_module *new_fields, 
                                 Equality_module *end, uint and_level);

static Table_value *get_table_value(Func_dep_analyzer *te, TABLE *table);
static Field_value *get_field_value(Func_dep_analyzer *te, Field *field);
static void mark_as_eliminated(JOIN *join, TABLE_LIST *tbl);



#ifndef DBUG_OFF
static void dbug_print_deps(Func_dep_analyzer *te);
#endif 

/*******************************************************************************************/

/*
  Produce Eq_dep elements for given condition.

  SYNOPSIS
    build_eq_deps_for_cond()
      te                    Table elimination context 
      fdeps          INOUT  Put produced equality conditions here
      and_level      INOUT  AND-level (like in add_key_fields)
      cond                  Condition to process
  DESCRIPTION
    This function is modeled after add_key_fields()
*/

static 
bool build_eq_deps_for_cond(Func_dep_analyzer *te, Equality_module **fdeps, 
                            uint *and_level, Item *cond)
{
  if (cond->type() == Item_func::COND_ITEM)
  {
    List_iterator_fast<Item> li(*((Item_cond*) cond)->argument_list());
    Equality_module *org_key_fields= *fdeps;
    
    /* AND/OR */
    if (((Item_cond*) cond)->functype() == Item_func::COND_AND_FUNC)
    {
      Item *item;
      while ((item=li++))
      {
        if (build_eq_deps_for_cond(te, fdeps, and_level, item))
          return TRUE;
      }
      for (; org_key_fields != *fdeps ; org_key_fields++)
        org_key_fields->level= *and_level;
    }
    else
    {
      (*and_level)++;
      if (build_eq_deps_for_cond(te, fdeps, and_level, li++))
        return TRUE;
      Item *item;
      while ((item=li++))
      {
        Equality_module *start_key_fields= *fdeps;
        (*and_level)++;
        if (build_eq_deps_for_cond(te, fdeps, and_level, item))
          return TRUE;
        *fdeps= merge_func_deps(org_key_fields, start_key_fields, *fdeps,
                                ++(*and_level));
      }
    }
    return FALSE;
  }

  if (cond->type() != Item::FUNC_ITEM)
    return FALSE;

  Item_func *cond_func= (Item_func*) cond;
  Item **args= cond_func->arguments();

  switch (cond_func->functype()) {
  case Item_func::IN_FUNC:
  {
    if (cond_func->argument_count() == 2)
    {
      if (add_eq_dep(te, fdeps, *and_level, cond_func, args[0], args[1]) || 
          add_eq_dep(te, fdeps, *and_level, cond_func, args[1], args[0]))
        return TRUE;
    }
  }
  case Item_func::BETWEEN:
  {
    Item *fld;
    if (!((Item_func_between*)cond)->negated &&
        (fld= args[0]->real_item())->type() == Item::FIELD_ITEM &&
        args[1]->eq(args[2], ((Item_field*)fld)->field->binary()))
    {
      if (add_eq_dep(te, fdeps, *and_level, cond_func, args[0], args[1]) || 
          add_eq_dep(te, fdeps, *and_level, cond_func, args[1], args[0]))
        return TRUE;
    }
    break;
  }
  case Item_func::EQ_FUNC:
  case Item_func::EQUAL_FUNC:
  {
    add_eq_dep(te, fdeps, *and_level, cond_func, args[0], args[1]);
    add_eq_dep(te, fdeps, *and_level, cond_func, args[1], args[0]);
    break;
  }
  case Item_func::ISNULL_FUNC:
  {
    Item *tmp=new Item_null;
    if (!tmp || add_eq_dep(te, fdeps, *and_level, cond_func, args[0], args[1]))
      return TRUE;
    break;
  }
  case Item_func::MULT_EQUAL_FUNC:
  {
    Item_equal *item_equal= (Item_equal *) cond;
    Item *const_item= item_equal->get_const();
    Item_equal_iterator it(*item_equal);
    Item_field *item;
    if (const_item)
    {
      /*
        For each field field1 from item_equal consider the equality 
        field1=const_item as a condition allowing an index access of the table
        with field1 by the keys value of field1.
      */   
      while ((item= it++))
      {
        if (add_eq_dep(te, fdeps, *and_level, cond_func, item, const_item))
          return TRUE;
      }
    }
    else 
    {
      /*
        Consider all pairs of different fields included into item_equal.
        For each of them (field1, field1) consider the equality 
        field1=field2 as a condition allowing an index access of the table
        with field1 by the keys value of field2.
      */   
      Item_equal_iterator fi(*item_equal);
      while ((item= fi++))
      {
        Field *field= item->field;
        Item_field *item2;
        while ((item2= it++))
        {
          if (!field->eq(item2->field))
          {
            if (add_eq_dep(te, fdeps, *and_level, cond_func, item, item2))
              return TRUE;
          }
        }
        it.rewind();
      }
    }
    break;
  }
  default:
    break;
  }
  return FALSE;
}


