1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
|
#include "my_global.h"
#include "rpl_parallel.h"
#include "slave.h"
#include "rpl_mi.h"
#include "sql_parse.h"
#include "debug_sync.h"
/*
Code for optional parallel execution of replicated events on the slave.
*/
/*
Maximum number of queued events to accumulate in a local free list, before
moving them to the global free list. There is additional a limit of how much
to accumulate based on opt_slave_parallel_max_queued.
*/
#define QEV_BATCH_FREE 200
struct rpl_parallel_thread_pool global_rpl_thread_pool;
static void signal_error_to_sql_driver_thread(THD *thd, rpl_group_info *rgi,
int err);
static int
rpt_handle_event(rpl_parallel_thread::queued_event *qev,
struct rpl_parallel_thread *rpt)
{
int err;
rpl_group_info *rgi= qev->rgi;
Relay_log_info *rli= rgi->rli;
THD *thd= rgi->thd;
Log_event *ev;
DBUG_ASSERT(qev->typ == rpl_parallel_thread::queued_event::QUEUED_EVENT);
ev= qev->ev;
thd->system_thread_info.rpl_sql_info->rpl_filter = rli->mi->rpl_filter;
ev->thd= thd;
strcpy(rgi->event_relay_log_name_buf, qev->event_relay_log_name);
rgi->event_relay_log_name= rgi->event_relay_log_name_buf;
rgi->event_relay_log_pos= qev->event_relay_log_pos;
rgi->future_event_relay_log_pos= qev->future_event_relay_log_pos;
strcpy(rgi->future_event_master_log_name, qev->future_event_master_log_name);
if (!(ev->is_artificial_event() || ev->is_relay_log_event() ||
(ev->when == 0)))
rgi->last_master_timestamp= ev->when + (time_t)ev->exec_time;
err= apply_event_and_update_pos_for_parallel(ev, thd, rgi);
thread_safe_increment64(&rli->executed_entries);
/* ToDo: error handling. */
return err;
}
static void
handle_queued_pos_update(THD *thd, rpl_parallel_thread::queued_event *qev)
{
int cmp;
Relay_log_info *rli;
rpl_parallel_entry *e;
/*
Events that are not part of an event group, such as Format Description,
Stop, GTID List and such, are executed directly in the driver SQL thread,
to keep the relay log state up-to-date. But the associated position update
is done here, in sync with other normal events as they are queued to
worker threads.
*/
if ((thd->variables.option_bits & OPTION_BEGIN) &&
opt_using_transactions)
return;
/* Do not update position if an earlier event group caused an error abort. */
DBUG_ASSERT(qev->typ == rpl_parallel_thread::queued_event::QUEUED_POS_UPDATE);
rli= qev->rgi->rli;
e= qev->entry_for_queued;
if (e->stop_on_error_sub_id < (uint64)ULONGLONG_MAX ||
(e->force_abort && !rli->stop_for_until))
return;
mysql_mutex_lock(&rli->data_lock);
cmp= strcmp(rli->group_relay_log_name, qev->event_relay_log_name);
if (cmp < 0)
{
rli->group_relay_log_pos= qev->future_event_relay_log_pos;
strmake_buf(rli->group_relay_log_name, qev->event_relay_log_name);
} else if (cmp == 0 &&
rli->group_relay_log_pos < qev->future_event_relay_log_pos)
rli->group_relay_log_pos= qev->future_event_relay_log_pos;
cmp= strcmp(rli->group_master_log_name, qev->future_event_master_log_name);
if (cmp < 0)
{
strcpy(rli->group_master_log_name, qev->future_event_master_log_name);
rli->group_master_log_pos= qev->future_event_master_log_pos;
}
else if (cmp == 0
&& rli->group_master_log_pos < qev->future_event_master_log_pos)
rli->group_master_log_pos= qev->future_event_master_log_pos;
mysql_mutex_unlock(&rli->data_lock);
mysql_cond_broadcast(&rli->data_cond);
}
/*
Wait for any pending deadlock kills. Since deadlock kills happen
asynchronously, we need to be sure they will be completed before starting a
new transaction. Otherwise the new transaction might suffer a spurious kill.
*/
static void
wait_for_pending_deadlock_kill(THD *thd, rpl_group_info *rgi)
{
PSI_stage_info old_stage;
mysql_mutex_lock(&thd->LOCK_wakeup_ready);
thd->ENTER_COND(&thd->COND_wakeup_ready, &thd->LOCK_wakeup_ready,
&stage_waiting_for_deadlock_kill, &old_stage);
while (rgi->killed_for_retry == rpl_group_info::RETRY_KILL_PENDING)
mysql_cond_wait(&thd->COND_wakeup_ready, &thd->LOCK_wakeup_ready);
thd->EXIT_COND(&old_stage);
}
static void
finish_event_group(rpl_parallel_thread *rpt, uint64 sub_id,
rpl_parallel_entry *entry, rpl_group_info *rgi)
{
THD *thd= rpt->thd;
wait_for_commit *wfc= &rgi->commit_orderer;
int err;
thd->get_stmt_da()->set_overwrite_status(true);
/*
Remove any left-over registration to wait for a prior commit to
complete. Normally, such wait would already have been removed at
this point by wait_for_prior_commit() called from within COMMIT
processing. However, in case of MyISAM and no binlog, we might not
have any commit processing, and so we need to do the wait here,
before waking up any subsequent commits, to preserve correct
order of event execution. Also, in the error case we might have
skipped waiting and thus need to remove it explicitly.
It is important in the non-error case to do a wait, not just an
unregister. Because we might be last in a group-commit that is
replicated in parallel, and the following event will then wait
for us to complete and rely on this also ensuring that any other
event in the group has completed.
And in the error case, correct GCO lifetime relies on the fact that once
the last event group in the GCO has executed wait_for_prior_commit(),
all earlier event groups have also committed; this way no more
mark_start_commit() calls can be made and it is safe to de-allocate
the GCO.
*/
err= wfc->wait_for_prior_commit(thd);
if (unlikely(err) && !rgi->worker_error)
signal_error_to_sql_driver_thread(thd, rgi, err);
thd->wait_for_commit_ptr= NULL;
mysql_mutex_lock(&entry->LOCK_parallel_entry);
/*
We need to mark that this event group started its commit phase, in case we
missed it before (otherwise we would deadlock the next event group that is
waiting for this). In most cases (normal DML), it will be a no-op.
*/
rgi->mark_start_commit_no_lock();
if (entry->last_committed_sub_id < sub_id)
{
/*
Record that this event group has finished (eg. transaction is
committed, if transactional), so other event groups will no longer
attempt to wait for us to commit. Once we have increased
entry->last_committed_sub_id, no other threads will execute
register_wait_for_prior_commit() against us. Thus, by doing one
extra (usually redundant) wakeup_subsequent_commits() we can ensure
that no register_wait_for_prior_commit() can ever happen without a
subsequent wakeup_subsequent_commits() to wake it up.
We can race here with the next transactions, but that is fine, as
long as we check that we do not decrease last_committed_sub_id. If
this commit is done, then any prior commits will also have been
done and also no longer need waiting for.
*/
entry->last_committed_sub_id= sub_id;
if (entry->need_sub_id_signal)
mysql_cond_broadcast(&entry->COND_parallel_entry);
/* Now free any GCOs in which all transactions have committed. */
group_commit_orderer *tmp_gco= rgi->gco;
while (tmp_gco &&
(!tmp_gco->next_gco || tmp_gco->last_sub_id > sub_id ||
tmp_gco->next_gco->wait_count > entry->count_committing_event_groups))
{
/*
We must not free a GCO before the wait_count of the following GCO has
been reached and wakeup has been sent. Otherwise we will lose the
wakeup and hang (there were several such bugs in the past).
The intention is that this is ensured already since we only free when
the last event group in the GCO has committed
(tmp_gco->last_sub_id <= sub_id). However, if we have a bug, we have
extra check on next_gco->wait_count to hopefully avoid hanging; we
have here an assertion in debug builds that this check does not in
fact trigger.
*/
DBUG_ASSERT(!tmp_gco->next_gco || tmp_gco->last_sub_id > sub_id);
tmp_gco= tmp_gco->prev_gco;
}
while (tmp_gco)
{
group_commit_orderer *prev_gco= tmp_gco->prev_gco;
tmp_gco->next_gco->prev_gco= NULL;
rpt->loc_free_gco(tmp_gco);
tmp_gco= prev_gco;
}
}
/*
If this event group got error, then any following event groups that have
not yet started should just skip their group, preparing for stop of the
SQL driver thread.
*/
if (unlikely(rgi->worker_error) &&
entry->stop_on_error_sub_id == (uint64)ULONGLONG_MAX)
entry->stop_on_error_sub_id= sub_id;
mysql_mutex_unlock(&entry->LOCK_parallel_entry);
DBUG_EXECUTE_IF("hold_worker_on_schedule", {
if (entry->stop_on_error_sub_id < (uint64)ULONGLONG_MAX)
{
debug_sync_set_action(thd, STRING_WITH_LEN("now SIGNAL continue_worker"));
}
});
DBUG_EXECUTE_IF("rpl_parallel_simulate_wait_at_retry", {
if (rgi->current_gtid.seq_no == 1000) {
DBUG_ASSERT(entry->stop_on_error_sub_id == sub_id);
debug_sync_set_action(thd,
STRING_WITH_LEN("now WAIT_FOR proceed_by_1000"));
}
});
if (rgi->killed_for_retry == rpl_group_info::RETRY_KILL_PENDING)
wait_for_pending_deadlock_kill(thd, rgi);
thd->clear_error();
thd->reset_killed();
/*
Would do thd->get_stmt_da()->set_overwrite_status(false) here, but
reset_diagnostics_area() already does that.
*/
thd->get_stmt_da()->reset_diagnostics_area();
wfc->wakeup_subsequent_commits(rgi->worker_error);
}
static void
signal_error_to_sql_driver_thread(THD *thd, rpl_group_info *rgi, int err)
{
rgi->worker_error= err;
/*
In case we get an error during commit, inform following transactions that
we aborted our commit.
*/
rgi->unmark_start_commit();
rgi->cleanup_context(thd, true);
rgi->rli->abort_slave= true;
rgi->rli->stop_for_until= false;
mysql_mutex_lock(rgi->rli->relay_log.get_log_lock());
mysql_mutex_unlock(rgi->rli->relay_log.get_log_lock());
rgi->rli->relay_log.signal_update();
}
static void
unlock_or_exit_cond(THD *thd, mysql_mutex_t *lock, bool *did_enter_cond,
PSI_stage_info *old_stage)
{
if (*did_enter_cond)
{
thd->EXIT_COND(old_stage);
*did_enter_cond= false;
}
else
mysql_mutex_unlock(lock);
}
static void
register_wait_for_prior_event_group_commit(rpl_group_info *rgi,
rpl_parallel_entry *entry)
{
mysql_mutex_assert_owner(&entry->LOCK_parallel_entry);
if (rgi->wait_commit_sub_id > entry->last_committed_sub_id)
{
/*
Register that the commit of this event group must wait for the
commit of the previous event group to complete before it may
complete itself, so that we preserve commit order.
*/
wait_for_commit *waitee=
&rgi->wait_commit_group_info->commit_orderer;
rgi->commit_orderer.register_wait_for_prior_commit(waitee);
}
}
/*
Do not start parallel execution of this event group until all prior groups
have reached the commit phase that are not safe to run in parallel with.