/*
  Perform an OR operation on two (adjacent) Equality_module arrays.

  SYNOPSIS
     merge_func_deps()
       start        Start of left OR-part
       new_fields   Start of right OR-part
       end          End of right OR-part
       and_level    AND-level.

  DESCRIPTION
  This function is invoked for two adjacent arrays of Equality_module elements:

                      $LEFT_PART             $RIGHT_PART
             +-----------------------+-----------------------+
            start                new_fields                 end
         
  The goal is to produce an array which would correspnd to the combined 
  
    $LEFT_PART OR $RIGHT_PART
  
  condition. This is achieved as follows: First, we apply distrubutive law:
  
    (fdep_A_1 AND fdep_A_2 AND ...)  OR  (fdep_B_1 AND fdep_B_2 AND ...) =

     = AND_ij (fdep_A_[i] OR fdep_B_[j])
  
  Then we walk over the obtained "fdep_A_[i] OR fdep_B_[j]" pairs, and 
   - Discard those that that have left and right part referring to different
     columns. We can't infer anything useful from "col1=expr1 OR col2=expr2".
   - When left and right parts refer to the same column,  we check if they are 
     essentially the same. 
     = If they are the same, we keep one copy 
       "t.col=expr OR t.col=expr"  -> "t.col=expr 
     = if they are different , then we discard both
      "t.col=expr1 OR t.col=expr2" -> (nothing useful)

  (no per-table or for-index FUNC_DEPS exist yet at this phase).

  See also merge_key_fields().

  RETURN 
    End of the result array
*/

static 
Equality_module *merge_func_deps(Equality_module *start, Equality_module *new_fields, 
                                 Equality_module *end, uint and_level)
{
  if (start == new_fields)
    return start;				// Impossible or
  if (new_fields == end)
    return start;				// No new fields, skip all

  Equality_module *first_free=new_fields;

  for (; new_fields != end ; new_fields++)
  {
    for (Equality_module *old=start ; old != first_free ; old++)
    {
      /* 
         TODO: does it make sense to attempt to merging multiple-equalities? 
         A: YES.  
           (a=b=c) OR (a=b=d)  produce "a=b". 
         QQ: 
           What to use for merging? Trivial N*M algorithm or pre-sort and then
           merge ordered sequences?
      */
      if (old->field == new_fields->field)
      {
	if (!new_fields->expression->const_item())
	{
	  /*
	    If the value matches, we can use the key reference.
	    If not, we keep it until we have examined all new values
	  */
	  if (old->expression->eq(new_fields->expression, old->field->field->binary()))
	  {
	    old->level= and_level;
	  }
	}
	else if (old->expression->eq_by_collation(new_fields->expression, 
                                           old->field->field->binary(),
                                           old->field->field->charset()))
	{
	  old->level= and_level;
	}
	else
	{
          /* The expressions are different. */
	  if (old == --first_free)		// If last item
	    break;
	  *old= *first_free;			// Remove old value
	  old--;				// Retry this value
	}
      }
    }
  }