*/
static bool
do_gco_wait(rpl_group_info *rgi, group_commit_orderer *gco,
bool *did_enter_cond, PSI_stage_info *old_stage)
{
THD *thd= rgi->thd;
rpl_parallel_entry *entry= rgi->parallel_entry;
uint64 wait_count;
mysql_mutex_assert_owner(&entry->LOCK_parallel_entry);
if (!gco->installed)
{
group_commit_orderer *prev_gco= gco->prev_gco;
if (prev_gco)
{
prev_gco->last_sub_id= gco->prior_sub_id;
prev_gco->next_gco= gco;
}
gco->installed= true;
}
wait_count= gco->wait_count;
if (wait_count > entry->count_committing_event_groups)
{
DEBUG_SYNC(thd, "rpl_parallel_start_waiting_for_prior");
thd->ENTER_COND(&gco->COND_group_commit_orderer,
&entry->LOCK_parallel_entry,
&stage_waiting_for_prior_transaction_to_start_commit,
old_stage);
*did_enter_cond= true;
thd->set_time_for_next_stage();
do
{
if (thd->check_killed() && !rgi->worker_error)
{
DEBUG_SYNC(thd, "rpl_parallel_start_waiting_for_prior_killed");
thd->clear_error();
thd->get_stmt_da()->reset_diagnostics_area();
thd->send_kill_message();
slave_output_error_info(rgi, thd);
signal_error_to_sql_driver_thread(thd, rgi, 1);
/*
Even though we were killed, we need to continue waiting for the
prior event groups to signal that we can continue. Otherwise we
mess up the accounting for ordering. However, now that we have
marked the error, events will just be skipped rather than
executed, and things will progress quickly towards stop.
*/
}
mysql_cond_wait(&gco->COND_group_commit_orderer,
&entry->LOCK_parallel_entry);
} while (wait_count > entry->count_committing_event_groups);
}
if (entry->force_abort && wait_count > entry->stop_count)
{
/*
We are stopping (STOP SLAVE), and this event group is beyond the point
where we can safely stop. So return a flag that will cause us to skip,
rather than execute, the following events.
*/
return true;
}
else
return false;
}
static bool
do_ftwrl_wait(rpl_group_info *rgi,
bool *did_enter_cond, PSI_stage_info *old_stage)
{
THD *thd= rgi->thd;
rpl_parallel_entry *entry= rgi->parallel_entry;
uint64 sub_id= rgi->gtid_sub_id;
bool aborted= false;
DBUG_ENTER("do_ftwrl_wait");
mysql_mutex_assert_owner(&entry->LOCK_parallel_entry);
/*
If a FLUSH TABLES WITH READ LOCK (FTWRL) is pending, check if this
transaction is later than transactions that have priority to complete
before FTWRL. If so, wait here so that FTWRL can proceed and complete
first.
(entry->pause_sub_id is ULONGLONG_MAX if no FTWRL is pending, which makes
this test false as required).
*/
if (unlikely(sub_id > entry->pause_sub_id))
{
thd->ENTER_COND(&entry->COND_parallel_entry, &entry->LOCK_parallel_entry,
&stage_waiting_for_ftwrl, old_stage);
*did_enter_cond= true;
thd->set_time_for_next_stage();
do
{
if (entry->force_abort || rgi->worker_error)
{
aborted= true;
break;
}
if (thd->check_killed())
{
thd->send_kill_message();
slave_output_error_info(rgi, thd);
signal_error_to_sql_driver_thread(thd, rgi, 1);
break;
}
mysql_cond_wait(&entry->COND_parallel_entry, &entry->LOCK_parallel_entry);
} while (sub_id > entry->pause_sub_id);
/*
We do not call EXIT_COND() here, as this will be done later by our
caller (since we set *did_enter_cond to true).
*/
}
if (sub_id > entry->largest_started_sub_id)
entry->largest_started_sub_id= sub_id;
DBUG_RETURN(aborted);
}
static int
pool_mark_busy(rpl_parallel_thread_pool *pool, THD *thd)
{
PSI_stage_info old_stage;
int res= 0;
/*
Wait here while the queue is busy. This is done to make FLUSH TABLES WITH
READ LOCK work correctly, without incuring extra locking penalties in
normal operation. FLUSH TABLES WITH READ LOCK needs to lock threads in the
thread pool, and for this we need to make sure the pool will not go away
during the operation. The LOCK_rpl_thread_pool is not suitable for
this. It is taken by release_thread() while holding LOCK_rpl_thread; so it
must be released before locking any LOCK_rpl_thread lock, or a deadlock
can occur.
So we protect the infrequent operations of FLUSH TABLES WITH READ LOCK and
pool size changes with this condition wait.
*/
mysql_mutex_lock(&pool->LOCK_rpl_thread_pool);
if (thd)
{
thd->ENTER_COND(&pool->COND_rpl_thread_pool, &pool->LOCK_rpl_thread_pool,
&stage_waiting_for_rpl_thread_pool, &old_stage);
thd->set_time_for_next_stage();
}
while (pool->busy)
{
if (thd && thd->check_killed())
{
thd->send_kill_message();
res= 1;
break;
}
mysql_cond_wait(&pool->COND_rpl_thread_pool, &pool->LOCK_rpl_thread_pool);
}
if (!res)
pool->busy= true;
if (thd)
thd->EXIT_COND(&old_stage);
else
mysql_mutex_unlock(&pool->LOCK_rpl_thread_pool);
return res;
}
static void
pool_mark_not_busy(rpl_parallel_thread_pool *pool)
{
mysql_mutex_lock(&pool->LOCK_rpl_thread_pool);
DBUG_ASSERT(pool->busy);
pool->busy= false;
mysql_cond_broadcast(&pool->COND_rpl_thread_pool);
mysql_mutex_unlock(&pool->LOCK_rpl_thread_pool);
}
void
rpl_unpause_after_ftwrl(THD *thd)
{
uint32 i;
rpl_parallel_thread_pool *pool= &global_rpl_thread_pool;
DBUG_ENTER("rpl_unpause_after_ftwrl");
DBUG_ASSERT(pool->busy);
for (i= 0; i < pool->count; ++i)
{
rpl_parallel_entry *e;
rpl_parallel_thread *rpt= pool->threads[i];
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
if (!rpt->current_owner)
{
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
continue;
}
e= rpt->current_entry;
mysql_mutex_lock(&e->LOCK_parallel_entry);
rpt->pause_for_ftwrl = false;
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
/*
Do not change pause_sub_id if force_abort is set.
force_abort is set in case of STOP SLAVE.
Reason: If pause_sub_id is not changed and force_abort_is set,
any parallel slave thread waiting in do_ftwrl_wait() will
on wakeup return from do_ftwrl_wait() with 1. This will set
skip_event_group to 1 in handle_rpl_parallel_thread() and the
parallel thread will abort at once.
If pause_sub_id is changed, the code in handle_rpl_parallel_thread()
would continue to execute the transaction in the queue, which would
cause some transactions to be lost.
*/
if (!e->force_abort)
e->pause_sub_id= (uint64)ULONGLONG_MAX;
mysql_cond_broadcast(&e->COND_parallel_entry);
mysql_mutex_unlock(&e->LOCK_parallel_entry);
}
pool_mark_not_busy(pool);
DBUG_VOID_RETURN;
}
/*
.
Note: in case of error return, rpl_unpause_after_ftwrl() must _not_ be called.
*/
int
rpl_pause_for_ftwrl(THD *thd)
{
uint32 i;
rpl_parallel_thread_pool *pool= &global_rpl_thread_pool;
int err;
DBUG_ENTER("rpl_pause_for_ftwrl");
/*
While the count_pending_pause_for_ftwrl counter is non-zero, the pool
cannot be shutdown/resized, so threads are guaranteed to not disappear.
This is required to safely be able to access the individual threads below.
(We cannot lock an individual thread while holding LOCK_rpl_thread_pool,
as this can deadlock against release_thread()).
*/
if ((err= pool_mark_busy(pool, thd)))
DBUG_RETURN(err);
for (i= 0; i < pool->count; ++i)
{
PSI_stage_info old_stage;
rpl_parallel_entry *e;
rpl_parallel_thread *rpt= pool->threads[i];
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
if (!rpt->current_owner)
{
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
continue;
}
e= rpt->current_entry;
mysql_mutex_lock(&e->LOCK_parallel_entry);
/*
Setting the rpt->pause_for_ftwrl flag makes sure that the thread will not
de-allocate itself until signalled to do so by rpl_unpause_after_ftwrl().
*/
rpt->pause_for_ftwrl = true;
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
++e->need_sub_id_signal;
if (e->pause_sub_id == (uint64)ULONGLONG_MAX)
e->pause_sub_id= e->largest_started_sub_id;
thd->ENTER_COND(&e->COND_parallel_entry, &e->LOCK_parallel_entry,
&stage_waiting_for_ftwrl_threads_to_pause, &old_stage);
thd->set_time_for_next_stage();
while (e->pause_sub_id < (uint64)ULONGLONG_MAX &&
e->last_committed_sub_id < e->pause_sub_id &&
!err)
{
if (thd->check_killed())
{
thd->send_kill_message();
err= 1;
break;
}
mysql_cond_wait(&e->COND_parallel_entry, &e->LOCK_parallel_entry);
};
--e->need_sub_id_signal;
thd->EXIT_COND(&old_stage);
if (err)
break;
}
if (err)
rpl_unpause_after_ftwrl(thd);
DBUG_RETURN(err);
}
#ifndef DBUG_OFF
static int
dbug_simulate_tmp_error(rpl_group_info *rgi, THD *thd)
{
if (rgi->current_gtid.domain_id == 0 && rgi->current_gtid.seq_no == 100 &&
rgi->retry_event_count == 4)
{
thd->clear_error();
thd->get_stmt_da()->reset_diagnostics_area();
my_error(ER_LOCK_DEADLOCK, MYF(0));
return 1;
}
return 0;
}
#endif
/*
If we detect a deadlock due to eg. storage engine locks that conflict with
the fixed commit order, then the later transaction will be killed
asynchroneously to allow the former to complete its commit.
In this case, we convert the 'killed' error into a deadlock error, and retry
the later transaction.
If we are doing optimistic parallel apply of transactions not known to be
safe, we convert any error to a deadlock error, but then at retry we will
wait for prior transactions to commit first, so that the retries can be
done non-speculative.
*/
static void
convert_kill_to_deadlock_error(rpl_group_info *rgi)
{
THD *thd= rgi->thd;
int err_code;
if (!thd->get_stmt_da()->is_error())
return;
err_code= thd->get_stmt_da()->sql_errno();
if ((rgi->speculation == rpl_group_info::SPECULATE_OPTIMISTIC &&
err_code != ER_PRIOR_COMMIT_FAILED) ||
((err_code == ER_QUERY_INTERRUPTED || err_code == ER_CONNECTION_KILLED) &&
rgi->killed_for_retry))
{
thd->clear_error();
my_error(ER_LOCK_DEADLOCK, MYF(0));
thd->reset_killed();
}
}
/*
Check if an event marks the end of an event group. Returns non-zero if so,
zero otherwise.
In addition, returns 1 if the group is committing, 2 if it is rolling back.
*/
static int
is_group_ending(Log_event *ev, Log_event_type event_type)
{
if (event_type == XID_EVENT)
return 1;
if (event_type == QUERY_EVENT) // COMMIT/ROLLBACK are never compressed
{
Query_log_event *qev = (Query_log_event *)ev;
if (qev->is_commit())
return 1;
if (qev->is_rollback())
return 2;
}
return 0;
}
static int
retry_event_group(rpl_group_info *rgi, rpl_parallel_thread *rpt,
rpl_parallel_thread::queued_event *orig_qev)
{
IO_CACHE rlog;
LOG_INFO linfo;
File fd= (File)-1;
const char *errmsg;
inuse_relaylog *ir= rgi->relay_log;
uint64 event_count;
uint64 events_to_execute= rgi->retry_event_count;
Relay_log_info *rli= rgi->rli;
int err;
ulonglong cur_offset, old_offset;
char log_name[FN_REFLEN];
THD *thd= rgi->thd;
rpl_parallel_entry *entry= rgi->parallel_entry;
ulong retries= 0;
Format_description_log_event *description_event= NULL;
do_retry:
event_count= 0;
err= 0;
errmsg= NULL;
/*
If we already started committing before getting the deadlock (or other
error) that caused us to need to retry, we have already signalled
subsequent transactions that we have started committing. This is
potentially a problem, as now we will rollback, and if subsequent
transactions would start to execute now, they could see an unexpected
state of the database and get eg. key not found or duplicate key error.
However, to get a deadlock in the first place, there must have been
another earlier transaction that is waiting for us. Thus that other
transaction has _not_ yet started to commit, and any subsequent
transactions will still be waiting at this point.
So here, we decrement back the count of transactions that started
committing (if we already incremented it), undoing the effect of an
earlier mark_start_commit(). Then later, when the retry succeeds and we
commit again, we can do a new mark_start_commit() and eventually wake up
subsequent transactions at the proper time.
We need to do the unmark before the rollback, to be sure that the
transaction we deadlocked with will not signal that it started to commit
until after the unmark.
*/
DBUG_EXECUTE_IF("inject_mdev8302", { my_sleep(20000);});
rgi->unmark_start_commit();
DEBUG_SYNC(thd, "rpl_parallel_retry_after_unmark");
/*
We might get the deadlock error that causes the retry during commit, while
sitting in wait_for_prior_commit(). If this happens, we will have a
pending error in the wait_for_commit object. So clear this by
unregistering (and later re-registering) the wait.
*/
if(thd->wait_for_commit_ptr)
thd->wait_for_commit_ptr->unregister_wait_for_prior_commit();
DBUG_EXECUTE_IF("inject_mdev8031", {
/* Simulate that we get deadlock killed at this exact point. */
rgi->killed_for_retry= rpl_group_info::RETRY_KILL_KILLED;
thd->set_killed(KILL_CONNECTION);
});
DBUG_EXECUTE_IF("rpl_parallel_simulate_wait_at_retry", {
if (rgi->current_gtid.seq_no == 1001) {
debug_sync_set_action(thd,
STRING_WITH_LEN("rpl_parallel_simulate_wait_at_retry WAIT_FOR proceed_by_1001"));
}
DEBUG_SYNC(thd, "rpl_parallel_simulate_wait_at_retry");
});
rgi->cleanup_context(thd, 1);
wait_for_pending_deadlock_kill(thd, rgi);
thd->reset_killed();
thd->clear_error();
rgi->killed_for_retry = rpl_group_info::RETRY_KILL_NONE;
/*
If we retry due to a deadlock kill that occurred during the commit step, we
might have already updated (but not committed) an update of table
mysql.gtid_slave_pos, and cleared the gtid_pending flag. Now we have
rolled back any such update, so we must set the gtid_pending flag back to
true so that we will do a new update when/if we succeed with the retry.
*/
rgi->gtid_pending= true;
mysql_mutex_lock(&rli->data_lock);
++rli->retried_trans;
statistic_increment(slave_retried_transactions, LOCK_status);
mysql_mutex_unlock(&rli->data_lock);
for (;;)
{
mysql_mutex_lock(&entry->LOCK_parallel_entry);
if (entry->stop_on_error_sub_id == (uint64) ULONGLONG_MAX ||
#ifndef DBUG_OFF
(DBUG_EVALUATE_IF("simulate_mdev_12746", 1, 0)) ||
#endif
rgi->gtid_sub_id < entry->stop_on_error_sub_id)
{
register_wait_for_prior_event_group_commit(rgi, entry);
}
else
{
/*
A failure of a preceeding "parent" transaction may not be
seen by the current one through its own worker_error.
Such induced error gets set by ourselves now.
*/
err= rgi->worker_error= 1;
my_error(ER_PRIOR_COMMIT_FAILED, MYF(0));
mysql_mutex_unlock(&entry->LOCK_parallel_entry);
goto err;
}
mysql_mutex_unlock(&entry->LOCK_parallel_entry);
/*
Let us wait for all prior transactions to complete before trying again.
This way, we avoid repeatedly conflicting with and getting deadlock
killed by the same earlier transaction.
*/
if (!(err= thd->wait_for_prior_commit()))
{
rgi->speculation = rpl_group_info::SPECULATE_WAIT;
break;
}
convert_kill_to_deadlock_error(rgi);
if (!has_temporary_error(thd))
goto err;
/*
If we get a temporary error such as a deadlock kill, we can safely
ignore it, as we already rolled back.
But we still want to retry the wait for the prior transaction to
complete its commit.
*/
thd->clear_error();
thd->reset_killed();
if(thd->wait_for_commit_ptr)
thd->wait_for_commit_ptr->unregister_wait_for_prior_commit();
DBUG_EXECUTE_IF("inject_mdev8031", {
/* Inject a small sleep to give prior transaction a chance to commit. */
my_sleep(100000);
});
}
/*
Let us clear any lingering deadlock kill one more time, here after
wait_for_prior_commit() has completed. This should rule out any
possibility of an old deadlock kill lingering on beyond this point.
*/
thd->reset_killed();
strmake_buf(log_name, ir->name);
if ((fd= open_binlog(&rlog, log_name, &errmsg)) <0)
{
err= 1;
goto err;
}
cur_offset= rgi->retry_start_offset;
delete description_event;
description_event=
read_relay_log_description_event(&rlog, cur_offset, &errmsg);
if (!description_event)
{
err= 1;
goto err;
}
DBUG_EXECUTE_IF("inject_mdev8031", {
/* Simulate pending KILL caught in read_relay_log_description_event(). */
if (thd->check_killed()) {
thd->send_kill_message();
err= 1;
goto err;
}
});
my_b_seek(&rlog, cur_offset);
do
{
Log_event_type event_type;
Log_event *ev;
rpl_parallel_thread::queued_event *qev;
/* The loop is here so we can try again the next relay log file on EOF. */
for (;;)
{
old_offset= cur_offset;
ev= Log_event::read_log_event(&rlog, 0, description_event,
opt_slave_sql_verify_checksum);
cur_offset= my_b_tell(&rlog);
if (ev)
break;
if (rlog.error < 0)
{
errmsg= "slave SQL thread aborted because of I/O error";
err= 1;
goto check_retry;
}
if (rlog.error > 0)
{
sql_print_error("Slave SQL thread: I/O error reading "
"event(errno: %d cur_log->error: %d)",
my_errno, rlog.error);
errmsg= "Aborting slave SQL thread because of partial event read";
err= 1;
goto err;
}
/* EOF. Move to the next relay log. */
end_io_cache(&rlog);
mysql_file_close(fd, MYF(MY_WME));
fd= (File)-1;
/* Find the next relay log file. */
if((err= rli->relay_log.find_log_pos(&linfo, log_name, 1)) ||
(err= rli->relay_log.find_next_log(&linfo, 1)))
{
char buff[22];
sql_print_error("next log error: %d offset: %s log: %s",
err,
llstr(linfo.index_file_offset, buff),
log_name);
goto err;
}
strmake_buf(log_name ,linfo.log_file_name);
DBUG_EXECUTE_IF("inject_retry_event_group_open_binlog_kill", {
if (retries < 2)
{
/* Simulate that we get deadlock killed during open_binlog(). */
thd->reset_for_next_command();
rgi->killed_for_retry= rpl_group_info::RETRY_KILL_KILLED;
thd->set_killed(KILL_CONNECTION);
thd->send_kill_message();
fd= (File)-1;
err= 1;
goto check_retry;
}
});
if ((fd= open_binlog(&rlog, log_name, &errmsg)) <0)
{
err= 1;
goto check_retry;
}
description_event->reset_crypto();
/* Loop to try again on the new log file. */
}
event_type= ev->get_type_code();
if (event_type == FORMAT_DESCRIPTION_EVENT)
{
Format_description_log_event *newde= (Format_description_log_event*)ev;
newde->copy_crypto_data(description_event);
delete description_event;
description_event= newde;
continue;
}
else if (event_type == START_ENCRYPTION_EVENT)
{
description_event->start_decryption((Start_encryption_log_event*)ev);
delete ev;
continue;
}
else if (!Log_event::is_group_event(event_type))
{
delete ev;
continue;
}
ev->thd= thd;
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
qev= rpt->retry_get_qev(ev, orig_qev, log_name, old_offset,
cur_offset - old_offset);
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
if (!qev)
{
delete ev;
my_error(ER_OUT_OF_RESOURCES, MYF(0));
err= 1;
goto err;
}
if (is_group_ending(ev, event_type) == 1)
rgi->mark_start_commit();
err= rpt_handle_event(qev, rpt);
++event_count;
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
rpt->free_qev(qev);
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
delete_or_keep_event_post_apply(rgi, event_type, ev);
DBUG_EXECUTE_IF("rpl_parallel_simulate_double_temp_err_gtid_0_x_100",
if (retries == 0) err= dbug_simulate_tmp_error(rgi, thd););
DBUG_EXECUTE_IF("rpl_parallel_simulate_infinite_temp_err_gtid_0_x_100",
err= dbug_simulate_tmp_error(rgi, thd););
if (!err)
continue;
check_retry:
convert_kill_to_deadlock_error(rgi);
if (has_temporary_error(thd))
{
++retries;
if (retries < slave_trans_retries)
{
if (fd >= 0)
{
end_io_cache(&rlog);
mysql_file_close(fd, MYF(MY_WME));
fd= (File)-1;
}
goto do_retry;
}
sql_print_error("Slave worker thread retried transaction %lu time(s) "
"in vain, giving up. Consider raising the value of "
"the slave_transaction_retries variable.",
slave_trans_retries);
}
goto err;
} while (event_count < events_to_execute);
err:
if (description_event)
delete description_event;
if (fd >= 0)
{
end_io_cache(&rlog);
mysql_file_close(fd, MYF(MY_WME));
}
if (errmsg)
sql_print_error("Error reading relay log event: %s", errmsg);
return err;
}
pthread_handler_t
handle_rpl_parallel_thread(void *arg)
{
THD *thd;
PSI_stage_info old_stage;
struct rpl_parallel_thread::queued_event *events;
bool group_standalone= true;
bool in_event_group= false;
bool skip_event_group= false;
rpl_group_info *group_rgi= NULL;
group_commit_orderer *gco;
uint64 event_gtid_sub_id= 0;
rpl_sql_thread_info sql_info(NULL);
int err;
struct rpl_parallel_thread *rpt= (struct rpl_parallel_thread *)arg;
my_thread_init();
thd = new THD(next_thread_id());
thd->thread_stack = (char*)&thd;
add_to_active_threads(thd);
set_current_thd(thd);
pthread_detach_this_thread();
thd->init_for_queries();
thd->variables.binlog_annotate_row_events= 0;
init_thr_lock();
thd->store_globals();
thd->system_thread= SYSTEM_THREAD_SLAVE_SQL;
thd->security_ctx->skip_grants();
thd->variables.max_allowed_packet= slave_max_allowed_packet;
thd->slave_thread= 1;
thd->variables.sql_log_slow= opt_log_slow_slave_statements;
thd->variables.log_slow_filter= global_system_variables.log_slow_filter;
set_slave_thread_options(thd);
thd->client_capabilities = CLIENT_LOCAL_FILES;
thd->net.reading_or_writing= 0;
thd_proc_info(thd, "Waiting for work from main SQL threads");
thd->variables.lock_wait_timeout= LONG_TIMEOUT;
thd->system_thread_info.rpl_sql_info= &sql_info;
/*
We need to use (at least) REPEATABLE READ isolation level. Otherwise
speculative parallel apply can run out-of-order and give wrong results
for statement-based replication.