  /* 
    Ok, the results are within the [start, first_free) range, and the useful
    elements have level==and_level. Now, remove all unusable elements:
  */
  for (Equality_module *old=start ; old != first_free ;)
  {
    if (old->level != and_level)
    {						// Not used in all levels
      if (old == --first_free)
	break;
      *old= *first_free;			// Remove old value
      continue;
    }
    old++;
  }
  return first_free;
}


/*
  Add an Equality_module element for left=right condition

  SYNOPSIS
    add_eq_dep()
      te                Table elimination context
      eq_mod     INOUT  Store created Equality_module here and increment ptr if
                        you do so
      and_level         AND-level ()
      cond              Condition we've inferred the left=right equality from.
      left              Left expression
      right             Right expression
      usable_tables     Create Equality_module only if Left_expression's table 
                        belongs to this set.

  DESCRIPTION 
    Check if the passed equality means that 'left' expr is functionally dependent on
    the 'right', and if yes, create an Equality_module object for it.

  RETURN
    FALSE OK
    TRUE  Out of memory
*/

static 
bool add_eq_dep(Func_dep_analyzer *te, Equality_module **eq_mod,
                uint and_level, Item_func *cond, Item *left, Item *right)
{
  if ((left->used_tables() & te->usable_tables) &&
      !(right->used_tables() & RAND_TABLE_BIT) &&
      left->real_item()->type() == Item::FIELD_ITEM)
  {
    Field *field= ((Item_field*)left->real_item())->field;
    if (field->result_type() == STRING_RESULT)
    {
      if (right->result_type() != STRING_RESULT)
      {
        if (field->cmp_type() != right->result_type())
          return FALSE;
      }
      else
      {
        /*
          We can't assume there's a functional dependency if the effective 
          collation of the operation differ from the field collation.
        */
        if (field->cmp_type() == STRING_RESULT &&
            ((Field_str*)field)->charset() != cond->compare_collation())
          return FALSE;
      }
    }

    if (!((*eq_mod)->field= get_field_value(te, field)))
      return TRUE;
    (*eq_mod)->expression= right;
    (*eq_mod)->level= and_level;
    (*eq_mod)++;
  }
  return FALSE;
}


/*
  Get a Table_value object for the given table, creating it if necessary.
*/

static Table_value *get_table_value(Func_dep_analyzer *te, TABLE *table)
{
  Table_value *tbl_dep;
  if (!(tbl_dep= new Table_value(table)))
    return NULL;

  Key_module **key_list= &(tbl_dep->keys);
  /* Add dependencies for unique keys */
  for (uint i=0; i < table->s->keys; i++)
  {
    KEY *key= table->key_info + i; 
    if ((key->flags & (HA_NOSAME | HA_END_SPACE_KEY)) == HA_NOSAME)
    {
      Key_module *key_dep= new Key_module(tbl_dep, i, key->key_parts);
      *key_list= key_dep;
      key_list= &(key_dep->next_table_key);
    }
  }
  return te->table_deps[table->tablenr]= tbl_dep;
}


/* 
  Get a Field_value object for the given field, creating it if necessary
*/

static Field_value *get_field_value(Func_dep_analyzer *te, Field *field)
{
  TABLE *table= field->table;
  Table_value *tbl_dep;

  /* First, get the table*/
  if (!(tbl_dep= te->table_deps[table->tablenr]))
  {
    if (!(tbl_dep= get_table_value(te, table)))
      return NULL;
  }
 
  /* Try finding the field in field list */
  Field_value **pfield= &(tbl_dep->fields);
  while (*pfield && (*pfield)->field->field_index < field->field_index)
  {
    pfield= &((*pfield)->next_table_field);
  }
  if (*pfield && (*pfield)->field->field_index == field->field_index)
    return *pfield;
  