*/
thd->variables.tx_isolation= ISO_REPEATABLE_READ;
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
rpt->thd= thd;
while (rpt->delay_start)
mysql_cond_wait(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread);
rpt->running= true;
mysql_cond_signal(&rpt->COND_rpl_thread);
thd->set_command(COM_SLAVE_WORKER);
while (!rpt->stop)
{
uint wait_count= 0;
rpl_parallel_thread::queued_event *qev, *next_qev;
thd->ENTER_COND(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread,
&stage_waiting_for_work_from_sql_thread, &old_stage);
/*
There are 4 cases that should cause us to wake up:
- Events have been queued for us to handle.
- We have an owner, but no events and not inside event group -> we need
to release ourself to the thread pool
- SQL thread is stopping, and we have an owner but no events, and we are
inside an event group; no more events will be queued to us, so we need
to abort the group (force_abort==1).
- Thread pool shutdown (rpt->stop==1).
*/
while (!( (events= rpt->event_queue) ||
(rpt->current_owner && !in_event_group) ||
(rpt->current_owner && group_rgi->parallel_entry->force_abort) ||
rpt->stop))
{
if (!wait_count++)
thd->set_time_for_next_stage();
mysql_cond_wait(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread);
}
rpt->dequeue1(events);
thd->EXIT_COND(&old_stage);
more_events:
for (qev= events; qev; qev= next_qev)
{
Log_event_type event_type;
rpl_group_info *rgi= qev->rgi;
rpl_parallel_entry *entry= rgi->parallel_entry;
bool end_of_group;
int group_ending;
next_qev= qev->next;
if (qev->typ == rpl_parallel_thread::queued_event::QUEUED_POS_UPDATE)
{
handle_queued_pos_update(thd, qev);
rpt->loc_free_qev(qev);
continue;
}
else if (qev->typ ==
rpl_parallel_thread::queued_event::QUEUED_MASTER_RESTART)
{
if (in_event_group)
{
/*
Master restarted (crashed) in the middle of an event group.
So we need to roll back and discard that event group.
*/
group_rgi->cleanup_context(thd, 1);
in_event_group= false;
finish_event_group(rpt, group_rgi->gtid_sub_id,
qev->entry_for_queued, group_rgi);
rpt->loc_free_rgi(group_rgi);
thd->rgi_slave= group_rgi= NULL;
}
rpt->loc_free_qev(qev);
continue;
}
DBUG_ASSERT(qev->typ==rpl_parallel_thread::queued_event::QUEUED_EVENT);
thd->rgi_slave= rgi;
gco= rgi->gco;
/* Handle a new event group, which will be initiated by a GTID event. */
if ((event_type= qev->ev->get_type_code()) == GTID_EVENT)
{
bool did_enter_cond= false;
PSI_stage_info old_stage;
DBUG_EXECUTE_IF("hold_worker_on_schedule", {
if (rgi->current_gtid.domain_id == 0 &&
rgi->current_gtid.seq_no == 100) {
debug_sync_set_action(thd,
STRING_WITH_LEN("now SIGNAL reached_pause WAIT_FOR continue_worker"));
}
});
DBUG_EXECUTE_IF("rpl_parallel_scheduled_gtid_0_x_100", {
if (rgi->current_gtid.domain_id == 0 &&
rgi->current_gtid.seq_no == 100) {
debug_sync_set_action(thd,
STRING_WITH_LEN("now SIGNAL scheduled_gtid_0_x_100"));
}
});
if(unlikely(thd->wait_for_commit_ptr) && group_rgi != NULL)
{
/*
This indicates that we get a new GTID event in the middle of
a not completed event group. This is corrupt binlog (the master
will never write such binlog), so it does not happen unless
someone tries to inject wrong crafted binlog, but let us still
try to handle it somewhat nicely.
*/
group_rgi->cleanup_context(thd, true);
finish_event_group(rpt, group_rgi->gtid_sub_id,
group_rgi->parallel_entry, group_rgi);
rpt->loc_free_rgi(group_rgi);
}
thd->tx_isolation= (enum_tx_isolation)thd->variables.tx_isolation;
in_event_group= true;
/*
If the standalone flag is set, then this event group consists of a
single statement (possibly preceeded by some Intvar_log_event and
similar), without any terminating COMMIT/ROLLBACK/XID.
*/
group_standalone=
(0 != (static_cast<Gtid_log_event *>(qev->ev)->flags2 &
Gtid_log_event::FL_STANDALONE));
event_gtid_sub_id= rgi->gtid_sub_id;
rgi->thd= thd;
mysql_mutex_lock(&entry->LOCK_parallel_entry);
skip_event_group= do_gco_wait(rgi, gco, &did_enter_cond, &old_stage);
if (unlikely(entry->stop_on_error_sub_id <= rgi->wait_commit_sub_id))
{
skip_event_group= true;
rgi->worker_error= 1;
}
if (likely(!skip_event_group))
skip_event_group= do_ftwrl_wait(rgi, &did_enter_cond, &old_stage);
/*
Register ourself to wait for the previous commit, if we need to do
such registration _and_ that previous commit has not already
occurred.
*/
register_wait_for_prior_event_group_commit(rgi, entry);
unlock_or_exit_cond(thd, &entry->LOCK_parallel_entry,
&did_enter_cond, &old_stage);
thd->wait_for_commit_ptr= &rgi->commit_orderer;
if (opt_gtid_ignore_duplicates &&
rgi->rli->mi->using_gtid != Master_info::USE_GTID_NO)
{
int res=
rpl_global_gtid_slave_state->check_duplicate_gtid(&rgi->current_gtid,
rgi);
if (res < 0)
{
/* Error. */
slave_output_error_info(rgi, thd);
signal_error_to_sql_driver_thread(thd, rgi, 1);
}
else if (!res)
{
/* GTID already applied by another master connection, skip. */
skip_event_group= true;
}
else
{
/* We have to apply the event. */
}
}
/*
If we are optimistically running transactions in parallel, but this
particular event group should not run in parallel with what came
before, then wait now for the prior transaction to complete its
commit.
*/
if (rgi->speculation == rpl_group_info::SPECULATE_WAIT &&
(err= thd->wait_for_prior_commit()))
{
slave_output_error_info(rgi, thd);
signal_error_to_sql_driver_thread(thd, rgi, 1);
}
}
group_rgi= rgi;
group_ending= is_group_ending(qev->ev, event_type);
/*
We do not unmark_start_commit() here in case of an explicit ROLLBACK
statement. Such events should be very rare, there is no real reason
to try to group commit them - on the contrary, it seems best to avoid
running them in parallel with following group commits, as with
ROLLBACK events we are already deep in dangerous corner cases with
mix of transactional and non-transactional tables or the like. And
avoiding the mark_start_commit() here allows us to keep an assertion
in ha_rollback_trans() that we do not rollback after doing
mark_start_commit().
*/
if (group_ending == 1 && likely(!rgi->worker_error))
{
/*
Do an extra check for (deadlock) kill here. This helps prevent a
lingering deadlock kill that occurred during normal DML processing to
propagate past the mark_start_commit(). If we detect a deadlock only
after mark_start_commit(), we have to unmark, which has at least a
theoretical possibility of leaving a window where it looks like all
transactions in a GCO have started committing, while in fact one
will need to rollback and retry. This is not supposed to be possible
(since there is a deadlock, at least one transaction should be
blocked from reaching commit), but this seems a fragile ensurance,
and there were historically a number of subtle bugs in this area.
*/
if (!thd->killed)
{
DEBUG_SYNC(thd, "rpl_parallel_before_mark_start_commit");
rgi->mark_start_commit();
DEBUG_SYNC(thd, "rpl_parallel_after_mark_start_commit");
}
}
/*
If the SQL thread is stopping, we just skip execution of all the
following event groups. We still do all the normal waiting and wakeup
processing between the event groups as a simple way to ensure that
everything is stopped and cleaned up correctly.
*/
if (likely(!rgi->worker_error) && !skip_event_group)
{
++rgi->retry_event_count;
#ifndef DBUG_OFF
err= 0;
DBUG_EXECUTE_IF("rpl_parallel_simulate_temp_err_xid",
if (event_type == XID_EVENT)
{
thd->clear_error();
thd->get_stmt_da()->reset_diagnostics_area();
my_error(ER_LOCK_DEADLOCK, MYF(0));
err= 1;
DEBUG_SYNC(thd, "rpl_parallel_simulate_temp_err_xid");
});
if (!err)
#endif
{
if (thd->check_killed())
{
thd->clear_error();
thd->get_stmt_da()->reset_diagnostics_area();
thd->send_kill_message();
err= 1;
}
else
err= rpt_handle_event(qev, rpt);
}
delete_or_keep_event_post_apply(rgi, event_type, qev->ev);
DBUG_EXECUTE_IF("rpl_parallel_simulate_temp_err_gtid_0_x_100",
err= dbug_simulate_tmp_error(rgi, thd););
if (err)
{
convert_kill_to_deadlock_error(rgi);
if (has_temporary_error(thd) && slave_trans_retries > 0)
err= retry_event_group(rgi, rpt, qev);
}
}
else
{
delete qev->ev;
thd->get_stmt_da()->set_overwrite_status(true);
err= thd->wait_for_prior_commit();
thd->get_stmt_da()->set_overwrite_status(false);
}
end_of_group=
in_event_group &&
((group_standalone && !Log_event::is_part_of_group(event_type)) ||
group_ending);
rpt->loc_free_qev(qev);
if (unlikely(err))
{
if (!rgi->worker_error)
{
slave_output_error_info(rgi, thd);
signal_error_to_sql_driver_thread(thd, rgi, err);
}
thd->reset_killed();
}
if (end_of_group)
{
in_event_group= false;
finish_event_group(rpt, event_gtid_sub_id, entry, rgi);
rpt->loc_free_rgi(rgi);
thd->rgi_slave= group_rgi= rgi= NULL;
skip_event_group= false;
DEBUG_SYNC(thd, "rpl_parallel_end_of_group");
}
}
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
/*
Now that we have the lock, we can move everything from our local free
lists to the real free lists that are also accessible from the SQL
driver thread.
*/
rpt->batch_free();
if ((events= rpt->event_queue) != NULL)
{
/*
Take next group of events from the replication pool.
This is faster than having to wakeup the pool manager thread to give
us a new event.
*/
rpt->dequeue1(events);
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
goto more_events;
}
rpt->inuse_relaylog_refcount_update();
if (in_event_group && group_rgi->parallel_entry->force_abort)
{
/*
We are asked to abort, without getting the remaining events in the
current event group.
We have to rollback the current transaction and update the last
sub_id value so that SQL thread will know we are done with the
half-processed event group.
*/
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
signal_error_to_sql_driver_thread(thd, group_rgi, 1);
finish_event_group(rpt, group_rgi->gtid_sub_id,
group_rgi->parallel_entry, group_rgi);
in_event_group= false;
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
rpt->free_rgi(group_rgi);
thd->rgi_slave= group_rgi= NULL;
skip_event_group= false;
}
if (!in_event_group)
{
/* If we are in a FLUSH TABLES FOR READ LOCK, wait for it */
while (rpt->current_entry && rpt->pause_for_ftwrl)
{
/*
We are currently in the delicate process of pausing parallel
replication while FLUSH TABLES WITH READ LOCK is starting. We must
not de-allocate the thread (setting rpt->current_owner= NULL) until
rpl_unpause_after_ftwrl() has woken us up.
*/
rpl_parallel_entry *e= rpt->current_entry;
/*
Wait for rpl_unpause_after_ftwrl() to wake us up.
Note that rpl_pause_for_ftwrl() may wait for 'e->pause_sub_id'
to change. This should happen eventually in finish_event_group()
*/
mysql_mutex_lock(&e->LOCK_parallel_entry);
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
if (rpt->pause_for_ftwrl)
mysql_cond_wait(&e->COND_parallel_entry, &e->LOCK_parallel_entry);
mysql_mutex_unlock(&e->LOCK_parallel_entry);
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
}
rpt->current_owner= NULL;
/* Tell wait_for_done() that we are done, if it is waiting. */
if (likely(rpt->current_entry) &&
unlikely(rpt->current_entry->force_abort))
mysql_cond_broadcast(&rpt->COND_rpl_thread_stop);
rpt->current_entry= NULL;
if (!rpt->stop)
rpt->pool->release_thread(rpt);
}
}
rpt->thd= NULL;
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
thd->clear_error();
thd->catalog= 0;
thd->reset_query();
thd->reset_db(NULL, 0);
thd_proc_info(thd, "Slave worker thread exiting");
thd->temporary_tables= 0;
THD_CHECK_SENTRY(thd);
unlink_not_visible_thd(thd);
delete thd;
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
rpt->running= false;
mysql_cond_signal(&rpt->COND_rpl_thread);
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
my_thread_end();
return NULL;
}
static void
dealloc_gco(group_commit_orderer *gco)
{
mysql_cond_destroy(&gco->COND_group_commit_orderer);
my_free(gco);
}
/**
Change thread count for global parallel worker threads
@param pool parallel thread pool
@param new_count Number of threads to be in pool. 0 in shutdown
@param force Force thread count to new_count even if slave
threads are running
By default we don't resize pool of there are running threads.
However during shutdown we will always do it.
This is needed as any_slave_sql_running() returns 1 during shutdown
as we don't want to access master_info while
Master_info_index::free_connections are running.
*/
static int
rpl_parallel_change_thread_count(rpl_parallel_thread_pool *pool,
uint32 new_count, bool force)
{
uint32 i;
rpl_parallel_thread **old_list= NULL;
rpl_parallel_thread **new_list= NULL;
rpl_parallel_thread *new_free_list= NULL;
rpl_parallel_thread *rpt_array= NULL;
int res;
if ((res= pool_mark_busy(pool, current_thd)))
return res;
/* Protect against parallel pool resizes */
if (pool->count == new_count)
{
pool_mark_not_busy(pool);
return 0;
}
/*
If we are about to delete pool, do an extra check that there are no new
slave threads running since we marked pool busy
*/
if (!new_count && !force)
{
if (any_slave_sql_running())
{
DBUG_PRINT("warning",
("SQL threads running while trying to reset parallel pool"));
pool_mark_not_busy(pool);
return 0; // Ok to not resize pool
}
}
/*
Allocate the new list of threads up-front.
That way, if we fail half-way, we only need to free whatever we managed
to allocate, and will not be left with a half-functional thread pool.
*/
if (new_count &&
!my_multi_malloc(MYF(MY_WME|MY_ZEROFILL),
&new_list, new_count*sizeof(*new_list),
&rpt_array, new_count*sizeof(*rpt_array),
NULL))
{
my_error(ER_OUTOFMEMORY, MYF(0), (int(new_count*sizeof(*new_list) +
new_count*sizeof(*rpt_array))));
goto err;
}
for (i= 0; i < new_count; ++i)
{
pthread_t th;
new_list[i]= &rpt_array[i];
new_list[i]->delay_start= true;
mysql_mutex_init(key_LOCK_rpl_thread, &new_list[i]->LOCK_rpl_thread,
MY_MUTEX_INIT_SLOW);
mysql_cond_init(key_COND_rpl_thread, &new_list[i]->COND_rpl_thread, NULL);
mysql_cond_init(key_COND_rpl_thread_queue,
&new_list[i]->COND_rpl_thread_queue, NULL);
mysql_cond_init(key_COND_rpl_thread_stop,
&new_list[i]->COND_rpl_thread_stop, NULL);
new_list[i]->pool= pool;
if (mysql_thread_create(key_rpl_parallel_thread, &th, &connection_attrib,
handle_rpl_parallel_thread, new_list[i]))
{
my_error(ER_OUT_OF_RESOURCES, MYF(0));
goto err;
}
new_list[i]->next= new_free_list;
new_free_list= new_list[i];
}
/*
Grab each old thread in turn, and signal it to stop.
Note that since we require all replication threads to be stopped before
changing the parallel replication worker thread pool, all the threads will
be already idle and will terminate immediately.
*/
for (i= 0; i < pool->count; ++i)
{
rpl_parallel_thread *rpt;
mysql_mutex_lock(&pool->LOCK_rpl_thread_pool);
while ((rpt= pool->free_list) == NULL)
mysql_cond_wait(&pool->COND_rpl_thread_pool, &pool->LOCK_rpl_thread_pool);
pool->free_list= rpt->next;
mysql_mutex_unlock(&pool->LOCK_rpl_thread_pool);
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
rpt->stop= true;
mysql_cond_signal(&rpt->COND_rpl_thread);
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
}
for (i= 0; i < pool->count; ++i)
{
rpl_parallel_thread *rpt= pool->threads[i];
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
while (rpt->running)
mysql_cond_wait(&rpt->COND_rpl_thread, &rpt->LOCK_rpl_thread);
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
mysql_mutex_destroy(&rpt->LOCK_rpl_thread);
mysql_cond_destroy(&rpt->COND_rpl_thread);
while (rpt->qev_free_list)
{
rpl_parallel_thread::queued_event *next= rpt->qev_free_list->next;
my_free(rpt->qev_free_list);
rpt->qev_free_list= next;
}
while (rpt->rgi_free_list)
{
rpl_group_info *next= rpt->rgi_free_list->next;
delete rpt->rgi_free_list;
rpt->rgi_free_list= next;
}
while (rpt->gco_free_list)
{
group_commit_orderer *next= rpt->gco_free_list->next_gco;
dealloc_gco(rpt->gco_free_list);
rpt->gco_free_list= next;
}
}
old_list= pool->threads;
if (new_count < pool->count)
pool->count= new_count;
pool->threads= new_list;
if (new_count > pool->count)
pool->count= new_count;
my_free(old_list);
pool->free_list= new_free_list;
for (i= 0; i < pool->count; ++i)
{
mysql_mutex_lock(&pool->threads[i]->LOCK_rpl_thread);
pool->threads[i]->delay_start= false;
mysql_cond_signal(&pool->threads[i]->COND_rpl_thread);
while (!pool->threads[i]->running)
mysql_cond_wait(&pool->threads[i]->COND_rpl_thread,
&pool->threads[i]->LOCK_rpl_thread);
mysql_mutex_unlock(&pool->threads[i]->LOCK_rpl_thread);
}
pool_mark_not_busy(pool);
return 0;
err:
if (new_list)
{
while (new_free_list)
{
mysql_mutex_lock(&new_free_list->LOCK_rpl_thread);
new_free_list->delay_start= false;
new_free_list->stop= true;
mysql_cond_signal(&new_free_list->COND_rpl_thread);
while (!new_free_list->running)
mysql_cond_wait(&new_free_list->COND_rpl_thread,
&new_free_list->LOCK_rpl_thread);
while (new_free_list->running)
mysql_cond_wait(&new_free_list->COND_rpl_thread,
&new_free_list->LOCK_rpl_thread);
mysql_mutex_unlock(&new_free_list->LOCK_rpl_thread);
new_free_list= new_free_list->next;
}
my_free(new_list);
}
pool_mark_not_busy(pool);
return 1;
}
/*
Deactivate the parallel replication thread pool, if there are now no more
SQL threads running.
*/
int rpl_parallel_resize_pool_if_no_slaves(void)
{
/* master_info_index is set to NULL on shutdown */
if (opt_slave_parallel_threads > 0 && !any_slave_sql_running())
return rpl_parallel_inactivate_pool(&global_rpl_thread_pool);
return 0;
}
/**
Pool activation is preceeded by taking a "lock" of pool_mark_busy
which guarantees the number of running slaves drops to zero atomicly
with the number of pool workers.
This resolves race between the function caller thread and one
that may be attempting to deactivate the pool.
*/
int
rpl_parallel_activate_pool(rpl_parallel_thread_pool *pool)
{
int rc= 0;
if ((rc= pool_mark_busy(pool, current_thd)))
return rc; // killed
if (!pool->count)
{
pool_mark_not_busy(pool);
rc= rpl_parallel_change_thread_count(pool, opt_slave_parallel_threads,
0);
}
else
{
pool_mark_not_busy(pool);
}
return rc;
}
int
rpl_parallel_inactivate_pool(rpl_parallel_thread_pool *pool)
{
return rpl_parallel_change_thread_count(pool, 0, 0);
}
void
rpl_parallel_thread::batch_free()
{
mysql_mutex_assert_owner(&LOCK_rpl_thread);
if (loc_qev_list)
{
*loc_qev_last_ptr_ptr= qev_free_list;
qev_free_list= loc_qev_list;
loc_qev_list= NULL;
dequeue2(loc_qev_size);
/* Signal that our queue can now accept more events. */
mysql_cond_signal(&COND_rpl_thread_queue);
loc_qev_size= 0;
qev_free_pending= 0;
}
if (loc_rgi_list)
{
*loc_rgi_last_ptr_ptr= rgi_free_list;
rgi_free_list= loc_rgi_list;
loc_rgi_list= NULL;
}
if (loc_gco_list)
{
*loc_gco_last_ptr_ptr= gco_free_list;
gco_free_list= loc_gco_list;
loc_gco_list= NULL;
}
}
void
rpl_parallel_thread::inuse_relaylog_refcount_update()
{
inuse_relaylog *ir= accumulated_ir_last;
if (ir)
{
my_atomic_add64(&ir->dequeued_count, accumulated_ir_count);
accumulated_ir_count= 0;
accumulated_ir_last= NULL;
}
}
rpl_parallel_thread::queued_event *
rpl_parallel_thread::get_qev_common(Log_event *ev, ulonglong event_size)
{
queued_event *qev;
mysql_mutex_assert_owner(&LOCK_rpl_thread);
if ((qev= qev_free_list))
qev_free_list= qev->next;
else if(!(qev= (queued_event *)my_malloc(sizeof(*qev), MYF(0))))
{
my_error(ER_OUTOFMEMORY, MYF(0), (int)sizeof(*qev));
return NULL;
}
qev->typ= rpl_parallel_thread::queued_event::QUEUED_EVENT;
qev->ev= ev;
qev->event_size= (size_t)event_size;
qev->next= NULL;
return qev;
}
rpl_parallel_thread::queued_event *
rpl_parallel_thread::get_qev(Log_event *ev, ulonglong event_size,
Relay_log_info *rli)
{
queued_event *qev= get_qev_common(ev, event_size);
if (!qev)
return NULL;
strcpy(qev->event_relay_log_name, rli->event_relay_log_name);
qev->event_relay_log_pos= rli->event_relay_log_pos;
qev->future_event_relay_log_pos= rli->future_event_relay_log_pos;
strcpy(qev->future_event_master_log_name, rli->future_event_master_log_name);
return qev;
}
rpl_parallel_thread::queued_event *
rpl_parallel_thread::retry_get_qev(Log_event *ev, queued_event *orig_qev,
const char *relay_log_name,
ulonglong event_pos, ulonglong event_size)
{
queued_event *qev= get_qev_common(ev, event_size);
if (!qev)
return NULL;
qev->rgi= orig_qev->rgi;
strcpy(qev->event_relay_log_name, relay_log_name);
qev->event_relay_log_pos= event_pos;
qev->future_event_relay_log_pos= event_pos+event_size;
strcpy(qev->future_event_master_log_name,
orig_qev->future_event_master_log_name);
return qev;
}
void
rpl_parallel_thread::loc_free_qev(rpl_parallel_thread::queued_event *qev)
{
inuse_relaylog *ir= qev->ir;
inuse_relaylog *last_ir= accumulated_ir_last;
if (ir != last_ir)
{
if (last_ir)
inuse_relaylog_refcount_update();
accumulated_ir_last= ir;
}
++accumulated_ir_count;
if (!loc_qev_list)
loc_qev_last_ptr_ptr= &qev->next;
else
qev->next= loc_qev_list;
loc_qev_list= qev;
loc_qev_size+= qev->event_size;
/*
We want to release to the global free list only occasionally, to avoid
having to take the LOCK_rpl_thread muted too many times.