  /* Create the field and insert it in the list */
  Field_value *new_field= new Field_value(tbl_dep, field);
  new_field->next_table_field= *pfield;
  *pfield= new_field;

  return new_field;
}


/*
  This is used to analyze expressions in "tbl.col=expr" dependencies so
  that we can figure out which fields the expression depends on.
*/

class Field_dependency_recorder : public Field_enumerator
{
public:
  Field_dependency_recorder(Func_dep_analyzer *te_arg): te(te_arg)
  {}
  
  void see_field(Field *field)
  {
    Table_value *tbl_dep;
    if ((tbl_dep= te->table_deps[field->table->tablenr]))
    {
      for (Field_value *field_dep= tbl_dep->fields; field_dep; 
           field_dep= field_dep->next_table_field)
      {
        if (field->field_index == field_dep->field->field_index)
        {
          uint offs= field_dep->bitmap_offset + expr_offset;
          if (!bitmap_is_set(&te->expr_deps, offs))
            te->equality_deps[expr_offset].unknown_args++;
          bitmap_set_bit(&te->expr_deps, offs);
          return;
        }
      }
      /* 
        We got here if didn't find this field. It's not a part of 
        a unique key, and/or there is no field=expr element for it.
        Bump the dependency anyway, this will signal that this dependency
        cannot be satisfied.
      */
      te->equality_deps[expr_offset].unknown_args++;
    }
  }

  Func_dep_analyzer *te;
  /* Offset of the expression we're processing in the dependency bitmap */
  uint expr_offset; 
};


/*
  Setup inbound dependency relationships for tbl.col=expr equalities
 
  SYNOPSIS
    setup_equality_modules_deps()
      te                    Table elimination context
      bound_deps_list  OUT  Start of linked list of elements that were found to
                            be bound (caller will use this to see if that
                            allows to declare further elements bound)
  DESCRIPTION
  Setup inbound dependency relationships for tbl.col=expr equalities:
    - allocate a bitmap where we store such dependencies
    - for each "tbl.col=expr" equality, analyze the expr part and find out
      which fields it refers to and set appropriate dependencies.
    
  RETURN
    FALSE  OK
    TRUE   Out of memory
*/

static 
bool setup_equality_modules_deps(Func_dep_analyzer *te, 
                                 Module_dep **bound_deps_list)
{
  DBUG_ENTER("setup_equality_modules_deps");
  
  /*
    Count Field_value objects and assign each of them a unique bitmap_offset
    value.
  */
  uint offset= 0;
  for (Table_value **tbl_dep=te->table_deps; 
       tbl_dep < te->table_deps + MAX_TABLES;
       tbl_dep++)
  {
    if (*tbl_dep)
    {
      for (Field_value *field_dep= (*tbl_dep)->fields;
           field_dep;
           field_dep= field_dep->next_table_field)
      {
        field_dep->bitmap_offset= offset;
        offset += te->n_equality_deps;
      }
    }
  }
 
  void *buf;
  if (!(buf= current_thd->alloc(bitmap_buffer_size(offset))) ||
      bitmap_init(&te->expr_deps, (my_bitmap_map*)buf, offset, FALSE))
  {
    DBUG_RETURN(TRUE);
  }
  bitmap_clear_all(&te->expr_deps);

  /* 
    Analyze all "field=expr" dependencies, and have te->expr_deps encode
    dependencies of expressions from fields.

    Also collect a linked list of equalities that are bound.
  */
  Module_dep *bound_dep= NULL;
  Field_dependency_recorder deps_recorder(te);
  for (Equality_module *eq_dep= te->equality_deps; 
       eq_dep < te->equality_deps + te->n_equality_deps;
       eq_dep++)
  {
    deps_recorder.expr_offset= eq_dep - te->equality_deps;
    eq_dep->unknown_args= 0;
    eq_dep->expression->walk(&Item::check_column_usage_processor, FALSE, 
                             (uchar*)&deps_recorder);
    if (!eq_dep->unknown_args)
    {
      eq_dep->next= bound_dep;
      bound_dep= eq_dep;
    }
  }
  *bound_deps_list= bound_dep;

  DBUG_RETURN(FALSE);
}


/*
  Perform table elimination

  SYNOPSIS
    eliminate_tables()
      join                   Join to work on

  DESCRIPTION
    This is the entry point for table elimination. Grep for MODULE INTERFACE
    section in this file for calling convention.

    The idea behind table elimination is that if we have an outer join:
   
      SELECT * FROM t1 LEFT JOIN 
        (t2 JOIN t3) ON t3.primary_key=t1.col AND 
                        t4.primary_key=t2.col
    such that

    1. columns of the inner tables are not used anywhere ouside the outer
       join (not in WHERE, not in GROUP/ORDER BY clause, not in select list 
       etc etc), and
    2. inner side of the outer join is guaranteed to produce at most one
       record combination for each record combination of outer tables.
    
    then the inner side of the outer join can be removed from the query.
    This is because it will always produce one matching record (either a
    real match or a NULL-complemented record combination), and since there
    are no references to columns of the inner tables anywhere, it doesn't
    matter which record combination it was.

    This function primary handles checking #1. It collects a bitmap of
    tables that are not used in select list/GROUP BY/ORDER BY/HAVING/etc and
    thus can possibly be eliminated.
  
  SIDE EFFECTS
    See the OVERVIEW section at the top of this file.

*/

void eliminate_tables(JOIN *join)
{
  THD* thd= join->thd;
  Item *item;
  table_map used_tables;
  DBUG_ENTER("eliminate_tables");
  
  DBUG_ASSERT(join->eliminated_tables == 0);

  /* If there are no outer joins, we have nothing to eliminate: */
  if (!join->outer_join)
    DBUG_VOID_RETURN;

  /* Find the tables that are referred to from WHERE/HAVING */
  used_tables= (join->conds?  join->conds->used_tables() : 0) | 
               (join->having? join->having->used_tables() : 0);
  
  /* Add tables referred to from the select list */
  List_iterator<Item> it(join->fields_list);
  while ((item= it++))
    used_tables |= item->used_tables();
 
  /* Add tables referred to from ORDER BY and GROUP BY lists */
  ORDER *all_lists[]= { join->order, join->group_list};
  for (int i=0; i < 2; i++)
  {
    for (ORDER *cur_list= all_lists[i]; cur_list; cur_list= cur_list->next)
      used_tables |= (*(cur_list->item))->used_tables();
  }
  
  if (join->select_lex == &thd->lex->select_lex)
  {
    /* Multi-table UPDATE and DELETE: don't eliminate the tables we modify: */
    used_tables |= thd->table_map_for_update;

    /* Multi-table UPDATE: don't eliminate tables referred from SET statement */
    if (thd->lex->sql_command == SQLCOM_UPDATE_MULTI)
    {
      List_iterator<Item> it2(thd->lex->value_list);
      while ((item= it2++))
        used_tables |= item->used_tables();
    }
  }
  
  table_map all_tables= join->all_tables_map();
  if (all_tables & ~used_tables)
  {
    /* There are some tables that we probably could eliminate. Try it. */
    eliminate_tables_for_list(join, join->join_list, all_tables, NULL,
                              used_tables);
  }
  DBUG_VOID_RETURN;
}


/*
  Perform table elimination in a given join list

  SYNOPSIS
    eliminate_tables_for_list()
      te                      Table elimination context
      join_list               Join list to work on
      list_tables             Bitmap of tables embedded in the join_list.
      on_expr                 ON expression, if the join list is the inner side
                              of an outer join.
                              NULL means it's not an outer join but rather a
                              top-level join list.
      tables_used_elsewhere   Bitmap of tables that are referred to from
                              somewhere outside of the join list (e.g.
                              select list, HAVING, other ON expressions, etc).