However, we do need to release regularly. If we let the unreleased part
grow too large, then the SQL driver thread may go to sleep waiting for
the queue to drop below opt_slave_parallel_max_queued, and this in turn
can stall all other worker threads for more stuff to do.
*/
if (++qev_free_pending >= QEV_BATCH_FREE ||
loc_qev_size >= opt_slave_parallel_max_queued/3)
{
mysql_mutex_lock(&LOCK_rpl_thread);
batch_free();
mysql_mutex_unlock(&LOCK_rpl_thread);
}
}
void
rpl_parallel_thread::free_qev(rpl_parallel_thread::queued_event *qev)
{
mysql_mutex_assert_owner(&LOCK_rpl_thread);
qev->next= qev_free_list;
qev_free_list= qev;
}
rpl_group_info*
rpl_parallel_thread::get_rgi(Relay_log_info *rli, Gtid_log_event *gtid_ev,
rpl_parallel_entry *e, ulonglong event_size)
{
rpl_group_info *rgi;
mysql_mutex_assert_owner(&LOCK_rpl_thread);
if ((rgi= rgi_free_list))
{
rgi_free_list= rgi->next;
rgi->reinit(rli);
}
else
{
if(!(rgi= new rpl_group_info(rli)))
{
my_error(ER_OUTOFMEMORY, MYF(0), (int)sizeof(*rgi));
return NULL;
}
rgi->is_parallel_exec = true;
}
if ((rgi->deferred_events_collecting= rli->mi->rpl_filter->is_on()) &&
!rgi->deferred_events)
rgi->deferred_events= new Deferred_log_events(rli);
if (event_group_new_gtid(rgi, gtid_ev))
{
free_rgi(rgi);
my_error(ER_OUT_OF_RESOURCES, MYF(MY_WME));
return NULL;
}
rgi->parallel_entry= e;
rgi->relay_log= rli->last_inuse_relaylog;
rgi->retry_start_offset= rli->future_event_relay_log_pos-event_size;
rgi->retry_event_count= 0;
rgi->killed_for_retry= rpl_group_info::RETRY_KILL_NONE;
return rgi;
}
void
rpl_parallel_thread::loc_free_rgi(rpl_group_info *rgi)
{
DBUG_ASSERT(rgi->commit_orderer.waitee == NULL);
rgi->free_annotate_event();
if (!loc_rgi_list)
loc_rgi_last_ptr_ptr= &rgi->next;
else
rgi->next= loc_rgi_list;
loc_rgi_list= rgi;
}
void
rpl_parallel_thread::free_rgi(rpl_group_info *rgi)
{
mysql_mutex_assert_owner(&LOCK_rpl_thread);
DBUG_ASSERT(rgi->commit_orderer.waitee == NULL);
rgi->free_annotate_event();
rgi->next= rgi_free_list;
rgi_free_list= rgi;
}
group_commit_orderer *
rpl_parallel_thread::get_gco(uint64 wait_count, group_commit_orderer *prev,
uint64 prior_sub_id)
{
group_commit_orderer *gco;
mysql_mutex_assert_owner(&LOCK_rpl_thread);
if ((gco= gco_free_list))
gco_free_list= gco->next_gco;
else if(!(gco= (group_commit_orderer *)my_malloc(sizeof(*gco), MYF(0))))
{
my_error(ER_OUTOFMEMORY, MYF(0), (int)sizeof(*gco));
return NULL;
}
mysql_cond_init(key_COND_group_commit_orderer,
&gco->COND_group_commit_orderer, NULL);
gco->wait_count= wait_count;
gco->prev_gco= prev;
gco->next_gco= NULL;
gco->prior_sub_id= prior_sub_id;
gco->installed= false;
gco->flags= 0;
return gco;
}
void
rpl_parallel_thread::loc_free_gco(group_commit_orderer *gco)
{
if (!loc_gco_list)
loc_gco_last_ptr_ptr= &gco->next_gco;
else
gco->next_gco= loc_gco_list;
loc_gco_list= gco;
}
rpl_parallel_thread_pool::rpl_parallel_thread_pool()
: threads(0), free_list(0), count(0), inited(false), busy(false)
{
}
int
rpl_parallel_thread_pool::init(uint32 size)
{
threads= NULL;
free_list= NULL;
count= 0;
busy= false;
mysql_mutex_init(key_LOCK_rpl_thread_pool, &LOCK_rpl_thread_pool,
MY_MUTEX_INIT_SLOW);
mysql_cond_init(key_COND_rpl_thread_pool, &COND_rpl_thread_pool, NULL);
inited= true;
/*
The pool is initially empty. Threads will be spawned when a slave SQL
thread is started.
*/
return 0;
}
void
rpl_parallel_thread_pool::destroy()
{
if (!inited)
return;
rpl_parallel_change_thread_count(this, 0, 1);
mysql_mutex_destroy(&LOCK_rpl_thread_pool);
mysql_cond_destroy(&COND_rpl_thread_pool);
inited= false;
}
/*
Wait for a worker thread to become idle. When one does, grab the thread for
our use and return it.
Note that we return with the worker threads's LOCK_rpl_thread mutex locked.
*/
struct rpl_parallel_thread *
rpl_parallel_thread_pool::get_thread(rpl_parallel_thread **owner,
rpl_parallel_entry *entry)
{
rpl_parallel_thread *rpt;
DBUG_ASSERT(count > 0);
mysql_mutex_lock(&LOCK_rpl_thread_pool);
while (unlikely(busy) || !(rpt= free_list))
mysql_cond_wait(&COND_rpl_thread_pool, &LOCK_rpl_thread_pool);
free_list= rpt->next;
mysql_mutex_unlock(&LOCK_rpl_thread_pool);
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
rpt->current_owner= owner;
rpt->current_entry= entry;
return rpt;
}
/*
Release a thread to the thread pool.
The thread should be locked, and should not have any work queued for it.
*/
void
rpl_parallel_thread_pool::release_thread(rpl_parallel_thread *rpt)
{
rpl_parallel_thread *list;
mysql_mutex_assert_owner(&rpt->LOCK_rpl_thread);
DBUG_ASSERT(rpt->current_owner == NULL);
mysql_mutex_lock(&LOCK_rpl_thread_pool);
list= free_list;
rpt->next= list;
free_list= rpt;
if (!list)
mysql_cond_broadcast(&COND_rpl_thread_pool);
mysql_mutex_unlock(&LOCK_rpl_thread_pool);
}
/*
Obtain a worker thread that we can queue an event to.
Each invocation allocates a new worker thread, to maximise
parallelism. However, only up to a maximum of
--slave-domain-parallel-threads workers can be occupied by a single
replication domain; after that point, we start re-using worker threads that
are still executing events that were queued earlier for this thread.
We never queue more than --rpl-parallel-wait-queue_max amount of events
for one worker, to avoid the SQL driver thread using up all memory with
queued events while worker threads are stalling.
Note that this function returns with rpl_parallel_thread::LOCK_rpl_thread
locked. Exception is if we were killed, in which case NULL is returned.
The *did_enter_cond flag is set true if we had to wait for a worker thread
to become free (with mysql_cond_wait()). If so, old_stage will also be set,
and the LOCK_rpl_thread must be released with THD::EXIT_COND() instead
of mysql_mutex_unlock.
If the flag `reuse' is set, the last worker thread will be returned again,
if it is still available. Otherwise a new worker thread is allocated.
*/
rpl_parallel_thread *
rpl_parallel_entry::choose_thread(rpl_group_info *rgi, bool *did_enter_cond,
PSI_stage_info *old_stage, bool reuse)
{
uint32 idx;
Relay_log_info *rli= rgi->rli;
rpl_parallel_thread *thr;
idx= rpl_thread_idx;
if (!reuse)
{
++idx;
if (idx >= rpl_thread_max)
idx= 0;
rpl_thread_idx= idx;
}
thr= rpl_threads[idx];
if (thr)
{
*did_enter_cond= false;
mysql_mutex_lock(&thr->LOCK_rpl_thread);
for (;;)
{
if (thr->current_owner != &rpl_threads[idx])
{
/*
The worker thread became idle, and returned to the free list and
possibly was allocated to a different request. So we should allocate
a new worker thread.
*/
unlock_or_exit_cond(rli->sql_driver_thd, &thr->LOCK_rpl_thread,
did_enter_cond, old_stage);
thr= NULL;
break;
}
else if (thr->queued_size <= opt_slave_parallel_max_queued)
{
/* The thread is ready to queue into. */
break;
}
else if (rli->sql_driver_thd->check_killed())
{
unlock_or_exit_cond(rli->sql_driver_thd, &thr->LOCK_rpl_thread,
did_enter_cond, old_stage);
my_error(ER_CONNECTION_KILLED, MYF(0));
DBUG_EXECUTE_IF("rpl_parallel_wait_queue_max",
{
debug_sync_set_action(rli->sql_driver_thd,
STRING_WITH_LEN("now SIGNAL wait_queue_killed"));
};);
slave_output_error_info(rgi, rli->sql_driver_thd);
return NULL;
}
else
{
/*
We have reached the limit of how much memory we are allowed to use
for queuing events, so wait for the thread to consume some of its
queue.
*/
if (!*did_enter_cond)
{
/*
We need to do the debug_sync before ENTER_COND().
Because debug_sync changes the thd->mysys_var->current_mutex,
and this can cause THD::awake to use the wrong mutex.