  DESCRIPTION
    Perform table elimination in a given join list.
    
  RETURN
    TRUE  The entire join list eliminated
    FALSE Join list wasn't eliminated (but some of its possibly were)
*/

static bool
eliminate_tables_for_list(JOIN *join, List<TABLE_LIST> *join_list,
                          table_map list_tables, Item *on_expr,
                          table_map tables_used_elsewhere)
{
  TABLE_LIST *tbl;
  List_iterator<TABLE_LIST> it(*join_list);
  table_map tables_used_on_left= 0;
  bool all_eliminated= TRUE;

  while ((tbl= it++))
  {
    if (tbl->on_expr)
    {
      table_map outside_used_tables= tables_used_elsewhere | 
                                     tables_used_on_left;
      if (tbl->nested_join)
      {
        /* This is  "... LEFT JOIN (join_nest) ON cond" */
        if (eliminate_tables_for_list(join,
                                      &tbl->nested_join->join_list, 
                                      tbl->nested_join->used_tables, 
                                      tbl->on_expr,
                                      outside_used_tables))
        {
          mark_as_eliminated(join, tbl);
        }
        else
          all_eliminated= FALSE;
      }
      else
      {
        /* This is  "... LEFT JOIN tbl ON cond" */
        if (!(tbl->table->map & outside_used_tables) &&
            check_func_dependency(join, tbl->table->map, NULL, tbl, 
                                  tbl->on_expr))
        {
          mark_as_eliminated(join, tbl);
        }
        else
          all_eliminated= FALSE;
      }
      tables_used_on_left |= tbl->on_expr->used_tables();
    }
    else
    {
      DBUG_ASSERT(!tbl->nested_join);
    }
  }

  /* Try eliminating the nest we're called for */
  if (all_eliminated && on_expr && !(list_tables & tables_used_elsewhere))
  {
    it.rewind();
    return check_func_dependency(join, list_tables & ~join->eliminated_tables,
                                 &it, NULL, on_expr);
  }
  return FALSE; /* not eliminated */
}


/*
  Check if condition makes the a set of tables functionally-dependent

  SYNOPSIS
    check_func_dependency()
      te       Table elimination context
      tables   Set of tables we want to be functionally dependent 
      cond     Condition to use

  DESCRIPTION
    Check if condition allows to conclude that the table set is functionally
    dependent on everything else.

  RETURN 
    TRUE  - Yes, functionally dependent
    FALSE - No, or error
*/

static
bool check_func_dependency(JOIN *join,
                           table_map dep_tables,
                           List_iterator<TABLE_LIST> *it, 
                           TABLE_LIST *oj_tbl,
                           Item* cond)
{
  uint and_level=0;
  Module_dep *bound_modules;
  
    //psergey-todo: move allocs to somewhere else.
  Func_dep_analyzer pte(join);
  Func_dep_analyzer *te= &pte;
  uint m= max(join->thd->lex->current_select->max_equal_elems,1);
  uint max_elems= ((join->thd->lex->current_select->cond_count+1)*2 +
                    join->thd->lex->current_select->between_count)*m + 1 + 10; 
  if (!(te->equality_deps= new Equality_module[max_elems]))
    return FALSE;

  Equality_module* eq_dep= te->equality_deps;
  