*/
DBUG_EXECUTE_IF("rpl_parallel_wait_queue_max",
{
debug_sync_set_action(rli->sql_driver_thd,
STRING_WITH_LEN("now SIGNAL wait_queue_ready"));
};);
rli->sql_driver_thd->ENTER_COND(&thr->COND_rpl_thread_queue,
&thr->LOCK_rpl_thread,
&stage_waiting_for_room_in_worker_thread,
old_stage);
*did_enter_cond= true;
}
mysql_cond_wait(&thr->COND_rpl_thread_queue, &thr->LOCK_rpl_thread);
}
}
}
if (!thr)
rpl_threads[idx]= thr= global_rpl_thread_pool.get_thread(&rpl_threads[idx],
this);
return thr;
}
static void
free_rpl_parallel_entry(void *element)
{
rpl_parallel_entry *e= (rpl_parallel_entry *)element;
while (e->current_gco)
{
group_commit_orderer *prev_gco= e->current_gco->prev_gco;
dealloc_gco(e->current_gco);
e->current_gco= prev_gco;
}
mysql_cond_destroy(&e->COND_parallel_entry);
mysql_mutex_destroy(&e->LOCK_parallel_entry);
my_free(e);
}
rpl_parallel::rpl_parallel() :
current(NULL), sql_thread_stopping(false)
{
my_hash_init(&domain_hash, &my_charset_bin, 32,
offsetof(rpl_parallel_entry, domain_id), sizeof(uint32),
NULL, free_rpl_parallel_entry, HASH_UNIQUE);
}
void
rpl_parallel::reset()
{
my_hash_reset(&domain_hash);
current= NULL;
sql_thread_stopping= false;
}
rpl_parallel::~rpl_parallel()
{
my_hash_free(&domain_hash);
}
rpl_parallel_entry *
rpl_parallel::find(uint32 domain_id)
{
struct rpl_parallel_entry *e;
if (!(e= (rpl_parallel_entry *)my_hash_search(&domain_hash,
(const uchar *)&domain_id, 0)))
{
/* Allocate a new, empty one. */
ulong count= opt_slave_domain_parallel_threads;
if (count == 0 || count > opt_slave_parallel_threads)
count= opt_slave_parallel_threads;
rpl_parallel_thread **p;
if (!my_multi_malloc(MYF(MY_WME|MY_ZEROFILL),
&e, sizeof(*e),
&p, count*sizeof(*p),
NULL))
{
my_error(ER_OUTOFMEMORY, MYF(0), (int)(sizeof(*e)+count*sizeof(*p)));
return NULL;
}
e->rpl_threads= p;
e->rpl_thread_max= count;
e->domain_id= domain_id;
e->stop_on_error_sub_id= (uint64)ULONGLONG_MAX;
e->pause_sub_id= (uint64)ULONGLONG_MAX;
if (my_hash_insert(&domain_hash, (uchar *)e))
{
my_free(e);
return NULL;
}
mysql_mutex_init(key_LOCK_parallel_entry, &e->LOCK_parallel_entry,
MY_MUTEX_INIT_FAST);
mysql_cond_init(key_COND_parallel_entry, &e->COND_parallel_entry, NULL);
}
else
e->force_abort= false;
return e;
}
/**
Wait until all sql worker threads has stopped processing
This is called when sql thread has been killed/stopped
*/
void
rpl_parallel::wait_for_done(THD *thd, Relay_log_info *rli)
{
struct rpl_parallel_entry *e;
rpl_parallel_thread *rpt;
uint32 i, j;
/*
First signal all workers that they must force quit; no more events will
be queued to complete any partial event groups executed.
*/
for (i= 0; i < domain_hash.records; ++i)
{
e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i);
mysql_mutex_lock(&e->LOCK_parallel_entry);
/*
We want the worker threads to stop as quickly as is safe. If the slave
SQL threads are behind, we could have significant amount of events
queued for the workers, and we want to stop without waiting for them
all to be applied first. But if any event group has already started
executing in a worker, we want to be sure that all prior event groups
are also executed, so that we stop at a consistent point in the binlog
stream (per replication domain).
All event groups wait for e->count_committing_event_groups to reach
the value of group_commit_orderer::wait_count before starting to
execute. Thus, at this point we know that any event group with a
strictly larger wait_count are safe to skip, none of them can have
started executing yet. So we set e->stop_count here and use it to
decide in the worker threads whether to continue executing an event
group or whether to skip it, when force_abort is set.
If we stop due to reaching the START SLAVE UNTIL condition, then we
need to continue executing any queued events up to that point.
*/
e->force_abort= true;
e->stop_count= rli->stop_for_until ?
e->count_queued_event_groups : e->count_committing_event_groups;
mysql_mutex_unlock(&e->LOCK_parallel_entry);
for (j= 0; j < e->rpl_thread_max; ++j)
{
if ((rpt= e->rpl_threads[j]))
{
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
if (rpt->current_owner == &e->rpl_threads[j])
mysql_cond_signal(&rpt->COND_rpl_thread);
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
}
}
}
DBUG_EXECUTE_IF("rpl_parallel_wait_for_done_trigger",
{
debug_sync_set_action(thd,
STRING_WITH_LEN("now SIGNAL wait_for_done_waiting"));
};);
for (i= 0; i < domain_hash.records; ++i)
{
e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i);
for (j= 0; j < e->rpl_thread_max; ++j)
{
if ((rpt= e->rpl_threads[j]))
{
mysql_mutex_lock(&rpt->LOCK_rpl_thread);
while (rpt->current_owner == &e->rpl_threads[j])
mysql_cond_wait(&rpt->COND_rpl_thread_stop, &rpt->LOCK_rpl_thread);
mysql_mutex_unlock(&rpt->LOCK_rpl_thread);
}
}
}
}
/*
This function handles the case where the SQL driver thread reached the
START SLAVE UNTIL position; we stop queueing more events but continue
processing remaining, already queued events; then use executes manual
STOP SLAVE; then this function signals to worker threads that they
should stop the processing of any remaining queued events.
*/
void
rpl_parallel::stop_during_until()
{
struct rpl_parallel_entry *e;
uint32 i;
for (i= 0; i < domain_hash.records; ++i)
{
e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i);
mysql_mutex_lock(&e->LOCK_parallel_entry);
if (e->force_abort)
e->stop_count= e->count_committing_event_groups;
mysql_mutex_unlock(&e->LOCK_parallel_entry);
}
}
bool
rpl_parallel::workers_idle()
{
struct rpl_parallel_entry *e;
uint32 i, max_i;
max_i= domain_hash.records;
for (i= 0; i < max_i; ++i)
{
bool active;
e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i);
mysql_mutex_lock(&e->LOCK_parallel_entry);
active= e->current_sub_id > e->last_committed_sub_id;
mysql_mutex_unlock(&e->LOCK_parallel_entry);
if (active)
break;
}
return (i == max_i);
}
int
rpl_parallel_entry::queue_master_restart(rpl_group_info *rgi,
Format_description_log_event *fdev)
{
uint32 idx;
rpl_parallel_thread *thr;
rpl_parallel_thread::queued_event *qev;
Relay_log_info *rli= rgi->rli;
/*
We only need to queue the server restart if we still have a thread working
on a (potentially partial) event group.
If the last thread we queued for has finished, then it cannot have any
partial event group that needs aborting.
Thus there is no need for the full complexity of choose_thread(). We only
need to check if we have a current worker thread, and queue for it if so.
*/
idx= rpl_thread_idx;
thr= rpl_threads[idx];
if (!thr)
return 0;
mysql_mutex_lock(&thr->LOCK_rpl_thread);
if (thr->current_owner != &rpl_threads[idx])
{
/* No active worker thread, so no need to queue the master restart. */
mysql_mutex_unlock(&thr->LOCK_rpl_thread);
return 0;
}
if (!(qev= thr->get_qev(fdev, 0, rli)))
{
mysql_mutex_unlock(&thr->LOCK_rpl_thread);
return 1;
}
qev->rgi= rgi;
qev->typ= rpl_parallel_thread::queued_event::QUEUED_MASTER_RESTART;
qev->entry_for_queued= this;
qev->ir= rli->last_inuse_relaylog;
++qev->ir->queued_count;
thr->enqueue(qev);
mysql_cond_signal(&thr->COND_rpl_thread);
mysql_mutex_unlock(&thr->LOCK_rpl_thread);
return 0;
}
int
rpl_parallel::wait_for_workers_idle(THD *thd)
{
uint32 i, max_i;
/*
The domain_hash is only accessed by the SQL driver thread, so it is safe
to iterate over without a lock.
*/
max_i= domain_hash.records;
for (i= 0; i < max_i; ++i)
{
PSI_stage_info old_stage;
struct rpl_parallel_entry *e;
int err= 0;
e= (struct rpl_parallel_entry *)my_hash_element(&domain_hash, i);
mysql_mutex_lock(&e->LOCK_parallel_entry);
++e->need_sub_id_signal;
thd->ENTER_COND(&e->COND_parallel_entry, &e->LOCK_parallel_entry,
&stage_waiting_for_workers_idle, &old_stage);
while (e->current_sub_id > e->last_committed_sub_id)
{
if (thd->check_killed())
{
thd->send_kill_message();
err= 1;
break;
}
mysql_cond_wait(&e->COND_parallel_entry, &e->LOCK_parallel_entry);
}
--e->need_sub_id_signal;
thd->EXIT_COND(&old_stage);
if (err)
return err;
}
return 0;
}
/*
Handle seeing a GTID during slave restart in GTID mode. If we stopped with
different replication domains having reached different positions in the relay
log, we need to skip event groups in domains that are further progressed.
Updates the state with the seen GTID, and returns true if this GTID should
be skipped, false otherwise.
*/
bool
process_gtid_for_restart_pos(Relay_log_info *rli, rpl_gtid *gtid)
{
slave_connection_state::entry *gtid_entry;
slave_connection_state *state= &rli->restart_gtid_pos;
if (likely(state->count() == 0) ||
!(gtid_entry= state->find_entry(gtid->domain_id)))
return false;
if (gtid->server_id == gtid_entry->gtid.server_id)
{
uint64 seq_no= gtid_entry->gtid.seq_no;
if (gtid->seq_no >= seq_no)
{
/*
This domain has reached its start position. So remove it, so that
further events will be processed normally.
*/
state->remove(>id_entry->gtid);
}
return gtid->seq_no <= seq_no;
}
else
return true;
}
/*
This is used when we get an error during processing in do_event();
We will not queue any event to the thread, but we still need to wake it up
to be sure that it will be returned to the pool.
*/
static void
abandon_worker_thread(THD *thd, rpl_parallel_thread *cur_thread,
bool *did_enter_cond, PSI_stage_info *old_stage)
{
unlock_or_exit_cond(thd, &cur_thread->LOCK_rpl_thread,
did_enter_cond, old_stage);
mysql_cond_signal(&cur_thread->COND_rpl_thread);
}
/*
do_event() is executed by the sql_driver_thd thread.
It's main purpose is to find a thread that can execute the query.
@retval 0 ok, event was accepted
@retval 1 error
@retval -1 event should be executed serially, in the sql driver thread
*/
int
rpl_parallel::do_event(rpl_group_info *serial_rgi, Log_event *ev,
ulonglong event_size)
{
rpl_parallel_entry *e;
rpl_parallel_thread *cur_thread;
rpl_parallel_thread::queued_event *qev;
rpl_group_info *rgi= NULL;
Relay_log_info *rli= serial_rgi->rli;
enum Log_event_type typ;
bool is_group_event;
bool did_enter_cond= false;
PSI_stage_info old_stage;
DBUG_EXECUTE_IF("slave_crash_if_parallel_apply", DBUG_SUICIDE(););
/* Handle master log name change, seen in Rotate_log_event. */
typ= ev->get_type_code();
if (unlikely(typ == ROTATE_EVENT))
{
Rotate_log_event *rev= static_cast<Rotate_log_event *>(ev);
if ((rev->server_id != global_system_variables.server_id ||
rli->replicate_same_server_id) &&
!rev->is_relay_log_event() &&
!rli->is_in_group())
{
memcpy(rli->future_event_master_log_name,
rev->new_log_ident, rev->ident_len+1);
rli->notify_group_master_log_name_update();
}
}
/*
Execute queries non-parallel if slave_skip_counter is set, as it's is
easier to skip queries in single threaded mode.