  /* Create Table_value objects for all tables we're trying to eliminate */
  if (oj_tbl)
  {
    if (!get_table_value(te, oj_tbl->table))
      return FALSE;
  }
  else
  {
    TABLE_LIST *tbl; 
    while ((tbl= (*it)++))
    {
      if (tbl->table && (tbl->table->map & dep_tables))
      {
        if (!get_table_value(te, tbl->table))
          return FALSE;
      }
    }
  }

  te->usable_tables= dep_tables;
  /*
    Analyze the the ON expression and create Equality_module objects and
    Field_value objects for their left parts.
  */
  if (build_eq_deps_for_cond(te, &eq_dep, &and_level, cond) ||
      eq_dep == te->equality_deps)
    return FALSE;
 
  te->n_equality_deps= eq_dep - te->equality_deps;

  if (!(te->outer_join_dep= new Outer_join_module(my_count_bits(dep_tables))) ||
      setup_equality_modules_deps(te, &bound_modules))
  {
    return FALSE; /* OOM, default to non-dependent */
  }
  
  DBUG_EXECUTE("test", dbug_print_deps(te); );

  /* The running wave algorithm itself: */
  Value_dep *bound_values= NULL;
  while (bound_modules)
  {
    for (;bound_modules; bound_modules= bound_modules->next)
    {
      if (bound_modules->now_bound(te, &bound_values))
        return TRUE; /* Dependent! */
    }
    for (;bound_values; bound_values=bound_values->next)
      bound_values->now_bound(te, &bound_modules);
  }
  return FALSE; /* Not dependent */ 
}


/*
  Table is known means that
  - one more element in outer join nest is known
  - all its fields are known
*/

void Table_value::now_bound(Func_dep_analyzer *te, 
                            Module_dep **bound_modules)
{
  DBUG_PRINT("info", ("table %s is now bound", table->alias));

  for (Field_value *field_dep= fields; field_dep;
       field_dep= field_dep->next_table_field)
  {
    if (!field_dep->bound)
    {
      /* Mark as bound and add to the list */
      field_dep->bound= TRUE;
      field_dep->signal_from_field_to_exprs(te, bound_modules);
    }
  }
  
  if (te->outer_join_dep->unknown_args && 
      !--te->outer_join_dep->unknown_args)
  {
    /* Mark as bound and add to the list */
    te->outer_join_dep->next= *bound_modules;
    *bound_modules= te->outer_join_dep;
  }
}


void Field_value::now_bound(Func_dep_analyzer *te, 
                            Module_dep **bound_modules)
{
  DBUG_PRINT("info", ("field %s.%s is now bound", field->table->alias,
                       field->field_name));

  for (Key_module *key_dep= table->keys; key_dep; 
       key_dep= key_dep->next_table_key)
  {
    if (field->part_of_key.is_set(key_dep->keyno) && 
        key_dep->unknown_args && !--key_dep->unknown_args)
    {
      DBUG_PRINT("info", ("key %s.%s is now bound",
                          key_dep->table->table->alias, 
                          key_dep->table->table->key_info[key_dep->keyno].name));
      /* Mark as bound and add to the list */
      key_dep->next= *bound_modules;
      *bound_modules= key_dep;
    }
  }
  signal_from_field_to_exprs(te, bound_modules);
}


/*
  Walk through expressions that depend on this field and 'notify' them 
  that this field is no longer unknown.
*/
void Field_value::signal_from_field_to_exprs(Func_dep_analyzer* te, 
                                             Module_dep **bound_modules)
{
  for (uint i=0; i < te->n_equality_deps; i++)
  {
    if (bitmap_is_set(&te->expr_deps, bitmap_offset + i) &&
        te->equality_deps[i].unknown_args &&
        !--te->equality_deps[i].unknown_args)
    {
      /* Mark as bound and add to the list */
      Equality_module* eq_dep= &te->equality_deps[i];
      eq_dep->next= *bound_modules;
      *bound_modules= eq_dep;
    }
  }
}


bool Outer_join_module::now_bound(Func_dep_analyzer *te, 
                                  Value_dep **bound_values)
{
  DBUG_PRINT("info", ("Outer join eliminated"));
  return TRUE; /* Signal to finish the process */
}


bool Equality_module::now_bound(Func_dep_analyzer *te, 
                                Value_dep **bound_values)
{
  /* For field=expr and we got to know the expr, so we know the field */
  if (!field->bound)
  {
    /* Mark as bound and add to the list */
    field->bound= TRUE;
    field->next= *bound_values;
    *bound_values= field;
  }
  return FALSE;
}

/* Unique key is known means its  table is known */
bool Key_module::now_bound(Func_dep_analyzer *te, Value_dep **bound_values)
{
  if (!table->bound)
  {
    /* Mark as bound and add to the list */
    table->bound= TRUE;
    table->next= *bound_values;
    *bound_values= table;
  }
  return FALSE;
}


/* 
  Mark one table or the whole join nest as eliminated.
*/

static void mark_as_eliminated(JOIN *join, TABLE_LIST *tbl)
{
  TABLE *table;
  /*
    NOTE: there are TABLE_LIST object that have
    tbl->table!= NULL && tbl->nested_join!=NULL and 
    tbl->table == tbl->nested_join->join_list->element(..)->table
  */
  if (tbl->nested_join)
  {
    TABLE_LIST *child;
    List_iterator<TABLE_LIST> it(tbl->nested_join->join_list);
    while ((child= it++))
      mark_as_eliminated(join, child);
  }
  else if ((table= tbl->table))
  {
    JOIN_TAB *tab= tbl->table->reginfo.join_tab;
    if (!(join->const_table_map & tab->table->map))
    {
      DBUG_PRINT("info", ("Eliminated table %s", table->alias));
      tab->type= JT_CONST;
      join->eliminated_tables |= table->map;
      join->const_table_map|= table->map;
      set_position(join, join->const_tables++, tab, (KEYUSE*)0);
    }
  }

  if (tbl->on_expr)
    tbl->on_expr->walk(&Item::mark_as_eliminated_processor, FALSE, NULL);
}


#ifndef DBUG_OFF
static 
void dbug_print_deps(Func_dep_analyzer *te)
{
  DBUG_ENTER("dbug_print_deps");
  DBUG_LOCK_FILE;
  
  fprintf(DBUG_FILE,"deps {\n");
  
  /* Start with printing equalities */
  for (Equality_module *eq_dep= te->equality_deps; 
       eq_dep != te->equality_deps + te->n_equality_deps; eq_dep++)
  {
    char buf[128];
    String str(buf, sizeof(buf), &my_charset_bin);
    str.length(0);
    eq_dep->expression->print(&str, QT_ORDINARY);
    fprintf(DBUG_FILE, "  equality%d: %s -> %s.%s\n", 
            eq_dep - te->equality_deps,
            str.c_ptr(),
            eq_dep->field->table->table->alias,
            eq_dep->field->field->field_name);
  }
  fprintf(DBUG_FILE,"\n");

  /* Then tables and their fields */
  for (uint i=0; i < MAX_TABLES; i++)
  {
    Table_value *table_dep;
    if ((table_dep= te->table_deps[i]))
    {
      /* Print table */
      fprintf(DBUG_FILE, "  table %s\n", table_dep->table->alias);
      /* Print fields */
      for (Field_value *field_dep= table_dep->fields; field_dep; 
           field_dep= field_dep->next_table_field)
      {
        fprintf(DBUG_FILE, "    field %s.%s ->", table_dep->table->alias,
                field_dep->field->field_name);
        uint ofs= field_dep->bitmap_offset;
        for (uint bit= ofs; bit < ofs + te->n_equality_deps; bit++)
        {
          if (bitmap_is_set(&te->expr_deps, bit))
            fprintf(DBUG_FILE, " equality%d ", bit - ofs);
        }
        fprintf(DBUG_FILE, "\n");
      }
    }
  }
  fprintf(DBUG_FILE,"\n}\n");
  DBUG_UNLOCK_FILE;
  DBUG_VOID_RETURN;
}

#endif 
/**
  @} (end of group Table_Elimination)
*/