*/
if (rli->slave_skip_counter)
return -1;
/* Execute pre-10.0 event, which have no GTID, in single-threaded mode. */
is_group_event= Log_event::is_group_event(typ);
if (unlikely(!current) && typ != GTID_EVENT &&
!(unlikely(rli->gtid_skip_flag != GTID_SKIP_NOT) && is_group_event))
return -1;
/* Note: rli->data_lock is released by sql_delay_event(). */
if (sql_delay_event(ev, rli->sql_driver_thd, serial_rgi))
{
/*
If sql_delay_event() returns non-zero, it means that the wait timed out
due to slave stop. We should not queue the event in this case, it must
not be applied yet.
*/
delete ev;
return 1;
}
if (unlikely(typ == FORMAT_DESCRIPTION_EVENT))
{
Format_description_log_event *fdev=
static_cast<Format_description_log_event *>(ev);
if (fdev->created)
{
/*
This format description event marks a new binlog after a master server
restart. We are going to close all temporary tables to clean up any
possible left-overs after a prior master crash.
Thus we need to wait for all prior events to execute to completion,
in case they need access to any of the temporary tables.
We also need to notify the worker thread running the prior incomplete
event group (if any), as such event group signifies an incompletely
written group cut short by a master crash, and must be rolled back.
*/
if (current->queue_master_restart(serial_rgi, fdev) ||
wait_for_workers_idle(rli->sql_driver_thd))
{
delete ev;
return 1;
}
}
}
else if (unlikely(typ == GTID_LIST_EVENT))
{
Gtid_list_log_event *glev= static_cast<Gtid_list_log_event *>(ev);
rpl_gtid *list= glev->list;
uint32 count= glev->count;
rli->update_relay_log_state(list, count);
while (count)
{
process_gtid_for_restart_pos(rli, list);
++list;
--count;
}
}
/*
Stop queueing additional event groups once the SQL thread is requested to
stop.
We have to queue any remaining events of any event group that has already
been partially queued, but after that we will just ignore any further
events the SQL driver thread may try to queue, and eventually it will stop.
*/
if ((typ == GTID_EVENT || !is_group_event) && rli->abort_slave)
sql_thread_stopping= true;
if (sql_thread_stopping)
{
delete ev;
/*
Return "no error"; normal stop is not an error, and otherwise the error
has already been recorded.
*/
return 0;
}
if (unlikely(rli->gtid_skip_flag != GTID_SKIP_NOT) && is_group_event)
{
if (typ == GTID_EVENT)
rli->gtid_skip_flag= GTID_SKIP_NOT;
else
{
if (rli->gtid_skip_flag == GTID_SKIP_STANDALONE)
{
if (!Log_event::is_part_of_group(typ))
rli->gtid_skip_flag= GTID_SKIP_NOT;
}
else
{
DBUG_ASSERT(rli->gtid_skip_flag == GTID_SKIP_TRANSACTION);
if (typ == XID_EVENT ||
(typ == QUERY_EVENT && // COMMIT/ROLLBACK are never compressed
(((Query_log_event *)ev)->is_commit() ||
((Query_log_event *)ev)->is_rollback())))
rli->gtid_skip_flag= GTID_SKIP_NOT;
}
delete_or_keep_event_post_apply(serial_rgi, typ, ev);
return 0;
}
}
if (typ == GTID_EVENT)
{
rpl_gtid gtid;
Gtid_log_event *gtid_ev= static_cast<Gtid_log_event *>(ev);
uint32 domain_id= (rli->mi->using_gtid == Master_info::USE_GTID_NO ||
rli->mi->parallel_mode <= SLAVE_PARALLEL_MINIMAL ?
0 : gtid_ev->domain_id);
if (!(e= find(domain_id)))
{
my_error(ER_OUT_OF_RESOURCES, MYF(MY_WME));
delete ev;
return 1;
}
current= e;
gtid.domain_id= gtid_ev->domain_id;
gtid.server_id= gtid_ev->server_id;
gtid.seq_no= gtid_ev->seq_no;
rli->update_relay_log_state(>id, 1);
if (process_gtid_for_restart_pos(rli, >id))
{
/*
This domain has progressed further into the relay log before the last
SQL thread restart. So we need to skip this event group to not doubly
apply it.
*/
rli->gtid_skip_flag= ((gtid_ev->flags2 & Gtid_log_event::FL_STANDALONE) ?
GTID_SKIP_STANDALONE : GTID_SKIP_TRANSACTION);
delete_or_keep_event_post_apply(serial_rgi, typ, ev);
return 0;
}
}
else
e= current;
/*
Find a worker thread to queue the event for.
Prefer a new thread, so we maximise parallelism (at least for the group
commit). But do not exceed a limit of --slave-domain-parallel-threads;
instead re-use a thread that we queued for previously.
*/
cur_thread=
e->choose_thread(serial_rgi, &did_enter_cond, &old_stage,
typ != GTID_EVENT);
if (!cur_thread)
{
/* This means we were killed. The error is already signalled. */
delete ev;
return 1;
}
if (!(qev= cur_thread->get_qev(ev, event_size, rli)))
{
abandon_worker_thread(rli->sql_driver_thd, cur_thread,
&did_enter_cond, &old_stage);
delete ev;
return 1;
}
if (typ == GTID_EVENT)
{
Gtid_log_event *gtid_ev= static_cast<Gtid_log_event *>(ev);
bool new_gco;
enum_slave_parallel_mode mode= rli->mi->parallel_mode;
uchar gtid_flags= gtid_ev->flags2;
group_commit_orderer *gco;
uint8 force_switch_flag;
enum rpl_group_info::enum_speculation speculation;
if (!(rgi= cur_thread->get_rgi(rli, gtid_ev, e, event_size)))
{
cur_thread->free_qev(qev);
abandon_worker_thread(rli->sql_driver_thd, cur_thread,
&did_enter_cond, &old_stage);
delete ev;
return 1;
}
/*
We queue the event group in a new worker thread, to run in parallel
with previous groups.
To preserve commit order within the replication domain, we set up
rgi->wait_commit_sub_id to make the new group commit only after the
previous group has committed.
Event groups that group-committed together on the master can be run
in parallel with each other without restrictions. But one batch of
group-commits may not start before all groups in the previous batch
have initiated their commit phase; we set up rgi->gco to ensure that.
*/
rgi->wait_commit_sub_id= e->current_sub_id;
rgi->wait_commit_group_info= e->current_group_info;
speculation= rpl_group_info::SPECULATE_NO;
new_gco= true;
force_switch_flag= 0;
gco= e->current_gco;
if (likely(gco))
{
uint8 flags= gco->flags;
if (mode <= SLAVE_PARALLEL_MINIMAL ||
!(gtid_flags & Gtid_log_event::FL_GROUP_COMMIT_ID) ||
e->last_commit_id != gtid_ev->commit_id)
flags|= group_commit_orderer::MULTI_BATCH;
/* Make sure we do not attempt to run DDL in parallel speculatively. */
if (gtid_flags & Gtid_log_event::FL_DDL)
flags|= (force_switch_flag= group_commit_orderer::FORCE_SWITCH);
if (!(flags & group_commit_orderer::MULTI_BATCH))
{
/*
Still the same batch of event groups that group-committed together
on the master, so we can run in parallel.
*/
new_gco= false;
}
else if ((mode >= SLAVE_PARALLEL_OPTIMISTIC) &&
!(flags & group_commit_orderer::FORCE_SWITCH))
{
/*
In transactional parallel mode, we optimistically attempt to run
non-DDL in parallel. In case of conflicts, we catch the conflict as
a deadlock or other error, roll back and retry serially.
The assumption is that only a few event groups will be
non-transactional or otherwise unsuitable for parallel apply. Those
transactions are still scheduled in parallel, but we set a flag that
will make the worker thread wait for everything before to complete
before starting.
*/
new_gco= false;
if (!(gtid_flags & Gtid_log_event::FL_TRANSACTIONAL) ||
( (!(gtid_flags & Gtid_log_event::FL_ALLOW_PARALLEL) ||
(gtid_flags & Gtid_log_event::FL_WAITED)) &&
(mode < SLAVE_PARALLEL_AGGRESSIVE)))
{
/*
This transaction should not be speculatively run in parallel with
what came before, either because it cannot safely be rolled back in
case of a conflict, or because it was marked as likely to conflict
and require expensive rollback and retry.
Here we mark it as such, and then the worker thread will do a
wait_for_prior_commit() before starting it. We do not introduce a
new group_commit_orderer, since we still want following transactions
to run in parallel with transactions prior to this one.
*/
speculation= rpl_group_info::SPECULATE_WAIT;
}
else
speculation= rpl_group_info::SPECULATE_OPTIMISTIC;
}
gco->flags= flags;
}
else
{
if (gtid_flags & Gtid_log_event::FL_DDL)
force_switch_flag= group_commit_orderer::FORCE_SWITCH;
}
rgi->speculation= speculation;
if (gtid_flags & Gtid_log_event::FL_GROUP_COMMIT_ID)
e->last_commit_id= gtid_ev->commit_id;
else
e->last_commit_id= 0;
if (new_gco)
{
/*
Do not run this event group in parallel with what came before; instead
wait for everything prior to at least have started its commit phase, to
avoid any risk of performing any conflicting action too early.
Remember the count that marks the end of the previous batch of event
groups that run in parallel, and allocate a new gco.
*/
uint64 count= e->count_queued_event_groups;
if (!(gco= cur_thread->get_gco(count, gco, e->current_sub_id)))
{
cur_thread->free_rgi(rgi);
cur_thread->free_qev(qev);
abandon_worker_thread(rli->sql_driver_thd, cur_thread,
&did_enter_cond, &old_stage);
delete ev;
return 1;
}
gco->flags|= force_switch_flag;
e->current_gco= gco;
}
rgi->gco= gco;
qev->rgi= e->current_group_info= rgi;
e->current_sub_id= rgi->gtid_sub_id;
++e->count_queued_event_groups;
}
else if (!is_group_event)
{
int err;
bool tmp;
/*
Events like ROTATE and FORMAT_DESCRIPTION. Do not run in worker thread.
Same for events not preceeded by GTID (we should not see those normally,
but they might be from an old master).
*/
qev->rgi= serial_rgi;
tmp= serial_rgi->is_parallel_exec;
serial_rgi->is_parallel_exec= true;
err= rpt_handle_event(qev, NULL);
serial_rgi->is_parallel_exec= tmp;
if (ev->is_relay_log_event())
qev->future_event_master_log_pos= 0;
else if (typ == ROTATE_EVENT)
qev->future_event_master_log_pos=
(static_cast<Rotate_log_event *>(ev))->pos;
else
qev->future_event_master_log_pos= ev->log_pos;
delete_or_keep_event_post_apply(serial_rgi, typ, ev);
if (err)
{
cur_thread->free_qev(qev);
abandon_worker_thread(rli->sql_driver_thd, cur_thread,
&did_enter_cond, &old_stage);
return 1;
}
/*
Queue a position update, so that the position will be updated in a
reasonable way relative to other events:
- If the currently executing events are queued serially for a single
thread, the position will only be updated when everything before has
completed.
- If we are executing multiple independent events in parallel, then at
least the position will not be updated until one of them has reached
the current point.
*/
qev->typ= rpl_parallel_thread::queued_event::QUEUED_POS_UPDATE;
qev->entry_for_queued= e;
}
else
{
qev->rgi= e->current_group_info;
}
/*
Queue the event for processing.
*/
qev->ir= rli->last_inuse_relaylog;
++qev->ir->queued_count;
cur_thread->enqueue(qev);
unlock_or_exit_cond(rli->sql_driver_thd, &cur_thread->LOCK_rpl_thread,
&did_enter_cond, &old_stage);
mysql_cond_signal(&cur_thread->COND_rpl_thread);
return 0;
}
|